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Several inverse spectral problems are solved by a method which is based on exact solu-
tions of the semi-infinite Toda lattice. In fact, starting with a well-known and appropriate
probability measure µ, the solution αn(t), bn(t) of the Toda lattice is exactly determined
and by taking t = 0, the solution αn(0), bn(0) of the inverse spectral problem is obtained.
The solutions of the Toda lattice which are found in this way are finite for every t > 0
and can also be obtained from the solutions of a simple differential equation. Many other
exact solutions obtained from this differential equation show that there exist initial con-
ditions αn(0) > 0 and bn(0)∈R such that the semi-infinite Toda lattice is not integrable
in the sense that the functions αn(t) and bn(t) are not finite for every t > 0.

1. Introduction

We write the semi-infinite Toda lattice as follows:

dαn(t)
dt

= αn(t)
(
bn+1(t)− bn(t)

)
, (1.1)

dbn(t)
dt

= 2
(
α2
n(t)−α2

n−1(t)
)
, t ≥ 0, n= 1,2, . . . (1.2)

and we ask for solutions which satisfy the initial conditions

αn(0)= αn, bn(0)= bn, (1.3)

where αn, bn are real sequences with αn > 0. In an attempt to compute the functions bn(t)
and αn(t) in some problems where the existence and uniqueness of a solution is proved,
we observed that many solutions of the initial value problem (1.1), (1.2), (1.3) satisfy the
relation

α̇1(t)
α1(t)

= δb1(t) + c, (1.4)
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where δ, c are real numbers with δ ≥ 0 and the dot means differentiability with respect to
t. Then it follows easily that

α2
n(t)=

(
n(n− 1)

2
δ +n

)
α2

1(t),

bn(t)= [(n− 1)δ + 1
]
b1(t) + (n− 1)c.

(1.5)

An example, where relation (1.4) holds and the functions α1(t) and b1(t) can be exactly
determined, has been published among others in [7]. Here, we present many exam-
ples starting from the well-known probability measures which determine uniquely the
sequences in (1.3). All these examples provide alternative solutions of important well-
known inverse spectral problems. (For details about the inverse spectral problem, see
Section 3.) In other words, the solution of many well-known and important inverse spec-
tral problems is obtained from one source, a class of exactly solvable Toda lattices.

The solutions of the Toda lattice which are found in this way are finite for every t > 0.
These global solutions can also be obtained from the solutions of the differential equation

b̈1(t)= 2
(
δb1(t) + c

)
ḃ1(t). (1.6)

Any solution of this equation satisfies (1.4). Given the initial conditions b1(0) and α1(0) >
0 of the Toda lattice, we find the solution b1(t) of (1.6) which satisfies these conditions.
We have the possibility to choose δ and c according to the form of the solution we want
to construct. Moreover, from (1.6), we can find solutions of the Toda lattice with poles.
Thus, many solutions of (1.6) show that there exist initial conditions αn(0) and bn(0)
such that the Toda lattice is not global integrable in the sense that the functions αn(t)
and bn(t) are not finite for every t > 0 (see Example 2.1 and Remark 4.10). In Section 2,
we give the proofs of (1.5) and (1.6) and we obtain from (1.5) and (1.6) several forms of
exact solutions of the Toda lattice. In Section 3, we define the inverse spectral problem
and present preliminary results which we need. For many measures whose support is
not bounded from above, the standard method of determining the function b1(t), and
consequently α1(t), b2(t), and so on, fails. With respect to the inverse spectral problem,
we avoid this difficulty by using Theorem 3.2 (see also Remark 3.3). In Section 4, we give
five examples of inverse spectral problems which can be solved by the method which
is based on the determination of exact solutions of the Toda lattice. Note that all the
exact solutions obtained in Section 2, by solving (1.6), and in Section 4, by solving several
inverse spectral problems, are solutions with unbounded initial conditions.

2. Solutions of b̈1(t)= 2(δb1(t) + c)ḃ1(t)

First, we give the proofs of relations (1.5) and (1.6).
From (1.1) (for n= 1) and (1.4), we have

α̇1(t)
α1(t)

= δb1(t) + c = b2(t)− b1(t) (2.1)

or

b2(t)= (δ + 1)b1(t) + c. (2.2)
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From (2.2) and (1.2), we find

ḃ2(t)= (δ + 1)ḃ1(t)= 2
(
α2

2(t)−α2
1(t)

)
. (2.3)

Since, from (1.2), we have

ḃ1(t)= 2α2
1(t), (2.4)

we obtain

α2
2(t)= (δ + 2)α2

1(t). (2.5)

Continuing in this way, we find b3(t)= (2δ + 1)b1(t) + 2c and α2
3(t)= (3δ + 3)α2

1(t). For-
mulas (1.5) are obtained by induction. From (2.4), we obtain

b̈1(t)= 4α1(t)α̇1(t). (2.6)

Thus from (2.4), (2.6), and (1.4), we obtain (1.6).
Equation (1.6) can be easily integrated. We present below several forms of the obtained

solutions. The forms of the solutions depend on the initial conditions α1(0) and b1(0) and
the values of δ and c.

