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We establish the existence of three positive periodic solutions for a class of delay func-
tional differential equations depending on a parameter by the Leggett-Williams fixed
point theorem.

1. Introduction

In this paper, we will discuss the existence of positive periodic solutions for the first-order
functional differential equations

—a(t)y(t)+Ah@) f(y(t—7(1)), tER, (1.1)
xX'(t) = a(t)x(t) = Ah(t) f (x(t —1(1))), tER, (1.2)
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where a = a(t), h = h(t), and T = 7(¢) are continuous T-periodic functions, and f = f(u)
is a nonnegative continuous function. We assume that T is a fixed positive number and
that a = a(t) satisfies the condition fOT a(u)du > 0. The number A will be treated as a
parameter in both equations.

Functional differential equations with periodic delays appear in a number of ecolog-
ical models. In particular, our equations can be interpreted as the standard Malthusian
population model y" = —a(t)y subject to perturbations with periodic delays. One im-
portant question is whether these equations can support positive periodic solutions. The
existence of one or two positive periodic solutions for these functional differential equa-
tions has been studied, see for examples [1, 2, 3, 5, 6, 7, 8, 9]. In this paper, we will obtain
some existence criteria for three positive periodic solutions when the parameter A varies.

E = (E,|l - ||) in the sequel is a Banach space, and C C E is a cone. By a concave non-
negative continuous functional ¥ on C, we mean a continuous mapping y : C — [0,+c0)
with

y(px+(1—wy) =puy(x) + (1 -wy(y), xyeC pel0,1]. (1.3)
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898  Triple periodic solutions of FDE

Let &, a, B be positive constants, we will employ the following notations:

Ce={yeC:lyll <&},
Ce={yecC:lyl<¢, (1.4)
Cly,ap) =1y € Cg:y(y) = al.

Our existence criteria will be based on the Leggett-Williams fixed point theorem
(see [4]).

THEOREM 1.1. Let E = (E, || - ||) be a Banach space, C C E a cone of E and R > 0 a constant.
Suppose there exists a concave nonnegative continuous functional v on C with y(y) < ||yl
for y € Cr. Let A : Cg — Cg be a completely continuous operator. Assume there are numbers
r, L, and K with 0 < r < L < K < R such that

(H1) the set {y € C(y,L,K) : w(y) > L} is nonempty and y(Ay) > L for all y € C(y,
L,K);

(H2) [[Ayll < r for y € Cy;

(H3) w(Ay) > L forall y € C(y,L,R) with ||Ay|l > K.

Then A has at least three fixed points y1, y,, and y3 € Cr. Furthermore, y, € C,, y, € {y €
C(W)L)R) : W(}’) > L}) and )’3 S CR\(C(W>L)R) U Cr)
2. Existence of triple solutions for (1.1)

A continuously differentiable and T-periodic function y : R — R is called a T-periodic
solution of (1.1) associated with w if it satisfies (1.1) when A = w in (1.1).
It is not difficult to check that any T-periodic continuous function y(t) that satisfies

t+T

y(t)=A G(t,)h(s)f (y(s—1(s)))ds, teR, (2.1)

where

exp ([, a(u)du)
exp ( fo wydu) — 1

G(t,s) = t,s € R, (2.2)

is also a T-periodic solution of (1.1) associated with A. Note further that

0<N = min G(ts)<G(ts)< max G(t,s) =M, t<s<t+T;
t,s€[0,T t,s€[0,T]
I > G(t,s) _ Mingsefo,n Gts) _ (2.3)

N
> — >0.
maxefo,r] G(£,5)  maxg.epo,r) G(t,s) M
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For the sake of convenience, we set

t+T

Ag = max G(t,s)h(s)ds,
te[0,T] J¢
t+T (2‘4)
By = min G(t,s)h(s)ds.
te(0,T] J¢

We use Theorem 1.1 to establish the existence of three positive periodic solutions to
(2.1). To this end, one or several of the following conditions will be needed:

(S1
(82
(S3
(54

f:[0,4+00) — [0,+00) is a continuous and nondecreasing function,
h(t) >0 fort € R,

lim,_o f(x)/x =1,

limy—yo f(x)/x = 1,.

