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Received 23 January 2002

We define Orlicz-Sobolev spaces on an arbitrary metric space with a Borel reg-
ular outer measure, and we develop a capacity theory based on these spaces. We
study basic properties of capacity and several convergence results. We prove that
each Orlicz-Sobolev function has a quasi-continuous representative. We give es-
timates for the capacity of balls when the measure is doubling. Under additional
regularity assumption on the measure, we establish some relations between ca-
pacity and Hausdorff measures.

1. Introduction

The introduction and the extensive study of Sobolev spaces on arbitrary metric
spaces by Franchi et al. [9], Hajłasz [12], Hajłasz and Koskela [13], Hajłasz and
Martio [14], and others, have given a great impulse to several developments in
geometric analysis on metric measure spaces. Important examples are the sub-
stantial progress of various domains such as fractals, partial differential equa-
tions, Carnot-Carathéodory geometries, stochastic process, and so forth.

The nonlinear potential theory on metric spaces has seen a great jump since
the development of the capacity theory in these spaces by Kilpeläinen et al. [16],
Kinnunen and Martio [17], and others.

For Orlicz and Orlicz-Sobolev spaces in the Euclidean space, we have devel-
oped in [2, 3, 4, 5, 6, 7] a potential theory, called strongly nonlinear potential
theory. It is natural to develop this theory in the setting of metric spaces. It is the
object of this paper.

A Lipschitz characterization of Orlicz-Sobolev spaces in Euclidean case is
given. Since a density argument and the Hardy-Littlewood maximal function
are involved, we must suppose the Orlicz space to be reflexive. This characteri-
zation is used to introduce a definition of Orlicz-Sobolev spaces on an arbitrary
metric measure space. We prove an approximation theorem of Orlicz-Sobolev
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functions by Lipschitz functions, both in Lusin and in norm sense. This gener-
alizes a result by Hajłasz in [12] relative to the Sobolev case.

Then we develop a capacity theory based on the definition of Orlicz-Sobolev
spaces on an arbitrary metric measure space. Basic properties of capacity and
several convergence results are studied. Moreover, we prove that each Orlicz-
Sobolev function has a quasi-continuous representative and we give estimates
for the capacity of balls when the measure is doubling. Some relations between
capacity and Hausdorff measures are established under additional regularity as-
sumption on the measure.

This paper is organized as follows. In Section 2, we list the prerequisites from
the Orlicz theory. Section 3 is dedicated to Lipschitz characterization of Orlicz-
Sobolev spaces in the Euclidean case, to the study of Orlicz-Sobolev spaces on
metric spaces and to establish an approximation theorem of Orlicz-Sobolev
functions by Lipschitz functions. Section 4 is reserved to establish important
properties of capacity on metric spaces. Section 5 deals with the comparison be-
tween capacity and measure in the metric space, and between capacity and the
Hausdorff measure.

2. Preliminaries

An N-function is a continuous convex and even function Φ defined on R, veri-
fying Φ(t) > 0 for t > 0, limt→0Φ(t)/t = 0, and limt→+∞Φ(t)/t = +∞.

We have the representation Φ(t)= ∫ |t|0 ϕ(x)dL(x), where ϕ : R+ →R+ is non-
decreasing, right continuous, with ϕ(0)= 0, ϕ(t) > 0 for t > 0, limt→0+ ϕ(t) = 0,
and limt→+∞ϕ(t)= +∞. Here L stands for the Lebesgue measure. We put in the
sequel, as usual, dx = dL(x).

The N-function Φ∗ conjugate to Φ is defined by Φ∗(t)= ∫ |t|0 ϕ∗(x)dx, where
ϕ∗ is given by ϕ∗(s)= sup{t : ϕ(t)≤ s}.

Let Φ be an N-function. We say that Φ verifies the ∆2 condition if there is a
constant C > 0 such that Φ(2t) ≤ CΦ(t) for all t ≥ 0. We denote by C(Φ) the
smallest of such constants. That is, C(Φ)= supt>0Φ(2t)/Φ(t).

The ∆2 condition for Φ can be formulated in the following equivalent way:
for every C > 0 there exists C′ > 0 such that Φ(Ct)≤ C′Φ(t) for all t ≥ 0.

Let (X,Γ,µ) be a measure space andΦ anN-function. The Orlicz class �Φ,µ(X)
is defined by

�Φ,µ(X)=
{
f : X −→R measurable :

∫
X
Φ
(
f (x)
)
dµ(x) <∞

}
. (2.1)

We define the Orlicz space LΦ,µ(X) by

LΦ,µ(X)=
{
f : X −→R measurable :

∫
X
Φ
(
α f (x)

)
dµ(x) <∞ for some α > 0

}
.

(2.2)
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We always have �Φ,µ(X)⊂ LΦ,µ(X). The equality �Φ,µ(X)= LΦ,µ(X) occurs if
Φ verifies the ∆2 condition.

The Orlicz space LΦ,µ(X) is a Banach space with the following norm, called
the Luxemburg norm,

∥∥| f |∥∥Φ,µ,X = inf
{
r > 0 :

∫
X
Φ
(
f (x)
r

)
dµ(x)≤ 1

}
. (2.3)

Recall that LΦ,µ(X) is reflexive if Φ and Φ∗ verify the ∆2 condition.
Note that if Φ verifies the ∆2 condition, then

∫
Φ( fi(x))dµ→ 0 as i→∞ if and

only if ‖| fi|‖Φ,µ,X → 0 as i→∞.
Let Ω be an open set in RN , C∞(Ω) be the space of functions which, to-

gether with all their partial derivatives of any order, are continuous on Ω, and
C∞0 (RN )= C∞0 stands for all functions in C∞(RN ) which have compact support
in RN . The space Ck(Ω) stands for the space of functions having all derivatives
of order ≤ k continuous on Ω, and C(Ω) is the space of continuous functions
on Ω.