Case 1 (δ = 0, c = 0). In this case, the solution of (1.6) is b1(t) = 2α2
1(0)t + b1(0). From

this and (2.4), we find α1(t)= α1(0) and from (1.5), we obtain

αn(t)=√nα1(0), bn(t)= b1(t)= 2α2
1(0)t+ b1(0), n= 1,2, . . . . (2.7)

The solution in this case is finite for every t > 0 (global solution).

Case 2 (δ = 0, c �= 0). In this case, the solution of (1.6) is

b1(t)= α2
1(0)
c

(
e2ct − 1

)
+ b1(0) (2.8)

and the solution αn(t), bn(t) of the system (1.1), (1.2) is

αn(t)=√nα1(0)ect,

bn(t)= α2
1(0)
c

(
e2ct − 1

)
+ b1(0) + (n− 1)c.

(2.9)

Case 3 (δ > 0, c = 0). The solution of (1.6) depends on the value

A0 = 2α2
1(0)− δb2

1(0). (2.10)

If A0 = 0, the global solution of (1.6) has the form

b1(t)= b1(0)
1− δb1(0)t

, b1(0) < 0 (2.11)
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and the solution αn(t), bn(t) of the system (1.1), (1.2) is given by

αn(t)=
√
n(nδ− δ + 2)

−√δb1(0)
2
(
1− δb1(0)t

) ,

bn(t)= n
δb1(0)

1− δb1(0)t
+

(1− δ)b1(0)
1− δb1(0)t

.

(2.12)

If A0 > 0, the solution of (1.6) is

b1(t)=
√

A0

δ
tan

(√
δA0t+Γ1

)
, (2.13)

αn(t)=
√
n(nδ− δ + 2)A0

1

2cos
(√

δA0t+Γ1
) ,

bn(t)=
(
n+

1
δ
− 1

)√
A0δ tan

(√
A0δt+Γ1

)
,

(2.14)

where Γ1 = arctan(
√
δ/A0b1(0)). In order to have a global solution of the form (2.14), the

condition cos(
√
A0δt+Γ1) �= 0, for all t > 0, should hold.

If A0 < 0, the solution of (1.6) is given by

b1(t)= Γ2
(−√−A0δ

)
e−2t

√
−A0δ −√−A0δ

δ
(

1−Γ2e−2t
√
−A0δ

) (2.15)

and the functions αn(t) and bn(t) have the form

αn(t)=
√
n(nδ− δ + 2)Γ2

(−A0
) e−t

√
−A0δ

1−Γ2e−2t
√
−A0δ

,

bn(t)= [(n− 1)δ + 1
]Γ2

(−√−A0δ
)
e−2t

√
−A0δ −√−A0δ

δ
(

1−Γ2e−2t
√
−A0δ

) ,

(2.16)

where Γ2 = (δb1(0) +
√−A0δ)/(δb1(0)−√−A0δ). We have a global solution if and only if

1− δb1(0) +
√−A0δ

δb1(0)−√−A0δ
e−2t

√
−A0δ �= 0, t ≥ 0. (2.17)

Case 4 (δ > 0, c �= 0). In this case, the solution of (1.6) and consequently the form of the
solution of the system (1.1), (1.2) depends on the value

A= (2α2
1(0)− δb2

1(0)− 2cb1(0)
)
δ− c2. (2.18)
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If A= 0, the solution of (1.6) and the functions αn(t) and bn(t) have the form

b1(t)= 2cB1e2ct

δ
(
1−B1e2ct

) , (2.19)

αn(t)=
√

n(nδ− δ + 2)B1

δ

cect

1−B1e2ct
,

bn(t)= nc
1 +B1e2ct

1−B1e2ct
+
cB1e2ct(2− δ)− cδ

δ
(
1−B1e2ct

) ,

(2.20)

where B1 = δb1(0)/(δb1(0) + 2c). In order to construct a global solution of the form
(2.20), we must choose δ, c, b1(0), and α1(0) such that δb1(0) + 2c �= 0, A = (2α2

