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The two main results of the paper are a theorem of the alternative of Gordan type and
a two-function minimax theorem. Both are based on some weakened convexlike proper-
ties, without any vector space structure.

1. Introduction

“Theorem of the alternative” is the generic name of different results used as an important
tool in optimization. Though the early versions have been obtained under strong condi-
tions of convexity, for the further extensions, these conditions have been weakened using
generalized convexity beyond vector space structure. This is the case of the result proved
by Jeyakumar [4], who used an extension of Fan’s convexlike property.

Our theorem of the alternative, proved in Section 3, extends the cited result in the case
of the usual order of the n-dimensional Euclidean space, and makes use of the weakened
convexlike property introduced in Section 2.

The two-function minimax theorem extends the classical minimax inequality to the
case of two functions. It is motivated both by the equilibrium problem in the noncooper-
ative game theory and by the generalized duality in optimization. The first known result
is due to Fan [3]. Several authors, especially in the last two decades, produced different
versions of this theorem, employing the basic techniques from single-function minimax
theory. We refer the reader to Simons [9] for a valuable survey in this framework. New
results, based mainly on special connectedness properties, are obtained by Kindler in [5].

The main theorem of Section 4 is based on the theorem of the alternative proved in
Section 3. For both results, one requires neither vector space structures nor topological
support.

2. Weakened convexlike properties

Everywhere in this section, � will designate a family of real-valued functions defined on
an arbitrary nonvoid set X . For any set A, we will denote by σ(A) the family of all finite
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subsets of A, and, if E is a subset of a linear space, then coE stands for the convex hull
of E. Denote also by ∆n the standard (n− 1)-dimensional simplex.

We briefly review some notions which extend the classical convexity beyond vector
spaces.

Let t ∈ [0,1].

Definition 2.1. � is t-convexlike on X if

∀x1,x2 ∈ X , ∃x0 ∈ X , ∀ f ∈�, f
(
x0
)≤ t f

(
x1
)

+ (1− t) f
(
x2
)
. (2.1)

Definition 2.2. � is t-subconvexlike on X if

∀x1,x2 ∈ X , ∀ε > 0, ∃x0 ∈ X , ∀ f ∈�, f
(
x0
)≤ t f

(
x1
)

+ (1− t) f
(
x2
)

+ ε. (2.2)

Definition 2.3. � is t-concavelike (t-subconcavelike) on X if −� is t-convexlike (t-
subconvexlike) on X .

Definition 2.4. � is convexlike (subconvexlike) on X if it is t-convexlike (t-subconvexlike)
on X for all t ∈ [0,1]. � is concavelike (subconcavelike) on X if −� is convexlike (sub-
convexlike) on X .

The concept of convexlike functions is due to Fan [3]. Weakening this property, König
[6] introduced t-convexlike functions (for t = 1/2) in order to extend Fan’s minimax the-
orem. The concept of t-subconvexlike functions originates from Craven and Jeyakumar
[2] but, in a particular form, it was introduced in Neumann [7].

Remark 2.5. If � is t-convexlike (t-subconvexlike), then every subfamily �′ of � is also
t-convexlike (t-subconvexlike).

Remark 2.6. If � is t-convexlike (t-subconvexlike) for some t ∈ (0,1), then � is t′-
convexlike (t′-subconvexlike) for all t′ in a set D(t), dense in [0,1]. Obviously, {0,1} ⊂
D(t).

Remark 2.7. If � is t-convexlike (t-subconvexlike), then co� is also t-convexlike (t-
subconvexlike).

Remark 2.8. If � is t-convexlike for some t ∈ (0,1), then for any integer n≥ 2 there exists
Dn(t), dense in ∆n, such that

∀x1,x2, . . . ,xn ∈ X , ∀(a1,a2, . . . ,an
)∈Dn(t),

∃x0 ∈ X , ∀ f ∈�, f
(
x0
)≤

n∑
i=1

ai f
(
xi
)
.

(2.3)

Similarly, if � is t-subconvexlike for some t ∈ (0,1), then for any integer n ≥ 2 there
exists Dn(t), dense in ∆n, such that

∀x1,x2, . . . ,xn ∈ X , ∀a= (a1,a2, . . . ,an
)∈Dn(t), ∀ε > 0,

∃x0 ∈ X , ∀ f ∈�, f
(
x0
)≤

n∑
i=1

ai f
(
xi
)

+ ε.
(2.4)
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For other relationships between convexlike properties we refer to Paeck [8].
Based on the above remarks, we arrive to the following definitions (Stefanescu [11]).