The (weak) partial derivative of f of order |β| is denoted by

Dβ f = ∂|β|

∂x
β1

1 · ∂xβ2

2 · ··· · ∂xβNN
f . (2.4)

Let Φ be an N-function and m∈N. We say that a function f : RN →R has a
distributional (weak partial) derivative of order m, denoted by Dβ f , |β| =m, if

∫
f Dβθdx = (−1)|β|

∫ (
Dβ f
)
θdx, ∀θ ∈ C∞0 . (2.5)

Let Ω be an open set in RN and denote LΦ,L(Ω) by LΦ(Ω). The Orlicz-Sobolev
spaceWmLΦ(Ω) is the space of real functions f , such that f and its distributional
derivatives up to the order m, are in LΦ(Ω).

The space WmLΦ(Ω) is a Banach space equipped with the norm

∥∥| f |∥∥m,Φ = ∑
0≤|β|≤m

∥∥∣∣Dβ f
∣∣∥∥

Φ, f ∈WmLΦ(Ω), (2.6)

where ‖|Dβ f |‖Φ = ‖|Dβ f |‖Φ,L,Ω.
Recall that if Φ verifies the ∆2 condition, then C∞(Ω)∩WmLΦ(Ω) is dense in

WmLΦ(Ω), and C∞0 (RN ) is dense in WmLΦ(RN ).
For more details on the theory of Orlicz spaces, see [1, 18, 19, 20, 21].

3. Orlicz-Sobolev spaces on metric spaces

3.1. The Euclidean case. We begin by two lemmas which lead to a Lipschitz
characterization of Orlicz-Sobolev spaces.
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Lemma 3.1. Let Φ be an N-function satisfying the ∆2 condition, Q a cube in RN ,
and f ∈W1LΦ(Q). Then, for almost all x ∈Q,

∣∣ f (x)− fQ
∣∣≤ C

∫
Q

∣∣∇ f (y)
∣∣

|x− y|N−1
dy, (3.1)

where fQ = 1/µ(Q)
∫
Q f dµ, and the constant C depends only on N and Q.

Proof. It is enough to establish (3.1) for C1(Q). But in this case the proof can be
found in [11, Lemma 7.16]. �

We omit the proof of the following lemma (Hedberg’s inequality) since it is
exactly the same as the one in [15] or in [23, Lemma 2.8.3].

Lemma 3.2. Let Φ be anN-function and f ∈W1LΦ(RN ). Then there is a constant
C depending only on N such that for all x ∈RN ,

∫
B(x,R)

∣∣∇ f (y)
∣∣

|x− y|N−1
dy ≤ CR�R

(|∇ f |)(x), (3.2)

where �R(h)(x)= supr<R(1/|B(x,r)|)∫B(x,r) |h(y)|dy and |B(x,r)| is the Lebesgue
measure of the ball B(x,r) on RN .

Now we give a Lipschitz characterization of Orlicz-Sobolev spaces.

Theorem 3.3. Let Φ be an N-function such that Φ and Φ∗ satisfy the ∆2 con-
dition. Then f ∈W1LΦ(RN ) if and only if there exists a nonnegative function
g ∈ LΦ(RN ) such that

∣∣ f (x)− f (y)
∣∣≤ |x− y|[g(x) + g(y)

]
, (3.3)

for all x, y ∈RN \F, |F| = 0.

Proof. Let Q be a cube in RN and x, y ∈Q. Then we can find a subcube Q∗ with
x, y ∈Q∗ and diamQ∗ ≈ |x− y|. Here A≈ B if there is a constant C such that
C−1 ≤A≤ CB. Let f ∈W1LΦ(RN ). Then by (3.1) and (3.2) we get

∣∣ f (x)− f (y)
∣∣≤ ∣∣ f (x)− fQ∗

∣∣+
∣∣ f (y)− fQ∗

∣∣
≤ C|x− y|(�|x−y|

(|∇ f |)(x) + �|x−y|
(|∇ f |)(y)

)
≤ C|x− y|(�(|∇ f |)(x) + �

(|∇ f |)(y)
)
,

(3.4)

where �(h)(x) = sup0<r(1/|B(x,r)|)∫B(x,r) |h(y)|dy is the Hardy-Littlewood
maximal function. Since Φ∗ verifies the ∆2 condition, by [10] the maximal oper-
ator is bounded in LΦ(RN ). Hence, there is a nonnegative function g ∈ LΦ(RN )
such that

∣∣ f (x)− f (y)
∣∣≤ |x− y|[g(x) + g(y)

]
a.e. (3.5)
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For the reverse implication, it suffices to show that, due to Riesz representa-
tion and Radon-Nikodym theorem, there is a nonnegative function h∈ LΦ(RN )
such that ∣∣∣∣ ∂ f∂xi [φ]

∣∣∣∣ def=
∣∣∣∣−
∫
f
∂φ

∂xi
dx
∣∣∣∣≤
∫
|φ|hdx (3.6)

for all φ ∈ C∞0 . Now, integrating (3.3) twice over a ball B(x,ε), we get

1∣∣B(x,ε)
∣∣
∫
B(x,ε)

∣∣ f (x)− fQ∗
∣∣dx ≤ Cε 1∣∣B(x,ε)

∣∣
∫
B(x,ε)

g(x)dx. (3.7)

Let ψ ∈C∞0 (B(0,1)) be such that
∫
ψ(x)dx= 1. Put ψε(x)= ε−Nψ(x/ε). We

have∫
f
∂φ

∂xi
dx = lim

ε→0

∫
∂φ

∂xi

(
ψε∗ f

)
(x)dx =− lim

ε→0

∫
φ(x)
(
∂ψε
∂xi

∗ f
)

(x)dx. (3.8)

Since
∫

(∂ψε/∂xi)(x)dx = 0, we get

∂ψε
∂xi

∗ f = ( f − fB(x,ε)
)∗ ∂ψε

∂xi
. (3.9)

Hence ∣∣∣∣∂ψε∂xi
∗ f
∣∣∣∣(x)≤ Cε−N−1

∫
B(x,ε)

∣∣ f − fB(x,ε)
∣∣(x)dx

≤ C 1∣∣B(x,ε)
∣∣
∫
B(x,ε)

g(x)dx.
(3.10)

Thus ∣∣∣∣
∫
f
∂φ

∂xi
dx
∣∣∣∣≤
∫
|φ|�(g)(x)dx. (3.11)

Now by [10], �(g) ∈ LΦ(RN ) since Φ∗satisfies the ∆2 condition. The proof
is complete. �

3.2. The metric case. Let (X,d) be a metric space and let µ be a nonnegative
Borel regular outer measure on X . The triplet (X,d,µ) will be fixed in the sequel
and will be denoted by X .

