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We define Orlicz-Sobolev spaces on an arbitrary metric space with a Borel reg-
ular outer measure, and we develop a capacity theory based on these spaces. We
study basic properties of capacity and several convergence results. We prove that
each Orlicz-Sobolev function has a quasi-continuous representative. We give es-
timates for the capacity of balls when the measure is doubling. Under additional
regularity assumption on the measure, we establish some relations between ca-
pacity and Hausdorff measures.

1. Introduction

The introduction and the extensive study of Sobolev spaces on arbitrary metric
spaces by Franchi et al. [9], Hajtasz [12], Hajtasz and Koskela [13], Hajtasz and
Martio [14], and others, have given a great impulse to several developments in
geometric analysis on metric measure spaces. Important examples are the sub-
stantial progress of various domains such as fractals, partial differential equa-
tions, Carnot-Carathéodory geometries, stochastic process, and so forth.

The nonlinear potential theory on metric spaces has seen a great jump since
the development of the capacity theory in these spaces by Kilpeldinen et al. [16],
Kinnunen and Martio [17], and others.

For Orlicz and Orlicz-Sobolev spaces in the Euclidean space, we have devel-
oped in [2, 3, 4, 5, 6, 7] a potential theory, called strongly nonlinear potential
theory. It is natural to develop this theory in the setting of metric spaces. It is the
object of this paper.

A Lipschitz characterization of Orlicz-Sobolev spaces in Euclidean case is
given. Since a density argument and the Hardy-Littlewood maximal function
are involved, we must suppose the Orlicz space to be reflexive. This characteri-
zation is used to introduce a definition of Orlicz-Sobolev spaces on an arbitrary
metric measure space. We prove an approximation theorem of Orlicz-Sobolev
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functions by Lipschitz functions, both in Lusin and in norm sense. This gener-
alizes a result by Hajlasz in [12] relative to the Sobolev case.

Then we develop a capacity theory based on the definition of Orlicz-Sobolev
spaces on an arbitrary metric measure space. Basic properties of capacity and
several convergence results are studied. Moreover, we prove that each Orlicz-
Sobolev function has a quasi-continuous representative and we give estimates
for the capacity of balls when the measure is doubling. Some relations between
capacity and Hausdorff measures are established under additional regularity as-
sumption on the measure.

This paper is organized as follows. In Section 2, we list the prerequisites from
the Orlicz theory. Section 3 is dedicated to Lipschitz characterization of Orlicz-
Sobolev spaces in the Euclidean case, to the study of Orlicz-Sobolev spaces on
metric spaces and to establish an approximation theorem of Orlicz-Sobolev
functions by Lipschitz functions. Section 4 is reserved to establish important
properties of capacity on metric spaces. Section 5 deals with the comparison be-
tween capacity and measure in the metric space, and between capacity and the
Hausdorff measure.

2. Preliminaries

An N-function is a continuous convex and even function @ defined on R, veri-
fying ®(t) > 0 for t > 0, lim;_o O(¢)/t = 0, and lim;_ o O(t)/t = +o0.

We have the representation O(t) = O\t\ ¢(x)dL(x), where ¢ : R* — R* is non-
decreasing, right continuous, with ¢(0) = 0, ¢(¢) >0 for ¢ > 0, lim;_.¢- p(¢) = 0,
and lim;_ ;. @(f) = +00. Here £ stands for the Lebesgue measure. We put in the
sequel, as usual, dx = d£(x).

The N-function ®* conjugate to @ is defined by ®*(t) = 0‘” ¢*(x) dx, where
@* is given by ¢*(s) = sup{t: ¢(t) < s}.

Let @ be an N-function. We say that @ verifies the A, condition if there is a
constant C > 0 such that ®(2¢) < CO(t) for all + > 0. We denote by C(D) the
smallest of such constants. That is, C(®) = sup,., P(2t)/D(¢).

The A, condition for @ can be formulated in the following equivalent way:
for every C > 0 there exists C’ > 0 such that ®(Ct) < C'®(¢t) forall £ = 0.

Let (X, T, u) be a measure space and @ an N-function. The Orlicz class ¢, (X)
is defined by

LouX) = {f:X — IR measurable :J O(f(x))du(x) < 00}. (2.1)
X
We define the Orlicz space Lo, (X) by

Lo (X) = {f : X — R measurable : JXCD((xf(x)) du(x) < co for some o > 0}.
(2.2)
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We always have £4,,(X) C Lo, (X). The equality £¢,,(X) = Lo,,(X) occurs if
@ verifies the A, condition.

