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The paper is concerned with a global bifurcation result for equations whose
principal parts are anisotropic p-Laplace-like operators. Using an abstract bifur-
cation result for equations with multivalued operators in Banach spaces together
with topological degree calculations, we show the Rabinowitz alternative for the
bifurcating branches.

1. Introduction

This paper is about a global bifurcation result for nonlinear equations whose
principal operators are anisotropic p-Laplace-like operators (sometimes called
φ-Laplacians). The equation is, in the weak form,

u ∈ X :
∫

�

N∑
i=1

φi

(|∇u|)∂iu∂iv dx =
∫

�

F(x,u,λ)v dx, ∀v ∈ X, (1.1)

where X is an appropriate function space and φi , F are given functions. The
coefficients φi’s are different in general. In the particular case where φi(|ξ |) =
|ξ |p−2, for all ξ ∈ R

N , for all i ∈ {1, . . . ,N}, (1.1) reduces to the p-Laplacian
equation and there are several bifurcation results available (cf. [3, 4]). It seems
that bifurcation problems for anisotropic elliptic operators have not been ad-
dressed in detail.

As is well known in bifurcation theory, a first step is to find a “linearization”
of (1.1) such that bifurcation in (1.1) can be studied through the eigenvalues
and eigenfunctions of the linearization. Different from equations with com-
pact perturbations of linear operators, we show that (1.1) can be related to a
nonlinear but homogeneous equation (called the homogenization of (1.1)). An-
other difficulty is that since the functions φi’s may have different growths at
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zero and infinity, the homogenization of (1.1) is defined properly only on a
function space different from X. This makes the usual continuation processes
(cf. [6, 12, 15]) to calculate the involved topological degrees and to prove global
bifurcation in this case more difficult. Moreover, since the φi’s are different in
general, (1.1) does not have a variational structure and the variational approach
used recently in [8, 9] (by converting the equation to a variational inequality) is
not applicable in our problem here.

To study the bifurcation of (1.1), we employ a resolvent operator to convert
(1.1) to a fixed point inclusion. Because the principal operator is not strictly
monotone, the topological invariances are calculated in terms of the Leray-
Schauder degree for multivalued compact vector fields. We show that under
some conditions, a nonlinear equation

A(u) = B(u,λ) (u ∈ X, λ ∈ R) (1.2)

in a Banach space X can be associated with a simpler, homogeneous equation
(in a different space) so that the bifurcation properties of (1.2) are reflected in
eigenvalues and topological degrees in that “homogenized” equation (in fact, an
inclusion). The maps A and B are in general not compact perturbations of linear
mappings. Also, by working on a space larger than X, we are able to bypass
the assumption that A is of class (S) or (S)+, which is a useful but sometimes
hard to verify assumption on nonlinear elliptic operators (cf. [2, 14]). Our ap-
proach is based on the classical ideas of using resolvent (Green’s) operators
and topological degrees. However, due to the nature of our problem (nonvari-
ational structure, set-valued resolvent operator, principal operator not being in
class (S) or (S)+, bifurcation and degree computation being in different func-
tion spaces, etc.), new arguments and techniques are needed in the proof of
the abstract bifurcation theorem in Section 2. The verification of the general
assumptions in the specific case of (1.1) also requires nontrivial estimates and
calculations.

The paper is organized as follows. In Section 2, we prove an abstract bifur-
cation theorem for (1.2). We define the homogenized equation and inclusion
of (1.2) and prove (in Theorem 2.9) that if there is a change of topological
degrees in the homogenized inclusion, then there is a global bifurcation in (1.2)
in the sense of the Rabinowitz alternative. This result extends the well-known
Rabinowitz global bifurcation theorem to equations whose operators are not
necessarily compact perturbations of linear mappings, and the principal oper-
ators may not belong to class (S) or (S)+. In Section 3, we use the general
result of Section 2 to show global bifurcation in (1.1). In this particular case,
the homogenized inclusion of (1.1) is proved to be the usual p-Laplacian equa-
tion. Using degree computations at the principal eigenvalue of the p-Laplacian
in [3], we prove that there is bifurcation in (1.1) at that eigenvalue, and the
corresponding bifurcation branch satisfies the Rabinowitz alternative.



Vy Khoi Le 231

2. A global bifurcation result

We are concerned in this section with the bifurcation of certain functional equa-
tions without variational structure, that is, the principal operators are not neces-
sarily gradients of some potential functionals. Consider the following equation:

A(u) = B(u,λ) (u ∈ X, λ ∈ R) (2.1)

in a real, reflexive Banach space X. The map A is the principal operator and B

is the lower order term, depending on a real parameter λ. The set X∗ is the dual
space of X. We use ‖·‖ (or ‖·‖X) and 〈·, ·〉 (or 〈·, ·〉X,X∗) to denote the norm of X

and the dual pairing between X and X∗. Assume that X is compactly embedded
in another Banach space Z (with norm ‖·‖Z and dual pairing 〈·, ·〉Z,Z∗), that is,
X ⊂ Z and the embedding i : X ↪→ Z is compact.

Suppose that A : X → X∗ is monotone, hemicontinuous, bounded, and
A(0) = 0. Also, A is coercive in the following sense:

lim‖x‖→∞

〈
A(x),x

〉
‖x‖ = ∞. (2.2)

The map B is a bounded, continuous mapping from Z × R to Z∗ such that
B(0,λ) = 0, for all λ (further assumptions on A and B will be specified later).
Hence, 0 is always a solution of (2.1). For convenience, we still use B to denote
the restriction of B on X×R. For each f in X∗, the above assumptions on A

imply that the equation

A(x) = f (2.3)

has at least one solution in X (cf. [10]). We denote by P(f ) = PA(f ) the set
of all solutions of (2.3). Hence, PA(f ) �= ∅. Equation (2.1) is equivalent to the
fixed point inclusion

u ∈ PA

[
B(u,λ)

]
, u ∈ X. (2.4)

