
ON CONTROLLABILITY,
PARAMETRIZATION, AND OUTPUT
TRACKING OF A LINEARIZED
BIOREACTOR MODEL

J. TERVO, M. T. NIHTILÄ, AND P. KOKKONEN

Received 12 April 2002 and in revised form 30 October 2002

The paper deals with a distributed parameter system related to the so-
called fixed-bed bioreactor. The original nonlinear partial differential
system is linearized around the steady state. We find that the linearized
system is not exactly controllable but it is approximatively controllable
when certain algebraic equations hold. We apply frequency-domain
methods (transfer function analysis) to consider a related output track-
ing problem. The input-output system can be formulated as a transla-
tion invariant pseudodifferential equation. A simulation shows that the
calculation scheme is stable. An idea to use frequency-domain methods
and certain pseudodifferential operators for parametrization of control
systems of more general systems is pointed out.

1. Introduction

Various boundary value control systems related to partial differential
equations are used to model the propagation in science and technology.
These systems are infinite dimensional in a sense that the corresponding
state variables belong to the infinite-dimensional linear spaces such as
the Lebesgue or more generally the Sobolev spaces. One has developed,
for example, functional analytic (see, e.g., [1, 4, 7, 16, 26]) and algebraic
(e.g., [9, 20, 23]) methods to study these systems. Two of the main issues
are the controllability and (asymptotic) output tracking of the system. Ap-
plying the functional analytic methods, the infinite-dimensional case has
diverse collection of controllability concepts such as exact, approximate,
and null controllability. There is no general correlation between these
controllability properties and the output tracking. This is mainly due to
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the fact that the state, output, and input spaces may be completely dif-
ferent.

One of the more novel structural property of the control system is
the parametrizability. In some cases, it can be studied using also alge-
braic methods such as torsion-freeness of certain structural factor mod-
ules. Torsion elements correspond to uncontrollable modes of the sys-
tem. Parametrizability is closely related also to the flatness of the sys-
tem. The main practical advantage of parametrizable systems is the po-
tential usefulness in the (output) tracking problems (cf. [9, 22]). One is
able more easily to design realizable controllers applying suitable para-
metrization. In the connection of boundary value control problems, the
application of pseudodifferential and boundary value operators (see [13,
14, 24, 25]) are useful in parametrization. One of the potential advan-
tages is that the (generalized) inverses and adjoints can be analyzed and
treated because they are usually in the same class of operators.

In this paper, we consider the controllability, parametrization, and
output tracking properties of the so-called fixed-bed bioreactor model
[6, 27, 30]. The reactor is tubular and the waste water flows continuously
through it. It is filled with a material in which the micro-organisms are
fixed. The unwanted constituents of the waste water are consumed by
the organisms and they convert into less harmful substituents.

The spatially one-dimensional model of a fixed-bed bioreactor con-
sists of a pair of nonlinear partial differential equations (see [6, 19, 27])

∂v1

∂t
= −kdv1 +µ

(
v1,v2

)
v1, (1.1)

∂v2

∂t
=D

∂2v2

∂x2
− c(t)∂v2

∂x
− k1µ

(
v1,v2

)
v1, (1.2)

where the spatial variable x belongs to the interval G = ]0,1[ ⊂ R and the
evolving times t ∈ [0, t0[, t0 ≤ ∞. The commonly used boundary condi-
tions for stirred tank reactors are of the form

∂v2

∂x
(0, t) =

c(t)
D

(
v2(0, t)−Sa(t)

)
,

∂v2

∂x
(1, t) = 0, (1.3)

for t ∈ ]0, t0[. The states v1 = v1(x,t) and v2 = v2(x,t) are the concentra-
tions of the biomass (fixed in the reactor) and the substrate (flowing
through the reactor), respectively. The specific growth rate of the micro-
organisms (in biomass) is modelled by the nonlinear law

µ
(
v1,v2

)
= µm

v2

k2v1 +v2
. (1.4)
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The input flow c = c(x,t) is the control variable. The input substrate con-
centration Sa = Sa(t) is a disturbance variable in the system. The relevant
output function y (the measurable variable) is usually the substrate con-
centration at the end of the reactor, that is,

y(t) = v2(1, t). (1.5)

The initial conditions

v1(x,0) = v1(x), v2(x,0) = v2(x) (1.6)

are typically chosen in such a way that v1 and v2 are the steady state
solutions of (1.2) and (1.3) before the simulated step changes the in-
put flow c and/or the initial concentration Sa of the substrate. In the
steady state, c and Sa are independent of time and in that case they are
denoted by c and Sa. We assume that c(0) = c and Sa(0) = Sa. The real
world model is spatially three-dimensional for which some simulations
are given in [30].

At first, we linearize systems (1.2) and (1.3) around the steady state
v = (v1,v2). The appropriate changes of variables have been performed.
We formulate the linearized problem abstractly in the corresponding
Sobolev spaces. As a result, we obtain a linear control system

∂W

∂t
= AW +B1u+B2u

′,

Y = D1W +D2u,

W(·,0) = u(0) = 0,

(1.7)

where W = (W1,W2), u =
(C
S

)
, and Y are the new state variable, input

variable, and output variable, respectively.
In controllability problems, Sa is assumed to be constant (which

means that S = 0). We show that the system

∂W

∂t
= AW +B1u+B2u

′ (1.8)

is not exactly controllable. For the approximate controllability, we give
a characterization with the help of algebraic equations. In addition, we
verify that the closed loop system

∂W

∂t
= AW +B1u+B2u

′,

Y = D1W +D2u
(1.9)

is not exactly output trackable in the chosen spaces.
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In this paper, our aim is to analyze only the linearized model. We are
not straightforwardly able to transfer the corresponding controllability
properties for the original nonlinear partial differential system without
careful further analysis. One of the difficulties in the nonlinear analy-
sis arises because of the nonlinearity c(∂v2/∂x). The nonlinearity µ(v1,
v2)v1 is easier because it is globally Lipschitz continuous (in appropriate
spaces). The other difficulties arise because of the boundary values con-
tain t-dependent variables c, Sa and the boundary conditions are nonlin-
ear. The existing literature contains numerous results for nonlinear par-
tial differential control problems but to our knowledge these results can-
not be routinely applied in our case. The study of the linearized model in
itself is motivated for the following reasons. As well known, the results
for the linearized model can be potentially applied in the analysis of the
nonlinear model. In addition, the linearized system in itself models quite
accurately the bioreactor around the steady state because the changes
(disturbances and changes in output level) are quite small in practise.

There are some places in the text where certain generalizations are
possible for the more general (linearized) systems containing the deriv-
ative of control. We remark, however, that to get algebraic criteria like
in Theorem 3.2, we must likely apply eigenfunction analysis or other
analyses. Explicit eigenfunction analysis is strongly dependent on the
application. For these reasons, we restrict to our application although
techniques give some inspiration for generalizations.

In Section 4.1, we consider some stability properties of the input-
output system. Here we assume that Sa is not constant. The transfer
function of the linearized problem is considered. As, in general, for
infinite-dimensional situations, our transfer function is not rational
and more novel frequency-domain analysis is required. In infinite-
dimensional case, the successful transfer function categories are, for ex-
ample, Callier-Desoer classes. The integrated state- and frequency-
domain method of infinite-dimensional systems is a useful control theo-
retic approach today (see, e.g., [1, 4, 17]). We find that the transfer func-
tionG(λ) = (G1(λ) G2(λ)) belongs to the Callier-Desoer class Â−(0). This
result implies the internal input-output stability of the system (see [4,
pages 457–470]).