The Orlicz space Lo,,(X) is a Banach space with the following norm, called
the Luxemburg norm,

1 lgyex = inf {7 >o:Lq>(@)dy(x) <1} (2.3)

Recall that Lo, (X) is reflexive if ® and ®* verify the A, condition.

Note that if @ verifies the A, condition, then [ ®( fi(x))du — 0 asi — o ifand
only if ||| f; loux — 0asi— oo.

Let Q be an open set in RN, C*(Q) be the space of functions which, to-
gether with all their partial derivatives of any order, are continuous on , and
Cy (RN) = Cf stands for all functions in C*(RY) which have compact support
in RN. The space C*(Q) stands for the space of functions having all derivatives
of order < k continuous on Q, and C(Q) is the space of continuous functions
on Q.

The (weak) partial derivative of f of order |f3| is denoted by

o!B!

Dﬁf:
axl ol oy

f (2.4)

Let ® be an N-function and m € N. We say that a function f : RN — R has a
distributional (weak partial) derivative of order m, denoted by D f, |B| = m, if

JfDﬁdez (—1)'ﬁ‘J(Dﬁf)9dx, voeCy. (2.5)

Let Q be an open set in RN and denote Lo, ¢ (Q) by Lo, (Q). The Orlicz-Sobolev
space W"Lq (Q) is the space of real functions f, such that f and its distributional
derivatives up to the order m, are in Lo (Q).

The space W™Lg () is a Banach space equipped with the norm

1 llwo="2 D fllle €W Lo(Q), (2.6)

0<|Bl=m

where [||[DEflllo = ||IDP flllo.g,0-

Recall that if @ verifies the A, condition, then C®(Q) N WLy (Q) is dense in
W™Lg(Q), and C§ (RN) is dense in W™Lg (RN).

For more details on the theory of Orlicz spaces, see [1, 18, 19, 20, 21].

3. Orlicz-Sobolev spaces on metric spaces

3.1. The Euclidean case. We begin by two lemmas which lead to a Lipschitz
characterization of Orlicz-Sobolev spaces.
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LeEmMa 3.1. Let ® be an N-function satisfying the A, condition, Q a cube in RN,
and f € W'Lo(Q). Then, for almost all x € Q,

| f(x) - fal <CJ ||Vf(y dy, (3.1)

X }/|N 1

where fq = 1/u(Q) Jq f du, and the constant C depends only on N and Q.

Proof. It is enough to establish (3.1) for C'(Q). But in this case the proof can be
found in [11, Lemma 7.16]. O

We omit the proof of the following lemma (Hedberg’s inequality) since it is
exactly the same as the one in [15] or in [23, Lemma 2.8.3].

LeEmMA 3.2. Let ® be an N-function and f € W'Le(RYN). Then there is a constant
C depending only on N such that for all x € RN,

JB VDL 4 < crite (19 1)) (3.2)

xR |x— y[N-1

where Mr(h)(x) = sup,_z(1/|B(x,r fB wr |B(y) dy and |B(x,r)| is the Lebesgue
measure of the ball B(x,r) on RV,

Now we give a Lipschitz characterization of Orlicz-Sobolev spaces.

THEOREM 3.3. Let @ be an N-function such that ® and ©* satisfy the A, con-
dition. Then f € W'Lo(RYN) if and only if there exists a nonnegative function
g € Lo(RN) such that

| f(x) = fO] < lx—yl[glx)+g(»)], (3.3)

forallx,y € RN\ F, |F| = 0.

Proof. Let Q be a cube in RN and x, y € Q. Then we can find a subcube Q* with
x, ¥ € Q* and diam Q* = |x — y|. Here A = B if there is a constant C such that
C ! <A <CB.Let f € WILop(RN). Then by (3.1) and (3.2) we get

[fe) = fO] = [f) = for [+ f ) = for
< Clx =yl (Mie—y (IVFD ) + Myt IV (9) - (3.4)
< Clx =yl (VD) () + MV F1) (),

where J(h)(x) = supy_,(1/|B(x,7)|) [pr |(y)Idy is the Hardy-Littlewood
maximal function. Since ®* verifies the A, condition, by [10] the maximal oper-
ator is bounded in Lo (RY). Hence, there is a nonnegative function g € Lo (RY)
such that

[ f) = fO)] <lx—yllgx)+g(»)] ae. (3.5)
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For the reverse implication, it suffices to show that, due to Riesz representa-
tion and Radon-Nikodym theorem, there is a nonnegative function h € Lo (RY)

such that
J f a¢ dx

for all ¢ € C§’. Now, integrating (3.3) twice over a ball B(x, ¢), we get

af
axl

JIgblhdx (3.6)