Because of the embedding i : X ↪→ Z, (2.4) is also equivalent to the following
inclusion in Z:

u ∈ iPA

[
B(u,λ)

]
, u ∈ Z. (2.5)

In fact, if u satisfies (2.4), then it clearly satisfies (2.5). Conversely, if u is a
solution of (2.5), then u ∈ X (since Z∗ ⊂ X∗ and PA(X∗) ⊂ X). As i(x) = x for
x ∈ X, we have (2.4).Therefore, instead of studying (2.1) or (2.4), we consider
the bifurcation of the equivalent inclusion (2.5), that is,

0 ∈ u− iPA

[
B(u,λ)

]
, u ∈ Z. (2.6)

We study the bifurcation of this equation in Z. First, we extend in a natural way
the definition of bifurcation points and the basic global bifurcation result from
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equations to inclusions. Assume that Z is a Banach space and F mapping from
Z×R to �(Z), where

�(Z) = {
U ⊂ Z : U �= ∅, U is closed and convex in Z

}
. (2.7)

Consider the inclusion

0 ∈ u−F(u,λ), u ∈ Z. (2.8)

Assume that 0 ∈ F(0,λ), for all λ ∈ R. Then, for all λ, 0 is a trivial solution of
(2.8). We define the bifurcation points as usual.

Definition 2.1. The point (0,λ0) (or simply λ0) is called a bifurcation point
of (2.8) (in Z) if there exists a sequence {(un,λn)} of solutions of (2.8) such
that un �= 0, for all n, and un → 0 in Z, λn → λ0 in R, as n → ∞. Now, we
assume that for each λ, F(·,λ) is an upper semicontinuous, compact mapping.
In particular, for any bounded subset M of Z, the set

F(M,λ) :=
⋃
x∈M

F(x,λ) (2.9)

is relatively compact in Z. Under these assumptions, the topological degree (for
multivalued compact fields) d(I − F(·,λ),U,a) is well defined for all open,
bounded subsets U of Z, provided

a �∈ F(∂U,λ)

(
=

⋃
x∈∂U

F (x,λ)

)
. (2.10)

We refer to [7] or [11] for more detailed discussions and basic properties of
topological degrees for multivalued compact fields. Assume λ is not a bifurcation
point of (2.8). By definition, there exists an open neighborhood U of 0 such that
0 �∈ u−F(u,λ) for all u ∈ U \{0}. Thus, the degree d(I −F(·,λ),Br(0),0) is
defined for all r > 0 sufficiently small. We have the following global bifurcation
theorem for (2.8).

Theorem 2.2. Let a,b ∈ R (a < b). Assume (0,a) and (0,b) are not bifurcation
points of (2.8) and that

dZ

(
I −F(·,a),BZ

r (0),0
) �= dZ

(
I −F(·,b),BZ

r (0),0
)

(2.11)

for some r > 0 sufficiently small (BZ
r (0) is the open ball in Z with center at 0,

radius r). Let

� = [{
(u,λ) : (u,λ) is a solution of (2.8) with u �= 0

}∪({0}×[a,b])]Z
(2.12)

and � be the connected component of � that contains {0}×[a,b]. Then, either
(i) � is unbounded in Z×R, or

(ii) �∩({0}×(R\[a,b])) �= ∅.



Vy Khoi Le 233

(We use the superscript Z in (2.12) to emphasize that the operation below it
is taken in Z.)

As usual, the proof of this theorem is based on a separation property in
metric spaces (Whyburn’s lemma) together with excision and homotopy in-
variance properties of the topological degree. Since the topological degree of
compact, multivalued vector fields has these properties (cf. [7] or [11]), the
proof of Theorem 2.2 is a straightforward adaptation and generalization of the
corresponding result for single-valued compact vector fields, as presented, for
example, in [13].

Now, we use Theorem 2.2 to the particular case of inclusion (2.5). First, we
have the following lemma.

Lemma 2.3. For each f ∈ X∗, PA(f ) is a nonempty, convex subset of X.

Proof. The proof of this lemma is routine. As noted previously, PA(f ) �= ∅.
Assume that u,w ∈ PA(f ), that is,

A(u) = A(w) = f in X∗, (2.13)

and that x = tu+ (1− t)w for some t ∈ [0,1]. Since A is monotone, one can
apply Minty’s lemma (cf. [5]) to get〈

A(v),v−u
〉 ≥ 〈f,v−u〉, 〈

A(v),v−w
〉 ≥ 〈f,v−w〉, (2.14)

for all v ∈ X. Multiplying the first inequality by t and the second by 1− t , and
adding the inequalities thus obtained, we get〈

A(v),v−x
〉 ≥ 〈f,v−x〉, ∀x ∈ X. (2.15)

Apply again Minty’s lemma, we have〈
A(x),v−x

〉 ≥ 〈f,v−x〉, ∀x ∈ X, (2.16)

which implies that A(x) = f in X∗. This shows that x ∈ PA(f ). Thus, PA(f )

is convex. �

Lemma 2.4. The mapping PA is bounded from X∗ to 2X, that is, if U is a
bounded set in X∗, then PA(U) = ∪f ∈UPA(f ) is a bounded set in X.

Proof. Let U be a bounded subset of X∗. Assume PA(U) is not bounded and
that there exist sequences {un} and {fn} such that {fn} ⊂ U , un ∈ PA(fn), for
all n, and ‖un‖X → ∞ as n → ∞. By the definition of PA, A(un) = fn, for all
n. Thus, ∣∣∣∣∣

〈
A

(
un

)
,un

〉∥∥un

∥∥
∣∣∣∣∣ ≤ ∥∥fn

∥∥∗ ≤ sup
f ∈U

‖f ‖∗(< ∞), ∀n. (2.17)
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This, however, contradicts the coercivity of A (cf. (2.2)). Hence, PA(U) must
be bounded in X. �

Lemma 2.5. For each f ∈ X∗, PA(f ) is closed in Z.

