
FLOW INVARIANCE FOR PERTURBED NONLINEAR

EVOLUTION EQUATIONS

DIETER BOTHE

Abstract. Let X be a real Banach space, J = [0, a] ⊂ IR, A : D(A) ⊂
X → 2X \ ∅ an m-accretive operator and f : J × X → X continuous. In
this paper we obtain necessary and sufficient conditions for weak positive
invariance (also called viability) of closed sets K ⊂ X for the evolution
system

u′ + Au � f(t, u) on J = [0, a].
More generally, we provide conditions under which this evolution system
has mild solutions satisfying time-dependent constraints u(t) ∈ K(t) on J .
This result is then applied to obtain global solutions of reaction-diffusion
systems with nonlinear diffusion, e.g. of type

ut = ∆Φ(u) + g(u) in (0, ∞) × Ω, Φ(u(t, ·))
∣∣
∂Ω

= 0, u(0, ·) = u0

under certain assumptions on the set Ω ⊂ IRn the function Φ(u1, . . . , um) =
(ϕ1(u1), . . . , ϕm(um)) and g : IRm

+ → IRm.

1. Introduction

Let X be a real Banach space and A : D(A) ⊂ X → 2X \ ∅ m-accretive,
where 2X \ ∅ denotes the nonempty subsets of X. Given K : J = [0, a] →
2X \ ∅ with closed values K(t) such that KA(t) := K(t) ∩ D(A) �= ∅ on J
and a continuous f : gr(KA)→ X, we consider the initial value problem

u′ +Au � f(t, u) on J, u(0) = x0.(1)

Given any initial value x0 ∈ KA(0), we look for a mild solution u of (1), by
which we mean a continuous u : J → X such that u is the mild solution of
the quasi-autonomous problem

u′ +Au � w(t) on J, u(0) = x0,
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with w(t) = f(t, u(t)) on J ; notice that u then automatically has to satisfy
u(t) ∈ KA(t) on J , since f is only defined on gr(KA).
Suppose that (1) has mild solution u and let v be the mild solution of

v′ +Av � f(0, x0) on J, v(0) = x0.

By continuity of f and u it follows that

1
h

|u(h)− v(h)| ≤ 1
h

h∫

0

|f(t, u(t))− f(0, x0)|dt → 0 as h → 0+,

hence
lim
h→0+

h−1ρ(Sf(0,x0)(h)x0,KA(h)) = 0,

where Sz(·) denotes the semigroup generated by −Az with Azx := Ax − z
on D(Az) = D(A).
By weak positive invariance of K(·) for u′ + Au � f(t, u) we mean that (1)
has a mild solution on Jτ = [τ, a] for every τ ∈ [0, a) and every initial value
u(τ) = x0 ∈ KA(τ). The argument given above shows that

f(t, x) ∈ T
A

K
(t, x) for all (t, x) ∈ gr(KA) with t < a(2)

is a necessary condition for weak positive invariance of K(·), where TA
K
is

defined on gr(KA) ∩ ([0, a)× X) by

T
A

K
(t, x) = {z ∈ X : lim

h→0+
h−1ρ(Sz(h)x,KA(t+ h)) = 0}.

In the special case A = 0 this becomes

TK(t, x) = {z ∈ X : lim
h→0+

h−1ρ(x+ hz,K(t+ h)) = 0},

and if, in addition, K(t) ≡ K holds then TK(t, x) = TK(x) is the Bouligand
contingent cone w.r. to K at the point x; see e.g. §4.1 in [10].
Since all K(t) are closed by assumption, it is also natural to assume that
gr(KA) is closed from the left, i.e.

(tn) ⊂ J with tn ↗ t and xn ∈ KA(tn) with xn → x implies x ∈ KA(t);

notice that if there are mild solutions un with un(tn) = xn, then KA(t) �
un(t)→ x.
In this situation we will show that the ”subtangential condition” (2) is also
sufficient, provided the semigroup generated by−A is compact and f satisfies
the growth condition

|f(t, x)| ≤ c(1 + |x|) on gr (KA) with some c > 0.(3)

In the final section this result is applied to a class of RD-systems including
the model problem mentioned in the abstract above, and sufficient conditions
for existence of global solutions are obtained.
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2. Preliminaries

Let X be a real Banach space with norm | · |. Then Br(x) denotes the
closed ball in X with center x and radius r, Br(x) its interior and ρ(x,B) is
the distance from x to the set B ⊂ X, with the usual convention ρ(x, ∅) =∞.
Given J = [0, a] ⊂ IR, we let CX(J) be the Banach space of all continuous
u : J → X and L1

X(J) the Banach space of all equivalence classes (w.r.
to equality a.e.) of strongly measurable, Bochner-integrable w : J → X,
both equipped with the usual norms which we denote by | · |0, respectively
| · |1. Given an operator A : X → 2X , we let D(A) = {x ∈ X : Ax �= ∅},
R(A) =

⋃
x∈D(A)

Ax and gr (A) = {(x, y) : x ∈ D(A), y ∈ Ax} denote the
domain, range and graph of A, respectively.
Recall that A : X → 2X is m-accretive if R(I + λA) = X for all λ > 0

and A is accretive, which means

(y − y, x − x)+ ≥ 0 for all x, x ∈ D(A), y ∈ Ax and y ∈ Ax.

Here (·, ·)+ is given by (z, x)+ = max{x∗(z) : x∗ ∈ F(x)} where F : X →
2X

∗ \ ∅ denotes the duality map, i.e. F(x) = {x∗ ∈ X∗ : x∗(x) = |x|2 =
|x∗|2}; see e.g. §12.2 in [9].
If A is m-accretive, the resolvents Jλ := (I + λA)−1 : X → D(A) are non-
expansive mappings, i.e. |Jλx − Jλy| ≤ |x − y| on X × X, for all λ > 0.
Given x ∈ D(A) we have |Jλx − x| ≤ λ|y| for λ > 0, where y is any element
of Ax, which implies Jλx → x as λ → 0+ on D(A). The resolvents satisfy
the so-called resolvent identity

Jλx = Jµ(
µ

λ
x+

λ − µ

λ
Jλx) on X for all λ, µ > 0.