Let u : X → [−∞,+∞] be a µ-measurable function defined on X . We denote
by D(u) the set of all µ-measurable functions g : X → [0,+∞] such that

∣∣u(x)−u(y)
∣∣≤ d(x, y)

(
g(x) + g(y)

)
(3.12)

for every x, y ∈ X \F, x 
= y, with µ(F)= 0. The set F is called the exceptional set
for g.
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Note that the right-hand side of (3.12) is always defined for x 
= y. For the
points x, y ∈ X , x 
= y such that the left-hand side of (3.12) is undefined, we may
assume that the left-hand side is +∞.

Let Φ be an N-function. The Dirichlet-Orlicz space L1
Φ,µ(X) is the space of all

µ-measurable functions u such that D(u)∩LΦ,µ(X) 
= ∅. This space is equipped
with the seminorm

∥∥|u|∥∥L1
Φ,µ(X) = inf

{∥∥|g|∥∥Φ,µ,X : g ∈D(u)∩LΦ,µ(X)
}
. (3.13)

The Orlicz-Sobolev space is M1
Φ,µ(X)= LΦ,µ(X)∩L1

Φ,µ(X) equipped with the
norm

∥∥|u|∥∥M1
Φ,µ(X) =

∥∥|u|∥∥Φ,µ,X +
∥∥|u|∥∥L1

Φ,µ(X). (3.14)

Lemma 3.4. Let g1 ∈D(u1), g2 ∈D(u2), and α,β ∈R. If g ≥ |α|g1 + |β|g2 almost
everywhere, then g ∈D(αu1 +βu2).

Proof. The proof is a simple verification. �

Lemma 3.5. Let Φ be an N-function. Let (ui)i and (gi)i be two sequences of func-
tions such that, for all i,gi ∈ D(ui). If ui → u in LΦ,µ(X) and gi → g in LΦ,µ(X),
then g ∈D(u).

Proof. There are two subsequences of (ui)i and (gi)i, which we denote again by
(ui)i and (gi)i, such that ui → u and gi → g, µ-a.e. Let, for i = 1,2, . . . , Fi be the
exceptional set for gi and let G be a set of measure zero such that ui→ u and gi→
g on cG. We set F = G∪ (

⋃∞
i=1Fi). It is clear that µ(F) = 0 and |u(x)− u(y)| ≤

d(x, y)(g(x) + g(y)), for all x, y ∈ X \F. This implies that g ∈D(u). The proof is
complete. �

Theorem 3.6. Let Φ be an N-function. Then M1
Φ,µ(X), equipped with the norm

defined by (3.14), is a Banach space.

Proof. It is clear that M1
Φ,µ(X) is a vector space. It remains to prove that M1

Φ,µ(X)
is complete for the norm defined by (3.14). Let (ui)i be an arbitrary Cauchy
sequence in M1

Φ,µ(X). Taking if necessary a subsequence, we may assume that
‖|(ui−ui+1)|‖M1

Φ,µ(X) ≤ 2−i. Set vj = uj −uj+1. There exists hj ∈D(vj)∩LΦ,µ(X)

such that ‖|hj|‖M1
Φ,µ(X) ≤ 2−i. Let g1 ∈D(u1) be arbitrary and set, for k ≥ 2, gk =

g1 +
∑k−1

j=1 hj . From the identity uk = u1−
∑k−1

j=1 vj and Lemma 3.4, it follows that
gk ∈D(u), for all k ∈N . Now (uk)k and (gk)k are Cauchy sequences in LΦ,µ(X).
Thus there are limit functions u = limuk in LΦ,µ(X) and g = limgk in LΦ,µ(X).
Lemma 3.5 implies that g ∈D(u) and therefore the sequence (uk)k has a limit in
M1

Φ,µ(X). The proof is complete. �

The previous results lead to the following characterization of M1
Φ,µ(X).
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Lemma 3.7. Let Φ be an N-function. The function u∈M1
Φ,µ(X) if and only if u∈

LΦ,µ(X) and there are functions ui ∈ LΦ,µ(X), i = 1,2, . . . , such that ui → u µ-a.e.
and gi ∈D(ui)∩LΦ,µ(X), i= 1,2, . . . , such that gi→ g µ-a.e. for some g ∈ LΦ,µ(X).

Proof. The proof is an immediate consequence of Lemma 3.5 and Theorem 3.6.
�

Moreover, M1
Φ,µ(X) satisfies the following lattice property.

Lemma 3.8. Let Φ be an N-function. Let u1,u2 ∈M1
Φ,µ(X). If g1 ∈ D(u1) and

g2 ∈D(u2), then

(i) u=max(u1,u2)∈M1
Φ,µ(X) and max(g1, g2)∈D(u)∩LΦ,µ(X);

(ii) v =min(u1,u2)∈M1
Φ,µ(X) and max(g1, g2)∈D(v)∩LΦ,µ(X).