L 1
Bxe| JB o |0~ Jor [ dx < Cepgrs JBW g(x)dx. (3.7)

Let y € C{(B(0,1)) be such that [y(x)dx = 1. Put y.(x) = Ny (x/e). We
have

e—0

0 0 e
Jf ¢ dx—limja—i(ws*f)(x)dx: —16193J¢(x)(a‘)’; *f)(x)dx. (3.8)

Since [(0y,/0x;)(x) dx = 0, we get

9y _ 9Ye
o, * f = (f = fowe) * o (3.9)
Hence
oY N-
v *f‘(x)sCe N 1J | F = fone | (x) dx
Xi B(x.e)
X (3.10)
e o
|M%@|Mw§w)x
Thus
¢
‘ Jf dx quﬁl./l/t(g)(x)dx. (3.11)
Now by [10], Jl(g) € Lo(RN) since ®*satisfies the A, condition. The proof
is complete. U

3.2. The metric case. Let (X,d) be a metric space and let 4 be a nonnegative
Borel regular outer measure on X. The triplet (X, d, u) will be fixed in the sequel
and will be denoted by X.

Let u: X — [—o0,+00] be a y-measurable function defined on X. We denote
by D(u) the set of all y-measurable functions g : X — [0, +co] such that

|u(x) —u(y)| <d(x,y)(g(x)+g(y)) (3.12)

foreveryx, y € X \ F, x # y, with y(F) = 0. The set F is called the exceptional set
for g.
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Note that the right-hand side of (3.12) is always defined for x # y. For the
points x, y € X, x # y such that the left-hand side of (3.12) is undefined, we may
assume that the left-hand side is +co.

Let @ be an N-function. The Dirichlet-Orlicz space L, 4(X) is the space of all
p-measurable functions u such that D(u) N Lo, (X) # @. This space is equipped
with the seminorm

H'”'”LID,,A(X) = inf{|||g|||¢,H,X :g € D(u) NLou(X)}. (3.13)

The Orlicz-Sobolev space is M&,,H(X ) =Lou(X) N L(ID,H(X ) equipped with the
norm

I |u|||M(1DJM(X) =||lul ||<I>,y,X +|| |u|||L}I,M(X)' (3.14)

LemMma 3.4. Letgy € D(u1), &2 € D(uz), and a, B € R. If g = |a|gy + | Bl g2 almost
everywhere, then g € D(au; + fuy).

Proof. The proof is a simple verification. O

LemMa 3.5. Let @ be an N-function. Let (u;); and (g;); be two sequences of func-
tions such that, for all i,g; € D(w;). If u; — u in Lo, (X) and g — g in Lo u(X),
then g € D(u).

Proof. There are two subsequences of (u;); and (g;);, which we denote again by
(u;); and (gi);» such that u; — u and g; — g, p-a.e. Let, for i = 1,2,..., F; be the
exceptional set for g; and let G be a set of measure zero such that u; — uand g; —
gon‘G. We set F = GU (U2, F). It is clear that u(F) = 0 and |u(x) — u(y)| <
d(x, y)(g(x)+g(y)), forall x, y € X \ F. This implies that g € D(u). The proofis
complete. O

THEOREM 3.6. Let @ be an N-function. Then M&W(X), equipped with the norm
defined by (3.14), is a Banach space.

Proof. Itis clear that M}W (X) is a vector space. It remains to prove that Mg, £(X)
is complete for the norm defined by (3.14). Let (u;); be an arbitrary Cauchy
sequence in M}D,”(X ). Taking if necessary a subsequence, we may assume that
1 (u; — ”i+1)|||M}w(X) <277, Set v; = uj — ujy1. There exists h; € D(v;) N Lo ,(X)
such that || |4} ”M}W(X) < 27" Let g1 € D(u;) be arbitrary and set, for k = 2, gy =

a+ le;f hj. From the identity uy = u; — Z?;{ v;j and Lemma 3.4, it follows that
8 € D(u), for all k € N. Now (uk)x and (gk)x are Cauchy sequences in Lo, (X).
Thus there are limit functions u = limu in Lo, (X) and g = limg; in Lo, (X).
Lemma 3.5 implies that ¢ € D(u) and therefore the sequence (uy ), has a limit in
M3, (X). The proof is complete. O

The previous results lead to the following characterization of M&,’M(X ).
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LemMa 3.7. Let @ be an N-function. The function u € M&,,H(X) if and only if u €
Lo, (X) and there are functions u; € Lo, (X), i = 1,2,..., such that u; — u y-a.e.
and g € D(u;) N Lou(X), i=1,2,..., such that g — g u-a.e. for some g € Lo ,(X).