If A is m-accretive, it generates a semigroup {S(t)}t≥0 of nonexpansive
mappings S(t) : D(A) → D(A), given by the so-called exponential formula,
i.e.

S(t)x = lim
n→∞Jnt/nx for t ≥ 0 and x ∈ D(A).

Then {S(t)}t≥0 is called the semigroup generated by −A, and it is said to
be compact if S(t)B is compact for all t > 0 and bounded B ⊂ D(A) (i.e.
the S(t) are compact maps for t > 0). Let us note in passing that {S(t)}t≥0
is compact iff {S(t)}t>0 is equicontinuous and Jλ is a compact map for some
(or, equivalently, for all) λ > 0.
Let us also recall some facts concerning the quasi-autonomous problem

u′ +Au � w(t) on Jτ = [τ, a], u(τ) = x0,(4)

where τ ∈ [0, a). For m-accretive A, given any w ∈ L1
X(Jτ ) and x0 ∈ D(A),

the initial value problem (4) has a unique mild solution u. This means that
u : Jτ → D(A) is continuous with u(τ) = x0 and u is the uniform limit of
ε-DS-approximate solutions uε as ε → 0+. Here, by an ε-DS-approximate
solution uε of (4) one means a function uε with uε(t0) = x0 and uε(t) = xk
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on (tk−1, tk] for k = 1, . . . ,m, where τ = t0 < t1 < · · · < tm < a ≤ tm + ε
with tk − tk−1 ≤ ε and the xk solve the implicit difference scheme

xk − xk−1

tk − tk−1
+Axk � zk for k = 1, . . . ,m

with z1, . . . , zm ∈ X such that
m∑
k=1

∫ tk

tk−1

|zk − w(t)| dt ≤ ε.

In fact, every sequence of such εm-DS-approximate solutions uεm converges
to u uniformly on [τ, a) if εm → 0+.
In the sequel u(· ; τ, x0, w) denotes the mild solution of (4) and we shall use
the following property: If w,w ∈ L1

X(Jτ ) and x0, x0 ∈ D(A) then

|u(t; τ, x0, w)− u(t; τ, x0, w)| ≤ |x0 − x0|+
∫ t

τ
|w(s)− w(s)| ds for t ∈ Jτ .

In particular, wn → w in L1
X(Jτ ) implies u(· ; τ, x0, wn) → u(· ; τ, x0, w) in

CX(Jτ ). If w ∈ L1
X(J) then u(· ; τ, x0, w) denotes u(· ; τ, x0, w|Jτ

). With these
notations, the semigroup property of solutions reads

u(t; τ, x0, w) = u(t; τ , u(τ ; τ, x0, w), w) for all 0 ≤ τ ≤ τ ≤ t ≤ a.

If τ = 0 and x0 is fixed we simply write u(· ;w) instead of u(· ; τ, x0, w).
Let us also note that the autonomous problem, i.e. (4) with w = 0, has a
unique mild solution for every x0 ∈ D(A) if A is accretive and satisfies the
weak range condition

lim
h→0+

h−1ρ(x,R(I + hA)) = 0 for all x ∈ D(A).

In proofs of this result one point is to show that if (xk)k≥0 is a solution of
the above implicit difference scheme such that tk ↗ t∞ < a, then xk → x∞
for some x∞ ∈ D(A); this fact will be used later on.
Proofs of all facts mentioned so far can be found in [2] or [4].
Finally, we shall need the following compactness result for mild solutions of
(4), which is Theorem 2 in [1].

Lemma 1. Let X be a real Banach space, A : X → 2X be m-accretive such
that −A generates a compact semigroup and let J = [0, a] ⊂ IR, W = {w ∈
L1

X(J) : |w(t)| ≤ ϕ(t) a.e. on J} with ϕ ∈ L1(J). Then {u(· ;w) : w ∈ W}
is relatively compact in CX(J).

In fact, the assertion of Lemma 1 remains true if W is replaced by any
uniformly integrable subset of L1

X(J); see Theorem 2.3.2 in [23].

3. Existence of mild solutions under time-dependent
constraints

Our main result concerning problem (1) is

Theorem 1. Let X be a real Banach space and A : D(A) ⊂ X → 2X \ ∅ be
m-accretive such that −A generates a compact semigroup. Let J = [0, a] ⊂ IR
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and K : J → 2X be such that KA(0) �= ∅ and gr (KA) is closed from the left.
Let f : gr (KA)→ X be continuous, satisfying (2) and (3). Then

u′ +Au � f(t, u) on J, u(0) = x0(1)

has a mild solution for every x0 ∈ KA(0).

Proof. 1. To simplify subsequent arguments, we first reduce to the case
when f is bounded on gr (KA). For this purpose, let r(·) be the solution of

r′(t) = 1 + c(1 + r(t) + |S(t)x0|) on J, r(0) = 0,

and define

K̂(t) := K(t) ∩ Br(t)(S(t)x0) and K̂A(t) := K̂(t) ∩ D(A) for t ∈ J.