1(0)−
δb2

1(0)− 2cb1(0))δ− c2 = 0, and 1−B1e2ct �= 0, for every t > 0.
If A > 0, we have

b1(t)=
√
A

δ
tan

(√
At+B2

)− c

δ
, (2.21)

αn(t)=
√

n(nδ− δ + 2)A
δ

1
2cos

(√
At+B2

) ,

bn(t)=
(
n+

1
δ
− 1

)√
A tan

(√
At+B2

)− c

δ
,

(2.22)

where B2 = arctan((δb1(0) + c)/
√
A). In order to have a global solution of the form (2.22),

the condition cos(
√
At+B2) �= 0, for all t > 0, should hold. Finally, for A < 0, the solutions

are exponential with

b1(t)= B3
(
c−√−A)e−2t

√−A−√−A− c

δ
(
1−B3e−2t

√−A) , (2.23)

αn(t)=
√

n(nδ− δ + 2)B3(−A)
δ

e−t
√−A

1−B3e−2t
√−A ,

bn(t)= [(n− 1)δ + 1
]
b1(t) + (n− 1)c,

(2.24)

where B3 = (δb1(0) + c+
√−A)/(δb1(0) + c−√−A) and b1(t) is given by (2.23). In order

to have a solution without poles, the condition

1− δb1(0) + c+
√−A

δb1(0) + c−√−Ae−2t
√−A �= 0, t ≥ 0, (2.25)

must be satisfied.

Example 2.1. Taking δ = 2, c = 1− λ, b1(0) = 1, and α1(0) = √λ, 0 < λ < 1, we find A =
−(λ− 9)(λ− 1) < 0 for 0 < λ < 1, B3 = (3− λ+

√−A)/(3− λ−√−A) > 1. This means that
condition (2.25) is not satisfied for every t > 0. We conclude that the Toda lattice, with
initial conditions b1(0)= 1, α1(0)=√λ, and bn(0), αn(0) given by (1.5) for t = 0, δ = 2,
and c = 1− λ, is not integrable in the sense that the functions αn(t) and bn(t) are not
finite for every t > 0.
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Example 2.2. Taking δ = 2, c = 1− λ, b1(0)=−1, α1(0)=√λ, 0 < λ < 1, αn(0)= n
√
λ, and

bn(0) = −(1 + λ)n+ λ, we have A = −(1− λ)2, B3 = λ. Then condition (2.25) is satisfied
and b1(t) is given by

b1(t)=− 1− λ

1− λe−2(1−λ)t
. (2.26)

This example is a particular case of Example 4.5. In fact, (2.26) is the same with (4.11) for
β = 0 and κ= 1− λ > 0.

3. The inverse spectral problem

It is well known that any probability measure µ on the real line with finite moments and
infinite support determines uniquely a pair of real sequences αn, bn with αn > 0 and a
class of orthonormal polynomials Pn(x) (

∫∞
−∞Pn(x)Pm(x)dµ(x)= δnm), which satisfy the

relation

αnPn+1(x) +αn−1Pn−1(x) + bnPn(x)= xPn(x),

P0(x)= 0, P1(x)= 1.
(3.1)

Conversely, for any pair of real sequences αn, bn with αn > 0, there exists at least one
probability measure µ such that the polynomials (3.1) are orthonormal. The measure µ is
unique if and only if the tridiagonal operator L(0), defined on finite linear combination
of an orthonormal basis en, n= 1,2, . . . , of a Hilbert space H :

L(0)en = αnen+1 +αn−1en−1 + bnen,

L(0)e1 = α1e2 + b1e1,
(3.2)

is (essentially) selfadjoint (see [1, 8, 11] for these subjects and their relationships). If L(0)
is selfadjoint, then there exists a one parameter family Et, −∞ < t <∞, of orthogonal
projections on H such that for every x, ‖x‖ = 1, the function F(t)= (Etx,x), where (·,·)
means scalar product, is a distribution function, that is, a nondecreasing function which
is continuous on the right and satisfies F(−∞) = 0, F(∞) = 1. In particular, for x = e1,
the distribution function

F(t)= (Ete1,e1
)

(3.3)

is the distribution function which corresponds to the unique probability measure µ, that
is, µ and F are connected by (see Theorem 3.1)

µ
(
(−∞, t]

)= F(t). (3.4)

The direct problem of orthogonal polynomials is the following.
Given the real sequences αn > 0 and bn, find the measure of orthogonality of the poly-

nomials which are defined by (3.1). This problem has a long history. Only the problem of
finding conditions on αn and bn, such that the above problem has a unique solution (note
that at least one solution always exists), is connected with many important problems in
analysis, for instance, the moment problem, the problem of selfadjoint extensions of an
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unbounded symmetric operator, and others [1, 8, 11] (see also [5]). Note that the mea-
sure of orthogonality is a probability measure on the real line with finite moments and
support consisting of infinitely many points.