Definition 2.9. � is t-weakly convexlike on X if

∀x1,x2 ∈ X , inf
x∈X

sup
f∈�

f (x)≤ sup
f∈�

[
t f
(
x1
)

+ (1− t) f
(
x2
)]
. (2.5)

� is weakly convexlike on X if it is t-weakly convexlike for all t ∈ [0,1].

Remark 2.10. � is t-weakly convexlike for some t if and only if co� is t-weakly
convexlike.

Definition 2.11. � is affine weakly convexlike on X if

∀x1,x2, . . . ,xn ∈ X , ∀(t1, t2, . . . , tn
)∈ ∆n, inf

x∈X
sup
f∈�

f (x)≤ sup
f∈�

n∑
i=1

ti f
(
xi
)
. (2.6)

Definition 2.12. � is t-weakly concavelike (weakly concavelike, resp., affine weakly con-
cavelike) if −F is t-weakly convexlike (weakly convexlike, resp., affine weakly convexlike).

Remark 2.13. It follows by Remarks 2.6, 2.7, and 2.8 that if � is t-convexlike (t-
subconvexlike) for some t ∈ (0,1), then � and co� are weakly convexlike. Also, if �
is convexlike (subconvexlike), it is affine weakly convexlike.

For the converse implications, consider the following simple counterexamples.

Example 2.14. Let Z∗ be the set of all nonzero integers. Take X = {1/z | z ∈ Z∗} and
�= { fa | a∈ Z∗}, where fa(x)= x/a.

One easily verifies that sup f∈� f (x)= sup f∈co� f (x)= |x| and then

inf
x∈X

sup
f∈�

f (x)= inf
x∈X

sup
f∈co�

f (x)= 0. (2.7)

On the other hand, for any x1,x2 ∈ X and t ∈ [0,1], sup f∈�[t f (x1) + (1− t) f (x2)] =
sup f∈co�[t f (x1) + (1− t) f (x2)] = |tx1 + (1− t)x2|. Thus, both � and co� are weakly
convexlike.

Moreover, since sup f∈�

∑n
i=1 ti f (xi) = |

∑n
i=1 tixi| for every (t1, t2, . . . , tn) ∈ ∆n and for

any x1,x2, . . . ,xn ∈ X , it follows that � is affine weakly convexlike.
To show that � is not t-subconvexlike, take x1 = −1, x2 = 1, t ∈ (0.05,0.1), and ε =

0.05. If fa(x) ≤ [t fa(x1) + (1− t) fa(x2)] + ε for all a ∈ Z∗, then x and t must verify
2t− 1.05 ≤ x ≤ 2t− 0.95. Obviously, for each t in the considered interval, there are no
x ∈ X verifying this condition. Thus, by Remark 2.6, there is no t ∈ (0,1) such that � is
t-subconvexlike (t-convexlike).
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Example 2.15. Let N∗ be the set of all positive integers. Take X = {1/n | n ∈ N∗} and
�= { fa | a∈N∗}, where

fa(x)=



a if x <

1
a

,

x if x ≥ 1
a
.

(2.8)

Since inf f∈� f (x)= inf f∈co� f (x)= x, then

sup
x∈X

inf
f∈�

f (x)= sup
x∈X

inf
f∈co�

f (x)= 1. (2.9)

Also, inf f∈co�
∑n

i=1 ti f (xi) =
∑n

i=1 tixi for every t = (t1, t2, . . . , tn) ∈ ∆n and for any x1,
x2, . . . ,xn ∈ X .

Hence, co� (�) is weakly concavelike and � is affine weakly concavelike.
However, � is not t-subconcavelike for any t ∈ (0,1). One can verify that there does

not exist a dense set D ⊆ [0,1] such that, for every t ∈D, the inequality

fa(x)≥
[
t fa(1) + (1− t) fa

(
1
3

)]
− ε (2.10)

admits solutions in X independent of a, if ε is small enough.
For instance, if ε < 1/12, there are no t in the interval (3ε/2,1− ε) satisfying (2.10) for

an appropriate x ∈ X and all a∈N∗.