Proof. We prove the case (i) only, the proof of (ii) is similar. Let g =max(g1, g2)
and suppose that F1 and F2 are the exceptional sets for u1 and u2 in (3.12),
respectively. It is evident that u,g ∈ LΦ,µ(X). It remains to show that g ∈ D(u).
Let U = {x ∈ X�(F1∪F2) : u1(x)≥ u2(x)}. Let x, y ∈U . Then

∣∣u(x)−u(y)
∣∣= ∣∣u1(x)−u1(y)

∣∣≤ d(x, y)
(
g1(x) + g1(y)

)
. (3.15)

By the same manner we obtain, for x, y ∈ X�U ,

∣∣u(x)−u(y)
∣∣≤ d(x, y)

(
g2(x) + g2(y)

)
. (3.16)

For the remaining cases, let x ∈U and y ∈ X�U . If u1(x)≥ u2(y), then

∣∣u(x)−u(y)
∣∣= u1(x)−u2(y)≤ u1(x)−u1(y)≤ d(x, y)

(
g1(x) + g1(y)

)
.

(3.17)

If u1(x) < u2(y), then

∣∣u(x)−u(y)
∣∣=−u1(x) +u2(y)≤−u2(x) +u2(y)≤ d(x, y)

(
g2(x) + g2(y)

)
.

(3.18)
The case x ∈ X�U and y ∈ U follows by symmetry. Hence, for all x, y ∈

X�(F1∪F2) with µ(F1∪F2)= 0, |u(x)−u(y)| ≤ d(x, y)(g(x) + g(y)). �

Next, we prove the following important Poincaré inequality for Orlicz-
Sobolev functions.

Proposition 3.9. Let Φ be anN-function. If u∈M1
Φ,µ(X) and E ⊂ X is µ-measu-

rable with 0 < µ(E) <∞, then for every g ∈D(u)∩LΦ,µ(X),

∥∥∣∣u−uE∣∣∥∥L1
Φ,µ(E) ≤ 2diam(E)

∥∥|g|∥∥L1
Φ,µ(E), (3.19)

where uE = 1/µ(E)
∫
E f dµ.
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Proof. Put C = 2diam(E)‖|g|‖L1
Φ,µ(E) and remark that

(
u−uE

)
(x)= 1

µ(E)

∫
E

(
u(x)−u(y)

)
dµ(y). (3.20)

By the Jensen inequality

∫
E
Φ
(
u−uE
C

)
(x)dµ(x)=

∫
E
Φ

[
1

µ(E)

∫
E

u(x)−u(y)
C

dµ(y)

]
(x)dµ(x)

≤
∫
E

[∫
E

1
µ(E)

Φ
(
u(x)−u(y)

C

)
dµ(y)

]
dµ(x).

(3.21)

On the other hand, using the definition ofD(u) and the convexity of Φ, we get

Φ
(
u(x)−u(y)

C

)
≤Φ

(
g(x)− g(y)
2
∥∥|g|∥∥L1

Φ,µ(E)

)

≤ 1
2

[
Φ

(
g(x)∥∥|g|∥∥L1

Φ,µ(E)

)
+Φ

(
g(y)∥∥|g|∥∥L1

Φ,µ(E)

)]
.

(3.22)

Now we use the fact that
∫
EΦ(g(x)/‖|g|‖L1

Φ,µ(E))dµ(x)≤ 1 to deduce that

∫
E
Φ
(
u−uE
C

)
(x)dµ(x)

≤ 1
2µ(E)

∫
E

∫
E

[
Φ

(
g(x)∥∥|g|∥∥L1

Φ,µ(E)

)
+Φ

(
g(y)∥∥|g|∥∥L1

Φ,µ(E)

)]
dµ(y)dµ(x)

≤ 1
2µ(E)

∫
E

[
1 +Φ

(
g(x)∥∥|g|∥∥L1

Φ,µ(E)

)
µ(E)

]
dµ(x)≤ 1.

(3.23)

The proof is complete. �

Now, we prove an approximation theorem of Orlicz-Sobolev functions by
Lipschitz functions, both in Lusin sense and in norm. This generalizes a result in
[12] relative to the Sobolev case.

Theorem 3.10. Let Φ be an N-function satisfying the ∆2 condition and u ∈
M1

Φ,µ(X). Then for every ε > 0, there is a Lipschitz function h such that

(1) µ({x : u(x) 
= h(x)}) < ε;
(2) ‖|u−h|‖M1

Φ,µ(X) < ε.

Proof. Let u∈M1
Φ,µ(X) and let g be taken from the definition of ‖|u|‖L1

Φ,µ(X). Let
Xn={x ∈ X : |u(x)|≤n and g(x)≤n}. Since u,g∈LΦ,µ(X) and Φ satisfies the ∆2

condition, we conclude that u,g∈�Φµ(X). This implies that limn→∞Φ(n)µ(cXn)
= 0, and limn→∞µ(cXn)= 0 because Φ(n)→∞when n→∞. The restriction u|Xn
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is Lipschitz with the constant 2n and can be extended to the Lipschitz function
u′ on X with the same constant (see [8, Section 2.10.4] and [22, Theorem 5.1]).
We put un = (sgnu′)min(|u′|,n). It is clear that un is Lipschitz with the constant
2n, un|Xn = u|Xn , |un| ≤ n and µ({x : u(x) 
= un(x)})≤ µ(cXn)

n→∞−−−→ 0.
We must simply prove that un→ u in M1

Φ,µ(X) when n→∞. We have

∫
Φ
(
u−un

)
dµ=

∫
cXn

Φ
(
u−un

)
dµ

≤
∫
cXn

Φ
(|u|+

∣∣un∣∣)dµ
≤ CΦ

2

[∫
cXn

Φ
(|u|)dµ+

∫
cXn

Φ
(∣∣un∣∣)dµ

]

≤ CΦ

2

[∫
cXn

Φ
(|u|)dµ+Φ(n)µ

(c
Xn
)] n→∞−−−→ 0.

(3.24)

Since Φ satisfies the ∆2 condition, ‖|u− un|‖L1
Φ,µ(X)

n→∞−−−→ 0. It remains to esti-
mate the gradient. Let

gn =

0 for x ∈ Xn,
g(x) + 3n for x ∈c Xn.