The inverse problem of orthogonal polynomials is the following.
Given a probability measure µ on the real line with finite moments and infinite sup-

port, find the coefficients αn and bn which define the polynomials Pn in (3.1). Sometimes
we say the inverse problem of the operator L(0) or the inverse problem of µ instead of the
inverse problem of the polynomials (3.1).

There exists a standard procedure, which determines uniquely the sequences αn and bn
but this procedure involves many and arduous calculations, and exact solutions are very
difficult to be found. In fact, multiplication by Pn(x) in (3.1) and integration gives

bn =
∫∞
−∞

xP2
n(x)dµ(x). (3.5)

First, we find from (3.5) that b1 =
∫∞
−∞ xdµ(x). Consequently, taking n = 1 in (3.1) and

multiplying the relation α1P2(x) + b1 = x by P2(x), we obtain α2
1 =

∫∞
−∞ x2dµ(x)− b2

1. After
this, knowing the polynomial P2(x), we determine b2 from (3.5). Then we find α2, the
polynomial P3(x), and so on. The inverse problem of a selfadjoint operator is the problem
of finding the operator when some of its properties are given, for instance, its spectrum. It
is well known that the spectrum is not always enough for the solution of this problem. In
the present case, the spectrum of L(0) is not enough to determine uniquely the sequences
αn, bn. However, the knowledge of the distribution function (Ete1,e1) is enough, because
of the following well-known theorem, which we prove for completeness.

Theorem 3.1. Let L(0), defined by (3.2), be selfadjoint and let Et,−∞ < t <∞ be its spectral
family. Then the measure which corresponds to the distribution function (Ete1,e1) is the
unique measure of orthogonality of the polynomials Pn defined by (3.1).

Proof. Let L(0)= T . Then T can be written as

T =
∫∞
−∞

t dEt, (3.6)

in the sense that

(Tx, y)=
∫∞
−∞

t d
(
Etx, y

)
(3.7)

for every x, y in the definition domain of T . Then the operator Pm(T)Pn(T) can be writ-
ten as follows:

Pm(T)Pn(T)=
∫∞
−∞

Pm(t)Pn(t)dEt,

(
Pm(T)Pn(T)e1,e1

)=
∫∞
−∞

Pm(t)Pn(t)d
(
Ete1,e1

)
.

(3.8)

The operator Pn(T) acting on the element e1 produces the vector en, that is,

Pn(T)e1 = en, n= 1,2, . . . . (3.9)
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Relation (3.9) is obvious for n = 1 and for n ≥ 2 it follows from (3.2) and the relation
αnPn+1(T) +αn−1Pn−1(T) + bnPn(T)= TPn(T), by induction. Thus,

∫∞
−∞

Pm(t)Pn(t)d
(
Ete1,e1

)= (Pm(T)Pn(T)e1,e1
)

= (Pn(T)e1,Pm(T)e1
)

= (en,em
)= δn,m.

(3.10)

�

The measure which corresponds to the distribution function (3.3) is called spectral
measure of the tridiagonal operator L(0).

Another theorem that we will need is the following one.

Theorem 3.2. Assume that the operator

L(0) : L(0)en = αnen+1 +αn−1en−1 + bnen, n= 1,2, . . . , (3.11)

is essentially selfadjoint with spectral measure µ. Then the operator

L1(0) : L1(0)en = αnen+1 +αn−1en−1− bnen (3.12)

is also essentially selfadjoint with spectral measure µτ−1, where τ(x)=−x.