3. A general theorem of the alternative

Theorem 3.1. Let � be a finite family of real-valued functions defined on a nonvoid set X .
If every � ∈ σ(co�) is weakly convexlike, then exactly one of the following two situations
occurs:

∃x̄ ∈ X , ∀ f ∈�, f (x̄) < 0,

∃ f̄ ∈ co�, ∀x ∈ X , f̄ (x)≥ 0.
(3.1)

The proof of the theorem is based on the following three lemmas.

Lemma 3.2. Let f1, f2 be any real-valued functions on X satisfying the following two condi-
tions:

∀x ∈ X , max
i=1,2

fi(x)≥ 0, (3.2)

∀t ∈ [0,1], ∅∈ {ϕ(t)∩ϕ(0),ϕ(t)∩ϕ(1)
}

, (3.3)

where ϕ(t)= {x ∈ X | t f1(x) + (1− t) f2(x) < 0}, t ∈ [0,1].
Then, there exists t0 ∈ [0,1] such that

∀x ∈ X , t0 f1(x) +
(
1− t0

)
f2(x)≥ 0. (3.4)
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Proof. Obviously, ϕ(t) ⊆ ϕ(0)∪ ϕ(1) for every t ∈ [0,1]. Denote ϕ−1(A) = {t ∈ [0,1] |
ϕ(t)∩A 
= ∅}, A⊆ X . By (3.2) and (3.3) it results that ϕ−1(ϕ(0))∩ϕ−1(ϕ(1))=∅. Ob-
viously, 0∈ ϕ−1(ϕ(1)), 1∈ ϕ−1(ϕ(0)) and these two sets are open in [0,1]. It follows that
[0,1] \ (ϕ−1(ϕ(0))∪ϕ−1(ϕ(1))) 
= ∅ so that there exists t0 ∈ [0,1] with ϕ(t0)=∅. �

Lemma 3.3. Let f1, f2 satisfy (3.2). If �= { f1, f2} is weakly convexlike, then (3.3) holds.

Proof. By way of contradiction, we assume that there exists t ∈ [0,1], x1,x2 ∈ X , such that
f1(x1) < 0, f2(x2) < 0 and

t f1
(
x1
)

+ (1− t) f2
(
x1
)
< 0,

t f1
(
x2
)

+ (1− t) f2
(
x2
)
< 0.

(3.5)

Denote ai = f1(xi), bi = f2(xi), i= 1,2. Obviously, (3.5) imply that

b1

b1− a1
<

b2

b2− a2
, (3.6)

which is equivalent to

a2

a2− a1
<

b2

b2− b1
. (3.7)

Then, for every t′ ∈ (a2/(a2− a1),b2/(b2− b1)), it results that

t′ f1
(
x1
)

+ (1− t′) f1
(
x2
)
< 0,

t′ f2
(
x1
)

+ (1− t′) f2
(
x2
)
< 0.

(3.8)

Now, since { f1, f2} is t′-weakly convexlike, the last two inequalities imply that
infx∈X maxi=1,2 fi(x) < 0. Thus, there exists x0 ∈ X such that maxi=1,2 f1(x0) < 0, contra-
dicting (3.2). �

Lemma 3.4. Let �= { f1, f2, . . . , fn}, n≥ 3, be weakly convexlike on X . Then f1 and f2 satisfy
(3.3) with respect to the set

X ′ = {x ∈ X | fi(x) < 0, i= 3, . . . ,n}, (3.9)

whenever maxi=1,2 fi(x)≥ 0, for all x ∈ X ′.

Proof. As in the proof of Lemma 3.3, choose t′ and observe that

∀i= 1,2, . . . ,n, t′ fi
(
x1
)

+ (1− t′) fi
(
x2
)
< 0. (3.10)