In Section 4.2, we show how the frequency space factorizations can be
applied to get state space parametrization. This technique has its preim-
age in control theory of ordinary differential equation systems, where
one is able to get flat outputs (or parametrizations) for certain MIMO
systems (cf. [5, 8, 23]). Our methodology is based on the use of pseudo-
differential operators.

Applying the transfer function analysis, we give a scheme of the
output tracking for certain reference outputs. We find that the needed
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realizations can be calculated and analyzed by using translation invari-
ant pseudodifferential operators (i.e., operators with spatially indepen-
dent symbols). The used methodologies have potential generalizations
to certain classes of boundary value control problems. Our approach
is closely related to π-freeness (see [9]) which is an extension for par-
tial differential systems of flatness of certain finite-dimensional systems.
The corresponding algebra is consisting of pseudodifferential operators.
Here we, however, omit algebraic considerations.

We design a stabilizing compensator which (asymptotically) tracks
the given reference output. A simulation shows the functionality of the
method in practise.

1.1. Basic notations

We give some preliminary notations. Let G be an open set in Rn. The
spaces C∞(G) and C∞(G × ∆) are correspondingly the collections of
smooth functions G �→ C and G ×∆ �→ C. The space Lp(G), p ∈ [1,∞[,
is the Lebesgue space of pth-power integrable functions f : G �→ C. The
space Wl,p(G), l ∈ N0, is the Sobolev space (see [31]) equipped with the
usual norm ‖v‖Wl,p(G). We denote Hl(G) =Wl,2(G). Let ∆ be an inter-
val in R. We define the subspace Hl

0(∆) = {v ∈Hl(R) | suppv ⊂ ∆}. The
spaces Hl

0(∆) can be defined for any l ∈ R [31]. The space Cl(∆,X) con-
sists of all l times continuously differentiable functions f : ∆ �→X, when
X is a normed space.

For µ ∈ R, we denote C+
µ = {λ ∈ C | 
λ > µ}. In addition, we denote

C− = {λ ∈ C | 
λ < 0} and C+ = {λ ∈ C | 
λ > 0}.
The Laplace transform of an appropriate function u : [0,∞[ �→ R is de-

noted by

û(λ) =
∫∞

0
u(t)e−λtdt, 
λ > 0. (1.10)

Alternatively, we denote û = Lu. The inverse Laplace transform is

L−1f(t) =
1

2π

∫α+∞i

α−∞i

f̂(α+ iξ)e(α+iξ)tdξ. (1.11)

The integral is taken in the sense of principal value, if necessary. For
any f ∈H1

0([0,∞[), it holds that L−1f̂ = f . The Fourier transform of an
appropriate function u : R �→ R is denoted by

Fu(ξ) =
∫∞

−∞
u(t)e−itξdt. (1.12)
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2. Linearized control system

2.1. Linearization and abstract formulations

Consider the nonlinear model (1.2) and (1.3). In the following, we use
the notations

P =
c

D
, p =

P

2
, a =

k1
(
µm − kd

)
k2c

, q =

√
P 2

4
+Pa. (2.1)

The steady state solutions v1 and v2 can be explicitly solved [19].
Denote U1 = v1 − v1, U2 = v2 − v2, v = (v1,v2), v = (v1,v2), U = (U1,

U2), and C = c − c, S = Sa −Sa. Applying the total derivatives, we obtain
by simple computations the following linearized approximation:

∂U1

∂t
= −a1U1 +a2U2, (2.2)

∂U2

∂t
=D

∂2U2

∂x2
− c∂U2

∂x
−C(t)∂u2

∂x
,−a3U1 −a4U2, (2.3)

for (x,t) ∈G× ]0, t0[,

∂U2

∂x
(0, t) =

C(t)
D

(
v2(0)−Sa

)
+
c

D
U2(0, t)− c

D
S,

∂U2

∂x
(1, t) = 0, (2.4)

for t ∈ ]0, t0[, and

U1(x,0) = 0, U2(x,0) = 0, (2.5)

for x ∈G. Above, a1, a2, a3, and a4 are positive numbers defined by

a1 =
kd
(
µm − kd

)
µm

, a2 =

(
µm − kd

)2

µmk2
,

a3 = −k1
(
a1 − kd

)
=
k1k

2
d

µm
, a4 = k1a2.

(2.6)

The typical output function y related to problems (1.2) and (1.3) is
y(t) = v2(1, t). Thus a relevant output function Y , associated with the lin-
earized problem, is given by

Y (t) =U2(1, t) = y(t)−v2(1). (2.7)
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Denote s(t) = (C(t)/c)(v2(0)−Sa)−S(t). Let

V2 =U2 + s(t), V1 =U1, V =
(
V1,V2

)
. (2.8)

For some technical simplifications, we finally substitute

W =
(
W1,W2

)
=
(
κV1,V2

)
, (2.9)

where κ =
√
a3/a2. With this notation, systems (2.3), (2.4), and (2.5) be-

comes

∂W1

∂t
= −a1W1 +κa2W2 −κa2

c

(
v2(0)−Sa

)
C(t) +κa2S(t),

∂W2

∂t
=D

∂2W2

∂x2
− c∂W2

∂x
+

1
c

(
v2(0)−Sa

)
C′(t)−S′(t)

− ∂v2

∂x
C(t) +

a4

c

(
v2(0)−Sa

)
C(t)−a4S(t)− a3

κ
W1 −a4W2,

(2.10)

for (x,t) ∈G× ]0, t0[, and

∂W2

∂x
(0, t)− c

D
W2(0, t) = 0,

∂W2

∂x
(1, t) = 0, (2.11)

for t ∈ ]0, t0[,

W1(x,0) = 0, W2(x,0) = 0. (2.12)

Systems (2.10), (2.11), and (2.12) can be written abstractly as follows.
Denote Q1 = (1/c)(v2(0)−Sa) and

Q2 =Q2(x)

=
∂v2

∂x
= −PaSa sinh

(
q(1−x))epx

qcoshq + (a+ p)sinhq

= γ
(
eq+(p−q)x − e−q+(p+q)x),

(2.13)

where γ = −(PaSa/2(qcoshq+ (a+ p)sinhq)). Let u =
(C
S

)
. Define opera-

tors B1, B2 : R2 �→ L2(G)2 by

B1u =
( −κa2Q1 κa2

−Q2 +a4Q1 −a4

)
u, B2u =

(
0 0
Q1 −1

)
u. (2.14)
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Furthermore, define a linear operator A : L2(G)2 �→ L2(G)2 by

D(A) = L2(G)×
{
W2 ∈H2(G) | ∂W2

∂x
(0)− c

D
W2(0) = 0,

∂W2

∂x
(1) = 0

}
,

AW =
(
−a1W1 +κa2W2,D

∂2W2

∂x2
− c∂W2

∂x
− a3

κ
W1 −a4W2

)
.

(2.15)

Then the linearized problems (2.10), (2.11), and (2.12) can be written in
the abstract form

∂W

∂t
= AW +B1u+B2u

′,

W(·,0) = 0.
(2.16)

Here W ∈ C([0, t0[,L2(G)2)∩C1(]0, t0[,L2(G)2) and u ∈H1
0([0, t0[).