(3.25)

We have |(u−un)(x)− (u−un)(y)| ≤ d(x, y)(gn(x) + gn(y)). Since
∫
Φ(gn)dµ=∫

cXnΦ(gn)dµ→ 0 as n→∞, we conclude that ‖|gn|‖L1
Φ,µ(X) → 0 when n→∞ be-

cause Φ satisfies the ∆2 condition. The theorem follows. �

4. Capacity on metric spaces

Definition 4.1. For a set E ⊂ X , define CΦ,µ(E) by

CΦ,µ(E)= inf
{∥∥|u|∥∥M1

Φ,µ(X) : u∈ B(E)
}
, (4.1)

where B(E)= {u∈M1
Φ,µ(X) : u≥ 1 on a neighborhood of E}.

If B(E)=∅, we set CΦ,µ(E)=∞. Functions belonging to B(E) are called ad-
missible functions for E.

Remark 4.2. In the definition of CΦ,µ(E), we can restrict ourselves to those ad-
missible functions u such that 0≤ u≤ 1.

Proof. Let B′(E)= {u∈ B(E) : 0≤ u≤ 1}, then B′(E)⊂ B(E) implies that

CΦ,µ(E)≤ inf
{∥∥|u|∥∥M1

Φ,µ(X) : u∈ B′(E)
}
. (4.2)
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On the other hand, let ε > 0 and take u ∈ B(E) such that ‖|u|‖M1
Φ,µ(X)

≤ CΦ(E) + ε. Then v = max(0,min(u,1)) ∈ B′(E), and by Lemma 3.8 we get
D(u)⊂D(v). Hence,

inf
{∥∥|u|∥∥M1

Φ,µ(X) : u∈ B′(E)
}≤ ∥∥|v|∥∥M1

Φ,µ(X) ≤
∥∥|u|∥∥M1

Φ,µ(X) ≤ CΦ,µ(E) + ε.

(4.3)

This completes the proof. �

We define a capacity as an increasing positive set function C given on a σ-
additive class of sets Γ, which contains compact sets and such that C(∅)= 0 and
C(
⋃
i≥1Xi) ≤

∑
i≥1C(Xi) for Xi ∈ Γ, i = 1,2, . . . . C is called outer capacity if for

every X ∈ Γ,

C(X)= inf
{
C(O) :O open, X ⊂O}. (4.4)

Theorem 4.3. Let Φ be an N-function. The set function CΦ,µ is an outer capacity.

Proof. It is obvious that CΦ,µ(∅)= 0 and that CΦ,µ is increasing. For countable
subadditivity, let Ei, i= 1,2, . . . be subsets of X and let ε > 0. We may assume that∑∞

i=1CΦ,µ(Ei) <∞. We choose ui ∈ B(Ei) and gui ∈ D(ui)∩ LΦ,µ(X) so that for
i= 1,2, . . . ,

∥∥∣∣ui∣∣∥∥Φ,µ,X +
∥∥∣∣gui∣∣∥∥Φ,µ,X ≤ CΦ

(
Ei
)

+ ε2−i. (4.5)

We show that v = supi ui is admissible for
⋃∞
i=1Ei and g = supi gui ∈ D(v)∩

LΦ,µ(X).
Observe that v,g ∈ LΦ,µ(X). Define vk =max1≤i≤k ui. By Lemma 3.8 the func-

tion gvk =max1≤i≤k gui ∈ D(vk)∩ LΦ,µ(X). Since vk → v µ-a.e., Lemma 3.7 gives
v ∈M1

Φ,µ(X). Clearly v ≥ 1 in a neighborhood of
⋃∞
i=1Ei. Hence CΦ,µ(

⋃∞
i=1Ei)≤

‖|v|‖M1
Φ,µ(X).

By [6, Lemma 2],

∥∥|v|∥∥M1
Φ,µ(X) ≤

∞∑
i=1

(∥∥∣∣ui∣∣∥∥Φ,µ,X +
∥∥∣∣gui∣∣∥∥Φ,µ,X

)
≤

∞∑
i=1

CΦ,µ
(
Ei
)

+ ε. (4.6)

Since ε is arbitrary, we deduce that CΦ,µ(
⋃∞
i=1Ei)≤

∑∞
i=1CΦ,µ(Ei). Hence CΦ,µ

is a capacity.
It remains to prove that CΦ,µ is outer, that is,

CΦ,µ(E)= inf
{
CΦ,µ(O) : E ⊂O, O open

}
. (4.7)

By monotonicity, CΦ,µ(E) ≤ inf{CΦ,µ(O) : E ⊂ O, O open}. For the reverse in-
equality, let ε > 0 and let u∈ B(E) be such that ‖|u|‖M1

Φ,µ(X) ≤ CΦ,µ(E) + ε. Since
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u∈ B(E), there is an open set O, E ⊂O, such that u≥ 1 on O. This implies that
CΦ,µ(O)≤ ‖|u|‖M1

Φ,µ(X) ≤ CΦ,µ(E) + ε.
Since ε is arbitrary, we obtain the claim, and the proof is complete. �

Corollary 4.4. Let Φ be an N-function. Let (Ki)i≥1 be a decreasing sequence of
compact sets in X and let K =⋂∞i=1Ki. Then

CΦ,µ(K)= lim
i→∞

CΦ,µ
(
Ki
)
. (4.8)

Proof. This is a direct consequence of the fact that CΦ,µ is an outer capacity. �

Theorem 4.5. Let Φ be a uniformly convex N-function such that Φ satisfies the
∆2 condition. Let (Oi)i≥1 be an increasing sequence of open sets in X and let O =⋃∞
i=1Oi. Then

CΦ,µ(O)= lim
i→∞

CΦ,µ
(
Oi
)
. (4.9)