Proof. By Theorem 3.1 and by the equivalence of the properties “essential selfadjointness”
of L(0) and “uniqueness of the measure of orthogonality” of the corresponding polyno-
mials, it is enough to prove that µτ−1 is a measure of orthogonality of the polynomials

αnRn+1(x) +αn−1Rn−1(x)− bnRn(x)= xRn(x),

R0(x)= 0, R1(x)= 1,
(3.13)

provided that µ is a measure of orthogonality of the polynomials (3.1). It is easy to see
that the polynomials Rn(x) and Pn(x) are related by

Rn(x)= (−1)nPn(−x). (3.14)

Assume that
∫∞
−∞

Pn(x)Pm(x)dµ= δn,m. (3.15)

Then by a well-known property in measure theory, we have

∫∞
−∞

Rn(x)Rm(x)dµτ−1 =
∫∞
−∞

Rn
(
τ(x)

)
Rm
(
τ(x)

)
dµ

=
∫∞
−∞

Rn(−x)Rm(−x)dµ

= (−1)n+m
∫∞
−∞

Pn(x)Pm(x)dµ= δn,m.

(3.16)

�
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Given the initial conditions αn and bn of the Toda lattice, we assume that the operator
L(0) is (essentially) selfadjoint which means that the measure µ of orthogonality of the
polynomials (3.1) is unique.

The method of the inverse spectral problem works as follows: system (1.1), (1.2) is
equivalent to the equation

dL(t)
dt

=M(t)L(t)−L(t)M(t), (3.17)

where L(t) and M(t) are the tridiagonal operators

L(t)en = αn(t)en+1 +αn−1(t)en−1 + bn(t)en,

M(t)en = αn(t)en+1−αn−1(t)en−1.
(3.18)

Under suitable assumptions on αn, bn, one finds the spectral measure µ(t) of the operator
L(t) [7]. Note that the spectral measure µ can be found by solving the direct problem of
the operator L(0). For the Toda lattice, as it is written in (1.1), (1.2), µ(t) has the form

dµ(t)(x)= e2xtdµ(x)∫∞
−∞ e2xtdµ(x)

, t ≥ 0. (3.19)

The solution of the Toda lattice is obtained by solving the inverse problem of L(t). In fact,
starting from the spectrum measure µ(t), we consider the linearly independent elements
1,x,x2, . . . of the space L2(µ(t)), the orthogonalization of which by the use of the Gram-
Schmidt method gives the orthogonal polynomials Pn(t,x) which satisfy

αn(t)Pn+1(t,x) +αn−1(t)Pn−1(t,x) + bn(t)Pn(t,x)= xPn(t,x),

P0(t,x)= 0, P1(t,x)= 1,
(3.20)

with αn(t) > 0 and bn(t) real. By a well-known procedure, the sequences αn(t), bn(t) can
be found from the above recurrence relation. Moreover, they satisfy system (1.1), (1.2).
In our case, it is enough to determine exactly the function b1(t), which is given by

b1(t)=
∫∞
−∞ xe2xtdµ(x)∫∞
−∞ e2xtdµ(x)

, t ≥ 0. (3.21)

What we need for the solution of the Toda lattice is the spectral measure µ of L(0). If the
spectrum of L(0) is discrete with eigenvalues λn and normalized eigenvectors xn, then

µ
({
λn
})= ∣∣(e1,xn

)∣∣2 = σ2
n (3.22)

and b1(t) is given by

b1(t)=
∑∞

n=1 λne
2λntσ2

n∑∞
n=1 e2λntσ2

n
. (3.23)
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In Section 4, we begin with a probability measure µ without knowing the initial condi-
tions αn(0), bn(0). Then we determine the element b1(t) from (3.21) or (3.23) and exam-
ine the validity of the relation (1.4). After this, the solution of the Toda lattice is given by
(1.5). The solution of the inverse problem of µ is given by

α2
n(0)=

(
n(n− 1)

2
δ +n

)
α2

1(0),

bn(0)= [(n− 1)δ + 1
]
b1(0) + (n− 1)c.

(3.24)

Remark 3.3. The usefulness of Theorem 3.2 is that if the support of the measure µ lies
in the interval [α,∞), α ∈ R, and if it is not a bounded set, then the integrals in (3.21)
may not be finite. In this case, we find the solution αn(0), bn(0) of the inverse spectral
problem of the measure µτ−1, τ(x) = −x, whose support is bounded from above. Then
the solution of the inverse spectral problem of µ, due to Theorem 3.2, is αn(0), −bn(0),
n= 1,2, . . . .

4. Examples

In all the following examples, we begin with a probability measure µ on the real line with
finite moments µn =

∫∞
−∞ xndµ(x), µ0 = 1, and infinite support.