Since the output Y (t) =U2(1, t) =W2(1, t)− s(t), the associated input-
output control system can be written as

∂W

∂t
= AW +B1u+B2u

′, (2.17)

Y = D1W +D2u, (2.18)

where D1 : L2(G)2 �→ R is the (unbounded) operator D1W = W2(1) =
(pr2(W))(1) and where D2 : R2 �→ R is the operator D2u = −Q1C + S =
(−Q1 1)

(C
S

)
. Due to the Sobolev lemma (see [31]),

sup
x∈G

∣∣∂αv(x)∣∣ ≤ C‖v‖Hk(G), v ∈Hk(G), (2.19)

for k > l + 1/2 and α ≤ l, we find that D1W =W2(1) is well defined for
any W ∈D(A). Hence system (2.18) is sensible.

In the case where S = 0, the above system is

∂W

∂t
= AW +B11C+B21C

′,

Y = D1W −Q1C,
(2.20)

where

B11C =

(
−κa2Q1

−Q2 +a4Q1

)
C, B21C =

(
0
Q1

)
C. (2.21)
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The existence of solutions for the linearized problem

∂W

∂t
= AW +B1u+B2u

′,

W(·,0) =W0

(2.22)

can be studied by the semigroup theory (e.g., [11, 21, 28], cf. also [12]
where the original nonlinear system is considered). For example, in the
case where C, S ∈H1([0,∞[) and where the derivatives C′, S′ are locally
Lipschitz continuous, the global (t0 =∞) classical solution exists.

2.2. Semigroups generated by A

The operator A satisfies the following boundedness and coercitivity con-
ditions.

Theorem 2.1. For all W , V ∈H := L2(G)×H1(G),∣∣∣〈AW,V
〉
L2(G)2

∣∣∣ ≤ C‖W‖H‖V ‖H, (2.23)


〈−AW,W
〉
L2(G)2 ≥ c‖W‖2

H, (2.24)

where c = min{a1,a4,D}.

Proof. (A) The boundedness is easily shown by noting that, due to the
Sobolev imbedding theorem (2.19),∣∣W2(0)

∣∣ ≤ C∥∥W2
∥∥
H1(G). (2.25)

(B) We shortly consider the coercivity. By the direct computation, we
see that, for all W ∈D(A),

〈
AW,W

〉
L2(G)2 = −a1

∫
G

W1W1dx −a4

∫
G

W2W2dx

+κa2

∫
G

W2W1dx− a3

κ

∫
G

W1W2dx − cW2(0)W2(0)

−D
∫
G

∂W2

∂x

∂W2

∂x
dx − c

∫
G

∂W2

∂x
W2dx,

(2.26)

where we used the fact that, for W ∈D(A),

D
∂W2

∂x
(0)W2(0) = cW2(0)W2(0). (2.27)
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Hence noting that 2
 ∫
G(∂W2/∂x)W2dx = |W2(1)|2 − |W2(0)|2, we find

that, for W ∈D(A),


〈−AW,W
〉
L2(G)2 = a1

∫
G

∣∣W1
∣∣2
dx+a4

∫
G

∣∣W2
∣∣2
dx

+D
∫
G

∣∣∣∣∂W2

∂x

∣∣∣∣2

dx +
c

2

(∣∣W2(1)
∣∣2 +

∣∣W2(0)
∣∣2
)
,

(2.28)

where we used the relation κa2 = a3/κ. The estimate (2.28) immediately
implies that, for W ∈D(A),


〈−AW,W
〉
L2(G)2 ≥ min

{
a1,a4,D

}‖W‖2
L2(G)×H1(G). (2.29)

This completes the proof. �

The adjoint operator A∗ : L2(G)2 �→ L2(G)2 of A is given by

D
(
A∗) = L2(G)×

{
W2 ∈H2(G) | ∂W2

∂x
(1) +

c

D
W2(1) = 0,

∂W2

∂x
(0) = 0

}
,

A∗W =
(
−a1W1 − a3

κ
W2,D

∂2W2

∂x2
+ c

∂W2

∂x
+κa2W1 −a4W2

)
.

(2.30)

Similarly as in Theorem 2.1, we find that


〈−A∗W,W
〉
L2(G)2 ≥ c‖W‖2

L2(G)×H1(G) (2.31)

for all W ∈D(A∗).

Corollary 2.2. Let c = min{a2,a4,D}. The operator A generates an expo-
nentially bounded semigroup T(t) on L2(G)2 with the exponential decay −c.

Proof. The assertion follows immediately, for example, from [4, Corol-
lary 2.2.3] and from estimates (2.24) and (2.31). �

In addition, we have the following corollary.

Corollary 2.3. The operators A and A∗ generate analytic semigroups T(t)
and T(t)∗ on L2(G)2.
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Proof. The assertion follows, for example, from [21, Theorem 5.2] and
from estimates (2.24) and (2.31). �

Recall that the first output operator is given by D1W = W2(1) =
(pr2(W))(1). By the Sobolev lemma, we find that

∣∣D1W
∣∣2 =

∣∣W2(1)
∣∣2 ≤ C∥∥W2

∥∥2
H1(G) ≤

C

c

∣∣∣∣
〈−AW,W
〉
L2(G)2

∣∣∣∣
≤ C

c

(
‖AW‖2

L2(G)2 + ‖W‖2
L2(G)2

)
.

(2.32)

Hence the operator D1 is A-bounded.

2.3. Riesz spectral property

Consider the eigenvalue problem

DW ′′
2 − cW ′

2 −a4W2 = µW2, (2.33)

W ′
2(0)−

c

D
W2(0) = 0, W ′

2(1) = 0, (2.34)

where W2 ∈ H2(G). The Sturm-Liouville theory (e.g., [2, 15]) implies
that the problem has countably many eigenvalues µj such that limj→∞µj
= −∞. We assume (see the note after Lemma 2.5) that the eigenvalues
µj are simple (that is the algebraic multiplicity is one). The case where
they are not simple can be treated in principle by the similar methods
(see [4]) but it causes some complications. In addition, the (normalized)
eigenfunctions wj form a Riesz basis in L2(G). The eigenvalues of the
adjoint problem

DW ′′
2 + cW

′
2 −a4W2 = µW2, (2.35)

W ′
2(1) +

c

D
W2(1) = 0, W ′

2(0) = 0 (2.36)

are exactly µj . Denote the corresponding eigenfunctions by w̃j .
The eigenvalue analysis of the operator A is based on the following

technical lemma whose proof is omitted.