Evidently, x0 ∈ K̂A(0), gr (K̂A) is closed from the left and f is bounded on
gr (K̂A). In order to show that (2) also holds for K̂ instead ofK, let t ∈ [0, a),
x ∈ K̂A(t) and z := f(t, x). Due to (2) there are sequences hn → 0+ and
en → 0 such that

Sz(hn)x+ hnen ∈ KA(t+ hn) for all n ≥ 1.
By means of the estimate

|Sz(hn)x+ hnen − S(t+ hn)x0| ≤
|Sz(hn)x − S(hn)x|+ |x − S(t)x0|+ hn|en| ≤

hn|f(t, x)|+ r(t) + hn|en| ≤
r(t) + hnc(1 + r(t) + |S(t)x0|) + hn|en| ≤ r(t+ hn),

which holds if n ≥ 1 is sufficiently large, this implies
Sz(hn)x+ hnen ∈ K̂A(t+ hn) for all large n ≥ 1,

hence (2) also holds for K̂. Consequently, all assumptions of Theorem 1 are
also satisfied if K is replaced by K̂, and we may therefore assume that f is
bounded on gr (KA).
2. We now show which type of ε-approximate solutions can be expected for

(1), where we start with the usual exploitation of the subtangential condition.
Fix ε ∈ (0, 1]. Since z0 := f(0, x0) ∈ TA

K
(0, x0), there is h ∈ (0, ε] such that

y1 := Sz0(h)x0 satisfies ρ(y1,KA(h)) ≤ 1
2εh, hence there is x1 ∈ KA(h) such

that |e0| ≤ ε for e0 := x1−y1
h . Then, letting t0 = 0 and t1 = t0 + h,

v(t) := Sz0(t − t0)x0 + (t − t0)e0 on [t0, t1]

is a natural candidate as an approximate solution on [t0, t1], and we may as-
sume |v(t)−x0| ≤ ε on [t0, t1] if h > 0 is chosen small enough. Consequently,
we get sequences (tk), (xk), (zk) and (ek) by induction such that

tk ↗ t∞ ≤ a, xk ∈ KA(tk), zk = f(tk, xk),
ek = (xk+1 − Szk(tk+1 − tk)xk)/(tk+1 − tk), |ek| ≤ ε.

(5)

For k ≥ 0 we then let
v(t) = Szk(t − tk)xk + (t − tk)ek on [tk, tk+1],(6)
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and may assume tk+1 − tk ≤ ε as well as |v(t) − xk| ≤ ε on [tk, tk+1] by
appropriate choice of the tk. Of course t∞ < a is possible, and to be able
to extend this approximate solution beyond t∞ we then need (xk) to be
relatively compact.
To see that this is in fact true, let us first show

|v(t)− u(t; tk, xk, w)| ≤ ε(t − tk) on [tk, t∞) for all k ≥ 0,(7)

where w ∈ L1
X([0, t∞]) is given by w(t) := zk on [tk, tk+1); notice that (7) in

particular yields |v(t)− u(t;w)| ≤ εt on [0, t∞), hence

w(t) ∈ f([Jt,ε × Bγε(u(t;w))] ∩ gr (KA)) a.e. on [0, t∞](8)

with Jt,ε = [t − ε, t] ∩ J and γ = 1 + a. Evidently, (7) holds if

|v(t)− u(t; tk, xk, w)| ≤ ε(t − tk) on [tj , tj+1](9)

for all j ≥ k ≥ 0 and (9) is valid for j = k, by construction of v. Suppose
that (9) holds for fixed k ≥ 0 and j = m − 1 ≥ k. Exploitation of

u(t; tk, xk, w) = u(t; tm, u(tm; tk, xk, w), zm) on [tm, tm+1]

and
v(t) = u(t; tm, xm, zm) + (t − tm)em on [tm, tm+1]

yields

|v(t)− u(t; tk, xk, w)| ≤ |xm − u(tm; tk, xk, w)|+ (t − tm)|em|
≤ (tm − tk)ε+ (t − tm)ε

for all t ∈ [tm, tm+1], hence (9) holds for j = m. By induction (9) is therefore
valid for all j ≥ k ≥ 0.
Now, relative compactness of (xk) = (v(tk)) follows easily, since (7) implies

v([0, t∞)) ⊂ Ck + (t∞ − tk)Bε(0) for all k ≥ 0,
where Ck := v([0, tk])∪u([tk, t∞]; tk, xk, w) is relatively compact. Evidently,
this also yields relative compactness of v([0, t∞)).
Therefore, we may define v(t∞) := lim

j→∞
xkj
, where (xkj

) is a convergent sub-

sequence of (xk). Then it is easy to check that (7) is still valid on [tk, t∞].
Consequently, we are led to consider the set of approximate solutions defined
by

M ε = {(v, w, P, b) : b ∈ (0, a],
v : [0, b]→ X with v(b) ∈ KA(b), v([0, b]) relatively compact,
w : [0, b]→ X strongly measurable such that (8) holds a.e. on [0, b],

P ⊂ [0, b) with 0 ∈ P, b ∈ P such that τ ∈ P implies v(τ) ∈ KA(τ)
and |v(t)− u(t; τ, v(τ), w)| ≤ ε(t − τ) on [τ, b]}.

3. By the arguments of step 2 we already know M ε �= ∅, and we want to
use Zorn’s Lemma to obtain an element of M ε with b = a. For this purpose
we define a partial ordering on M ε by (v, w, P, b) ≤ (v, w, P , b) if

b ≤ b, v = v on [0, b], w = w a.e. on [0, b], P ⊂ P .
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To be able to apply Zorn’s Lemma we have to show that every ordered subset
M ⊂ M ε has an upper bound in M ε. Let

b∗ = sup{b ∈ (0, a] : (v, w, P, b) ∈ M for some v, w, P}.
In case the ”sup” is actually a ”max”, i.e. if there is (v, w, P, b∗) ∈ M , we
let

P ∗ = {τ ∈ [0, b∗) : there is (v, w, P, b∗) ∈ M with τ ∈ P}.
Evidently, (v, w, P ∗, b∗) is an upper bound and (v, w, P ∗, b∗) ∈ M ε is easy to
check.
In the remaining case there is a sequence (vn, wn, Pn, bn) ⊂ M with bn ↗ b∗,
hence Pn ⊂ Pn+1, vn+1 = vn on [0, bn] and wn+1 = wn a.e. on [0, bn] for all
n ≥ 1. We then let

P ∗ =
⋃
n≥1

Pn, v∗(t) = vn(t) on [0, bn], w∗(t) = wn(t) on [0, bn].