Proof. The hypothesis implies that LΦ,µ(X) is uniformly convex. By monotonic-
ity, limi→∞CΦ,µ(Oi) ≤ CΦ,µ(O). To prove the reverse inequality, we may assume
that limi→∞CΦ,µ(Oi) <∞. Let ε > 0 and for i = 1,2, . . . , ui ∈ B(Oi), and gui ∈
D(ui)∩LΦ,µ(X) be such that

∥∥∣∣ui∣∣∥∥Φ,µ,X +
∥∥∣∣gui∣∣∥∥Φ,µ,X ≤ CΦ,µ

(
Oi
)

+ ε. (4.10)

The sequence (ui)i is bounded in LΦ,µ(X) and, hence, it possesses a weakly
convergent subsequence, which we denote again by (ui)i. The sequence (gui)i is
also bounded in LΦ,µ(X) and, by passing to a subsequence, we may assume that
ui→ u weakly in LΦ,µ(X) and gui → g weakly in LΦ,µ(X). We use the Banach-Saks

theorem to deduce that the sequence defined by vj = j−1
∑ j

i=1ui converges to u

in LΦ,µ(X) and gvj = j−1
∑ j

i=1 gui converges to g in LΦ,µ(X).
Now there is a subsequence of the sequence (vj) j so that vj → u µ-a.e. and

gvj → g µ-a.e. By Lemma 3.7, u∈M1
Φ,µ(X). On the other hand, vj → 1 µ-a.e. inO

and hence u≥ 1 µ-a.e. in O. Thus u∈ B(O). By the weak lower semicontinuity
of norms, we get

CΦ,µ(O)≤ ∥∥|u|∥∥Φ,µ,X +
∥∥|g|∥∥Φ,µ,X

≤ liminf
i→∞

(∥∥∣∣ui∣∣∥∥Φ,µ,X +
∥∥∣∣gui∣∣∥∥Φ,µ,X

)
≤ lim

i→∞
CΦ,µ
(
Oi
)

+ ε.

(4.11)

By letting ε→ 0, we obtain the result. �

The set function CΦ,µ is called the Φ-capacity. If a statement holds except
on a set E where CΦ,µ(E) = 0, then we say that the statement holds Φ-quasi-
everywhere (abbreviated Φ-q.e.).
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Lemma 4.6. Let Φ be any N-function and let u be a function in M1
Φ,µ(X). If PLu =

{x ∈ X : limt→x u(t)=∞} denotes the set of poles of u, then CΦ,µ(PLu)= 0.

Proof. If n is any positive integer, the function un = n−1 inf(u,n) is an admissi-
ble function for the Φ-capacity of the set PLu. It is easily seen that ‖|un|‖M1

Φ,µ(X) ≤
n−1‖|u|‖M1

Φ,µ(X). This implies that limn→∞‖|un|‖M1
Φ,µ(X) = 0. ThusCΦ,µ(PLu)= 0.

�

Theorem 4.7. Let Φ be an N-function and let E be any subset of X . Then
CΦ,µ(E) = 0 if and only if for any ε > 0, there exists a nonnegative function u ∈
M1

Φ,µ(X) such that limt→x u(t)=∞ for any x ∈ E and ‖|u|‖M1
Φ,µ(X) ≤ ε.

Proof. Let E ⊂ X be such that CΦ,µ(E)= 0, and let ε > 0. Then, by the definition
of the Φ-capacity, there is a sequence of nonnegative functions, (un)n, such that
un = 1 in some neighborhood of E and ‖|un|‖M1

Φ,µ(X) ≤ 2−nε, for any n. Then the

function u=∑n un belongs to M1
Φ,µ(X) and limt→x u(t)=∞. Furthermore, it is

evident that ‖|u|‖M1
Φ,µ(X) ≤ ε.

The converse implication is an immediate consequence of Lemma 4.6. �

Theorem 4.8. Let Φ be an N-function and (ui)i be a Cauchy sequence of func-
tions in M1

Φ,µ(X)∩C(X). Then, there is a subsequence (u′i )i of (ui)i which con-
verges pointwise Φ-q.e. in X . Moreover, the convergence is uniform outside a set of
arbitrary small Φ-capacity.

Proof. Since (ui)i is a Cauchy sequence, there is a subsequence (u′i )i of (ui)i such
that

∞∑
i=1

2i
∥∥∣∣u′i −u′i+1

∣∣∥∥
M1

Φ,µ(X) <∞. (4.12)

We set Xi = {x ∈ X : |u′i (x)−u′i+1(x)| > 2−i} for i= 1,2, . . . , and Yj =
⋃∞
i= j Xi.

Since the functions u′i are continuous by hypothesis, Xi and Yj are open. Then,
for all i, 2i(u′i −u′i+1)∈ B(Xi). Hence

CΦ,µ
(
Xi
)≤ 2i

∥∥∣∣u′i −u′i+1

∣∣∥∥
M1

Φ,µ(X). (4.13)

By subadditivity of CΦ,µ, we obtain

CΦ,µ
(
Yj
)≤ ∞∑

i= j
CΦ,µ
(
Xi
)≤ ∞∑

i= j
2i
∥∥∣∣u′i −u′i+1

∣∣∥∥
M1

Φ,µ(X). (4.14)

From the convergence of the sum (4.12) we conclude that

CΦ,µ


 ∞⋂

j=1

Yj


≤ lim

j→∞
CΦ,µ
(
Yj
)= 0. (4.15)
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Thus (u′i )i converges in X�
⋂∞

j=1Yj . Moreover, we have for any x ∈ X�Yj

and all k > j

∣∣u′j(x)−u′k(x)
∣∣≤ k−1∑

i= j

∣∣u′i (x)−u′i+1(x)
∣∣≤ k−1∑

i= j
2−i ≤ 21− j . (4.16)

This implies that (u′i )i converges uniformly in X�Yj .
This completes the proof. �

Definition 4.9. Let Φ be an N-function. A function u : X → [−∞,+∞] is Φ-
quasi-continuous in X if for every ε > 0, there is a set E such that CΦ,µ(E) < ε
and the restriction of u to X�E is continuous. Since CΦ,µ is an outer capacity,
we may assume that E is open.