Lemma 2.4. (A) The complex number λ is an eigenvalue of A if and only if

a2a3

λ+a1
+λ ∈ {µj | j ∈ N

}
. (2.37)
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The corresponding eigenvectors of A are

Wl,j =
(

κa2

λl,j +a1
wj,wj

)
, l = 1,2, (2.38)

where λl,j are the (simple) roots of

a2a3

λ+a1
+λ = µj. (2.39)

(B) The complex number λ is an eigenvalue of A∗ if and only if λ is an
eigenvalue of A. The corresponding eigenvectors of A∗ are

W̃l,j =

(
κa2

λl,j +a1

w̃j , w̃j

)
, l = 1,2. (2.40)

Note that

λl,j =
a1 −µj ±

√(
a1 −µj

)2 − 4
(
a2a3 −a1µj

)
2

, l = 1,2. (2.41)

The adjoint eigenvalue problem (2.36) (which we need below) can be
solved as follows. The general solution of

DW ′′
2 + cW

′
2 −

(
a4 +µj

)
W2 = 0 (2.42)

is

W2(x) = C1e
(−p+β(µj ))x +C2e

−(p+β(µj ))x, (2.43)

where p = c/2D and β(µj) =
√
p2 + (a4 +µj)/D. Matching the boundary

conditions

W ′
2(1) +

c

D
W2(1) = 0, W ′

2(0) = 0 (2.44)

leads to the requirement(
p− β(µj))2

e−β(µj ) =
(
p+ β

(
µj
))2

eβ(µj ). (2.45)

Lemma 2.5. The equation(
p− β(µ))2

e−β(µ) =
(
p+ β(µ)

)2
eβ(µ). (2.46)

has only real roots µ. In addition, µ ≤ −a4 −Dp2.
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Proof. Let µ ∈ C be the root of (2.46). Denote β(µ) = x + iy. We find that

∣∣∣∣p−x− iyp+x+ iy

∣∣∣∣2

=
∣∣e2(x+iy)∣∣ = e2x. (2.47)

Hence

(p−x)2 +y2

(p+x)2 +y2
= e2x (2.48)

which implies that x = 0. Hence β(µ) = iy and then

−y2 = p2 +
µ+a4

D
. (2.49)

Equation (2.49) gives that µ = −a4 −Dp2 −Dy2. Hence µ ∈ R and µ ≤
−a4 −Dp2. �

Let F(µ) := (p − β(µ))2e−β(µ) − (p + β(µ))2eβ(µ) = 0 be the eigenvalue
equation. One sees that 
F(µ) = 0 for any µ ≤ −a4 −Dp2. Hence µ is
an eigenvalue if and only if �F(µ) = 0. We have tested numerically the
equation �F(µ) = 0. Numerical results conjecture that the roots are sim-
ple for relevant parameter values. Hence the eigenvalues µj seem to be
simple.

The corresponding eigenvectors for the adjoint problem are

w̃j = Cµj

[(− p+ β(µj))e−(p+β(µj ))x + (p+ β(µj))e(−p+β(µj ))x], (2.50)

where Cµj is an arbitrary constant (in the following we assume that
Cµj = 1). Similarly, we find the eigenvalues and eigenfunctions of prob-
lem (2.34).

From Theorem 2.1, we see that


〈AW,W
〉
L2(G)2 ≤ −c‖W‖2

H (2.51)

and then


λl,j ≤ −c, (2.52)

where c = min{a1,a4,D}. The eigenvalues λl,j can be calculated from the
equation

F̃(λ) = F
(
a2a3

λ+a1
+λ

)
= 0, (2.53)
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where 
λ ≤ −c. For relevant parameter values, −a4 −Dp2 < −a1 − 2
√
a2a3.

It is easy to see that under this condition, the eigenvalues λl,j are in fact
real. Plotting the function �F̃(λ) as a function of λ ≤ −c, one sees that
also the eigenvalues λl,j are simple. So it is reasonable to assume that the
eigenvalues λl,j are simple.

Corollary 2.6. The sequence {Wl,j | l = 1,2, j ∈ N} forms a Riesz basis in
L2(G)2.

Proof. As we mentioned above, the Sturm-Liouville theory implies that
the sequence {wj | j ∈ N} forms a Riesz basis in L2(G), that is,

[{
wj | j ∈ N

}]
= L2(G) (2.54)

and there exist constants c > 0 and C > 0 such that, for all N ∈ N and
αj ∈ C,

c
N∑
j=1

∣∣αj∣∣2 ≤
∥∥∥∥∥ N∑
j=1

αjwj

∥∥∥∥∥
2

L2(G)

≤ C
N∑
j=1

∣∣αj∣∣2
, (2.55)

where [ ] denotes the linear hull of a set.
At first, we show that also

[{
Wl,j | l = 1,2, j ∈ N

}]
= L2(G)2. (2.56)

Let f = (f1,f2) ∈ L2(G)2 and let ε > 0. Then by (2.54), there exists bj , cj ∈
C such that

∥∥∥∥∥f1 −
p∑
j=1

bjwj

∥∥∥∥∥
L2(G)

< ε,

∥∥∥∥∥f2 −
q∑
j=1

cjwj

∥∥∥∥∥
L2(G)

< ε. (2.57)

We may assume (after a slight modification if necessary) that p = q.
Hence we see that f satisfies

∥∥∥∥∥f −
p∑
j=1

(bj ,cj)wj

∥∥∥∥∥
L2(G)2

< 2ε. (2.58)
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Furthermore, the equation

A1,j

(
κa2

λ1,j +a1
,1
)
+A2,j

(
κa2

λ2,j +a1
,1
)
=
(
bj ,cj

)
(2.59)

has a solution (A1,j ,A2,j) since λ1,j �= λ2,j . Hence∥∥∥∥∥f −
p∑
j=1

(
A1,jW1,j +A2,jW2,j

)∥∥∥∥∥
L2(G)2

< 2ε (2.60)

as desired.
The estimate

c
N∑
j=1

∣∣αl,j∣∣2 ≤
∥∥∥∥∥ N∑
j=1

2∑
l=1

αl,jWl,j

∥∥∥∥∥
2

L2(G)

≤ C
N∑
j=1

∣∣αl,j∣∣2 (2.61)

follows from (2.55) and from the estimate (where c1 > 0, C1 > 0)

c1 ≤
∣∣∣∣ κa2

λl,j +a1

∣∣∣∣2

+ 1 ≤ C1, l = 1,2, j ∈ N (2.62)

since |λl,j + a1| ≥ c2 > 0 for all l = 1,2 and j ∈ N. This completes the proof.
�

Let

cl,j =
〈
Wl,j ,W̃l,j

〉−1
L2(G)2 . (2.63)

Since the eigenvalues λl,j are simple, it follows that, after the multipli-
cation of Wl,j by cl,j , the systems {Wl,j} and {W̃l,j} are biorthogonal [4],
that is, 〈

Wl,j ,W̃l,j

〉
L2(G)2 = δ(l,j),(l′,j ′). (2.64)

The semigroup T(t)∗ generated by A∗ can be expressed as follows (see
[4]):

T(t)∗ =
∞∑
j=1

2∑
l=1

eλl,j t
〈·,Wl,j

〉
L2(G)2W̃l,j , t > 0. (2.65)

Analogous result holds for the semigroup T(t) generated by A.
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Remark 2.7. We find that µ = −a4 −Dp2 if and only if β(µ) = 0. It is easy
to see that µ = −a4 −Dp2 is not an eigenvalue.

3. Controllability and tracking

3.1. Exact and approximative controllability

Firstly, we consider the controllability of the system. Since Sa is not the
adjustable variable (but the disturbance), we assume that Sa is constant
and so S = 0. In this case, the system becomes (as mentioned above)

∂W

∂t
= AW +B11C +B21C

′. (3.1)

Since A generates an exponentially bounded semigroup T(t), we get
(again we assume that W(·,0) = 0)

W =
∫ t

0
T(t− s)f1C(s)ds+

∫ t
0
T(t− s)f2C

′(s)ds =: L1,tC +L2,tC, (3.2)

where f1 =
( −κa2Q1
−Q2+a4Q1

)
and f2 =

( 0
Q1

)
. Expression (3.2) is called a mild so-

lution of (3.1).
System (3.1) is exactly controllable (approximately controllable) on [0, t0]

if

R
(
L1,t0 +L2,t0

)
= L2(G)2, R

(
L1,t0 +L2,t0

)
= L2(G)2, (3.3)

respectively.
The system is exactly (approximately) controllable if

∪t0>0
(
R
(
L1,t0 +L2,t0

))
= L2(G)2,

∪t0>0
(
R
(
L1,t0 +L2,t0

))
= L2(G)2,

(3.4)

respectively. Since our system is exponentially stable, we are able to char-
acterize the concept of approximately controllability [4].