�

Note that condition (3.3) was first used in Stefanescu [10] for proving a general mini-
max theorem.
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Proof of Theorem 3.1. The proof follows by induction on n= |�|.
For n= 2, the alternative (3.1) follows directly from Lemmas 3.2 and 3.3.
Assume that the theorem holds for every family of at most n− 1 functions, n≥ 3, and

let �= { f1, f2, . . . , fn} satisfy max1≤i≤n fi(x)≥ 0 for all x ∈ X .
Denote X ′ = {x ∈ X | fi(x) < 0, i = 3, . . . ,n}. If X ′ = ∅, then the conclusion follows

from the inductive assumption. Otherwise, maxi=1,2 fi(x) ≥ 0 for all x ∈ X ′. Then, by
Lemma 3.4, it follows that { f1, f2} satisfies the assumptions of Lemma 3.2 with respect
to X ′. Hence, there exists f0 ∈ co{ f1, f2} such that f0(x) ≥ 0 for all x ∈ X ′. Moreover,
max{ f0(x), f3, . . . , fn(x)} ≥ 0 for all x ∈ X . By induction, there exists f̄ ∈ co{ f0, f3, . . . ,
fn} = co� with f̄ (x)≥ 0, for all x ∈ X . �

By Remark 2.10, co� is weakly convexlike if � is weakly convexlike. But unlike in
the case of previously known convexlike properties, a subfamily of a weakly convexlike
family of functions is not necessarily weakly convexlike too so that in Theorem 3.1 it is
not sufficient to assume that � is weakly convexlike. However, we can observe that all that
we need for proving Theorem 3.1 is the following condition.

(C) There exists an ordering { f1, f2, . . . , fn} of �, such that the family of functions
{ f̄ , fk+1, . . . , fn} is weakly convexlike, for every k = 1, . . . ,n− 1 and f̄ ∈ co({ f1, . . . , fk}).

The following corollary of Theorem 3.1 easily follows from Remarks 2.13 and 2.5. It is
not else than the alternative theorem of Jeyakumar [4] for the usual (partial) order of Rn.

Corollary 3.5. Let � be t-subconvexlike for some t ∈ (0,1). Then the alternative (3.1)
holds.

Example 2.14 can be used once more to show that Theorem 3.1 generalizes previously
known alternative theorems concerning convexlike-type functions.

It is easy to see that the alternative (3.1) holds for any finite subset of � (and of co�
as well), but the conditions of Corollary 3.5 are not satisfied. Obviously, co�= { fα | α∈
[−1,1]}, where fα(x) = αx. Arguing as in Example 2.14, one can verify that any finite
subfamily �′ = { fαi | 1 ≤ i ≤ k}, where −1 ≤ α1 < ··· < αk ≤ 1 and α1 < 0 < αk, is not
t-subconvexlike for any t ∈ (0,1), so that Corollary 3.5 fails.

On the other hand, we can show that Theorem 3.1 can be applied in this example. All
that we must do is to verify that any �′ = { fαi | 1≤ i≤ k} is affine weakly convexlike.

Fix n, t ∈ ∆n and x1, . . . ,xn ∈ X . Set x̄ =∑n
j=1 t j fαi(x

j). The inequality

inf
x∈X

max
1≤i≤k

fαi(x)≤ max
1≤i≤k

n∑
j=1

t j fαi(x
j) (3.11)

is equivalent to the inequality infx∈X max1≤i≤k αix ≤ max1≤i≤k αix̄ and the latter results
from a simple calculation.

Remark 3.6. We may ask whether Jeyakumar’s alternative theorem can be generalized
in the more abstract framework of an order induced by an arbitrary convex cone. The
appropriate reformulation of Definition 2.9 in terms of such order is an open problem.
Moreover, since our approach involves only quantitative relations, the technique of proof
is inadequate in an abstract framework.
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4. A two-function minimax theorem

The main result of this section is obtained via the previous theorem of the alternative.

Theorem 4.1. Let X , Y be any nonvoid sets and f , g two real-valued functions defined on
the product set X ×Y , such that

∀x1, . . . ,xn ∈ X , ∀(t1, . . . , tn
)∈ ∆n, sup

x∈X
inf
y∈Y

g(x, y)≥ inf
y∈Y

n∑
i=1

ti f
(
xi, y

)
. (4.1)

If

each �∈ σ(co�) is weakly convexlike on Y , (4.2)

where �= ( f (x,·))x∈X , then

sup
X ′∈σ(X)

inf
y∈Y

max
x∈X ′

f (x, y)≤ sup
x∈X

inf
y∈Y

g(x, y). (4.3)

