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We prove the existence and uniqueness of a strong solution for a linear
third-order equation with integral boundary conditions. The proof uses
energy inequalities and the density of the range of the generated opera-

tor.

1. Introduction

In the rectangle Q = [0,1] x [0,T], we consider the equation

du 0 ou
fu= w + a—x<a(x,t)a—x> —f(x,t),

with the initial conditions

u(x,0) =0, %—‘t‘(x,O) =0, x€(0,1),

the final condition

0*u

W(XIT) = O/ X € (0/1)/

the Dirichlet condition

u(0,t) =0, Vte(0,T),
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and the integral condition

1
j u(x,t)dx=0, Vte(0,T). (1.1e)
0

In addition, we assume that the function a(x,t) is bounded with
O<ap<a(x,t)<ai, (1.2)

and has bounded partial derivatives such that
oka

< W(x,t) <ck, VYx€(0,1),te(0,T), k=1,3, withc} >0,

Ck
(1.3)

g—z(x,t)' <by, for (x,t)€Q.

Various problems arising in heat conduction [4, 6, 14, 15], chemical en-
gineering [9], underground water flow [13], thermoelasticity [21], and
plasmaphysics [19] can be reduced to the nonlocal problems with in-
tegral boundary conditions. This type of boundary value problems has
been investigated in [1, 2, 3, 5, 6, 7, 9, 14, 15, 16, 20, 23] for parabolic
equations, in [18, 22] for hyperbolic equations, and in [10, 11, 12] for
mixed-type equations. The basic tool in [4, 10, 11, 12, 16, 23] is the en-
ergy inequality method which, of course, requires appropriate multipli-
ers and functional spaces. In this paper, we extend this method to the
study of a linear third-order partial differential equation. This type of
problems is encountered in the study of thermal conductivity [17] and
microscale heat transfer [8].

2. Preliminaries

In this paper, we prove the existence and uniqueness of a strong so-
lution of problem (1.1). For this, we consider the solution of problem
(1.1) as a solution of the operator equation Lu = ¥, where L is the oper-
ator with domain of definition D(L) consisting of functions u € E such
that v/1 - x(0%*1u/0tk0x) (x,t) € L2(Q), k = 0,3 and u satisfies conditions
(1.1d) and (1.1e). The operator L is considered from E to F, where E is
the Banach space of the functions u, u € L?(Q), with the finite norm

2 _ (1—x)2 2
Il = [ 5 { S N aear

— v)2 2
+I <(1 Zx) + |u|2>dxdt,
Q

ul? |0%u

or3

ou

ox




M. Denche and A. Memou 555

and F is the Hilbert space of the functions ¥ = (£,0,0,0), f € L*(Q), with
the finite norm

IFI2 = fQ(l—x)zlflzdxdt- (22)

Then we establish an energy inequality

lulle < kllLulle, VueD(L), (2.3)
and we show that the operator L has the closure L.

Definition 2.1. A solution of the operator equation Lu = ¥ is called a
strong solution of problem (1.1).

Inequality (2.3) can be extended to u € D(L), that is,
lulle < k|| Lu||., VueD(L). (2.4)

From this inequality, we obtain the uniqueness of a strong solution, if

it exists, and the equality of the sets R(L) and R(L). Thus, to prove the
existence of a strong solution of problem (1.1) for any ¥ € F, it remains
to prove that the set R(L) is dense in F.

3. An energy inequality and its applications

THEOREM 3.1. For any function u € D(L), there exists the a priori estimate

lulle < kIl Lull, (3.1)
where
2 17exp(en[5 +4(b1)?/ (¢ —3cc +3c2¢, - Par —b?)] +1 52)
- min (1,:1(2),c’3 —3ccy +3c%c) - Bay —b%) ’ ’
with the constant c satisfying
10a . 10a
sup (—— ) <c< inf (——+1),
(xheq \ a Of (xhe \ a Ot
(3.3)

2
c;—3ccr + 3¢ -ca; - (b1)">0,

2 —2cc) +c*a; - ¢y +car <0.
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Proof. Let
,0%u %u
Mu=(1-x) ) +2(1 x)]x 30 (3.4)
where
X
L= [ e (35)
0
We consider the quadratic form
O(u,u) = ReJ‘ exp(—ct)Eumdxdt, (3.6)
Q

with the constant ¢ satisfying (3.3), obtained by multiplying (1.1a) by

exp(—ct) Mu, integrating over Q, and taking the real part. Substituting
the expression of Mu in (3.6), we obtain

Ref exp(—ct)EuM_udx dt
Q

3 2
=Ref exp(—ct)(1 - x)2 a_? dxdt
@ as (3.7)
+2Ref exp(—ct)(1- x) 6t3 * 50 —dxdt

+Re L} exp(-ct) a (a(x, t) a—x>Mudxdt.