Proof. Let {un} be a sequence in PA(f ) such that un →u in Z. From Lemma 2.4,
the sequence {‖un‖} is bounded in X. Hence, by passing to a subsequence,
we can assume that there exists u∗ ∈ X such that un ⇀ u∗ in X, (“⇀” de-
notes the weak convergence). Therefore, un → u∗ in Z(-strong). It follows that
u = u∗ ∈ X and un ⇀ u in X. From Minty’s lemma (cf. [5]), we have from

0 = 〈
A

(
un

)−f,v−un

〉
, ∀v ∈ X (2.18)

that 〈
A(v)−f,v−un

〉 ≥ 0, ∀v ∈ X. (2.19)

Letting n → ∞ in this inequality, we have 〈A(v)−f,v−u〉 ≥ 0, for all v ∈ X.
Using Minty’s lemma once more, we have〈

A(u)−f,v−u
〉 ≥ 0, ∀v ∈ X. (2.20)

This, of course, implies that A(u) = f , that is, u ∈ PA(f ). �

Lemmas 2.3, 2.4, and 2.5 prove, in particular, that iPA[B(u,λ)] ∈ �(Z) for
every u ∈ Z, λ ∈ R. Another lemma is needed for our definition of the degree
of I − iPA[B(·,λ)] in Z (I is the identity mapping on Z).

Lemma 2.6. (a) The mapping from Z to �(Z) defined by u �→ iPA[B(u,λ)] is
compact, that is, for every bounded subset U of Z, the set ∪u∈UPA[B(u,λ)] is
relatively compact in Z.

(b) The mapping in (a) is upper semicontinuous from Z to �(Z), that is, for
each u ∈ Z, if V is an open set in Z such that iPA[B(u,λ)] ⊂ V , then there
exists an open neighborhood U of u in Z such that

iPA

[
B(U,λ)

] ≡
⋃
x∈U

iPA

[
B(x,λ)

] ⊂ V. (2.21)

Proof. (a) Since B is bounded, the set {B(u,λ) : u ∈ U} is bounded in Z∗ and
thus in X∗. From Lemma 2.4, the set ∪u∈UPA[B(u,λ)] is bounded in X. Now,
the set

⋃
u∈U

iPA

[
B(u,λ)

] = i

{⋃
u∈U

PA

[
B(u,λ)

]}
(2.22)

is relatively compact in Z by the compactness of the embedding i.
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(b) We use Lemma 2.4 and the arguments in Lemma 2.5. Assume by contra-
diction that for every open neighborhood U of u, one always has

iPA

[
B(U,λ)

] �⊂ V. (2.23)

It follows that there exist sequences {yn} ⊂ Z and {un} ⊂ U such that

yn ∈ PA

[
B

(
un,λ

)]
, (2.24)

yn �∈ V, ∀n, (2.25)

un −→ u in Z as n −→ ∞. (2.26)

It follows that B(un,λ) → B(u,λ) in Z∗. The set {B(un,λ) : n ∈ N} is thus
bounded in Z∗ and in X∗. From Lemma 2.4 and (2.24), the set {yn : n ∈ N} is
bounded in X. By passing to a subsequence if necessary, we can assume that

yn y in X. (2.27)

Also, (2.24) means that

A
(
yn

) = B
(
un,λ

)
, ∀n. (2.28)

Using the arguments in the proof of Lemma 2.5, one has from (2.26), (2.27),
and (2.28) that

A(y) = B(u,λ), (2.29)

that is, y ∈ iPA[B(u,λ)]. On the other hand, it follows from (2.25) that y �∈ V .
Hence, iPA[B(u,λ)] �⊂ V . This contradiction proves (b). �

We note from the monotonicity of A that 〈A(u),u〉 ≥ 0, for all u ∈ X. If A

has the following nondegeneracy property:[
un −→ 0 in Z,

〈
A

(
un

)
,un

〉 −→ 0
] �⇒ un −→ 0 in X, (2.30)

then λ0 is a bifurcation point of inclusion (2.8) in Z (cf. Definition 2.1) if and
only if λ0 is a bifurcation point of the corresponding inclusion in X.

In fact, assume that {(un,λn)} is a sequence of solutions of (2.8) such that
un → 0 in Z, un �= 0, and λn → λ0. We have B(un,λn) → 0 in Z∗. Thus,〈

B
(
un,λn

)
,un

〉 = 〈
B

(
un,λn

)
,un

〉
Z,Z∗ −→ 0. (2.31)

However, 〈
A

(
un

)
,un

〉 = 〈
B

(
un,λn

)
,un

〉
. (2.32)

Therefore, {un} satisfies the conditions in (2.30). By the implication in (2.30),
we must have un → 0 in X, that is, λ0 is a bifurcation point in X. The converse
is trivial.
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Now, we consider a homogenization procedure for (2.8). We fix a number
p > 1 and define, for σ > 0:

Aσ (u) = 1

σp−1
A(σu), (2.33)

Bσ (u,λ) = 1

σp−1
B(σu,λ). (2.34)

For each σ > 0, Aσ is a monotone, coercive, bounded mapping from X to X∗
and Bσ is a continuous, bounded mapping from Z × R to Z∗. It is clear that
A = A1 and B = B1. We assume furthermore that X0 is a reflexive Banach
space, with norm ‖ · ‖X0 = ‖ · ‖0, that is continuously embedded in X. We
have the continuous embeddings X0 ↪→ X ↪→ Z, and thus Z∗ ↪→ X∗ ↪→ X∗

0 .
Suppose that there exist two mappings A0 : X0 → X∗

0 and B0 : Z ×R → Z∗
such that A0 is monotone, bounded, hemicontinuous, coercive in X0 (in the
sense of (2.2)), A0(0) = 0, B0 is bounded, continuous, and B0(0,λ) = 0 for all
λ. We assume that Aσ converges to A0 and Bσ converges to B0 as σ → 0 in the
following sense.