Suppose for the moment that v∗([0, b∗)) is relatively compact. We then
let v∗(b∗) = lim

j→∞
v∗(bnj ) where (v

∗(bnj )) is a convergent subsequence of

(v∗(bn)), and claim that (v∗, w∗, P ∗, b∗) ∈ M ε is an upper bound for M .
Evidently, (v∗, w∗, P ∗, b∗) is an upper bound for M , since (v, w, P, b) ∈ M
implies b < bn, hence (v, w, P, b) ≤ (vn, wn, Pn, bn) for some n ≥ 1. To check
that (v∗, w∗, P ∗, b∗) ∈ M ε is also easy; notice that τ ∈ P ∗ implies τ ∈ Pn and
v∗(τ) = vn(τ) for all n ≥ nτ . So, it remains to prove relative compactness
of v∗([0, b∗)). But the latter follows by the corresponding arguments from
step 2, where this time we take any sequence (tk) ⊂ P ∗ with tk ↗ b∗ and
xk := v∗(tk); notice that (7) then holds with v∗ instead of v.
Consequently, there is a maximal element (v∗, w∗, P ∗, b∗) ∈ M ε. Suppose
b∗ < a. We then let t0 = b∗, x0 = v∗(b∗) and repeat the construction of
step 2 to obtain the sequences from (5) and function v from (6). Let

v(t) = v∗(t) on [0, b∗], v(t) = v(t) on [b∗, t∞), b = t∞,

w(t) = w∗(t) on [0, b∗], w∗(t) = zk on [tk, tk+1], P = P ∗ ∪ {tk : k ≥ 1}.
Then v([t0, t∞)) is relatively compact again, and, as before, we let v(t∞) :=
lim
j→∞

v(tkj
) for an appropriate subsequence (tkj

).

To obtain (v, w, P , b) ∈ M ε we show that τ ∈ P ∗ and t ∈ (τ, t∞) implies
|v(t) − u(t; τ, v(τ), w)| ≤ ε(t − τ); the other cases as well as the remaining
properties are rather obvious. Due to (7) and the properties of (v∗, w∗, P ∗, b∗)
we have

|v(t)− u(t; τ, v(τ), w)| ≤
|v(t)− u(t; t0, x0, w)|+ |u(t; t0, x0, w)− u(t; t0, u(t0; τ, v∗(τ), w), w)| ≤

ε(t − t0) + |v∗(t0)− u(t0; τ, v∗(τ), w)| ≤ ε(t − τ),

hence (v, w, P , b) ∈ M ε with b > b∗, a contradiction. Consequently, b∗ = a
for every maximal element of M ε.
4. Given εm ↘ 0 there are (vm, wm, Pm, a) ∈ M εm by steps 2 and 3. Let

um = u(· ;wm). Since |wm(t)| ≤ |f |∞ a.e. on J for all m ≥ 1 and S(·)
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is compact the sequence (um) is relatively compact in CX(J) by Lemma 1.
W.l.o.g. um → u0 in CX(J) and u0(0) = x0. For t ∈ (0, a] there is (tm) ⊂
[0, t] with tm ↗ t sucht that ρ(um(tm),KA(tm)) ≤ εm, hence um(tm)→ u0(t)
implies u0(t) ∈ KA(t) since gr (KA) is closed from the left. By (8), for almost
all t ∈ (0, a] we can choose a sequence (tm) such that tm ↗ t and

wm(t) ∈ f(tm, Bγεm(um(tm)) ∩ KA(tm)) for all m ≥ 1,
hence for every η > 0 there is mη ≥ 1 such that

wm(t) ∈ f(tm, Bη(u0(tm)) ∩ KA(tm)) for all m ≥ mη,

and therefore wm(t)→ f(t, u0(t)) a.e. on J . Consequently, wm → f(·, u0(·))
in L1

X(J) which implies u0 = lim
m→∞um = u(· ; f(·, u0(·))), i.e. u0 is a mild

solution of (1).

Let us note in passing that the necessary condition KA(t) �= ∅ on J is of
course implicitly contained in the assumptions of Theorem 1. Nevertheless,
we did not include this condition explicitly, since the reduction to bounded
f becomes easier this way.
Notice that compactness of the semigroup generated by −A was only used
in the final step to get relative compactness of (u(· ;wm)) in CX(J) via
Lemma 1. In the subsequent application to RD-systems the perturbation f
has the additional property that, restricted to gr(KA),

f maps bounded sets into weakly relatively compact sets.(10)

Since B := {um(t) : t ∈ J,m ≥ 1}+Bγ(0) (with um as in step 4 of the proof
above) is bounded and wm(t) ∈ f([J ×B]∩gr (KA)) a.e. on J for all m ≥ 1,
it follows from Corollary 2.6 in [13] that (wm) is weakly relatively compact
in L1

X(J). In this situation the proof of Theorem 1 obviously remains valid if
A is such that w → u(· ;w) maps weakly relatively compact subsets of L1

X(J)
into relatively compact subsets of CX(J). By the remark following Lemma 1
this property holds if −A generates a compact semigroup. However, the
former condition is weaker, in general, and will be useful later on.

Let us record this modification of Theorem 1 as

Theorem 2. Let X be a real Banach space and A : D(A) ⊂ X → 2X \ ∅ be
m-accretive such that {u(· ;w) : w ∈ W} is relatively compact in CX(J) for
every fixed initial value in D(A) whenever W ⊂ L1

X(J) is weakly relatively
compact. Let J = [0, a] ⊂ IR and K : J → 2X be such that KA(0) �= ∅
and gr (KA) is closed from the left. Let f : gr (KA) → X be continuous,
satisfying (2), (3) and (10). Then

u′ +Au � f(t, u) on J, u(0) = x0(1)

has a mild solution for every x0 ∈ KA(0).