Proof. The proof is an immediate consequence of Lemma 3.5 and Theorem 3.6.
O

Moreover, Mg, 4(X) satisfies the following lattice property.

Lemma 3.8. Let ® be an N-function. Let uy,u; € M&W(X). If ¢4 € D(uy) and
2 € D(uy), then

(1) u = max(uy,uy) € Mé,)M(X) and max(gy,g>) € D(u) N Lo, (X);
(i) v = min(uy, uy) € M&),H(X) and max(gy,g2) € D(v) N Lo, (X).

Proof. We prove the case (i) only, the proof of (ii) is similar. Let ¢ = max(g,£)
and suppose that F; and F, are the exceptional sets for u; and u, in (3.12),
respectively. It is evident that u,g € Lo, (X). It remains to show that g € D(u).
Let U= {x € XN\(FIUF,) :u;(x) = up(x)}. Let x, y € U. Then
lu(x) —u(y)| = [w(x) = (y)| <d(x y)(g(x) +&(p)). (3.15)
By the same manner we obtain, for x, y € X\ U,
[u(x) —u(y)| <d(x, y)(g(x) +£(»)). (3.16)

For the remaining cases, let x € U and y € X\ U. If u; (x) = uy(y), then

lu(x) —u(y)| = u1(x) —uz(y) < ur(x) —ur(y) <d(x, y)(g1(x) +g1(y)).
(3.17)

If u;(x) < uz(y), then

lu(x) —u(y)| = —n(x) +ua(y) < —ua(x) + u2(y) < d(x, y) (2(x) +2(y)).

(3.18)
The case x € X\U and y € U follows by symmetry. Hence, for all x, y €
XN (F1 U Fy) with u(Fr U Fy) = 0, [u(x) —u(y)l < d(x, y)(g(x) +g(y)). O

Next, we prove the following important Poincaré inequality for Orlicz-
Sobolev functions.

ProrosITION 3.9. Let @ be an N-function. If u € M}D)IJ(X) and E C X is y-measu-
rable with 0 < u(E) < oo, then for every g € D(u) N Lo, (X),

Hu—ug| ||L}D)IA(E) < 2diam(E)||Ig| ||L(‘,,YM(E)’ (3.19)

where ug = 1/u(E) [ f du.
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Proof. Put C =2diam(E)|l|g| I\ng(E) and remark that

(1 — ) (x E)J —u(y)) du(y). (3.20)

By the Jensen inequality

U= _ L[ ) - uly)
Jyo (6wt = LG’L(E)L c d#()’)}(x)d#(x) -
3.21

< [ o2

On the other hand, using the definition of D(u) and the convexity of ®, we get

ux) —u(y)\ _ o f 8 —g(y)
°(*% )‘q’<z|||g|||w)

sl[m( g(x) )+(D< g )]
2 |||g|||L}D)y(E) |||g|||L1W(E)

Now we use the fact that [ ®(g(x)/IlIg] ”LED,,,(E)) du(x) < 1 to deduce that

o[

<1 §(x) g(y) )]
= 2u(E) LL [q)(lllglllu,) (E)) +®<|I|g|||%® du(y)du(x) (3 53)

EJ[ <|||g||IL: )“(E)}df‘(")fl-

The proof is complete. U

(3.22)

Now, we prove an approximation theorem of Orlicz-Sobolev functions by
Lipschitz functions, both in Lusin sense and in norm. This generalizes a result in
[12] relative to the Sobolev case.

THEOREM 3.10. Let @ be an N-function satisfying the A, condition and u €
M}D,M(X). Then for every € > 0, there is a Lipschitz function h such that

() u({x:ulx) #hx)}) <&
(2) Nu = hlllag,, 00 <e.

Proof. Letu e MCD,#(X ) and let g be taken from the definition of || |u] ”Lz‘p,ﬂ(X)' Let
X,=1{x€X:|u(x)| <nand g(x) <n}. Since u,g € Lo (X) and @ satisfies the A,
condition, we conclude that u, g € £, (X). This implies that lim,, ... @ (1) u(°X,,)
=0, and lim,_. ., 4(°X,,) = 0 because ®(n) — oo when n — 0. The restriction u/x,
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is Lipschitz with the constant 2»# and can be extended to the Lipschitz function

u’ on X with the same constant (see [8, Section 2.10.4] and [22, Theorem 5.1]).