(H1) If σn → 0+, vn ⇀ v in X(-weak), and the sequence {Aσn(vn)} is
(strongly) convergent in X∗, then v ∈ X0, A0(v) ∈ X∗, and

A0(v) = lim
n→∞Aσn

(
vn

)
in X∗. (2.35)

(H2a) If σn → 0+, vn → v in Z, and λn → λ, then

Bσn

(
vn,λn

) −→ B0(v,λ) in Z∗. (2.36)

We also need the following assumption on the boundedness of Bσ for σ small:
(H2b) If {vn} is a bounded sequence in Z, λn → λ and σn → 0+, then the

sequence {Bσn(un,λn)} is bounded in Z∗.
The family {Aσ : σ > 0} has the following nondegeneracy condition near 0:
(H3) If σn → 0+, vn ⇀ 0 in X, and

Aσn

(
vn

) = fn −→ 0 in X∗, (2.37)

then

vn −→ 0 in X. (2.38)

For σ > 0, we denote by PAσ the solution mapping of the operator Aσ , that is,

u = PAσ (f ) ⇐⇒ Aσ (u) = f. (2.39)

By the same proof as in Lemma 2.6, we see that the mapping

x �−→ iPAσ

[
Bσ (x,λ)

]
(2.40)
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is compact and upper semicontinuous from Z to �(Z). From the assumptions
on A0 and B0, we see that the mapping in (2.40) also has these properties when
σ = 0. Therefore, for every σ ∈ [0,1], the degree d(I − iPAσ [Bσ (·,λ),U,a)

is defined provided U is a bounded open subset of Z and a �∈ ∪u∈∂U (u −
PAσ [Bσ (u,λ)]). Note that condition (H1) can also be stated equivalently as

(H1′) Assume σn → 0 and {vn} ⊂ X, {fn} ⊂ X∗ are sequences such that

Aσn

(
vn

) = fn, fn −→ f in X∗, vn ⇀ v in X, (2.41)

then v ∈ X0 and

A0(v) = f in X∗
0 . (2.42)

Concerning (H3), we note that the following condition is more restrictive, yet it
is easier to verify

(H3′) If vn ⇀ 0 in X, σn → 0, and 〈Aσn(vn),vn〉 → 0, then vn → 0 in X.
We also need the following equi-coercivity condition for the family {Aσ } for

small values of σ :
(H4) If σn → 0+ and ‖un‖ → ∞, then〈

Aσn

(
un

)
,un

〉∥∥un

∥∥ −→ ∞. (2.43)

Now, we associate to (2.1) the “homogenized” equation

A0(u) = B0(u,λ), u ∈ X, λ ∈ R, (2.44)

which is equivalent to the fixed point inclusion

u ∈ PA0

[
B0(u,λ)

]
, u ∈ X. (2.45)

This inclusion is equivalent to the following inclusion in Z:

u ∈ iPA0

[
B0(u,λ)

]
, u ∈ Z. (2.46)

The operators A0 and B0 introduced above play, in some sense, the roles of
the Gâteaux derivatives A′(0) and ∂uB(0,λ) in the cases where A and B are
not equivalent to linear operators at 0. In classical situations where A is a linear
operator and B is a perturbation of a linear operator

B(u,λ) = λLu+g(u), (2.47)

with g(u) = o(‖u‖) as u → 0, we have A0(u) = A(u) and B0(u,λ) = λLu.
However, in (1.1), A and B cannot be linearized at 0 and A0, B0 are nonlinear in
general. Nevertheless, one can define generalized eigenvalues and eigenvectors
for the homogeneous equation (2.44) and relate the bifurcation of (2.1) with
topological degrees at eigenvalues of (2.44).
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As usual, it is expected that Aσ converges to A0 as σ → 0+ with an additional
(and natural) condition:

(H5) For all v ∈ X0,

Aσ (v) −→ A0(v) in X∗
0 (2.48)

when σ → 0∗. This condition just means that Aσ converges pointwise to A0

in X0. Together with (H1) and (H3), (H5) shows that A0 and B0 are uniquely
determined and are homogeneous of degree (p−1) in u, that is,

A0(σu) = σp−1A0(u), ∀u ∈ X0, ∀σ ≥ 0,

B0(σu,λ) = σp−1B0(u,λ), ∀u ∈ Z, ∀σ ≥ 0.
(2.49)

However, (H5) is not needed in the proof of our main results later. From the
homegeneity of A0 and B0, it immediately follows that if (u,λ) is a solution
of (2.44), then so is (σu,λ) with every σ ≥ 0. This suggests the following
definition.

Definition 2.7. In (2.44), λ is called an eigenvalue if (2.44) has a solution (u,λ)

with λ �= 0.

The following lemma gives a property of numbers which are not eigenvalues
of (2.44). This is crucial to the proof of our main bifurcation result.

Lemma 2.8. Under the assumptions (H1), (H2), (H3), and (H4), if a is not
an eigenvalue of (2.44), then there exists an open neighborhood U of 0 in Z

such that

0 �∈ {
u− iPAσ

[
Bσ (u,a)

] : u ∈ ŪZ \{0}, σ ∈ [0,1]}. (2.50)

Proof. First, we show that for r > 0 sufficiently small,

0 �∈ {
u−PAσ

[
Bσ (u,a)

] : u ∈ Br(0)
X \{0}, σ ∈ [0,1]}. (2.51)

Assume otherwise that there are sequences {un}, {σn} such that σn → σ ∈ [0,1],
0 �= ‖un‖X → 0, and

0 ∈ un −PAσn

[
Bσn

(
un,a

)]
, ∀n. (2.52)

Hence, un ∈ PAσn
[Bσn(un,a)], that is,

Aσn

(
un

) = Bσn

(
un,a

)
. (2.53)

Therefore, A(σnun) = B(σnun,a). Putting vn = un/‖un‖X and dividing both
sides of this equation by (σn‖un‖X)p−1, we get

Aσn‖un‖X

(
vn

) = Bσn‖un‖X

(
vn,a

)
, ∀n. (2.54)
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Since ‖vn‖X = 1, for all n, by passing to a subsequence if necessary, we can
assume that

vn ⇀ v in X. (2.55)