In several applications it happens that for an appropriate choice of the
K(t) these sets are positively invariant for the resolvents of A. Then it is
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helpful to know that the subtangential condition can be separated, by which
we mean that

JλK(t) ⊂ K(t) for λ > 0, t ∈ [0, a) and
f(t, x) ∈ TK(t, x) for t ∈ [0, a), x ∈ KA(t)

(11)

implies (2) if gr(KA) is closed from the left. We do not have a simple direct
proof of this fact, but it is not difficult to show that (11) implies the ”weak
range condition”

lim
h→0+

h−1ρ(x+ hf(t, x), (I + hA)(K(t+ h) ∩ D(A))) = 0

for t ∈ [0, a), x ∈ KA(t),
(12)

and the latter in turn implies (2). This is the content of

Lemma 2. Let X be a real Banach space and A : D(A) ⊂ X → 2X \ ∅ be
m-accretive. Let J = [0, a] ⊂ IR, K : J → 2X with gr(KA) closed from the
left and f : gr (KA)→ X be continuous.
(a) Then (12) implies (2).
(b) Then (11) implies (2).

Proof. 1. To obtain (a), let t0 ∈ [0, a) and x0 ∈ KA(t0). Evidently, (2)
holds if for every η > 0 there is δ = δη ∈ (0, η] such that

ρ(Sf(t0,x0)(δ)x0,KA(t0 + δ)) ≤ 3ηδ.
The idea is to construct local ε-DS-approximate solutions for

u′ +Au � f(t, u) on [t0, t0 + d], u(t0) = x0,(13)

and to compare them to corresponding ε-DS-approximate solutions for

v′ +Av � f(t0, x0) on [t0, t0 + d], v(t0) = x0.(14)

Given η ∈ (0, 1], fix r ∈ (0, a − t0) such that |f(t, x) − f(t0, x0)| ≤ η for all
t ∈ [t0, t0+ r], x ∈ Br(x0)∩KA(t) and let ε ∈ (0, r) with ε ≤ 1. Exploitation
of (12) yields hk ∈ (0, ε] and ek ∈ X with |ek| ≤ ε such that

xk+1 := Jhk
(xk + hk(f(tk, xk) + ek)) ∈ KA(tk+1) for k ≥ 0(15)

where tk+1 := tk + hk. Given these hk we also let

xk+1 := Jhk
(xk + hkf(t0, x0)) for k ≥ 0, x0 := x0.(16)

Since all Jhk
are nonexpansive it follows by induction that

|xk − xk| ≤ (tk − t0)(ε+maxj=1,...,k−1 |f(tj , xj)− f(t0, x0)|),
|xk − x0| ≤ (tk − t0)|f(t0, x0)|+ |Jhk−1 · · ·Jh0x0 − x0|,

(17)

hence

|xk − x0| ≤ (tk − t0)(2 + |f(t0, x0)|+ |y|) + 2|x0 − x|(18)

for all (x, y) ∈ A as long as tk − t0 ≤ r and |xk − x0| ≤ r. Let x ∈ D(A)
with |x0 − x| ≤ r/4, y ∈ Ax and d = 1

2r(2 + |f(t0, x0)| + |y|)−1, where we
may assume d ≤ η. Then (18) yields |xk − x0| ≤ r for all k ≥ 1 such that
tk ≤ t0 + d.
To obtain an ε-DS-approximate solution for (13) from (15), we have to show
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that the hk can be chosen such that tm ≥ t0 + d for some m ≥ 1. This can
be achieved by the usual trick: For t ∈ [0, a) and x ∈ KA(t) let

ϕε(t, x) = sup{h ∈ (0, ε] : ρ(x+ hf(t, x), (I + hA)(K(t+ h) ∩ D(A))) ≤ εh}
and choose hk ≥ 1

2ϕε(tk, xk), say, in each step. Suppose tk ↗ t∞ ≤ t0 + d.
Given j ≥ 0 we then let xk be given by (16), but starting at k = j instead
of k = 0 (i.e., xj = xj). Since (16) means xk+1 = Jz

hk
xk where Jzλ is the

resolvent of Az with z := f(t0, x0), we know that (xk) is a Cauchy sequence.
Hence

|xk+l − xk| ≤ (tk+l − tj)(ε+ 1) + (tk − tj)(ε+ 1) + |xk+l − xk|
for all l ≥ 1, k > j ≥ 0 shows that (xk) is a Cauchy sequence too. Conse-
quently, xk → x∞ ∈ KA(t∞) as k → ∞ and therefore

lim
(t,x)→(t∞−,x∞)

ϕε(t, x) ≤ lim
k→∞

ϕε(tk, xk) ≤ 2 lim
k→∞

hk = 0.

This is a contradiction, since we will show

lim
(s,y)→(t−,x)

ϕε(s, y) > 0 for all t ∈ [0, a), x ∈ KA(t).(19)

For this purpose, choose h ≥ 1
2ϕε/3(t, x) > 0 and e ∈ Bε/2(0) such that

x+ h(f(t, x) + e) ∈ (I + hA)(K(t+ h) ∩ D(A)).

Given tn ↗ t and xn ∈ KA(tn) with xn → x, let hn = h+ t − tn ≥ h. Then

Jh(x+ h(f(t, x) + e)) ∈ K(t+ h) ∩ D(A) = K(tn + hn) ∩ D(A).

Using the resolvent identity and letting z := x+ h(f(t, x) + e), we get

Jhz = Jhn

(
z +

t − tn
h

(z − Jhz)
)
,

hence

z +
t − tn

h
(z − Jhz) ∈ (I + hnA)(K(tn + hn) ∩ D(A)) =: Rn

and therefore
ρ(xn + hnf(tn, xn), Rn) ≤ |x − xn|+ h|f(t, x)− f(tn, xn)|+

(t − tn)(|f(tn, xn)|+ |z − Jhz|/h) + εh2 ≤ εh ≤ εhn

for all large n ≥ 1, i.e. lim
n→∞

ϕε(tn, xn) ≥ h > 0 and consequently (19) holds.