We put u, = (sgnu’)min(|u’|, n). It is clear that u, is Lipschitz with the constant
n— oo

2n, unlx, = ulx,, lunl < nand p({x:u(x) # ua(x)}) < p(°Xy) — 0.
We must simply prove that u, — u in M}D’H(X ) when n — co. We have

Jd)(u—u,,)d‘uz O(u—uy)dy

X,
SJ O(lul + |un|) du
X,

n

sT[anq)(lul)d‘u+ﬁxnd)(|un|)dy] 2

[ﬁxn”'“')dw@(nm(xn)] g,

n—oo

Since @ satisfies the A, condition, |||u — ”nlllL}W(X) —— 0. It remains to esti-
mate the gradient. Let

0 for x € X,,,
= (3.25)

glx)+3n forx e X,.

We have |(u — u,)(x) = (1 — u) ()| < d(x, y)(gn(x) + gu(y)). Since [ D(g,) dy =
LXH D(gy)dy — 0 as n — oo, we conclude that || Ig,,IIIL(IW(X) — 0 when n — o be-
cause @ satisfies the A, condition. The theorem follows. O

4. Capacity on metric spaces

Definition 4.1. For a set E C X, define Co,,(E) by
CCD,M(E)=inf{|||u|||Mtlp}y(X):ueB(E)}, (4.1)

where B(E) = {u € M&,’M(X) :u > 1 on a neighborhood of E}.
If B(E) = &, we set Co,,(E) = o0. Functions belonging to B(E) are called ad-
missible functions for E.

Remark 4.2. In the definition of Co ,(E), we can restrict ourselves to those ad-
missible functions u such that 0 < u < 1.

Proof. Let B'(E) = {u € B(E):0 < u < 1}, then B'(E) C B(E) implies that

Cou(E) < inf{|||u|l|Méw(X) :u € B'(E)}. (4.2)
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On the other hand, let ¢ >0 and take u € B(E) such that |||”|||M5M(X)
< Co(E) +¢&. Then v = max(0,min(u, 1)) € B'(E), and by Lemma 3.8 we get
D(u) € D(v). Hence,

inf{”'u'”M}W(X) ru€B'(E)} < |||V|||M}W(X) = |||”|HM;,7”(X) < Cou(E) te.
(4.3)

This completes the proof. O

We define a capacity as an increasing positive set function C given on a o-
additive class of sets I', which contains compact sets and such that C(&) = 0 and
CUiz1 Xi) £ 251 C(X;) for X; €T, i=1,2,.... Cis called outer capacity if for
every X €T,

C(X) = inf {C(O) : O open, X C O}. (4.4)

THEOREM 4.3. Let @ be an N-function. The set function Co,, is an outer capacity.

Proof. It is obvious that Cg,,(©@) = 0 and that Co,, is increasing. For countable
subadditivity, let E;, i = 1,2,... be subsets of X and let ¢ > 0. We may assume that
> Co,u(E;) < 0. We choose u; € B(E;) and gy, € D(u;) N Lo, (X) so that for
i=12,...,

1 o + 1186 oy = Co (B +27" (4.5)

We show that v = sup; u; is admissible for ;- E; and g = sup;g,, € D(v) N
Lo, (X).

Observe that v,g € Lo, (X). Define vy = max, <;<k ;. By Lemma 3.8 the func-
tion gy, = max;<j<k gu; € D(vk) N Lo, (X). Since vx — v p-a.e., Lemma 3.7 gives
ve M&)’” (X). Clearly v > 1 in a neighborhood of U;2 | E;. Hence Co,,(U;, Ei) <
v agy, 00

By [6, Lemma 2],

)

||V|||M¢ (x) z (” [u;] ||C[),y,X +|1 g | ||<1>,,4,x) = ch),u(Ei) te. (4.6)
i=1

Since ¢ is arbitrary, we deduce that Co,, (Ui, Ei) < ;21 Cou(Ei). Hence Co,
is a capacity.
It remains to prove that Cy, is outer, that is,

Cou(E) = inf {Cp,,(0) : E C O, O open}. (4.7)

By monotonicity, Ce,,(E) < inf{C@,#(O) :E C O, Oopen}. For the reverse in-
equality, let ¢ > 0 and let u € B(E) be such that || |u]| ”Mé,‘”(X) < Cou(E) +e. Since
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u € B(E), there is an open set O, E C O, such that u > 1 on O. This implies that
Cou(0) < IMulllpy,x) = CoulE) +e.
Since ¢ is arbitrary, we obtain the claim, and the proof is complete. O

CoROLLARY 4.4. Let @ be an N-function. Let (K;)i=1 be a decreasing sequence of
compact sets in X and let K = (2, K;. Then

Cou(K) = lim o, (K). (48)

Proof. This is a direct consequence of the fact that Co,, is an outer capacity. [J