It follows that vn → v in Z. Because σn‖un‖X → 0, (H2a) implies that

Bσn‖un‖X
(vn,a) −→ B0(v,a) (2.56)

in Z∗ and then in X∗. From (H1′) with fn = Bσn‖un‖X
(vn,a), we have v ∈ X0

and

A0(v) = B0(v,a). (2.57)

Since a is not an eigenvalue of (2.44), (2.57) holds only when v = 0. Hence,

vn ⇀ 0 in X, (2.58)

and thus vn → 0 in Z. It follows from (H2a) that

Bσn‖un‖X

(
vn,a

) −→ B0(0,a) = 0 in Z∗(-strong) (2.59)

and thus in X∗(-strong). Equation (2.54) gives

Aσn‖un‖X

(
vn

) −→ 0 in X∗. (2.60)

Equations (2.58), (2.60), and assumption (H3) now imply that vn → 0 in X. But
this is impossible since ‖vn‖X = 1, for all n. This contradiction proves (2.51) for
all r > 0 sufficiently small. Now, we fix r > 0 such that (2.51) is satisfied. We
now prove that there exists an open neighborhood U = UZ of 0 in Z such that

ŪZ ∩X ⊂ Br(0)
( = BX

r (0)
)
. (2.61)

We use ŪZ and ŪX to denote the closure of U in Z and X, respectively.
Also, Br(0) = BX

r (0) = {x ∈ X : ‖x‖ < r}, BZ
r (0) = {x ∈ Z : ‖x‖Z < r},

and B̄Z
r (0) = BZ

r (0)
Z
(0) = {‖x‖Z ≤ r}. There always exists an open set VZ

in Z such that 0 ∈ VZ ∩ X = BX
r (0). Choose r1 > 0 small enough such that

BZ
r1

(0) ⊂ VZ . Now, choose r2 ∈ (0, r1) and put U = UZ = BZ
r2

(0). We have

ŪZ
Z = BZ

r2
(0)

Z = B̄Z
r2

(0)
( = {

z ∈ Z : ‖z‖Z ≤ r2
}) ⊂ BZ

r1
(0) ⊂ VZ. (2.62)

Therefore,

ŪZ
Z ∩X ⊂ VZ ∩X = BX

r (0), (2.63)

proving (2.61). Now, assume u ∈ ŪZ \{0} is such that 0 ∈ u− iPAσ [Bσ (u,a)]
for some σ ∈ [0,1]. As was discussed previously, we have u ∈ PAσ [Bσ (u,a)],
which implies that u ∈ X. Hence, u is in ŪZ ∩X \ {0} and thus in Br(0)\ {0}.
This, however, contradicts (2.51). Equation (2.50) is proved. �
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Now, we arrive at our main result.

Theorem 2.9. Assume that A, B, A0, and B0 satisfy conditions (H1), (H2),
(H3), and (H4). If a and b (a < b) are not eigenvalues of (2.44) and if

dZ

(
I −iPA0

[
B0(·,a)

]
,BZ

r (0),0
) �= dZ

(
I −iPA0

[
B0(·,b)

]
,BZ

r (0),0
)
, (2.64)

for some r > 0, small, then for � and � as in Theorem 2.2, then the Rabinowitz
alternative (i) or (ii) holds.

Proof. Note that if a is not an eigenvalue of (2.44), then for all R > 0, all
r ∈ (0,R), we have

0 �∈ {
u− iPA0

[
B0(u,a)

] : r ≤ ‖u‖Z ≤ R
}
. (2.65)

Hence, by the excision property, the degrees in (2.64) do not depend on r .
Moreover, we can replace BZ

r (0) in (2.64) by any bounded open subset U that
contains 0.

Let U = BZ
r (0) be as in condition (2.11) in Theorem 2.2. By choosing r > 0

sufficiently small, U also satisfies condition (2.50) in Lemma 2.8. We con-
sider the family of (multivalued) compact perturbations of the identity {I −
iPAσ [Bσ (·,a)] : σ ∈ [0,1]} in ŪZ . We check that the set

{
iPAσ

[
Bσ (·,a)

] : u ∈ ŪZ, σ ∈ [0,1]} (2.66)

is relatively compact in Z. In fact, let {un} ⊂ ŪZ and {σn} ⊂ [0,1]. Without
loss of generality, we can assume that σn → σ ∈ [0,1]. Since {un} is bounded
in Z, {Bσn(un,a)} is bounded in Z∗ (if σ > 0, this is a consequence of the
boundedness of B and if σ = 0, this follows from assumption (H2b)). We show
that the sequence {PAσn

[Bσn(un,a)]} is bounded in X. Assume otherwise that
this sequence is unbounded. Hence, by passing to a subsequence if necessary, we
have a sequence {wn} in X such that wn ∈ PAσn

[Bσn(un,a)] and ‖wn‖X → ∞.
We have

Aσn

(
wn

) = Bσn

(
un,a

)
, ∀n. (2.67)

If σ > 0, then this is impossible by the coercivity of A (cf. (2.2)). Therefore,
σ = 0, that is, σn → 0. From (2.67), we have

〈
Aσn

(
wn

)
,wn

〉∥∥wn

∥∥
X

=
〈
Bσn

(
un,a

)
,

wn∥∥wn

∥∥
X

〉
. (2.68)

By (H4), the left-hand side of this equation tends to ∞ as n → ∞. On the
other hand, its right-hand side is bounded since {Bσn(un,a)} is bounded in X∗
and {wn/‖wn‖X} is bounded in X. This contradiction proves that the sequence
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{Pσn[Bσn(un,a)]} is bounded in X. It follows that the set {Pσ [Bσ (u,a)] :
u ∈ ŪZ, σ ∈ [0,1]} is bounded in X. Because the embedding i : X ↪→ Z

is compact, the set in (2.66) is relatively compact in Z.
Now, from Lemma 2.8, one has