Integrating the last two terms on the right-hand side by parts with re-
spect to x in (3.7) and using the Dirichlet condition (1.1d), we obtain

u o’u ! u|?
2Rej (1-x)exp(—ct) — 5t3 FYE —dx = J‘exp(—ct) ]xw dx, (3.8)
ou '\ ——
Refgexp(—ct)a—x<aa—x>Mudxdt
=—Rej exp(—ct)(1 - x)2 Ou o' dxdt
1) X Ot30x
(3.9)

—2Ref exp(-ct) au]x dxdt

—ZReI exp(— ct‘)aua dxdt.
o) ot3
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Integrating each term by parts in (3.9) with respect to t and using the
initial and final conditions (1.1b) and (1.1c), we get

0 [/ Oou\-—
ReJ‘Qexp(—ct)$<a&)Mudxdt
da _ du
_—2ReJ‘Qexp(—ct)$u]x—3d dt

o%a d%a _ ,0a
+| ex (—ct)< —3c— +3c*— - c3a>
Lz P ot3 ot? ot

X[u—xy ou |?

2 |ox

_3’[Qexp(—ct)<‘;_? —ca) [(1 2x)2

1 21 82, |2
B (1-x)*| 0°u
+.[0 exp( ct)a[ 5 Sox

+ |u|2] dx dt

u |> |ou

otox| T|or

]d dt
]dx
! a _ Oda (1-x)? z
_fo exp(—ct‘)<ath -2c et a>[ 5 +|ul” |dx

! oa 0*u ou ou
+Rej ex (—ct)<——ca>{( x)* —— +2u—}
P ot dtox ot

Substituting (3.8) and (3.10) in (3.7) and using conditions (1.2), (1.3),
and (3.3), we obtain

ou
ot

T=t

a_u
ox

t=T

dx.

T=t

I exp(—ct)(1- x)2 dxdt
Q

5_
(e

20 _ 3 2
—3ccy +3c%cy —c’a; — by}

+ fQ exp(-ct){c

X[ﬂ—xV (3.11)

a_u2
ox

5 +|uF]dxdt

< Rej exp(—ct)EuMudxdt.
Q

Again, substituting the expression of Mu in (3.11) and using elementary
inequality, we get
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63
or

(1-x)°

f exp(—ct) d dt
o 2

+ f exp(—ct){ch —3cc, +3c*c) —c*ar - b7}
Q

(1-x2|5 (3.12)
x u 5
X [ 5 e + |u| ]dxdt
< 17f exp(—ct)(1 - x)?| f[*dx dt.
Q
By virtue of (1.1a), we have
0%u | (1-x)?
IQ ap @ 5 dxdt
u
SI (1—x)2|f|2dxdt+f 2(1- x)2 a_ dxdt (3.13)
Q
2] (1-x)? a_” 2
+4J‘le{ 5 e +|ul® pdxdt.
This last inequality combined with (3.12) yields
(1-x)*|0
d dt
J
2
+f (cg—3ccz+3czc'1—c3a1—b%){(1 ZX) e |u|2}dxdt
»(1-x)%|0
d dt
+IQ S ax
<1 17exp(cT)|5 4by 1
exp(c + +
- P cb —3ccr +3c2c, - cday - b2
xf (1-x)?|fPdxdt.
Q
(3.14)
Thus, this inequality implies
(1-x)2 [|8°u u |? J‘ (1-x)2|oul* |
f £ ax2 dxdt+ L2 % + |u|*dxdt

<K Lu — x)?|fPdxdt,
(3.15)
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where
. 17exp(cT) [5+4b2/ (¢ —3ccr +3c*c) — a1 - b7)| +1 (3.16)
min (1, a3, ¢} —3cc, +3c2c) - 3ar - b?)
Then,
llulle < k||Lullp, Yu€D(L). (3.17)
Thus, we obtain the desired inequality. O
LeEMMA 3.2. The operator L from E to F admits a closure.
Proof. Suppose that (u,) € D(L) is a sequence such that
u, —0 inE, Lu, — ¥ inF. (3.18)
We need to show that ¥ = 0. We introduce the operator
£ov = —(1—x)2é§—t§) + %{a(x,t)%[(l—x)zv] }, (3.19)

with domain D(£() consisting of functions v € sz’3 (Q) satisfying

ov
ot

~ 0%v
=0 ot?