~— — ~— ~—

Let E be the set of all real T-periodic continuous functions endowed with the usual
operations and the norm || || = max;c[o,r7|y(#)]. Then E is a Banach space with cone

C={y€E:y(t)=0,t€ (—o00,+0)}. (2.5)

THEOREM 2.1. Suppose (S1)—(S4) hold such that I, = I, = 0. Suppose further that there is a
number L > 0 such that f(L) > 0. Let R, K, L, and r be four numbers such that

RzK>%zL>r>O, (2.6)
f(r)  f(R) Bof(L)
. < R < AL (2.7)

Then for each A € (L/(By f(L)),R/(Ao f(R))], there exist three nonnegative periodic solu-
tions y1, ¥2, and ys3 of (1.1) associated with A such that y,(t) <r < y,(t) <L < y3(t) <R for
teR.

Proof. First of all, in view of (S2), Ao, By > 0. Note further that if f(L) >0, then by (S1),
f(R) >0 for any R greater than L. In view of (S4), we may choose R = K > L such that the
second inequality in (2.7) holds, and in view of (S3), we may choose r € (0,L) such that
the first inequality in (2.7) holds. We set A; = L/(B, f(L)) and A, = R/(Ao f(R)). Then
A1,A2 > 0. Furthermore, A; < A, in view of (2.7). We now define for each 1 € (11,A;] a
continuous mapping A : C — C by

t+T

(Ay)(t) =21 G(t,s)h(s) f (y(s—1(s)))ds, teR (2.8)
t
and a functional v : C — [0, ) by

y(y) = min y(t). (2.9)

te[0,T]
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In view of (S1), (S2), and (2.7), we have

t+T

(Ay)(t) =L t G(t,5)h(s)f (y(s—1(s)))ds

t+T

<Af(llyl) L G(t,5)h(s)ds 10

t+T

<Af(R) L G(t,9)h(s)ds

<AAof(R) < L Aof(R) =

for t € [0,T] and all y € Cg. Therefore, A(Cr) C Cr. We assert that A is completely con-
tinuous on Cg. Indeed, in view of the theorem of Arzela-Ascoli, it suffices to show that
A(Cy) is equicontinuous. To see this, note that for t; < t,,

t+T

LmT Gty 5)h(s) f (s — T(s)))dS—Jt G(t1,s)h(s)f (y(s—7(s)))ds

1

tH+T
= J; - G(tz,S)h(S)f(y(S_ T(S)))ds

- (2.11)
+j [G(t2,5) — G(11,8) }h(s) £ (y (s — 7(s)) ) dis

t
5]

— | G(t,,s)h(s)f(y(s—1(s)))ds.

3l

Furthermore,

[ te 1yt~ )

t
Hh+T
< {f(nyn) Jt G(t,s)h(s)ds} -t
<Aof(llyll) |-t ],

tH+T
L GRS (y(s=7(5))ds

t+2T
<{rion [ Gsmds) -t (.12)
<Aof(llyll) |-t ],

[ 1609 ~ G090 £ (s~ )

5]

t+T
< f(llyll) max h(x)L | G(t2,s) — G(t1,s) | ds

x€[0,T]

2T
< F(llyll) max h(x)L 1Gt2y5) — G(t1,5) | ds.

x€[0,T]
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In view of the uniform continuity of G in {(¢,s) | 0 < t,s < 2T}, for any € > 0, there is §
which satisfies

& €
"3 A0 f (R) 342 f (R)[ maxoy, s<ar G(t,5) ][ maxeeo,r) h(x) ] }’ (2.13)

O<8<min5LT

and for 0 < , — t; < 8, we have

&

|G(t1,S) - G(t,s) | < 6/\2Tf(R)maXOS‘STh(t)’

€ [0,2T]. (2.14)

Thus
[(Ay)(t1) — (Ay)(t2) |

t2+T t+T
~) L G(t,)h(s) f (y(s — 7(s)))ds - L G(t,)h(s) f (7 (s — 7(s)) ) ds

SAZ

[ Gt syms) (s~ )