THEOREM 4.5. Let © be a uniformly convex N-function such that @ satisfies the

A, condition. Let (O;)i=1 be an increasing sequence of open sets in X and let O =
Uiz, Oi. Then

Cou(0) = 11132 Cou(0)). (4.9)
Proof. The hypothesis implies that Lg ,(X) is uniformly convex. By monotonic-
ity, lim; .o Co,,(O;) < Co,(O). To prove the reverse inequality, we may assume
that lim;_., Cp,(0;) < 00. Let € >0 and for i = 1,2,..., u; € B(0;), and g,, €
D(u;) N Lo, (X) be such that

I ui ||q>,;4,x +{|]gu | Hcp,y,x < Cou(0)) +e. (4.10)

The sequence (u;); is bounded in Lg,,(X) and, hence, it possesses a weakly
convergent subsequence, which we denote again by (u;);. The sequence (g,,); is
also bounded in Lg,,(X) and, by passing to a subsequence, we may assume that
u; — uweakly in Ly ,(X) and g, — g weakly in Lg,,(X). We use the Banach-Saks
theorem to deduce that the sequence defined by v; = j~! >, u; converges to u
inLpy(X)and g, = j! Zlegui converges to g in Lo, (X).

Now there is a subsequence of the sequence (v;); so that v; — u p-a.e. and
&y, — gp-a.e.Bylemma3.7,u MCID,M(X). On the other hand, v; — 1 y-a.e.in O
and hence u > 1 y-a.e. in O. Thus u € B(O). By the weak lower semicontinuity
of norms, we get

Cou(0) = [[1ulllgx + 11810 x

<timinf (1]l 11180 o) (@11

< 1iqu,,H (O,) + €.

By letting £ — 0, we obtain the result. O

The set function Cg, is called the ®-capacity. If a statement holds except
on a set E where Cgp,(E) = 0, then we say that the statement holds ®-quasi-
everywhere (abbreviated ®-q.e.).
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LEmMA 4.6. Let ® be any N-function and let u be a function in M&:,H(X)- IfPL, =
{x € X :lim;_., u(t) = oo} denotes the set of poles of u, then Co,,(PL,) = 0.

Proof. If n is any positive integer, the function u, = n~!'inf(u, 1) is an admissi-
ble function for the ®-capacity of the set PL,,. It is easily seen that || |1, || M, (x) =
| ul I3, x)- This implies that limy ..o [ [un| [l gy, x) = 0. Thus Co,,(PLy) = 0.

([l

THEOREM 4.7. Let ® be an N-function and let E be any subset of X. Then
Cou(E) = 0 if and only if for any € > 0, there exists a nonnegative function u €
Mé,,H(X) such that lim,_, u(t) = oo for any x € E and || |u| ”Mé;,,,(X) <e.

Proof. Let E C X be such that Cg,(E) = 0, and let £ > 0. Then, by the definition
of the @-capacity, there is a sequence of nonnegative functions, (u4,),, such that
u, = 1 in some neighborhood of E and ||| u,,] ”MeL,F(X) < 27", for any n. Then the
function u = >, u, belongs to M}D,H(X ) and lim,_, u(t) = co. Furthermore, it is
evident that ||| u| ||M<‘1>,,4(X) <e.

The converse implication is an immediate consequence of Lemma 4.6. g

THEOREM 4.8. Let ®© be an N-function and (u;); be a Cauchy sequence of func-
tions in M(})’H(X) N C(X). Then, there is a subsequence (u;); of (u;); which con-
verges pointwise ®-q.e. in X. Moreover, the convergence is uniform outside a set of
arbitrary small ®-capacity.

Proof. Since (u;); is a Cauchy sequence, there is a subsequence (u;); of (u;); such
that

> 2 | = ui | ||M}W(X) < 0o. (4.12)
i1

We set X; = {x € X : [uj(x) —uj,,(x)| >27"} fori=1,2,...,and Y; = Ufi]-Xi.
Since the functions u; are continuous by hypothesis, X; and Y; are open. Then,
for all i, 2/(u; — ul,,) € B(X;). Hence

Cou(Xi) < 2'[ |1} — ufy, | ||M(§,,#(X)' (4.13)

By subadditivity of Cg,,,, we obtain
C<I>,H(Yj) = zcﬁb,y (Xi) = zzi” |u1, - uz,‘ﬂ | ||M<}>,,A(X)' (4.14)
i=j i=j

From the convergence of the sum (4.12) we conclude that

j—oo

Co (ﬂ Yj) < lim Co,,(Y;) = 0. (4.15)
j=1
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Thus (u}); converges in X\ ﬂ;‘;l Y;. Moreover, we have for any x € X\\Y;
and all k > j

k-1 k-1
|(x) — up () | < D7 |uf(x) —uify (0)| < D 27 <27, (4.16)
i=j i=j

This implies that (u;); converges uniformly in X\ Y;.
This completes the proof. O

Definition 4.9. Let ® be an N-function. A function u: X — [—co,+00] is O-
quasi-continuous in X if for every & > 0, there is a set E such that Co,(E) < ¢
and the restriction of u to X'\(E is continuous. Since Co,, is an outer capacity,
we may assume that E is open.