System (3.1) is approximately controllable if and only if

R
(
L1,∞ +L2,∞

)
= L2(G)2, (3.5)
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where L1,∞, L2,∞ : H1
0([0,∞[) �→ L2(G)2 are the operators

L1,∞C =
∫∞

0
T(t)f1C(t)dt, L2,∞C =

∫∞

0
T(t)f2C

′(t)dt. (3.6)

Theorem 3.1. System (3.1) is not exactly controllable on [0, t0] for any t0 > 0.

Proof. Denote the controllability mapping L1,t0 +L2,t0 by Kt0 , that is, Kt0 :
H1

0([0, t0[) �→ L2(G)2 is an operator

Kt0C = L1,t0C+L2,t0C =
∫ t0

0
T
(
t0 − s

)
f1C(s)ds

+
∫ t0

0
T
(
t0 − s

)
f2C

′(s)ds.

(3.7)

The operators Kj : L2(]0, t0[) �→ L2(G)2, defined by

Kjw =
∫ t0

0
T
(
t0 − s

)
fjw(s)ds, (3.8)

are compact (e.g., [4, Theorem 4.1.5]).
Since the imbedding ι : H1

0([0, t0[) �→ L2(]0, t0[) and the derivative op-
erator d/ds : H1

0([0, t0[) �→ L2(]0, t0[) are bounded and since Kt0 = K1 ◦
ι +K2 ◦ d/ds, we find that also Kt0 is compact. Hence we can conclude
that system (3.1) is not exactly controllable because the range of a com-
pact operator is either finite dimensional or it is not closed (e.g., [4,
Lemma A.3.22]). �

For the approximative controllability, we get the following theorem.

Theorem 3.2. System (3.1) is approximately controllable if and only if the
nonlinear system (

p− β(µ))2
e−β(µ) =

(
p+ β(µ)

)2
eβ(µ), (3.9)(

µ−a4
)
Q1

2ipβ(µ)
p2 − β(µ)2

+ γD(µ) = 0 (3.10)

has no solutions µ < −a4 − p2D, where

D(µ) =
1

2i
(
p2 − β(µ)2

)[2q
(
psinh

(
β(µ)

)− β(µ)cosh
(
β(µ)

))
+ β(µ)

(
(q+ p)eq + (q− p)e−q

)]
.

(3.11)
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Proof. Denote

K∞ = L1,∞ +L2,∞ : H1
0([0,∞[) �−→ L2(G)2. (3.12)

The proof is based on the fact that R(K∞) = L2(G)2 if and only if R(K∞)⊥

=N(K∗
∞) = {0} (see [16]).

We must show that our algebraic condition is equivalent to the rela-
tion N(K∗

∞) = {0}. The adjoint K∗
∞ is a linear operator L2(G)2 �→

H1
0([0,∞[)∗ such that

〈
K∞C,v

〉
L2(G)2 =

〈
C,K∗

∞v
〉
L2(]0,∞[) (3.13)

for all C ∈H1
0([0,∞[) and v ∈D(K∗

∞) for which K∗
∞v ∈ L2(]0,∞[). Since

A∗ generates an analytic semigroup T(t)∗, we know that the mapping t �→
T(t)∗v is differentiable on ]0,∞[ and tT(t)∗ is bounded on ]0,∞[ (cf. [11,
21, 28]). Hence, for any C ∈H1

0([0,∞[), we can integrate (the functions
in H1

0([0,∞[) are absolutely continuous) by parts as follows:

〈
K∞C,v

〉
L2(G)2 =

〈∫∞

0

[
T(t)f1C(t) + T(t)f2C

′(t)
]
,v

〉
L2(G)2

=
∫∞

0
C(t)

∫
G

[
f∗

1T(t)
∗v − f∗

2
d

dt

(
T(t)∗v

)]
dxdt.

(3.14)

Hence

(
K∗

∞v
)
(t) =

∫
G

[
f∗

1T(t)
∗v − f∗

2
d

dt

(
T(t)∗v

)]
dx. (3.15)

(A) First, suppose that system (3.9) has no solutions. Suppose that
ψ ∈N(K∗

∞). We have to show that ψ = 0. Denote ξ = T(t)∗ψ. By (3.15),
we find that

∂ξ

∂t
−A∗ξ = 0, ξ ∈D(A∗), (3.16)

ξ(·,0) = ψ, (3.17)∫
G

[
f11ξ1(x,t) + f12(x)ξ2(x,t)− f22

∂ξ2

∂t
(x,t)

]
dx = 0, ∀t ∈ [0,∞[, (3.18)

where f11 = −κa2Q1, f12(x) = −Q2(x) + a4Q1, and f22 =Q1. Note that the
first two equations are equivalent to the relation ξ = T(t)∗ψ. The require-
ment ξ ∈D(A∗) is equivalent to ξ := (ξ1, ξ2) ∈ L2(G) ×H2(G) and that ξ2
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satisfies the (adjoint) boundary conditions

∂ξ2

∂x
(1, t) +

c

D
ξ2(1, t) = 0,

∂ξ2

∂x
(0, t) = 0. (3.19)

Suppose, as above, that λl,j are the eigenvalues of A∗ and that W̃l,j :=
(W̃1

l,j , W̃
2
l,j) are the corresponding eigenfunctions. By (2.65),

ξ =
(
ξ1, ξ2

)
= T(t)∗ψ =

∞∑
j=1

2∑
l=1

eλl,j t
〈
ψ,Wl,j

〉
L2(G)2W̃l,j

=
∞∑
j=1

2∑
l=1

eλl,j t
〈
ψ,Wl,j

〉
L2(G)2

(
κa2

λl,j +a1

,1

)
w̃j .

(3.20)

From (3.20), we get ξ1, ξ2, and ∂ξ2/∂t. Since 
λl,j ≤ −c < 0, |w̃j(x)| ≤ 2(p+
|β(µj)|)e−px, and |〈ψ,Wl,j〉L2(G)2 | ≤ C‖ψ‖L2(G)2 (see [4, page 40]), we can
see that the series for ξ1, ξ2, and ∂ξ2/∂t are uniformly convergent in G for
t > 0. Substituting ξ1, ξ2, and ∂ξ2/∂t into (3.18) and changing the order
of summation and integration, we see that the requirement (3.18) means
that

∞∑
j=1

2∑
l=1

eλl,j t
〈
ψ,Wl,j

〉
L2(G)2

∫
G

[
f11

κa2

λl,j +a1

+ f12(x)− f22λl,j

]
w̃j(x)dx = 0

(3.21)

for t > 0. Similarly as in [4, pages 162–164], we find that by (3.21)

〈
ψ,Wl,j

〉
L2(G)2

∫
G

[
f11κa2

λl,j +a1

+ f12(x)− f22λl,j

]
w̃j(x)dx = 0, ∀l, j. (3.22)

As verified above, we know that µj < −a4 − p2D. After tedious com-
putations, we find that

∫
G

w̃j dx = − 2ipβ
(
µj
)

p2 − β(µj)2
,

∫
G

f12w̃j dx = −a4Q1
2ipβ

(
µj
)

p2 − β(µj)2
− γD(µj).