Thus we get ε-DS-approximate solutions uε, vε for (13), (14) having the
values xk, xk on (tk−1, tk] for k = 1, . . . ,m, respectively, and tm < t0 + d ≤
tm + ε. Moreover, by (15) and (17),

ρ(xk,KA(tk)) ≤
(tk − t0)

(
ε+ sup{|f(t0, x0)− f(t, x)| : t ∈ [t0, t0 + r], x ∈ KA(t) ∩ Br(x0)}

)

for k = 1, ...,m, hence ρ(xk,KA(tk)) ≤ (tk − t0)(ε + η). Given ε → 0+ we
have vε(t) → Sf(t0,x0)(t − t0)x0 uniformly on [t0, t0 + d). Now notice that
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the choice of d > 0 above was in fact independent of ε ∈ (0, 1]. Therefore,
we find ε ∈ (0, η] such that tm − t0 ≥ d − ε ≥ d/2 and

|vε(t)− Sf(t0,x0)(t − t0)x0| ≤ 1
2
ηd on [t0, tm].

Let δ = tm − t0. Then

ρ(Sf(t0,x0)(δ)x0,KA(t0 + δ)) ≤ ηδ + ρ(xm,KA(tm)) ≤ 3ηδ,
hence (2) holds.
2. In the situation of (b) let t ∈ [0, a) and x ∈ KA(t). Then, given ε > 0,

there is h ∈ (0, ε] and e ∈ X with |e| ≤ ε such that x+h(f(t, x)+e) ∈ K(t+h),
hence

Jh(x+ h(f(t, x) + e)) ∈ K(t+ h) ∩ D(A).
Consequently,

ρ(x+ hf(t, x), (I + hA)(K(t+ h) ∩ D(A))) ≤ hε

and therefore (12) holds. By step 1 of this proof the latter implies (2).

Theorem 1 and Theorem 2 together with Lemma 2 obviously imply

Corollary 1. Let X be a real Banach space, A : D(A) ⊂ X → 2X \ ∅ be
m-accretive, J = [0, a] ⊂ IR, K : J → 2X with KA(0) �= ∅ and gr(KA)
closed from the left. Let f : gr (KA) → X be continuous, satisfying (3). In
addition, assume that −A generates a compact semigroup, or f satisfies (10)
and {u(· ;w) : w ∈ W} is relatively compact in CX(J) for every fixed initial
value in D(A) whenever W ⊂ L1

X(J) is weakly relatively compact. Then

u′ +Au � f(t, u) on J, u(0) = x0(1)

has a mild solution for every x0 ∈ KA(0) if also (11) or (12) holds.

Additional information is contained in the following

Remarks. 1. In the situation of Theorem 1 but without the growth con-
dition on f we still get existence of a local solution of (1). This follows
by application of Theorem 1 with J and K replaced by Ĵ = [0, b] and
K̂ : Ĵ → 2X with K̂(t) = K(t) ∩ BtM (S(t)x0), respectively, where b ∈ (0, a]
and M > 1 are chosen such that |f(t, x)| ≤ M − 1 on Ĵ × Br(x0) for
r := bM +max

[0,b]
|S(t)x0 − x0|.

If f is locally Lipschitz on gr (KA), we may choose Ĵ and K̂ above such
that, in addition, f is Lipschitz on gr (K̂A). Exploitation of the latter yields
convergence of the εm-approximate solutions um from step 4 of the proof
of Theorem 1, without using any compactness property of A. Evidently,
this yields a local solution which can be extended up to a noncontinuable
solution of (1). Moreover, this solution is unique. To summarize, prob-
lem (1) with x0 ∈ KA(0) has a unique noncontinuable solution if A is m-
accretive, K : J = [0, a] → 2X is such that gr (KA) is closed from the left
and f : gr (KA)→ X is locally Lipschitz, satisfying (2).
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2. Problem (1) has been considered in [22] in case K(t) ≡ K is ”semi
locally closed”. The ”subtangential condition” used there is much stronger
than (2): for closed K it essentially becomes

lim
h→0+

sup{h−1ρ(Sf(t,x)(h)x,K) : (t, x) ∈ J × K} = 0.

Semilinear cases have been studied e.g. in [21], [19] and [6]. In the first
paper the linear part A is allowed to depend on time with varying domains
D(A(t)) and existence of mild solutions is obtained under a necessary sub-
tangential condition and a compactness assumption, either on the evolution
system generated by the linear part or on the perturbation. In [19] multival-
ued perturbations are considered and existence of mild solutions is proven
for compact semigroups under a strong subtangential condition. In [6], §7 it
is shown that the latter result remains true under the necessary subtangen-
tial condition, and that the additional assumption on the semigroup can be
replaced by a compactness assumption on the perturbation.
3. Let us note that for dissipative, not necessarily continuous f : D(f) ⊂

X → X and K(t) ≡ K the invariance results of [20] can be applied to A−f .
In particular, in this situation Theorem 2 of [20] implies that for accretive A
problem (1) has a mild solution if for every x ∈ KA := K ∩ D(A) and ε > 0
there is h ∈ (0, ε], xh ∈ D(A) ∩ D(f) and yh ∈ Axh such that

|x − xh + h(f(xh)− yh)| ≤ hε and ρ(xh,KA) ≤ hε.

In case D(f) = K this is just the weak range condition for A − f , and it
becomes (12) if, in addition, f is continuous bounded and K ∩ D(A) = KA.