0 �∈ {
i − iPAσ

[
Bσ (u,a)

] : σ ∈ [0,1], u ∈ ∂ZU
}
. (2.69)

Using the homotopy invariance property of the degree for multivalued compact
fields (cf. [11]), we have

dZ

(
I − iPA0

[
B0(·,a)

]
,U,0

) = dZ

(
I − iPA1

[
B1(·,a)

]
,U,0

)
. (2.70)

Theorem 2.9 is now a direct consequence of Theorem 2.2. �

3. Bifurcation in equations with anisotropic p-Laplace-like operators

In this section, we apply Theorem 2.9 to a quasilinear elliptic equation that
contains an anisotropic p-Laplace-like (φ-Laplace) operator. The equation is
formulated in the weak form as follows:∫

�

N∑
i=1

φi

(|∇u|)∂iu∂iv dx =
∫

�

F(x,u,λ)v dx, ∀v ∈ X, u ∈ X, (3.1)

where X is a function space to be specified later. If φi = φ, for all i ∈ {1, . . . ,N},
then (3.1) reduces to the equation∫

�

φ
(|∇u|)∇u ·∇v dx =

∫
�

F(x,u,λ)v dx, ∀v ∈ X, (3.2)

which has a variational structure and was treated previously in [8, 9]. If the
φi’s are different then the principal operator in (3.1) does not have any potential
functional and the approach used in the quoted papers seems not applicable here.

Assume that for all i ∈ {1, . . . ,N}, φi : R → R
+ is an even continuous

function such that φi |R+ is nondecreasing, φi(0) = 0, and φi > 0 on (0,∞).
Also, there exist γ > 1 and a,b,c,d > 0 such that

a|s|γ−1 −d ≤ φi(s)s ≤ b|s|γ−1 +c, ∀s ∈ R, i ∈ {1, . . . ,N}. (3.3)

Moreover, for simplicity of calculations, we assume that the φi’s have the same
behavior at 0, that is, there exists p ∈ [γ,γ ∗) (γ ∗ is the Sobolev conjugate of γ ,
defined by γ ∗ = Nγ (N −γ )−1 if γ < N and γ ∗ = ∞ if γ ≥ N ) and β ∈ R\{0}
such that for all i,

gi(s) = φi(s)

|s|p−2
−→ β, as s −→ 0. (3.4)

Suppose that F : �×R×R → R is a Carathéodory function with the growth
condition ∣∣F(x,u,λ)

∣∣ ≤ C(λ)
[
1+|u|p−2] (3.5)
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for a.e. x ∈ �, for all λ,u ∈ R, where C ∈ L∞
loc(R). Moreover, F(x,0,λ) = 0,

for all λ ∈ R, a.e. x ∈ �, and

F(x,s,λ)

|s|p−2s
−→ λ, as s −→ 0, (3.6)

uniformly for a.e. x ∈ � and for λ in bounded sets.
From (3.3), we see that the integral in the left-hand side of (3.1) is well defined

for u, v in the Sobolev space W
1,γ

0 (�). Moreover, the operator A given by

〈
A(u),v

〉 = ∫
�

N∑
i=1

φi

(|∇u|)∂iu∂iv dx, u,v ∈ W
1,γ

0 (�), (3.7)

is well defined from X := W
1,γ

0 (�) into X∗ = W−1,γ ′
(�) (γ ′ = γ (γ − 1)−1

is the Hölder conjugate of γ ). Also, A is continuous and bounded in X with
A(0) = 0. From the first inequality of (3.3) and from (3.4), we have a1 and R0

positive such that for all i = 1, . . . ,N ,

∣∣φi(s)
∣∣ ≥ a1

{|s|γ−2 for |s| > R0,

|s|p−2 for |s| ≤ R0.
(3.8)

For u ∈ W
1,γ

0 (�), put

�1 = �1(u) = {
x ∈ � : ∣∣∇u(x)

∣∣ > R0
}
,

�2 = �2(u) = {
x ∈ � : ∣∣∇u(x)

∣∣ ≤ R0
}
.

(3.9)

We have

〈
A(u),u

〉 = ∫
�

N∑
i=1

φi

(|∇u|)∣∣∂iu
∣∣2

dx

≥ a1

(∫
�1(u)

∑
i

|∇u|γ−2
∣∣∂iu

∣∣2
dx +

∫
�2(u)

∑
i

|∇u|p−2
∣∣∂iu

∣∣2
dx

)

= a1

(∫
�1(u)

|∇u|γ dx +
∫

�2(u)

|∇u|pdx

)

≥ a1

(∫
�1(u)

|∇u|γ dx −
∫

�2(u)

R
γ

0 +
∫

�2(u)

|∇u|γ dx

)

≥ a1

(∫
�

|∇u|γ dx −R
γ

0 |�|
)

= a1‖u‖γ

W
1,γ

0 (�)
−a1R

γ

0 |�|.
(3.10)
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This shows that 〈
A(u),u

〉
‖u‖X

−→ ∞, as ‖u‖X −→ ∞. (3.11)

Hence, A is coercive in X in the sense of (2.2).
We assume that the φi’s satisfy the monotonicity condition

N∑
i=1

[
φi

(|ξ |)ξi −φi

(|η|)ηi

](
ξi −ηi

) ≥ 0, (3.12)

for all ξ,η ∈ R
N . It follows from (3.12) that A is monotone in W

1,γ

0 (�) (but
not strictly monotone in general). We put Z = Lp(�) and let B : Z×R → Z∗
be defined by

〈
B(u,λ),v

〉 = ∫
�

F(x,u,λ)v dx, ∀u,v ∈ Lp(�). (3.13)

Since p < γ ∗, the embeddings X ↪→ Z and Z∗ ↪→ X∗ are compact. Equation
(3.5) implies that B is well defined and B(0,λ) = 0 for all λ. Moreover,∥∥B(u,λ)

∥∥
Z∗ = ∥∥F(·,u,λ)

∥∥
Lp′

(�)
≤ C1(λ)

(
1+‖u‖p

Z

)1/p′
. (3.14)

Using Hölder’s inequality, one can prove that there exists C > 0 such that∥∥B(u,λ)−B
(
ū, λ̄

)∥∥
Z∗ ≤ C

∥∥F(·,u,λ)−F
(·, ū, λ̄

)∥∥
Lp′

(�)
,

∀(u,λ),
(
ū, λ̄

) ∈ Z×R.
(3.15)

Together with (3.5) and the dominated convergence theorem, this proves the
continuity of B on Z×R.