Theorem 4.10. Let Φ be an N-function satisfying the ∆2 condition and u ∈
M1

Φ,µ(X). Then there is a function v ∈M1
Φ,µ(X) such that u = v µ-a.e. and v is

Φ-quasi-continuous in X . The function v is called a Φ-quasi-continuous represen-
tative of u.

Proof. We know that M1
Φ,µ(X) is a Banach space and by Theorem 3.10, C(X)∩

M1
Φ,µ(X) is a dense subspace of M1

Φ,µ(X). Hence, completeness implies that
M1

Φ,µ(X) can be characterized as the completion of C(X)∩M1
Φ,µ(X) in the norm

of M1
Φ,µ(X). Thus there are sequences of functions (ui)i ⊂ C(X)∩ LΦ,µ(X) and

(gi)i ⊂ D(ui − u) such that ui → u and gi → 0 in LΦ,µ(X). Hence for a subse-
quence, which we denote again by (ui)i, ui → u µ-a.e. From Theorem 4.8, we
deduce that the limit function v of the sequence (ui)i is Φ-quasi-continuous in
X . This completes the proof. �

5. Comparison between capacity and measures

5.1. Comparison between capacity and the measure µ. The sets of zero capac-
ity are exceptional sets in the strongly nonlinear potential theory. We show in
the next lemma that sets of vanishing capacity are also of measure zero.

Lemma 5.1. Let Φ be any N-function. Then

(1) if E ⊂ X is such that CΦ,µ(E)= 0, then µ(E)= 0;
(2) if E ⊂ X is such that µ(E) 
= 0, then CΦ,µ(E)≥ 1/Φ−1(1/µ(E)).

Proof. (1) If n is a strictly positive integer, we can find un ∈ B(E) such that
‖|nun|‖Φ,µ,X ≤ ‖|nun|‖M1

Φ,µ(X) ≤ 1. Hence, there is an open set On such that E ⊂
On and un ≥ 1 in On. Then∫

E
Φ
(
nun
)
dµ≤

∫
On

Φ
(
nun
)
dµ≤

∫
X
Φ
(
nun
)
dµ≤ 1. (5.1)

By the inequality nΦ(un) ≤Φ(nun) and by the fact that un ≥ 1 in E, we get
Φ(1)µ(E)≤ 1/n. This implies the claim.
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(2) Let u∈ B(E), then there is an open set O such that E ⊂O and u≥ 1 in O.
Hence ∫

X
Φ
[
u ·Φ−1

(
1

µ(E)

)]
dµ≥

∫
E
Φ
[
u ·Φ−1

(
1

µ(E)

)]
dµ≥ 1. (5.2)

Thus

∥∥|u|∥∥M1
Φ,µ(X) ≥

∥∥|u|∥∥Φ,µ,X ≥ 1
Φ−1
(
1/µ(E)

) . (5.3)

We obtain the result by taking the infimum over all u∈ B(E). �

Definition 5.2. A measure µ is said to be doubling if there is a constant C ≥ 1
such that

µ
(
B(x,2r)

)≤ Cµ(B(x,r)
)
, (5.4)

for every x ∈ X and r > 0.
The smallest constantC in (5.4) is called the doubling constant and is denoted

by Cd.

Theorem 5.3. Let Φ be any N-function, µ a doubling measure with the doubling
constant Cd, x0 ∈ X , and 0 < r ≤ 1. Then

CΦ,µ
(
B
(
x0, r
))≤ 2Cdr−1 1

Φ−1
(
1/µ
(
B
(
x0, r
))) . (5.5)

Proof. We define

u(x)=




2r−d(x,x0
)

r
, x ∈ B(x0,2r

)
�B
(
x0, r
)
,

1, x ∈ B(x0, r
)
,

0, x ∈ X�B
(
x0,2r

)
.

(5.6)

Define also

g(x)=



1
r
, x ∈ B(x0,2r

)
,

0, x ∈ X�B
(
x0,2r

)
.

(5.7)

We show that g ∈D(u). Let E = B(x0,2r)�B(x0, r), and x, y ∈ E. Then

∣∣u(x)−u(y)
∣∣=
∣∣d(x,x0

)−d(y,x0
)∣∣

r
≤ d(x, y)

r
. (5.8)

Hence (3.12) follows in this case. Let x ∈ E and y ∈ B(x0, r). We have

∣∣u(x)−u(y)
∣∣= 1−u(x)= d

(
x,x0
)− r

r
. (5.9)
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Since d(y,x0) < r ≤ d(x,x0), we get

d
(
x,x0
)− r ≤ d(x,x0

)−d(y,x0
)≤ d(x, y), (5.10)

and hence (3.12) follows. The case y ∈ E and x ∈ B(x0, r) is completely analo-
gous. Now, if x, y ∈ B(x0, r) or x, y ∈ X�B(x0,2r), then clearly (3.12) holds. On
the other hand, let x ∈ X�B(x0,2r) and y ∈ B(x0, r). Then

∣∣u(x)−u(y)
∣∣= 1≤ d(x, y)

r
, (5.11)

which implies (3.12). Finally, if x ∈ E and y ∈ X�B(x0,2r), then

∣∣u(x)−u(y)
∣∣= u(x)= 2r−d(x,x0

)
r

(5.12)

and since d(x,x0) < 2r < d(y,x0), we obtain

2r−d(x,x0
)≤ d(y,x0

)−d(x,x0
)≤ d(x, y) (5.13)

and (3.12) holds. Thus g ∈D(u), u∈ B(B(x0, r)) and

CΦ,µ
(
B
(
x0, r
))≤ ∥∥|u|∥∥Φ,µ,X +

∥∥|g|∥∥Φ,µ,X . (5.14)