Example 4.1. Consider the probability measure µ whose distribution function is given by

F(x)= 1
Γ(α+ 1)

∫ x

0
ξαe−ξdξ, α >−1, (4.1)

where Γ is the gamma function. The moments

µk = 1
Γ(α+ 1)

∫∞
0
xkxαe−xdx = Γ(α+ k+ 1)

Γ(α+ 1)
, k = 0,1,2, . . . , (4.2)

are finite. Moreover, we can see that there exists a positive number r such that the series

∞∑
m=1

µmrm

m!
(4.3)

converges and by a well-known criterion (see, e.g., [2, Theorem 30.1]), the moment prob-
lem is determined or equivalently the operator L(0) is selfadjoint (see [1]).

Since the integrals of (3.21) do not exist for this measure, we consider the measure
µτ−1, τ(x)=−x instead of µ. We find from (3.21)

b1(t)=− α+ 1
2t+ 1

, α1(t)=
√
α+ 1

2t+ 1
,

α̇1(t)
α1(t)

= 2
α+ 1

b1(t)
(
δ = 2

α+ 1
, c = 0

)
.

(4.4)
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Thus, from (1.5), we obtain

αn(t)=
√
n(n+α)
2t+ 1

,

bn(t)=−2n+α− 1
2t+ 1

, t ≥ 0, n= 1,2, . . . .
(4.5)

Conclusion 4.2. The solution of the Toda lattice with initial conditions

αn(0)=
√
n(n+α),

bn(0)=−(2n+α− 1)
(4.6)

is given by (4.5). The solution of the inverse problem of µτ−1 is given by (4.6). Due to
Theorem 3.2, the solution of the inverse problem of the measure µ is

αn(0)=
√
n(n+α),

bn(0)= (2n+α− 1).
(4.7)

Remark 4.3. The solution of the inverse problem that we studied in this example is well
known in the theory of Laguerre polynomials defined by

√
n(n+α)Pn+1(x) +

√
(n− 1)(n− 1 +α)Pn−1(x) + (2n+α− 1)Pn(x)= xPn(x),

P0(x)= 0, P1(x)= 1.
(4.8)

In fact, it is well known that the measure of orthogonality of Pn(x) is unique and its
distribution function is given by (4.1) (see [3]).

Remark 4.4. In the following examples, we have a difficulty to establish the convergence of
the series (4.3). We avoid this difficulty as follows: suppose that we start with a measure of
the form (3.19) and we have found exactly a solution of the Toda lattice αn(t), bn(t) for t ≥
0. This means that we have found exactly the coefficients of the polynomials Pn(t,x) which
are orthonormal with respect to the measure µ(t). In all the examples that we will give, we
can see from the coefficients αn(t), bn(t) that µ(t) is the unique measure of orthogonality
for every t ≥ 0. In fact, the well-known criterion of Carleman [1] can easily be applied.
For t = 0, we find the coefficients of the polynomials whose measure of orthogonality is
the measure µ. In this way, we solve both the inverse and the direct spectral problem of µ.

Example 4.5. Consider the discrete probability measure

µ
({−κn+β})= (1− λ)λn−1, 0 < λ < 1, n= 1,2, . . . , κ > 0. (4.9)
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Obviously, its support is infinite consisting of the points−κ+β,−2κ+β,−3κ+β, . . ., and
the moments µk = (1− λ)

∑∞
n=1(−κn+β)kλn−1, k = 0,1,2, . . . , are finite. We have

∫∞
−∞

e2xtdµ(x)= (1− λ)
∞∑
n=1

e−2κnt+2βtλn−1

= (1− λ)e2βt

λ

∞∑
n=1

(
λ

e2κt

)n
= (1− λ)e2βt

e2κt − λ
,

∫∞
−∞

xe2xtdµ(x)=
∞∑
n=1

(−κn+β)e−2κnte2βt(1− λ)λn−1

= β(1− λ)e2βt

e2κt − λ
− κ(1− λ)e2βt

e2κt(1−µ)2
, µ= λ

e2κt
.

(4.10)

Thus, from (3.21), we obtain

b1(t)= β− κ

1− λe−2κt
. (4.11)

From (1.2), we find

ḃ1(t)
2

= α2
1(t)= λκ2e−2κt(

1− λe−2κt
)2 , α1(t)= κ

√
λe−κt

1− λe−2κt
(4.12)

and after some manipulation, we obtain

α̇1(t)
α1(t)

= 2b1(t) + κ− 2β. (4.13)

Now, from (1.5), we find the solution of the Toda lattice which is

αn(t)= nκ
√
λe−κt

1− λe−2κt
,

bn(t)= (2n− 1)
(
β− κ

1− λe−2κt

)
+ κ(n− 1)− 2β(n− 1).