Proof. Let X ′ ∈ σ(X) and suppose that inf y∈Y maxx∈X ′ f (x, y)≥ α, for some α. Apply the
theorem of the alternative to ( f (x,·)−α)x∈X ′ . It follows the existence of the nonnegative
numbers tx, x ∈ X ′,

∑
x∈X ′ tx = 1, such that

∑
x∈X ′

tx f (x, y)≥ α, ∀y ∈ Y. (4.4)

But then, by (4.1) it follows that

sup
x∈X

inf
y∈Y

g(x, y)≥ α. (4.5)

Therefore,

sup
x∈X

inf
y∈Y

g(x, y)≥ inf
y∈Y

max
x∈X ′

f (x, y). (4.6)

Since X ′ is any finite subset of X , this proves the theorem. �

For the case when f (x, y)≤ g(x, y), for all (x, y)∈ X ×Y , which is usually considered
in the two-function minimax theorems, we easily obtain the following theorem.

Theorem 4.2. Let X , Y be any nonvoid sets and f , g two real-valued functions defined on
the product set X ×Y such that f (x, y)≤ g(x, y) for all (x, y)∈ X ×Y . If (4.2) holds, and

� is affine weakly concavelike on X , (4.7)

where � = (g(·, y))y∈Y , then (4.3) holds.

Now, the two-function minimax inequality

inf
y∈Y

sup
x∈X

f (x, y)≤ sup
x∈X

inf
y∈Y

g(x, y) (4.8)
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can be obtained if one combines the assumptions of the previous theorems with any
sufficient conditions for the inequality

inf
y∈Y

sup
x∈X

f (x, y)≤ sup
X ′∈σ(X)

inf
y∈Y

max
x∈X ′

f (x, y). (4.9)

We denote Yα(x)= {y ∈ Y | f (x, y)≤ α}, x ∈ X , α∈R.

Proposition 4.3. Assume that the following condition holds.

(∗) There exists ᾱ≥ inf y∈Y supx∈X f (x, y) such that for all α≤ ᾱ, the family (Yα(x))x∈X
has nonempty intersection whenever it has the finite intersection property.

Then (4.9) holds.

Proof. By way of contradiction, we assume that

inf
y∈Y

sup
x∈X

f (x, y) > sup
X ′∈σ(X)

inf
y∈Y

max
x∈X ′

f (x, y). (4.10)

Pick an α≤ ᾱ, inf y∈Y supx∈X f (x, y) > α > supX ′∈σ(X) inf y∈Y maxx∈X ′ f (x, y). This implies
∩x∈XYα(x) =∅. From the finite intersection property, it follows that there exists X ′ ∈
σ(X) such that ∩x∈X ′Yα(x)=∅. Thus, inf y∈Y maxx∈X ′ f (x, y) > α. �

Remark 4.4. Condition (∗) is fulfilled if (Yα(x))x∈X are closed and compact in a topolog-
ical space, for α≤ ᾱ.

The proposition also holds if one assumes Yᾱ(x̄) to be compact, for some x̄ ∈ X , and
Yα(x) closed in X , for all x ∈ X and α≤ ᾱ.

From Proposition 4.3 and Theorems 4.1 and 4.2, we easily obtain the following two-
function minimax theorems.

Theorem 4.5. Let X , Y be any nonvoid sets and f , g two real-valued functions defined on
X ×Y . Assume condition (∗) to be satisfied. If (4.1) and (4.2) hold, then (4.8) holds.

Theorem 4.6. Let X , Y be any nonvoid sets and f , g two real-valued functions defined on
the product set X ×Y , such that f (x, y)≤ g(x, y) for all (x, y)∈ X ×Y . Assume condition
(∗) to be satisfied. If (4.2) and (4.7) hold, then (4.8) holds.

Based on the examples of Section 2, one can see that the above results are independent
of most known similar results.

An easy consequence of the last two theorems is a slight generalization of the two-
function minimax theorem proved by Cheng and Lin in [1].

Corollary 4.7. Let X , Y be any nonvoid sets and f , g two real-valued functions defined on
the product set X ×Y , such that f (x, y)≤ g(x, y) for all (x, y)∈ X ×Y . Assume that there
exists t,s∈ (0,1) such that � is t-subconvexlike and � is s-subconcavelike. If condition (∗)
holds, then (4.8) holds.
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