(3.23)
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The above calculations imply that (3.22) holds if and only if

〈
ψ,Wl,j

〉
L2(G)2

[
f11κa1

λl,j +a1
·
(

− 2ipβ
(
µj
)

p2 − β(µj)2

)

+

(
− 2ipβ

(
µj
)

p2 − β(µj)2
+ γD

(
µj
))− f22λl,j

(
− 2ipβ

(
µj
)

p2 − β(µj)2

)]

=
〈
ψ,Wl,j

〉
L2(G)2

[(
µj −a4

)
Q1

2ipβ
(
µj
)

p2 − β(µj)2
+ γD

(
µj
)]

= 0,

(3.24)

where l = 1,2, j ∈ N, and µj satisfy (2.45). By assumption, 〈ψ,Wl,j〉L2(G)2 =
0 for all l, j and so, by Corollary 2.6, ψ = 0.

(B) Conversely, suppose that N(K∗
∞) = {0}. If system (3.9) has a solu-

tion µj , then by (2.64) W̃l,j ∈N(K∗
∞) which is a contradiction. This com-

pletes the proof. �

Let

H(µ) :=
∣∣F(µ)∣∣+ ∣∣∣∣∣(µ−a4

)
Q1

2ipβ(µ)
p2 − β(µ)2

+ γD(µ)

∣∣∣∣∣. (3.25)

Then µ is a solution of system (3.9) if and only if µ is a zero ofH. The ana-
lytical consideration of the (transcendental) equation H(µ)=0 is compli-
cated. One possibility in this analysis is to verify that liminfµ→−∞H(µ) ≥
c′ > 0 for some c′, which limits the situation on a finite interval. We omit
these considerations here. In Figure 3.1 we give a numerical test. These
kind of numerical simulations conjecture that H has no zeros in the re-
gion µ < −a4 −Dp2 for a sample of relevant parameter values and so the
system could be approximately controllable.

3.2. Output tracking

We now turn to consider the input-output system

∂W

∂t
= AW +B11C +B21C

′, (3.26)

Y = D1W −Q1C, (3.27)

where againW(·,0) = C(0) = 0. Suppose that Y ∗ ∈ L2(]0, t0[), the so-called
reference output, is given. The problem: find the input C ∈H1

0([0, t0[) such
that Y = Y ∗, is called output tracking problem.
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103

102

101

H
(µ
)

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1
µ

Figure 3.1 The graph of H(µ) for µ ∈ [−10,−a4 −Dp2[. This conjectures
that H has no zeros in the region µ < −a4 −Dp2. The vertical axis is loga-
rithmic, the stars (∗) denote local minimum values of H, and the dotted
vertical line denotes the point µ = −a4 −Dp2. One sees that the smallest
local minimum value is approximately 10. The parameter values used in
this plot are given in Table 3.1.

From the first equation (3.27), we can solve as above abstractly the
state variable W ,

W =
∫ t

0
T(t− s)f1C(s)ds+

∫ t
0
T(t− s)f2C

′(s)ds. (3.28)

Due to the Bochner’s theorem, we can change the order of integration

D1

(∫ t
0
T(t− s)f1C(s)ds

)
=
∫ t

0
D1

(
T(t− s)f1

)
C(s)ds (3.29)

and similarly for the integral
∫ t

0T(t− s)f2C
′(s)ds. Hence from (3.27), we

get

Y =
∫ t

0
pr2

(
T(t− s)f1

)
(1)C(s)ds

+
∫ t

0
pr2

(
T(t− s)f2

)
(1)C′(s)ds−Q1C.

(3.30)

Denote

g1(t,s) = pr2
(
T(t− s)f1

)
(1), g2(t,s) = pr2

(
T(t− s)f2

)
(1). (3.31)
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Table 3.1

Parameter values used in the simulation

D = 0.005 k1 = 0.4 k2 = 0.4 kd = 0.05

µm = 0.35 c = 0.1 Sa = 5

Then the output Y is

Y =
∫ t

0
g1(t− s)C(s)ds+

∫ t
0
g2(t− s)C′(s)ds−Q1C. (3.32)

The output and input necessarily satisfy (3.32).

Theorem 3.3. System (3.27) is not exactly trackable to all reference outputs
Y ∈ L2(]0, t0[).

Proof. The semigroup T(t) satisfies the estimate (see [28])∥∥T(t)f∥∥H ≤ Ct−1/2‖f‖L2(G)2 , f ∈ L2(G)2. (3.33)

Using the Sobolev imbedding theorem (2.19) and estimate (3.33), we
find that∣∣gj(t− s)∣∣ = ∣∣(pr2

(
T(t− s)fj

))
(1)

∣∣ ≤ ∥∥pr2
(
T(t− s)fj

)∥∥
H1(G)

≤ ∥∥T(t− s)fj∥∥H ≤ C

(t− s)1/2

∥∥fj∥∥L2(G)2 .
(3.34)

Hence we find that the Volterra integral operators

KjC =
∫ t

0
pr2

(
T(t− s)fj

)
(1)C(s)ds, j = 1,2, (3.35)

are compact operators L2(]0, t0[) �→ L2(]0, t0[) (e.g., [10]). The imbedding
ι : H1

0([0, t0[) �→ L2(]0, t0[) is compact (e.g., [21]) and the mapping ∂t :
H1

0([0, t0[) �→ L2(]0, t0[) is bounded. Hence the operator

K :=K1 ◦ ι+K2 ◦ ∂t −Q1ι (3.36)

is compact.
By (3.30), we know that the necessary condition for Y and C is that

Y =KC. (3.37)
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Since K is compact, the range R(K) is either finite dimensional or the
range R(K) is not closed (e.g., [4, Lemma A.3.22]). Hence Y cannot be
an arbitrary element in L2(]0, t0[) which completes the proof. �

4. Parametrization and output tracking applying
frequency-domain methods

4.1. Transfer function

The transfer function of system (2.18) is given by

G(λ) = D1(λI −A)−1(B1 +λB2
)
+D2. (4.1)

Denote

B11 =

(
−κa2Q1

−Q2 +a4Q1

)
, B12 =

(
κa2

−a4

)
,

B21 =

(
0
Q1

)
, B22 =

(
0
−1

)
.

(4.2)

We find that

G(λ) =
(
G1(λ) G2(λ)

)
, (4.3)

where

G1(λ) = D1(λI −A)−1(B11 +λB21
)−Q1,

G2(λ) = D1(λI −A)−1(B12 +λB22
)
+ 1.

(4.4)

We have previously verified that (see [18, 29])

G1(λ) =K
b1r(λ)cosh

(
r(λ)

)
+ b2 sinh

(
r(λ)

)
+ b3r(λ)3 − b4r(λ)[(

p2 + r(λ)2
)

sinh
(
r(λ)

)
+ 2pr(λ)cosh

(
r(λ)

)](
r(λ)2 − q2

) ,
(4.5)

where

b1 = Pq, b2 = Pqp, b3 = sinhq,

b4 = q2 sinhq+Pqsinhq+Pqcoshq,

r(λ) =

√
λ2 +d1λ+d2

D
(
λ+a1

) , d1 = a1

(
1− k1

k2

)
+ q2D, d2 =Da1q

2.