0
= 0/ le:() = 0/ _U
t=0 0x

’()lt=0 = 0, =0.
x=0

(3.20)

We note that D(£) is dense in the Hilbert space obtained by completing
L?(Q) with respect to the norm

j (1-x)*oldxdt = ||v|>. (3.21)
Q
Since

f (1-x)*fodxdt= lim f (1-x)*u,odxdt
Q n—+oo Q
(3.22)

= lim u,fovdxdt=0,
Nn—-+oo Q

for any function v € D(£y), it follows that f = 0. O
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Theorem 3.1 is valid for a strong solution, then we have the inequality

Vue D(L). (3.23)
Hence we obtain the following corollary.

CoROLLARY 3.3. A strong solution of problem (1.1) is unique if it exists, and
depends continuously on F.

COROLLARY 3.4. The range R(L) of the operator L is closed in F, and R(L) =
R(L).

4. Solvability of problem (1.1)

To prove the solvability of problem (1.1), it is sufficient to show that R(L)
is dense in F. The proof is based on the following lemma.

LeMMA 4.1. Suppose that a(x,t) and its derivatives 0*a/dt>0x and 9*a/ dtdx

are bounded. Let Do(L) = {u € D(L) : u(x,0) =0, (0u/dt)(x,0) =0, (0*u/
ot?)(x,T) = 0}. If, for u € Do(L) and for some functions w € L*(Q),

J‘ (1-x)fuwdxdt =0, (4.1)
Q

then w = 0.

Proof. Equality (4.1) can be written as follows:

fQ(l—x)E%dxdtz—J‘Q%<a(1—x)g—2){ I —dg}dxdt

(4.2)

For a given w(x,t), we introduce the function v(x,t) such that

oo =w ) [ LEh 4o (4.3)

0o 1-¢

From (4.3), we conclude that f; v(x,t)dx =0, and thus, we have

0Pu— _

—Nvodxdt=-| A(t)uvdxdt, (4.4)

o Of Q

where A(t)u = (0/0x)(a(l-x)(0u/0x)) and Nv = (1-x)v+ Jo.
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Following [23], we introduce the smoothing operators

];1=<1—e<§—;>)_1, (];1)*=<I+e<§—;>>_l, (4.5)

with respect to t, which provide the solutions of the respective problems

P o2 Pg.
ge—¢ ag =g, g(0)=0, 5‘; (0) =0, atgz (T) =0,
(4.6)
.08 . 0g: 0°g:
greii=g =0, Fm=0, ZEmM-=0.

We also have the following properties: for any g € L?(0,T), the functions
J2H(g), (J:1)*g e W3(0,T). If g € D(L), then J;'(g) € D(L) and we have

lim”(]e_l)*g_g”LZ[O,T] =0 fOl‘E—)O, (4 7)
lim||(J:")8 = gl 2oy =0 for e —0. ‘

Substituting the function u in (4.4) by the smoothing function u, and
using the relation

A(ue = Au—e] ' e(t)ue, (4.8)
where
B 0%A(t) Ou, 0A(t) 0®u, 0°A(t)
Pe(t)u. =3 32 ot +3 3 % + FYE U, (4.9)
we obtain

3% o o
- f uNaidxdtzj A(t)uv;dxdt—ef Be(Hucvidxdt.  (4.10)
Q o3t Q Q

Passing to the limit, the equality in the relation (4.10) remains true for all
functions u € L?(Q) such that (1 - x)(0u/0x), (0/0x)((1 - x)(0u/0x)) €
L2(Q), and satisfying condition (1.1d).
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The operator A(t) has a continuous inverse in L2(0,1) defined by

o (F1 1 e
Az~ o t)fgm,t)dndc

+C(t)f

(4.11)
1-¢ (g n

where

[y (d¢/a(g,b) fog(n,t)dn

C(t) =
[o (d/a(g,h)

(4.12)

Then, we have j'g A7Y(t)gdx =0, hence the function u, = (J.)'u can be
represented in the form

u, = (J.) TAT(B At (4.13)

Then

8.0 = )i [ ([ swan-co)|

20 B s ([ stwnan-co )]

9 0%a 0 (4.14)
a
ot 0120x atjg a(x, t)<f g(n,t)dn - C(t))
aa 0 18 Ox
at at]E a a2(x t) <j g(Tl,t)dTl C(t))
The adjoint of B.(t) has the form
O0a oh
Bi(t) = _<151) [atS ] _(]61) <att1 at>
(4.15)

Jo (1/a(n,1)dy

G:h -
+(Geh) () fé (1/a(x,t))dx

(Geh) (1),
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where

<G€”)(")=f: (~aen 5 <a?;c?;tl>

aa 1 Oa oh
a; 200V 5 55 a)

a0 <a?3§¢ )+ s an U < ) )

(4.16)
Consequently, equality (4.10) becomes
6305 —
- 63 ——-dxdt= A(t)uhgdxdt, (4.17)
Q

where h, = v} —¢B}v}.