4. Application to reaction-diffusions-systems: global existence
of solutions

Let us start with the model problem

(20) ut = ∆Φ(u) + g(u) in (0,∞)× Ω, Φ(u(t, ·))|∂Ω = 0, u(0, ·) = u0,

where Ω ⊂ IRn is open bounded with smooth boundary, Φ(u1, . . . , um) =
(ϕ1(u1), . . . , ϕm(um)) with ϕk : IR→ IR and g : IRm+ → IRm.
To be able to apply the results from section 3 we need some information
concerning the abstract formulation of the scalar nonlinear diffusion equation

vt = ∆ϕ(v) in (0, T )× Ω, ϕ(v(t, ·))|∂Ω = 0, v(0, ·) = v0,(21)

where Ω is as above and ϕ : IR→ IR is continuous increasing with ϕ(0) = 0.
Define A : D(A) ⊂ L1(Ω) → L1(Ω) by

Au = −∆ϕ(u),

D(A) = {u ∈ L1(Ω) : ϕ(u) ∈ W 1,1
0 (Ω),∆ϕ(u) ∈ L1(Ω)}.(22)

Then (21) corresponds to the autonomous problem u′ + Au � 0. Let us
collect some basic facts concerning A. Recall that Q : L1(Ω) → L1(Ω) is
called order-preserving if u ≤ u a.e. on Ω implies Qu ≤ Qu a.e. on Ω.
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Lemma 3. Let Ω ⊂ IRn be open bounded with smooth boundary, X = L1(Ω),
ϕ : IR → IR be continuous increasing with ϕ(0) = 0 and A be given by (22).
Then the following holds.
(a) A is m-accretive with D(A) = X.
(b) Jλ : X → X is order-preserving for all λ > 0, and Jλu ≤ |u|∞ if u ≥ 0.
(c) In addition, let ϕ be strictly increasing. Then {u(· ;w) : w ∈ W} is rel-
atively compact in CX(J) for every fixed initial value whenever W ⊂ L1

X(J)
is weakly relatively compact.

Assertion (a) and the first part of (b) are contained in Théorème 2.1 in [3],
while the second part of (b) is a consequence of the same theorem combined
with Corollaire 2.2. in [3]. Assertion (c) is Theorem 1 in [11].

To reformulate (20) as an abstract evolution system we let

X = L1(Ω)m with |u| = |u1|1 + . . .+ |um|1,
Au = −∆Φ(u) = (−∆ϕ1(u1), . . . ,−∆ϕm(um)),

D(A) = {u ∈ X : ϕk(uk) ∈ W 1,1
0 (Ω),∆ϕk(uk) ∈ L1(Ω) for k = 1, . . . ,m},

f : D(f) ⊂ X+ → X defined by f(u)(x) = g(u(x)) on Ω,

where X+ = {u ∈ X : uk ≥ 0 a.e. on Ω for k = 1, . . . ,m} is the positive
cone in X and D(f) = {u ∈ X+ : f(u) ∈ X}; notice that L∞(Ω)m+ ⊂ D(f).
Suppose that the ϕk are continuous and strictly increasing with ϕk(0) = 0.
Then A is m-accretive with A(0) = 0, all Jλ are order-preserving w.r. to
the partial ordering induced by X+ on X (i.e. u ≤ v if v − u ∈ X+) and
Jλu ≤ u if u(x) = α ∈ IRm+ a.e. on Ω. This implies

JλK ⊂ K for all λ > 0 and K = {u ∈ X : 0 ≤ u ≤ u} with u ≡ α ∈ IRm+ ,

i.e. such ”rectangles” are positively invariant under Jλ. Moreover, due to
Lemma 3(c) the operator A satisfies the compactness assumption imposed
in Corollary 1. Therefore, it is natural to look for ”tubes” of type C(t) =
[0, c(t)] with c : IR+ → IRm+ such that gr (C) is weakly positively invariant
for y′ = g(y). By Corollary 1 in [5] this holds if g(y) ∈ TC(t, y) for all t ≥ 0,
y ∈ C(t). For this special C(·) the latter condition means

t ≥ 0, y ∈ C(t) with yk = 0 implies gk(y) ≥ 0
t ≥ 0, y ∈ C(t) with yk = ck(t) implies gk(y) ≤ D+ck(t),

(23)

whereD+ denotes the upper right Dini derivative; see Chapter 9.1 in [6]. The
first part of (23) is a natural assumption if g models a chemical reaction, and
to find an admissible upper bound c(·) we consider the initial value problem

y′ = ĝ(y) on IR+, y(0) = y0 ∈ IRm+ ,(24)

with

ĝk(y) := max{gk(z) : 0 ≤ z ≤ y, zk = yk};(25)

notice that g = ĝ on IRm+ iff g is quasimonotone w.r. to IRm+ . Let ŷ(· ; y0)
be any solution of (24) with [0, T ) being its maximal interval of existence.
Then C(·) = [0, ŷ(·)] is weakly positively invariant for y′ = g(y) on [0, T ).
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By application of Corollary 1 we therefore get

Theorem 3. Let Ω ⊂ IRn be open bounded, X = Lp(Ω)m with m ≥ 1,
p ∈ [1,∞) and A : D(A) ⊂ X → 2X \ ∅ be m-accretive with 0 ∈ A(0) such
that all Jλ are order-preserving with Jλu ≤ u if u ≡ α ∈ IRm+ . Suppose also
that {u(· ;w) : w ∈ W} is relatively compact in CX(J) for every fixed initial
value in D(A) whenever W ⊂ L1

X(J) is weakly relatively compact. Let g :
IRm+ → IRm be continuous with gk(y) ≥ 0 if yk = 0 and f : D(f) ⊂ X+ → X
be defined by f(u)(x) = g(u(x)) on Ω. Then the abstract RD-system

u′ +Au � f(u) on IR+, u(0) = u0

has a global mild solution in X for 0 ≤ u0 ∈ L∞(Ω)m ∩ D(A), if (24) with
ĝ from (25) has a global solution for y0 = (|u0,1|∞, . . . , |u0,m|∞).

Proof. Let c(·) denote the global solution of (24), C(t) := [0, c(t)] and
K(t) := {u ∈ X : u(x) ∈ C(t) a.e. on Ω}.