(4.14)

The inverse problem of L(0) can be solved by setting t = 0 in (4.14), that is,

αn(0)= nκ
√
λ

1− λ
,

bn(0)=− (1 + λ)κn
1− λ

+β+
κ

1− λ
− κ.

(4.15)

Due to Theorem 3.2, the solution of the inverse problem of the measure

µ
({κn−β})= (1− λ)λn−1, 0 < λ < 1, n= 1,2, . . . , κ > 0 (4.16)

is

αn(0)= nκ
√
λ

1− λ
, bn(0)= (1 + λ)κn

1− λ
−β− κ

1− λ
+ κ. (4.17)
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Remark 4.6. For β = 0, κ = 1, the inverse problem of the measure in (4.16) has been
solved in [4] by a different method. Also for β = 0, κ= 1− λ, the inverse problem of the
measure in (4.16) can be solved by using a result of Stieltjes in [9, 10]. In fact, Stieltjes
considered the continued fraction

F(z,λ)= 1

z+
1

1 +
λ

z+
2

1 +
2λ

z+
3

1 +
3λ

z+...

(4.18)

This fraction, by the identity

z+ c1− c1c2

c2 + k1
= z+

c1

1 + c2/k1
, (4.19)

where α2
n = c2n−1c2n and bn = c2n−2c2n−1, b1 = c1, can be transformed into the fraction

F(z,λ)= 1

z+ b1− α2
1

z+ b2− α2
2

z+ b3−...

=
∫∞
−∞

dµ(x)
z+ x

(4.20)

Stieltjes gives in [9, 10] what we call nowadays the Stieltjes transform of the measure
(4.16):

∫∞
−∞

dµ(x)
z+ x

=
∞∑
n=1

(1− λ)λn−1

z+n(1− λ)
. (4.21)

From the analytic theory of continued fractions [6], it follows that the coefficients αn,
bn of the orthogonal polynomials corresponding to µ are given by αn =

√
λn and bn =

n(1 + λ)− λ.
In fact, it is well known that if the tridiagonal operator L(0) is selfadjoint with spectral

measure µ, then the Stieltjes transform of µ is given by

∫∞
−∞

dµ(x)
z+ x

= 1

z+ b1− α2
1

z+ b2− α2
2

z+ b3−...

(4.22)
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In case the measure is discrete with mass points λ1,λ2, . . . , the Stieltjes transform is given
by

∫∞
−∞

dµ(x)
z+ x

=
∞∑
k=1

µ
({
λk
})

z+ λk
. (4.23)

Conversely, from the solution of the inverse problem, the Stieltjes transform of the mea-
sure (4.16) follows. This transform was presented by Stieltjes without proof in [9, 10] (see
also [12, page 367]).

Example 4.5 is a particular case of the following example.

Example 4.7. Consider the probability measure

µ
({β− κn})= (α)n−1(1− λ)αλn−1

(n− 1)!
, α > 0, 0 < λ < 1, n= 1,2, . . . , (4.24)

where (α)n−1 = α(α+ 1)···(α+ n− 2). The support of this measure is infinite and the
moments

µκ =
∞∑
n=1

(−κn+β)κα(α+ 1)···(α+n− 2)(1− λ)αλn−1

(n− 1)!
(4.25)

are finite.
From (4.24), we obtain

∫∞
−∞

e2xtdµ=
∞∑
n=1

e2t(−κn+β)(α)n−1λn−1(1− λ)α

(n− 1)!
= (1− λ)αe2βt−2κt(

1− λe−2κt
)α ,

∫∞
−∞

xe2xtdµ= (1− λ)αe2βt−2κt

[
(κλ− καλ−βλ)e−2κt +β− κ

]
(
1− λe−2κt

)α+1 .

(4.26)

Thus,

b1(t)= β+
λκe−2κt(1−α)− κ

1− λe−2κt
,

ḃ1(t)= 2λκ2αe−2κt(
1− λe−2κt

)2 = 2α2
1(t),

α1(t)= κ
√
λαe−κt

1− λe−2κt
,

α̇1(t)
α1(t)

= 2
α
b1(t) +

2κ
α
− 2β

α
− κ.

(4.27)
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From this relation, we see that in this case we have δ = 2/α and c = 2κ/α− 2β/α− κ. Then
from (1.5), it follows that

αn(t)= κ
√
n(n+α− 1)λe−κt

1− λe−2κt
,

bn(t)=
(−κ(1 + λe−2κt

)
1− λe−2κt

)
n+

(
1− 2

a

)
b1(t)− 2κ

α
+

2β
α

+ κ.
(4.28)

The solution of the inverse problem is given by

αn(0)= κ
√
n(n+α− 1)λ

1− λ
,

bn(0)= −κ(1 + λ)n+ λκ(2−α) +β(1− λ)
1− λ

.