THEOREM 4.10. Let @ be an N-function satisfying the A, condition and u €
M&W(X). Then there is a function v € M}D,H(X) such that u = v y-a.e. and v is
®-quasi-continuous in X. The function v is called a O-quasi-continuous represen-
tative of u.

Proof. We know that M}D,H(X) is a Banach space and by Theorem 3.10, C(X) N
M&W(X) is a dense subspace of M}W(X ). Hence, completeness implies that
M&x y(X ) can be characterized as the completion of C(X) N M}D, M(X ) in the norm
of M&),”(X ). Thus there are sequences of functions (u;); C C(X) N Lo,,(X) and
(g)i C D(u; — u) such that u; — u and g; — 0 in Lo,(X). Hence for a subse-
quence, which we denote again by (u;);, u; — u y-a.e. From Theorem 4.8, we
deduce that the limit function v of the sequence (u;); is ®-quasi-continuous in
X. This completes the proof. O

5. Comparison between capacity and measures

5.1. Comparison between capacity and the measure y. The sets of zero capac-
ity are exceptional sets in the strongly nonlinear potential theory. We show in
the next lemma that sets of vanishing capacity are also of measure zero.

LEmMA 5.1. Let © be any N-function. Then
(1) if E C X is such that Co,(E) = 0, then u(E) = 0;
(2) if E C X is such that u(E) # 0, then Co,,(E) = 1/® ' (1/u(E)).

Proof. (1) If n is a strictly positive integer, we can find u, € B(E) such that
N lloux < |l |”un|||M;)F(x) < 1. Hence, there is an open set O, such that E C
O, and u, > 1in O,,.. Then

j CD(nu,,)dst (D(nu,,)d‘usj O (nuy,) du < 1. (5.1)
E X

n

By the inequality n®(u,) < ®(nu,) and by the fact that u, > 1 in E, we get
®(1)u(E) < 1/n. This implies the claim.
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(2) Let u € B(E), then there is an open set O such that EC O and u > 1 in O.

Hence
J d)[u-d)_l(L)]dsz CD[u-(D_I(LHd‘uZI. (5.2)
X u(E) E u(E)
Thus
llagy = 1l llox = 577 (5.3)
00 = 00X = o1 (1/u(8) ‘
We obtain the result by taking the infimum over all u € B(E). O

Definition 5.2. A measure y is said to be doubling if there is a constant C > 1
such that

#(B(x,2r)) < Cu(B(x,1)), (5.4)

for every x € X and r > 0.
The smallest constant C in (5.4) is called the doubling constant and is denoted
by Ca.

THuEOREM 5.3. Let @ be any N-function, y a doubling measure with the doubling
constant Cyq, xo € X, and 0 < r < 1. Then

1
-1
Cou(B(x0,7)) <2Cyr o T (/a(Bror)))’ (5.5)
Proof. We define
2ol e B, 1) \B (o),
u(x) =11, x € B(xo,7), (5.6)
0, x € X\ B(xp,2r).
Define also
1
) B ;2 p)
g =17 x € B(xo,2r) (5.7)
0, x€X\B(xg2r).
We show that ¢ € D(u). Let E = B(xy, 2r)\B(xo,r), and x, y € E. Then
d(x,x0) —d(y,x d(x,
Hence (3.12) follows in this case. Let x € E and y € B(xg,r). We have
lu(x) — u(y) | = 1) = LR =T (5.9)

r
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Since d(y,x0) <1 < d(x,x0), we get
d(x,x0) —r <d(x,x0) —d(y,x0) <d(x,y), (5.10)
and hence (3.12) follows. The case y € E and x € B(xo, ) is completely analo-

gous. Now, if x, y € B(xo,7) or x, y € X\ B(xy, 2r), then clearly (3.12) holds. On
the other hand, let x € X\ B(xy,2r) and y € B(x, 7). Then