Notice first that C(·) is continuous w.r. to dH and bounded on [0, a] for
every a > 0. Let 1 ≤ p < ∞. Then

ρ(u,K(t))p =
∫

Ω
ρ(u(x), C(t))pdx for every u ∈ X,

which follows from the fact that PC(t)(u(·)) has a measurable selection for
every u ∈ X by Proposition 3.2 in [10], where PC(t) denotes the metric
projection onto C(t).
To check that gr(KA) is closed from the left, let tk ↗ t and uk ∈ KA(tk)
with uk → u ∈ X. Passing to an appropriate subsequence, we may assume
uk(x)→ u(x) a.e. on Ω which implies u(x) ∈ C(t) a.e. on Ω, hence u ∈ KA(t).
Since g is continuous and bounded on C([0, a]) it follows that f is continuous
and bounded on K([0, a]) with f(K([0, a])) ⊂ X weakly relatively compact.
For t ≥ 0 and y ∈ C(t) with yk = ck(t) we have gk(y) ≤ ĝk(c(t)) = c′

k(t)
by construction of ĝ. Since the first part of (23) holds by assumption, this
implies g(y) ∈ TC(t, y). Due to c′

k(t) = D+ck(t) we even get

lim
h→0+

h−1ρ(y + hg(y), C(t+ h)) = 0,

hence

h−1ρ(u+ hf(u),K(t+ h)) =
( ∫

Ω
[h−1ρ(u(x) + hg(u(x)), C(t+ h))]pdx

)1/p

together with the dominated convergence theorem imply f(u) ∈ TK(t, u) for
t ≥ 0, u ∈ K(t).
Evidently, JλK(t) ⊂ K(t) for all t ≥ 0 and λ > 0. Therefore (1) with
f(t, u) := f(u) has a mild solution uk on [0, k] for every k ≥ 1, by Corollary 1.
Let (ukj

) be a subsequence of (uk) which converges uniformly on bounded
intervals to a mild solution u of (1). Then u is a global mild solution of the
abstract RD-system.

Due to Lemma 3 this result applies to the model problem (20). This yields
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Corollary 2. Let Ω ⊂ IRn be open bounded with smooth boundary, and
ϕk : IR → IR be continuous and strictly increasing with ϕk(0) = 0 for k =
1, . . . ,m. Let g : IRm+ → IRm be continuous with gk(y) ≥ 0 if yk = 0. Then
problem (20) has a global mild solution in L1(Ω)m for 0 ≤ u0 ∈ L∞(Ω)m,
if (24) with ĝ from (25) has a global solution for y0 = (|u0,1|∞, . . . , |u0,m|∞).

Remarks. 4. A similar invariance approach is used in [17] to obtain global
existence for RD-systems with linear diffusion and smooth quasimonotone
reaction terms.
In [16] the model problem (20) is considered for m = 2, but with Dirichlet

boundary conditions replaced by the mixed boundary conditions
∂ϕk
∂ν
(uk)+

αkϕk(uk) = 0 in (0,∞)×∂Ω, where the αk are sufficiently smooth nonnega-
tive functions. In this paper weak solutions of (20) are obtained in the follow-
ing situation: Either ϕk ≡ 0 or ϕk(0) = ϕ′

k(0) = 0 and ϕk(r), ϕ′
k(r), ϕ

′′
k(r) >

0 for r > 0. Furthermore g is assumed to be smooth and quasimonotone
w.r. to IR2

+ with g(0) = 0 such that for every y ∈ IR2
+ there is y ≥ y with

g(y) ≤ 0. Notice that the latter assumption on g implies positive invariance
of [0, y] for y′ = g(y) = ĝ(y), hence every solution of (24) exists globally.
5. Under the assumptions imposed on ϕ in Lemma 3(c) the semigroup

generated by −A (with A from (22)) need not be compact, but compactness
of the semigroup is guaranteed if, in addition, ϕ is continuously differen-
tiable on IR \ {0} such that ϕ′(r) ≥ c|r|γ−1 on IR \ {0} with some c > 0 and
γ > max{0, n−2

n }; see Lemma 2.6.2 in [23].
In the special case ϕ(r) = |r|γ−1r, which corresponds to the porous medium
equation, the condition γ > max{0, n−2

n } is optimal in the sense that the
semigroup is not compact for 0 < γ < n−2

n . This is a consequence of Theo-
rem 8 in [8]; see Remark 11 there.
6. In chemical applications g(·) will usually be of special type (see e.g.

[14]). In the simplest case m = 2 a typical reaction term, corresponding to
the chemical reaction αA + βB → P , is given by the so-called Freundlichs
kinetics

g(y) = (−αkyα1 y
β
2 ,−βkyα1 y

β
2 ) with α, β, k > 0;

here α, respectively β is the order of the reaction w.r. to A, respectively B
and k is the rate constant. Evidently ĝ(y) = 0 on IR2

+, hence (24) has global
solutions for every α, β > 0.
In case of a mixed order reversible reaction αA � βB one has

g(y) = (α(k2y
β
2 − k1y

α
1 ), β(k1y

α
1 − k2y

β
2 )) with α, β, k1, k2 > 0.

Here g is quasimonotone with g(k−1/α
1 rβ, k

−1/β
2 rα) = 0 for all r > 0, hence

(24) has global solutions for every α, β > 0.
Finally, if g is given by

g(y) = (−yα1 y
β
2 , y

α
1 y

β
2 ) with α, β > 0,
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we get ĝ(y) = (0, yα1 y
β
2 ), hence (24) has global solutions provided β ≤ 1.

Here as well as in the first example the use of Theorem 3, say, is to provide
existence of solutions in cases when g is not locally Lipschitz, rather than to
obtain global existence.
In case of linear diffusion, more precisely if ϕk(r) = dkr with dk > 0 for
k = 1, 2, existence of global solutions of (20) with g as in the last example
above and u0 ∈ L∞(Ω)2 with u0 ≥ 0 was established in [18] for α = 1 and
arbitrary β ≥ 1 by different techniques; see also [15].
Additional difficulties occur e.g. in the case of so-called zero-order reactions,
for instance g from one of the examples above in the limit case α = 0, for
the reaction term is then discontinuous. In this situation it is appropriate to
replace g by a certain multivalued ”regularization” G. Corresponding RD-
systems of type (20) have been considered recently in [12], where existence
of local mild solutions was proven; see also Chapter 3.4 in [23] and [7].
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