(4.29)

We note that this inverse spectral problem is well known in the theory of the measure of
orthogonality of the Meixner polynomials (see [3, page 175]), which we find here by an
alternative method.

Using Theorem 3.2, we can derive the solution of the inverse problem of the measure
(4.24). This solution is given by

αn(0)= κ
√
n(n+α− 1)λ

1− λ
,

bn(0)= κ(1 + λ)n− λκ(2−α)−β(1− λ)
1− λ

.

(4.30)

Example 4.8. Consider the probability measure

µ
({β− γn})= e−ααn−1

(n− 1)!
, α > 0, γ > 0, n= 1,2, . . . . (4.31)

From (4.31), we obtain
∫∞
−∞

e2xtdµ= e−α+2βt−2γt+αe−2γt
,∫∞

−∞
xe2xtdµ= e−α+2βt−2γt+αe−2γt(

β− γ−αγe−2γt).
(4.32)

Thus,

b1(t)= β− γ−αγe−2γt. (4.33)

From (4.33),

ḃ1(t)= 2αγ2e−2γt = 2α2
1(t), (4.34)

and from (1.2), we find

α̇1(t)
α1(t)

=−γ. (4.35)
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From (4.35), we see that in this case we have δ = 0 and c =−γ. Then from (1.5), it follows
that

αn(t)= γ
√
nαe−γt, bn(t)= β− γ−αγe−2γt − (n− 1)γ. (4.36)

The solution of the inverse problem is

αn(0)= γ
√
nα, bn(0)= β−αγ−nγ (4.37)

for β = 1/γ, α = 1/γ2. Thus, we have obtained the example studied in [7]. Here we note
that we obtain an alternative derivation of the measure of orthogonality of the Charlier
polynomials (see appendix in [7]).

In this example, we solved the inverse problem of the measure (4.31). Due to Theorem
3.2, we can see that the solution of the inverse problem of the measure

µ
({γn−β})= e−ααn−1

(n− 1)!
, α > 0, γ > 0, n= 1,2, . . . , (4.38)

is

αn(0)= γ
√
nα, bn(0)=−β+αγ+nγ. (4.39)

Example 4.9. Consider the probability measure µ whose distribution function is given by

F(x)= 1
σ
√

2π

∫ x

−∞
e−(ξ−m)2/2σ2

dξ, m,σ > 0. (4.40)

The moments µk = (1/σ
√

2π)
∫∞
−∞ xke−(x−m)2/2σ2

dx are finite.
We calculate the integrals

∫∞
−∞

e2xtdµ= 1
σ
√

2π

∫∞
−∞

e2xt−(x−m)2/2σ2
dx = e2t(m+σ2t),∫∞

−∞
xe2xtdµ= 1

σ
√

2π

∫∞
−∞

xe2xt−(x−m)2/2σ2
dx = (m+ 2σ2t

)
e2t(m+σ2t).

(4.41)

Thus relation (3.21) gives

b1(t)=m+ 2σ2t (4.42)

and so

α̇1(t)
α1(t)

= 0 (δ = c = 0). (4.43)

Then from (1.5), we obtain

αn(t)= σ
√
n, bn(t)= b1(t)=m+ 2σ2t, n= 1,2, . . . . (4.44)

As a consequence, the solution of the inverse problem of µ is

αn(0)= σ
√
n, bn(0)=m, n= 1,2, . . . . (4.45)
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Due to Theorem 3.2, the solution of the inverse problem of the measure µτ−1 is

αn(0)= σ
√
n, bn(0)=−m, n= 1,2, . . . . (4.46)

Remark 4.10. In [7], we proved that the Toda lattice has a unique solution αn(t), bn(t)
provided that the tridiagonal operator L(0) is (essentially) selfadjoint and bounded from
above. This means that the support of the measure µ is a set bounded from above. Exam-
ples showed that there exist spectral measures µ with support not bounded from above
such that the integrals in (3.21) do not exist (see, e.g., the measure µ in Example 4.1 or
the measure µτ−1 in Examples 4.5, 4.7, and 4.8). What can be said for the integrability of
these systems? From (1.6), we see that in these cases the solution αn(t), bn(t) has poles for
some t > 0.
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