1+T

n+T (215)
J {G(t2,s) — G(t1,8) }h(s) f (y(s—7(s)))ds

[53

: G(t1,8)h(s)f (y(s—1(s)))ds

13}

+A2

+)L2

&
< 2/\2A0f(R) | h—1H | +A2f( 2Ttgl(?)’1g]h( /12 Tf maXOStSTh(t) <é&

for any y(t) € Cg. This means that A(Cg) is equicontinuous.
We now assert that Theorem 1.1(H2) holds. Indeed,

t+T

A =1]  Gltsh V() f (y(s—1(5)))ds

t+T

<Af(liyll) t G(t,s)h(s)ds (2.16)

t+T

<Af(r) t G(t,s)h(s)ds < L Ao f(r)<r

for all y € C,, where the last inequality follows from (2.7).

In addition, we can show that the condition (H1) of Theorem 1.1 holds. Obviously,
v(y) is a concave continuous function on C with y(y) < [|y|l for y € Cr. We notice
that if u(t) = (1/2)(L+K) for t € (—o0,+), then u € {y € C(y,L,K) : w(y) > L} which
implies that {y € C(y,L,K) : y(y) > L} is nonempty. For y € C(y,L,K), we have y(y) =
mine(o,r) ¥(t) = Land ||yl < K. In view of (S1)—(54), we have

T
¥(Ay) =1 min G(t,)h(s)f (y(s—7(s)))ds = ABof (L) >MBo f(L) =L (2.17)

te[0,T] J¢t

forall y € C(y,L,K).
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Finally, we prove condition (H3) in Theorem 1.1. Let y € C(y,L,R) with [|[Ay| > K.
We notice that (2.8) implies

T
1Ay <AM | H(9)f (3(s = 7(5)) s (2.18)
Thus
T
y(Ay) =1 min G(t,s)h(s) f (y(s—7(s)))ds
te[0,T] J¢

T
2 AN | B (35— 7())ds (2.19)

0

N N

An application of Theorem 1.1 stated above now yields our proof. O

We remark that the assumptions of Theorem 2.1 are not vacuous as can be seen by
letting T = 3, a(t) = 1, h(t) = 1, and

xIn(1+x), 0<x<l1,
f(x)=1e*—e+In2, 1<x<6, (2.20)
Jx—-/6+e®—e+In2, x=6.

Then by taking r = 3/2, L = 5, K = 101, and R = 5.0135 x 10*!, we easily check that Ay =
1.0524, By = 5.239 X 1072 and all the conditions of Theorem 2.1 hold.

THEOREM 2.2. Suppose (S1)—(54) hold such that 0 < I, < L. Suppose there is a number L >0
such that f(L) >0and 0 <1, <1, < By f(L)/(AoL). Let R, K, L, and r be four numbers such
that

R2K>%2L>r>0, (2.21)
f; ) <h+e, (2.22)
f( <l +e, (2.23)

where € is a positive number such that

L+te< B(X; (LL). (2.24)

Then for each A € (L/(By f (L)), 1/(Aolk)), (1.1) has at least three nonnegative periodic solu-
tions yi, ¥2, and ys associated with A such that y,(t) <r < y2(t) <L < y3(t) <R fort € R.

Proof. First of all, Ay, By >0 by (S2). Note further that if f(L) >0, then by (S1), f(R) >0
for any R greater than L. Let A, = L/(By f (L)) and A, = 1/(A¢l,). Then 41,1, > 0. Further-
more, 0 < Ay <A, in view of the condition 0 < [; <, < By f(L)/(AoL). For positive ¢ that



Xi-lan Liu etal. 903

satisfies (2.24) and any A € (A1,1,), in view of (S4) (and the fact that A < 1/(A¢(L +¢))),
there is R > K > L such that (2.22) holds, and in view of (S3), there is r € (0,L) such that
(2.23) holds.