Now, we check the background assumptions in Theorem 2.9. First, we check
the nondegeneracy condition (2.30). Assume that {un} ⊂ X is such that un → 0
in Lp(�) and

〈
A

(
un

)
,un

〉 = ∫
�

N∑
n=1

φi

(∣∣∇un

∣∣)∣∣∂iun

∣∣2 −→ 0. (3.16)

Equations (3.8) and (3.9) imply that∫
�1(un)

∣∣∇un

∣∣γ dx −→ 0,

∫
�2(un)

∣∣∇un

∣∣pdx −→ 0. (3.17)

On the other hand, Hölder’s inequality implies that∫
�2(un)

∣∣∇un

∣∣γ dx ≤ |�|1−γ /p

(∫
�2(un)

|∇un|pdx

)γ /p

. (3.18)
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Therefore, ∫
�

∣∣∇un

∣∣γ −→ 0, (3.19)

that is, un → 0 in X. We have proved (2.30). This implies that the definition
of bifurcation points for (2.8) given in Definition 2.1 is equivalent to the usual
definition of bifurcation points.

Now, we put X0 = W
1,p

0 (�) with the usual norm

‖u‖0 = ‖u‖X0 =
(∫

�

|∇u|pdx

)1/p

. (3.20)

Since p ≥ γ , X0 ⊂ X and the embedding X0 ↪→ X is continuous. Let A0 :
X0 → X∗

0 be given by

〈
A0(u),v

〉 = β

∫
�

|∇u|p−2∇u ·∇v dx. (3.21)

It is clear that A0 is well defined, continuous, bounded, and coercive in X0. Also,
A0(0) = 0. For σ > 0, define Aσ as in (2.33). We check that Aσ converges to
A0 as σ → 0+ in the sense of (H1′) (or equivalently (H1)). Assume that we
have sequences {σn}, {un} such that

σn −→ 0+, un ⇀ u in X, (3.22)

Aσn

(
un

) = fn −→ f in X∗. (3.23)

We prove that u ∈ X0 and A0(u) = f in X∗
0 . We have

〈
Aσ (u),v

〉 = ∫
�

N∑
i=1

φi

(
σ |∇u|)
σp−1

∂iu∂iv dx. (3.24)

Thus,

〈
Aσn

(
un

)
,un

〉 =∫
�

∑
i

φi

(
σn

∣∣∇un

∣∣)
σ

p−2
n

∣∣∂iun

∣∣2
dx

=
∫

�

∑
i

gi

(
σn

∣∣∇un

∣∣)∣∣∇un

∣∣p−2∣∣∂iun

∣∣2
dx (gi is defined in (3.4))

=
∫

�

G
(
σn

∣∣∇un

∣∣,∇un

)
dx,

(3.25)

where

G(u,ξ) = |ξ |p−2
N∑

i=1

gi

(|u|)|ξi |2, (3.26)
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for all u ∈ R, ξ ∈ R
N . By putting gi(0) = β, we see that G is a Carathéodory

function (cf. (3.4)). Moreover, for each u ∈ R fixed, the mapping ξ �→ G(u,ξ)

is convex on R
N . Because un ⇀ u in X,

∇un ⇀ ∇u in
[
Lp(�)

]N (-weak) (3.27)

and thus in [L1(�)]N -weak. On the other hand, since {∇un} is a bounded
sequence in [Lp(�)]N and σn → 0, we have

σn

∣∣∇un

∣∣ −→ 0 in Lp(�)(-strong). (3.28)

Therefore, by passing to a subsequence if necessary we can assume that σn|∇un|
→ 0 a.e. in �. Furthermore, since φi(s) ≥ 0 for s ≥ 0, we have G(u,ξ) ≥ 0 for
all u, ξ . These observations show that all assumptions of [1, Theorem 5.4] are
satisfied, which implies that∫

�

G(0,∇u)dx ≤ lim inf
n→∞

∫
�

G
(
σn

∣∣∇un

∣∣,∇un

)
dx. (3.29)

It follows from (3.4) that

G(0,ξ) = |ξ |p−2
N∑

i=1

β
∣∣ξi

∣∣2 = β|ξ |p. (3.30)

On the other hand, (3.23) implies that

lim
n→∞

〈
Aσn

(
un

)
,un

〉 = lim
n→∞

〈
fn,un

〉 = 〈f,u〉 < ∞. (3.31)

This, together with (3.25), (3.29), and (3.30), imply that∫
�

β|∇u|pdx =
∫

�

G(0,∇u)dx ≤ 〈f,u〉 < ∞. (3.32)

This means that u ∈ X0 = W
1,p

0 (�). We show that〈
A0(u),v

〉 = 〈f,v〉, ∀v ∈ X0. (3.33)

First, note that for u ∈ X0,

Aσn(u) −→ A0(u) in X∗
0 . (3.34)

In fact, by Hölder’s inequality, there is a constant C > 0 independent of u and
n such that

∥∥Aσn(u)−A0(u)
∥∥

X∗
0
≤ C

N∑
i=1

∥∥∥∥∥ φi

(
σn|∇u|)(

σn|∇u|)p−2
|∇u|p−2∂iu−β|∇u|p−2∂iu

∥∥∥∥∥
Lp′

(�)

= C

N∑
i=1

∥∥gi

(
σn|∇u|)|∇u|p−2∂iu−β|∇u|p−2∂iu

∥∥
Lp′

(�)
.