The left-hand side of (4.17) is a continuous linear functional of u.
Hence the function h, has the derivatives (1 — x)(0h./0x), (0/0x)((1-
x)(0h./0x)) € L*(Q) and the following conditions are satisfied: h|,—o =
0, helx=1 =0, and (1 —x)(0h./0x)|x=1 = 0.

From the equality

oh, 1, 1\+0%a
3 _[1-5_@)@]

~3e= (7')’ (?;gt( 93,

(4.18)

and since the operator (J;!)* is bounded in L*(Q), for sufficiently small ¢,
wehave ||e(1/a)(J;1)*(0%a/0)|| < 1. Hence the operator I -e(1/a)(J-1)*
(0%a/0t%) has abounded inverse in L2(Q). We conclude that (1 - x) (0v/
ox) € L*(Q).

Similarly, we conclude that (0/0x)((1 — x)(0v%/0x)) exists and be-
longs to L*(Q), and the following conditions are satisfied:

*

o0v
U;|X=O=O/ U:lle =0, (1-x) 3 £

=0. (4.19)

x=1

Substituting u = fé K ng exp(cT)vi(T)dr d{dn in (4.4), where the constant
c satisfies (3.3), we obtain

J‘ exp(ct)viNodxdt = —f A(tuvdxdt. (4.20)
Q Q
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Using the properties of smoothing operators, we have

3 *
j exp(ct)viNodxdt = - f A(Huvidxdt - sf A(t)ua S-dxdt,
(4.21)
and from
Ug au o o’

EReJ‘ A(t)u dxdt = f 1- vl TS ——dxdt
da du & v’

__EReJ‘Q(l_x)Ea_xﬁa—xdxdt

+£Rej 1-
Q

+£f aexp(—ct)(1- x) Ov:
Q

+ gReJ‘ (1-
we have

3. %
a“wm

EReJ‘ A(t)u

ZEI aexp(+ct)(1- x) Ovz
Q

—EJ‘Q(l —x)i(%—?)zexp(—ct) — ’

*

—£I aexp(+ct)(1- x) 0ve
Q

v

X

- eJ‘ exp(+ct) 1%
Q

ot20x

62*

—e| exp(+ct
L p( )aa

)
Q2 ot

—2
*

(ct) (')u

2
aaau 6av€dxdt

X) 5% Bto% 5t ox (4.22)

*

dxdt

oa 0’u 605

)5t atox ox ©

xdt,

dxdt

3
dxdt

dxdt

(4.23)

2
dxdt

dxdt

2
dxdt.

2
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Integrating the first term on the right-hand side by parts in (4.21), we
obtain

ReJ‘ At uvidxdt
Q
—
>—§j (1-x)exp(— ct)( a) 0w d dt
o%u |?
+§jo(1—x)exp(—ct)<a E_C ) 3o .
1 (! 0*a _ Oa oa ou|?
—Ej‘o(l—x)exp(—ct){w -2c at+ a+ T } 3 t:de
1 a , 0a , ,0a 3 oul?
+§L2(1—x)exp(—ct){at3 -3c W +3c o a} FP” dxdt.
(4.24)
Combining (4.23) and (4.24), we get
ReJ‘ exp(ct)viNodxdt
Q
3 o%u |?
< Z _ _ — - -
_2,[9(1 x)exp(—ct)(c1—cay) pyEy
1 (! , P u|?
—Efo(l—x)exp(—ct){ao—cl—cal} Y .
1 (! oul?
+—f (1-x)exp(=ct){ca —2cic—c*a; —c| +car } | =— dx
2 ) 0x| |zt
1 , 5, 3 oul?
-= (1—x)exp(—ct){c3—3czc+3c ¢ —ca}|—| dxdt
2)a 0x
+£<J‘ (1-x)exp(- ct‘)4:—1 at2ax dxdt
I (1-x)exp(- ct)— — dxdt
1— 3% |2
+J‘Q exp(ct) 626 dxdt
825
I (1-x)exp(- ct)— 3ox
2, %

+ IQ 1- exp(ct)

2
dx dt> .

(4.25)
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Using conditions (3.3) and inequalities (4.23) and (4.24), we obtain
ReJ‘ exp(ct)vNodxdt<0, ase—0. (4.26)
Q

Since Re [, exp(ct)vJxvdxdt =0, thenv =0 a.e.
Finally, from the equality (1 - x)v + J,v = (1 - x)w, we conclude w = 0.
]

THEOREM 4.2. The range R(L) of L coincides with F.

Proof. Since F is Hilbert space, then R(L) = F if and only if the relation
f (1-x)*£ufdxdt=0, (4.27)
Q

for arbitrary u € Dy(L) and % € F, implies that f =0.
Taking u € Dy(L) in (4.27) and using Lemma 4.1, we obtain that w =
(I-x)f=0,then f=0. O
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