(4.6)
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Similarly, we find that

G2(λ) = − 2pepr(λ)(
p2 + r(λ)2

)
sinh

(
r(λ)

)
+ 2pr(λ)cosh

(
r(λ)

) + 1. (4.7)

We have also shown that G1(λ) ∈ Â−(0) and that

∣∣G1(λ)
∣∣ ≤ C 1

|λ| for |λ| ≥ r0, (4.8)

where r0 is large enough [29]. Similarly, we can show that G2(λ) satisfies
the same properties. Hence G(λ) ∈ Â−(0).

The total transfer function G(λ) can be used in the refined study and
controller design of the input-output system (e.g., disturb rejection, [3]).

4.2. A scheme for state space parametrization

We give a parametrization methods for infinite-dimensional systems
where we use pseudodifferential operators. Parametrization can be con-
sidered as a kind of flatness property which has been treated for ordi-
nary differential equation systems, for example, in [5, 8, 22]. The concept
is also related to the so-called π-freeness of systems (see [9]). Roughly
speaking, the parametrization means that, for a given system Lv = 0, we
can find an operator S such that Lv = 0 if and only if v = Sf where the
components f1, . . . ,fm of f are independent variables. The methodologies
below can be generalized also for infinite-dimensional MIMO systems.
In the following, we however consider only the SISO system which oc-
curs in our application.

Assume that the transfer function G(λ) of the given system belongs to
the Callier-Desoer class B̂(0) (see [4]). Then it has a coprime factoriza-
tion over Â−(0)

G =
N

M
, PN −QM = 1 (Bezout identity), (4.9)

where N,M,P,Q ∈ Â−(0). Define

Ẑ = PŶ −QĈ (4.10)

and put Z = L−1Ẑ.
Let u : [0,∞[ �→ R be a function and let e+u : R �→ R be its extension by

zero on ]−∞,0[. The Paley-Wiener theory implies that u ∈ L2(]0,∞[) if
and only if the function α + iξ �→ ê+u(α + iξ) is analytic in C+ and
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supα>0

∫∞
−∞ |ê+u(α+ iξ)|2dξ <∞. In addition,

c‖u‖2
L2(]0,∞[) ≤ sup

α>0

∫∞

−∞

∣∣ê+u(α+ iξ)∣∣2
dξ ≤ C‖u‖2

L2(]0,∞[). (4.11)

Furthermore, u ∈Hk
0 ([0,∞[), k ∈ N0, if and only if

∑
0≤l≤k

sup
α>0

∫∞

−∞
|α+ iξ|2l∣∣ê+u(α+ iξ)∣∣2

dξ <∞,

c1‖u‖2
Hk

0 ([0,∞[)
≤
∑

0≤l≤k
sup
α>0

∫∞

−∞
|α+ iξ|2l∣∣ê+u(α+ iξ)∣∣2

dξ ≤ c2‖u‖2
Hk

0 ([0,∞[)
.

(4.12)

A similar characterization holds for spaces Hs
0([0,∞[), where s is any

real number.

Theorem 4.1. Suppose thatG ∈ B̂(0) and let its coprime factorization be (4.9).
Furthermore, suppose that Y , C ∈Hk

0 ([0,∞[), k ≥ 1. Then Z ∈Hk
0 ([0,∞[)

and Z gives an input-output parametrization of the system in the sense that,
for any (fixed) α > 0,

C = eαtMα(D)
(
e−αtZ

)
,

Y = eαtNα(D)
(
e−αtZ

)
,

Z = eαtPα(D)
(
e−αtY

)− eαtQα(D)
(
e−αtC

)
,

(4.13)

where Mα(D), Nα(D), Pα(D), and Qα(D) are (zero order) pseudodifferential
operators.

Proof. Since P and Q are in Â−(0), they are bounded in C+. We find by
(4.12) that

‖Z‖2
Hk

0 ([0,∞[)
≤
∑

0≤l≤k
sup
α>0

∫∞

−∞
|α+ iξ|2l∣∣(PŶ −QĈ)(α+ iξ)∣∣2

dξ

≤ C1c1‖Y‖2
Hk([0,∞[) +C2c1‖C‖2

Hk([0,∞[),

(4.14)

where C1 and C2 are

C1 = sup
z∈C+

∣∣P(z)∣∣2
, C2 = sup

z∈C+

∣∣Q(z)
∣∣2
. (4.15)

Hence we find that Z ∈Hk
0 ([0,∞[).
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Since Ŷ = (N/M)Ĉ and PN −QM = 1, we find that

MẐ =MPŶ −MQĈ = (NP −MQ)Ĉ = Ĉ (4.16)

and similarly Ŷ =NẐ.
Taking the inverse Laplace transform, we get, for α > 0,

C =
1

2π

∫∞

−∞
M(α+ iξ)Ẑ(α+ iξ)e(α+iξ)tdξ. (4.17)

We find that Ẑ(α + iξ) = F(e+(e−αtZ))(ξ), where F denotes the Fourier
transform. Let Mα(D) be a pseudodifferential operator with symbol
M(α+ iξ), that is,

Mα(D)u(t) =
1

2π

∫∞

−∞
M(α+ iξ)

(
F
(
e+u

))
(ξ)eiξtdξ (4.18)

(see [13, 24]). Then we find that, for t > 0,

C = eαtMα(D)
(
e−αtZ

)
. (4.19)

Similarly,

Y = eαtNα(D)
(
e−αtZ

)
,

Z = eαtPα(D)
(
e−αtY

)− eαtQα(D)
(
e−αtC

)
,

(4.20)

where Nα(D), Pα(D), and Qα(D) are pseudodifferential operators with
symbols N(α+ iξ), P(α+ iξ), and Q(α+ iξ), respectively. This completes
the proof. �

In many cases (such as in our application here, see [18]), the state can
be solved from

Ŵ(x,λ) = (λI −A)−1(f1 +λf2
)
Ĉ. (4.21)

One knows that, under quite general assumptions (see [13]), the resol-
vent is of the form

(λI −A)−1 = P(·,∂,λ) +G(·,∂,λ), (4.22)

where P(·,∂,λ) and G(·,∂,λ) are parameter (λ) dependent pseudo-
differential and singular Green operators, respectively. In this case, also
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the state has a parametrization

W =
1

2π

∫∞

−∞

(
(α+ iξ)−A

)−1(
f1 + (α+ iξ)f2

)
M(α+ iξ)Ẑ(α+ iξ)e(α+iξ)tdξ

=
1

2π
eαt

∫∞

−∞
aα(x,ξ)F

(
e+
(
e−αtZ

))
(ξ)eiξtdξ,

(4.23)

where

aα(x,ξ) =
[
P(x,∂,α+ iξ) +G(x,∂,α+ iξ)

](
f1 + (α+ iξ)f2

)
M(α+ iξ).

(4.24)

Hence we find that

W = eαtKα

(
e−αtZ

)
, (4.25)

where Kα is the operator

Kαu(x,t) =
1

2π
eαt

∫∞

−∞
aα(x,ξ)F

(
e+
(
e−αtu

))
(ξ)eiξtdξ. (4.26)

Note that in [9, Section 4.4] (in the context of Euler-Bernoulli equa-
tion) one in fact uses an expression like (4.21).

4.3. Calculation of reference input

The above parametrization can be applied in the design of output track-
ing as follows.