We have u≤ χB(x0,2r), ‖|u|‖Φ,µ,X ≤ ‖|χB(x0,2r)|‖Φ,µ,X . We know that

∥∥∣∣χB(x0,2r)
∣∣∥∥

Φ,µ,B(x0,2r)
= 1

Φ−1
(
1/µ
(
B
(
x0,2r

))) , (5.15)

where χB(x0,2r) is the characteristic function of B(x0,2r).
On the other hand, g ≤ r−1χB(x0,2r), and hence

∥∥|g|∥∥Φ,µ,X ≤ r−1 1
Φ−1
(
1/µ
(
B
(
x0,2r

))) . (5.16)

Thus

CΦ,µ
(
B
(
x0, r
))≤ (1 + r−1) 1

Φ−1
(
1/µ
(
B
(
x0,2r

))) . (5.17)

Now, since µ is doubling, µ(B(x0,2r))≤ Cdµ(B(x0, r)). Hence

1
Φ−1
(
1/µ
(
B
(
x0,2r

))) ≤ 1
Φ−1
(
1/Cdµ

(
B
(
x0, r
))) . (5.18)
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It remains to evaluate Φ−1(1/Cdµ(B(x0, r))). Recall that, Φ(αx)≤ αΦ(x), for
all 0≤ α≤ 1, and all x. This implies that αΦ−1(x)≤Φ−1(αx), for all 0≤ α≤ 1,
and all x. Hence

1
Φ−1
(
1/Cdµ

(
B
(
x0, r
))) ≤ Cd 1

Φ−1
(
1/µ
(
B
(
x0, r
))) . (5.19)

Thus

CΦ,µ
(
B
(
x0, r
))≤ (1 + r−1)Cd 1

Φ−1
(
1/µ
(
B
(
x0, r
)))

≤ 2r−1Cd
1

Φ−1
(
1/µ
(
B
(
x0, r
))) . (5.20)

This completes the proof. �

5.2. Comparison between capacity and Hausdorff measures. We recall the def-
inition of Hausdorff measures. Let h : [0,+∞[→ [0,+∞[ be an increasing func-
tion such that limr→0h(r)= 0. For 0 < δ ≤∞ and E ⊂ X , we define

Hh
δ(E)= inf

{ ∞∑
i=1

h
(
ri
)

: E ⊂
∞⋃
i=1

B
(
xi, ri
)
, ri ≤ δ

}
. (5.21)

The h-Hausdorff measure of E is given by

Hh(E)= lim
δ→0

Hh
δ(E). (5.22)

If h(t) = ts for 0 ≤ s <∞, we obtain the s-dimensional Hausdorff measure
which we denote by Hs.

For more details on Hausdorff measures, one can consult [8, Chapter 2, Sec-
tion 10].

A measure µ is regular with dimension s > 0, if there is c ≥ 1 such that, for
each x ∈ X and 0 < r ≤ diam(X),

c−1rs ≤ µ(B(x,r)
)≤ crs. (5.23)

Note that if µ is regular with dimension s, then µ is doubling. Moreover, X has
Hausdorff dimension s and there is a constant c > 0 such that, for every E ⊂ X ,

c−1Hs(E)≤ µ(E)≤ cHs(E). (5.24)

Theorem 5.4. Let Φ be anN-function satisfying the ∆2 condition and α= α(Φ)=
supt>0(tϕ(t)/Φ(t)). Let µ be a regular measure with dimension s such that s > α.
Define h : [0,+∞[→ [0,+∞[ by h(t)= ts/α−1. Then for every E ⊂ X ,

CΦ,µ(E)≤ cHh(E), (5.25)
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where the constant c depends only on Φ and the doubling constant. In particular, if
Hh(E)= 0, then CΦ,µ(E)= 0.

Proof. Let B(xi, ri), i= 1,2, . . ., be any covering of E such that the radii ri satisfy
ri ≤ 1/2, i= 1,2, . . . . By (5.5) we get, for all i, that

CΦ,µ
(
B
(
xi, ri
))≤ Cr−1 1

Φ−1
(
1/µ
(
B
(
xi, ri
))) . (5.26)

From (5.23) we have µ(B(xi, ri))≤ crsi , for all i; and hence

Φ−1

(
1

µ
(
B
(
xi, ri
))
)
≥Φ−1

(
1
crsi

)
≥ c−1Φ−1

(
1
rsi

)
. (5.27)

It remains to evaluate Φ−1(1/rsi ). For this goal we distinguish two cases

(i) if Φ(1)≤ 1, then Φ−1(1/rsi )≥Φ−1(Φ(1)(1/rsi ));
(ii) if Φ(1)≥ 1, then

Φ−1
(

1
rsi

)
=Φ−1

(
Φ(1)
Φ(1)rsi

)
≥ 1

Φ(1)
Φ−1

(
Φ(1)

1
rsi

)
. (5.28)

Hence in the two cases we have Φ−1(1/rsi )≥ C′Φ−1(Φ(1)(1/rsi )). We get

Φ−1
(

1
µ
(
B
(
xi, ri
)))≥ C′Φ−1

(
Φ(1)

1
rsi

)
. (5.29)

On the other hand we know that Φ(t) ≤ Φ(1)tα, for all t ≥ 1. This implies
that t1/α ≤Φ−1(Φ(1)t), for all t ≥ 1. Whence, for all i

Φ−1

(
1

µ
(
B
(
xi, ri
))
)
≥ C′ 1

rs/αi
. (5.30)

Thus, for all i

CΦ,µ
(
B
(
xi, ri
))≤ C′′rs/α−1. (5.31)

The subadditivity of CΦ,µ yields

CΦ,µ(E)≤ C′′
∞∑
i=1

CΦ,µ
(
B
(
xi, ri
))≤ C′′ ∞∑

i=1

h
(
ri
)
. (5.32)

By taking the infimum over all coverings by balls and letting the radii tend to
zero, we finish the proof. �
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