[u(x) —u(y)| =1=< d(xr’y), (5.11)

which implies (3.12). Finally, if x € E and y € X\ B(xo, 2r), then

lu(x) —u(y)| = u(x) = w (5.12)
and since d(x, xo) < 2r < d(y,x0), we obtain
2r —d(x,x0) <d(y,x) —d(x,x) <d(x, y) (5.13)
and (3.12) holds. Thus g € D(u), u € B(B(xo, 7)) and
Cou(B(xo,7)) = [[lulllgx + g a,x- (5.14)
We have u < xp(x,20)> llullloux < 11xBx0,2r) | lo,ux. We know that
1
1T xee0.20) om0 = g1 WnB 0 2)) (5.15)
where xp(x,,2r) is the characteristic function of B(xo, 2r).
On the other hand, g < r’lxg(xo,zr), and hence
1gMlloux <7 g : : (5.16)
(1/p(B(x0,2r)))
Thus
CoulBlxor) = (1+r7!) gy e, (517)
Now, since y is doubling, u(B(xo,21)) < Cqu(B(xy,r)). Hence
! ! (5.18)

O 1 (1/u(B(x2r))) ~ &1 (1/Cou(Blxo7)))
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It remains to evaluate @' (1/Cyu(B(x0,7))). Recall that, ®(ax) < ad(x), for
all 0 < @ < 1, and all x. This implies that a®~!(x) < ®~!(ax), forall 0 < a < 1,
and all x. Hence

1 1
<

O VCuBen)) © e B O
Thus
1
Cou(B(x0,1)) < (1+r’1)Cd(D_1(1/
u(B(xo,7)))
S ] (5.20)
= YO 1(1/u(B(xorr)))
This completes the proof. O

5.2. Comparison between capacity and Hausdorff measures. We recall the def-
inition of Hausdorff measures. Let /1 : [0, +00[ — [0, +co[ be an increasing func-
tion such that lim,_qh(r) = 0. For 0 < § < o0 and E C X, we define

Hg(E)=inf{Zh(r,-) :ECUB(xi,ri), r,»sS}. (5.21)
i=1 i=1
The h-Hausdorff measure of E is given by

H(E) = E%HQ(E). (5.22)

If h(t) = t* for 0 < s < oo, we obtain the s-dimensional Hausdorff measure
which we denote by H°.

For more details on Hausdorff measures, one can consult [8, Chapter 2, Sec-
tion 10].

A measure y is regular with dimension s > 0, if there is ¢ = 1 such that, for
each x € X and 0 < r < diam(X),

c'rf <u(B(x,r)) < cr. (5.23)

Note that if y is regular with dimension s, then y is doubling. Moreover, X has
Hausdorff dimension s and there is a constant ¢ > 0 such that, for every E C X,

¢ 'HY(E) < u(E) < cH'(E). (5.24)

THEOREM 5.4. Let @ be an N-function satisfying the A, condition and o = a(®) =
SUpP,.o(t@(1)/D(t)). Let u be a regular measure with dimension s such that s > a.
Define h: [0,+00[ — [0,+0o[ by h(t) = t/*"1. Then for every E C X,

Cou(E) < cH'(E), (5.25)
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where the constant ¢ depends only on @ and the doubling constant. In particular, if
H"(E) =0, then Cq,,(E) = 0.

Proof. Let B(x;,1i),i=1,2,..., be any covering of E such that the radii r; satisfy
ri<1/2,i=1,2,.... By (5.5) we get, for all 4, that

1
-1 (1/p(B(xi,7i)))

Cq))ﬂ (B (xi, ri)) <Cr! (5.26)

From (5.23) we have u(B(x;, 1)) < cr{, for all ; and hence
1 1 1
o Veor(L)acon(l) e
(y(B(x,-, ri)) ) cri ¢ r (5:27)
It remains to evaluate @~ !(1/r;). For this goal we distinguish two cases

(i) if ®(1) < 1, then @~ 1(1/r]) = O 1 (D(1)(1/7]));
(i) if ®(1) = 1, then

CD”(%) = q)*(&%%) > ﬁ@‘(@(l)%). (5.28)

1

Hence in the two cases we have ®~1(1/7]) > C'O~H(D(1)(1/r])). We get

1

qyl(ﬂ(B(xi,Ti)) :

) > C’CD’1<®(1)—S). (5.29)

i

On the other hand we know that ®(¢) < ®(1)t%, for all ¢+ > 1. This implies
that V¢ < ®~1(d(1)t), for all t = 1. Whence, for all i

_ 1 1
> (zm) =C (5.30)

Thus, for all i
Cou(B(xiri)) <C'r* L, (5.31)

The subadditivity of Cg,, yields
C@)H(E) <C" Z Cq)”u (B (x,', T,‘)) <C" Z h(i’,’). (5.32)
i=1 i=1

By taking the infimum over all coverings by balls and letting the radii tend to
zero, we finish the proof. O
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