Theorem 4.2. Suppose that N ∈ Â−(0) and that there exist α0 ≥ 0 and r ≥ 0
such that

1∣∣N(
α0 + z

)∣∣ ≤ c(1+ |z|)r , ∀z ∈ C+. (4.27)

Denote N−1
α0
(ξ) = 1/N(α0 + iξ) and let k ≥ 0. Then for any Y for which e−α0tY

∈Hk+r
0 ([0,∞[), the equation

Y = eα0tNα0(D)
(
e−α0tZ

)
(4.28)
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has a solution Z such that e−α0tZ ∈Hk
0 ([0,∞[). The solution Z is given by

Z = eα0tN−1
α0
(D)

(
e−α0tY

)
. (4.29)

Proof. We see immediately that (4.29) is the solution of (4.28). Further-
more, we find that

c1
∥∥e−α0tZ

∥∥2
Hk

0 ([0,∞[)

≤
∑

0≤l≤k
sup
α>0

∫∞

−∞
|α+ iξ|2l∣∣Ẑ(α0 +α+ iξ

)∣∣2
dξ

≤
∑

0≤l≤k
sup
α>0

∫∞

−∞
|α+ iξ|2l

∣∣∣∣∣ Ŷ
(
α0 +α+ iξ

)
N
(
α0 +α+ iξ

)∣∣∣∣∣
2

dξ

≤ c2
∑

0≤l≤k
sup
α>0

∫∞

−∞
|α+ iξ|2l

∣∣∣(1+ |α+ iξ|)2r
∣∣∣ê−α0tY (α+ iξ)|2dξ

≤ C′∥∥e−α0tY
∥∥2
Hk+r

0 ([0,∞[).

(4.30)

This completes the proof. �

We turn to the output tracking problem of our application. Assume
that S = 0. Since G1 ∈ Â−(0), it has the coprime factorization G1 =N/M,
PN −QM = 1. Actually, we can choose N = G1, M = 1, P = 0, Q = 1, for
example. In this case, Ẑ = Ĉ and Ŷ =G1Ĉ.

We have the following technical lemma whose proof is omitted.

Lemma 4.3. There exist constants ε > 0 and R > 0 such that∣∣∣∣ 1
G1(λ)

∣∣∣∣ ≤ c(1+ |λ|)3/2
, ∀λ ∈ C−ε; |λ| ≥ R. (4.31)

From Lemma 4.3, we see that there exists α0 ≥ 0 such that∣∣∣∣∣ 1
G1
(
α0 + z

)∣∣∣∣∣ ≤ c(1+ |z|)3/2
, ∀z ∈ C+. (4.32)

Hence we are able to apply Theorem 4.2 with r = 3/2. We get that, at
least for any Y for which e−α0tY ∈H3/2+1

0 ([0,∞[), there exists C such that
e−α0tC ∈H1

0([0,∞[). In addition, C can be calculated from

C = eα0tΦ(D)
(
e−α0tY

)
, t > 0, (4.33)
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where Φ(D) is the pseudodifferential operator with symbol Φ(ξ) =
1/G1(α0 + iξ):

Φ(D)u(t) =
1

2π

∫∞

−∞

1
G1
(
α0 + iξ

)(F(e+u))(ξ)eiξtdξ. (4.34)

For a given reference output Y ∗, we can compute the input by

C∗ = eα0tΦ(D)
(
e−α0tY ∗). (4.35)

To improve the convergence of the integrals in computation, we can use
the formula

C∗ =
dm

dtm
[
eα0tΦm(D)

(
e−α0tY ∗)], (4.36)

where m ∈ N0 and

Φm(ξ) =
1(

α0 + iξ
)m
G1
(
α0 + iξ

) . (4.37)

This formula easily follows from the fact that L(
∫ t

0 · · ·
∫ t

0C(s)ds)(λ) =
(1/λm)Ĉ(λ).

Remark 4.4. In the case, where Y ∈ ∩k∈N0H
k
0 ([0,∞[), we formally have

Φ(ξ) =
∞∑
j=0

1
j!
Φ(j)(0)(iξ)j . (4.38)

Since (iξ)j(Fu)(ξ) = F(u(j))(ξ), we formally get

Φ(D)u =
∞∑
j=0

1
j!
Φ(j)(0)u(j). (4.39)

Hence, for t > 0,

C = eα0t
∞∑
j=0

1
j!
Φ(j)(0)

(
e−α0tY

)(j)
, (4.40)

that is, we have obtained the C as an infinite linear combination of de-
rivatives of the output Y . In this sense, Y is a flat output (cf. [9]). Trun-
cating the series, one is able to get the input by a finite number of differ-
entiations.
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Ŝ
G2

Ĉ∗

+ +
Ĉ

G1

K

Ŷ
− Ŷ ∗

+

Figure 4.1 The closed loop system.

4.4. Compensator design for tracking

In the case where we have no disturbance (S = 0), we can calculate for a
given reference output Y ∗ the required input C∗ from (4.35). When the
disturbance exists, that is, S �= 0, we can construate the compensator, for
example, as follows.

We consider the closed loop system illustrated in Figure 4.1.
By Section 4.1, Ŷ ∗ =G1Ĉ

∗ and so Ĉ∗= Ŷ ∗/G1 at least for 
λ ≥ α0, where
α0 is as in (4.32). The input Ĉ is

Ĉ =K
(
Ŷ ∗ − Ŷ)+ Ĉ∗. (4.41)

Taking into account that Y =W2(1, ·)−Q1C +S and Ĉ∗ = Ŷ ∗/G1, we for-
mally get after a small algebra that

Ĉ =
K + 1/G1

1−Q1K
Ŷ ∗ − K

1−Q1K

(
Ŵ2(1, ·)− d̂

)
, (4.42)

where d̂ =G2Ŝ. Hence the input can be calculated from

C = eα0tΦ1(D)
(
e−α0tY ∗)− eα0tΦ2(D)

(
e−α0t

(
W2(1, ·)−d

))
=: C̃(W),

(4.43)

where d = L−1(G1Ŝ) (disturbance in the output) and

Φ1(ξ) =
(
K + 1/G1

1−Q1K

)(
α0 + iξ

)
, Φ2(ξ) =

(
K

1−Q1K

)(
α0 + iξ

)
. (4.44)
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Figure 5.1 Closed loop simulation: (a) the input substrate concentration
S, (b) the feedback controlC, and (c) the reference output Y ∗ (dotted) and
the resulting output Y (solid).

The compensator can be chosen to be K(λ) = ε/λ which gives an ex-
ponentially stable feedback dynamics. We have not tried to optimize the
compensator design.

5. Numerical results

In simulations, we have used the following relevant parameter values
(Table 3.1). The control law is computed by (4.43). The feedback equa-
tion

∂W

∂t
= AW +B11C̃(W) +B21

∂

∂t

(
C̃(W)

)
, W(0) = 0, (5.1)

is solved by an iterative scheme.
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At the moment t = 10, the reference output is changed rapidly from 0
(which corresponds to the chosen steady state) to Y ∗ = 0.2. At the mo-
ment t = 20, the substrate concentration Sa = 5 is changed to Sa = 5.5
(Figure 5.1a). This causes a disturbance d = eα0tΘ(D)(e−α0tS) in the out-
put, where Θ(ξ) = G2(α0 + iξ). The closed loop control is seen in Figure
5.1b. The reference output Y ∗ and the computed output Y are plotted
in Figure 5.1c. In K(λ) we have chosen ε = 0.01. The tracking is success-
ful and stable. The input is oscillating smoothly but the oscillation is
damping.
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