We now define for each A € (1;,1,) a continuous mapping A : C — C by (2.8) and a
functional y : C — [0,+00) by (2.9). As in the proof of Theorem 2.1, it is easy to see that
A is completely continuous on Cg and maps Cg into Cg. For all y € Cg, we have

t+T

Ay =1 G Sh(s)f (y(s—7(s)))ds

T
<Af(lyll) t G(t,s)h(s)ds

t+T

s/lf(R)t G(t,s)h(s)ds

(2.25)

< /lef(R) < AA()(ZZ + S)R <R

Furthermore, condition (H2) of Theorem 1.1 holds. Indeed, for y € C,, we have

t+T

(Ay)(t) =L t G(t,5)h(s)f (y(s—1(s)))ds

t+T

slf(nyn)t G(t,s)h(s)ds 26)

t+T

<Af(r) G(t,s)h(s)ds
<A f(r) <AMo(h+e)r<r.

Similarly, we can prove that the conditions (H1) and (H3) of Theorem 1.1 hold. An ap-
plication of Theorem 1.1 now yields our proof. O

THEOREM 2.3. Suppose (S1) and (S2) hold and f(0) > 0. Suppose there exist four numbers
L, R, K, and r such that (2.6) and (2.7) hold. Then for each A € (L/(Bo f (L)),R/(Ao f(R))]
(1.1) has at least three positive periodic solutions yy, y,, and y3 associated with A such that
0<yi(t) <r<y(t)<L<ys(t) <RforteR.

The proof is similar to Theorem 2.1 and is hence omitted.

3. Existence of triple solutions for (1.2)

Equation (1.2) can be regarded as a dual of (1.1). Therefore, dual existence theorems
can be found. Their proofs are obtained by arguments parallel to those for our previous
theorems. Therefore, only a short summary will be given. First, (1.2) is transformed into

t+T

x(t) = )t H(t,s)h(s) f (x(s — 7(s)))ds, (3.1)
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where

exp(— [Ja(uw)du) exp ([T a(u)du)

N

H(t,s) =

= = , t<s<t+T, .
1—exp(-— fOTa(u)du) exp ( fOTa(u)du) -1 Pesstt (3.2)

which satisfies

M’ = max H(t,s) > H(t,s) > min H(t,s)=N', t<s<t+T. (3.3)
t,s€[0,T] t,s€[0,T]
Let
T
A’ = max H(t,s)h(s)ds,
te[0,T] J¢t
t+T (3‘4)
B’ = min H(t,s)h(s)ds.
te(0,T] J¢

THEOREM 3.1. Suppose (S1)—(54) hold such that I, = I, = 0. Suppose further that there is a
number L > 0 such that f(L) >0. Let R, K, L, and r be four numbers such that

7

R2K>LM

7

f(r)y f(R) B f(L)
r SR AL

Then foreach A € (L/(B' f(L)),R/(A’ f (R))], there exist three nonnegative periodic solutions
X1, X2, and x3 of (1.2) associated with A such that x,(t) <r < x,(t) < L < x3(t) < Rforte R.

>L>r>0,
(3.5)

TaEOREM 3.2. Suppose (S1)—(S4) hold such that 0 < I, < L,. Suppose there is a number L >0
such that f(L) >0and 0< 1, <l, <B' f(L)/(A'L). Let R, K, L, and r be four numbers such
that

7

R2K>LM

7

>L>r>0,

% <h+e, (3.6)

f(r)

—= <l +g,
r

where € is a positive number such that
B'f(L)
AL

Then for each A € (L/(B' f(L)),1/(A’'Ly)), (1.2) has at least three nonnegative periodic solu-
tions x1, X2, and x3 associated with A such that x,(t) <r <x,(t) <L <x3(t) <R fort € R.

L+e< (3.7)

THEOREM 3.3. Suppose (S1) and (S2) hold and f(0) > 0. Suppose there exist four numbers
L, R, K, and r such that (3.5) hold. Then for each A € (L/(B' f(L)),R/(A’ f(R))], (1.2) has
at least three positive periodic solutions xi, x,, and xs associated with A such that 0 < x; (t) <
r<x(t)<L<x3(t) <R forteR.
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