(3.35)
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It follows from (3.3) and (3.4) that gi is bounded on R, that is, |gi(s)| ≤ M , for
all s ∈ R, for all i, for some M > 0. Hence,

∣∣gi

(
σn|∇u|)|∇u|p−2∂iu

∣∣ ≤ M|∇u|p−1, a.e. in �. (3.36)

On the other hand, by (3.4),

gi

(
σn|∇u|)|∇u|p−2∂iu −→ β

N∑
i=1

|∇u|p−2∂iu, a.e. in �. (3.37)

Then by the dominated convergence theorem,

gi

(
σn|∇u|)|∇u|p−2∂iu−β|∇u|β−2∂iu −→ 0 (3.38)

in Lp′
(�), for each i, implying that Aσn(u) → A0 in X∗

0 . Now, let v ∈ X0. We
have from the monotonicity of A and the definition of Aσ that

〈
Aσn

(
un

)−Aσn(v),un −v
〉 ≥ 0 (3.39)

and thus 〈
Aσn

(
un

)
,un −v

〉 ≥ 〈
Aσn(v),un −v

〉
. (3.40)

From (3.22), (3.23), and (3.34), we get

〈f,u−v〉 ≥ 〈
A0(v),u−v

〉
, ∀v ∈ X0. (3.41)

From Minty’s lemma (cf. [5]), this implies

〈
A0(u),v−u

〉 ≤ 〈f,v−u〉, ∀v ∈ X0 (3.42)

which is, in its turn, equivalent to (3.33). Since (3.33) is the same as (2.42),
(H1′) is proved.

Now, we check (H3). Assume vn ⇀ 0 in W
1,γ

0 (�) and that Aσn(vn) → 0 in

[W 1,γ

0 (�)]∗. It follows that

〈
Aσn

(
vn

)
,vn

〉 = ∫
�

∑
i

φi

(
σn

∣∣∇vn

∣∣)
σ

p−2
n

∣∣∂ivn

∣∣2
dx −→ 0 (3.43)

as n → ∞. Using the notation in (3.9), we have

∫
�j (σn|∇vn|)

∑
i

φi

(
σn

∣∣∇vn

∣∣)
σ

p−2
n

∣∣∂ivn

∣∣2
dx −→ 0 (3.44)
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(j = 1,2). It follows from (3.8) that

0 ≥ lim sup
∫

�1(σn|∇vn|)

∑
i

ai

(
σn

∣∣∇vn

∣∣)γ−2

σ
p−2
n

∣∣∂ivn

∣∣2
dx

= a1 lim sup
∫

�1(σn|∇vn|)

∑
i

∣∣∇vn

∣∣γ−2

σ
p−γ
n

∣∣∂ivn

∣∣2
dx

≥ a1 lim sup
∫

�1(σn|∇vn|)

∑
i

∣∣∇vn

∣∣γ−2∣∣∂ivn

∣∣2
dx

(since p ≥ γ, σn ∈ (0,1), ∀n large)

= a1 lim sup
∫

�1(σn|∇vn|)
∣∣∇vn

∣∣γ dx

≥ a1 lim inf
∫

�1(σn|∇vn|)
∣∣∇vn

∣∣γ dx

≥ 0.

(3.45)

Hence,

lim
n→∞

∫
�1(σn|∇vn|)

∣∣∇vn

∣∣γ dx = 0. (3.46)

Similarly,

0 = lim
∫

�2(σn|∇un|)

∑
i

φi

(
σn

∣∣∇vn

∣∣)
σ

p−2
n

∣∣∂ivn

∣∣2
dx

≥ a1 lim
∫

�2(σn|∇un|)
∣∣∇vn

∣∣p−2∣∣∂ivn

∣∣2
dx,

(3.47)

and lim
∫
�2(σn|∇un|) |∇vn|pdx = 0. Since p ≥ γ , Hölder’s inequality gives

∫
�2(σn|∇un|)

∣∣∇vn

∣∣γ dx ≤
(∫

�2

∣∣∇vn

∣∣pdx

)γ /p∣∣�2
∣∣1−γ /p

≤
(∫

�2

∣∣∇vn

∣∣pdx

)γ /p

|�|1−γ /p.

(3.48)

Thus,

lim
∫

�2(σn|∇un|)
∣∣∇vn

∣∣γ dx = 0. (3.49)

Combining (3.46) and (3.49), we get

lim
∫

�

∣∣∇vn

∣∣γ dx = 0, (3.50)

that is, vn → 0 in X. (H3) is proved.
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Now, we check (H4). Let ‖vn‖X → ∞ and σn → 0+. As in the proof of
(3.46) and (3.49), we have, for all n sufficiently large,∫

�1(σn|∇un|)

∑
i

φi

(
σn

∣∣∇un

∣∣)
σ

p−2
n

∣∣∂ivn

∣∣2
dx ≥ a1

∫
�1(σn|∇un|)

∣∣∇un

∣∣γ dx,

∫
�2(σn|∇un|)

∑
i

φi

(
σn

∣∣∇un

∣∣)
σ

p−2
n

∣∣∂ivn

∣∣2
dx

≥ a1

∫
�2(σn|∇un|)

∣∣∇un

∣∣pdx

≥ a1

(∫
�2(σn|∇un|)

∣∣∇un

∣∣γ dx

)p/γ (|�|p/(p−γ )
)1−p/γ

(trivial modifications when p = γ )

≥ a2




∫
�2

∣∣∇vn

∣∣γ dx if
∫

�2

∣∣∇vn

∣∣γ dx ≥ 1,

0 if
∫

�2

∣∣∇vn

∣∣γ dx < 1,

(with a2 = a1|�|p2/(p−γ )γ > 0).

(3.51)

It follows from (3.51) that∫
�

∑
i

φi

(
σn

∣∣∇un

∣∣)
σ

p−2
n

∣∣∂ivn

∣∣2
dx

≥ min
{
a1,a2

}



∫
�

∣∣∇vn

∣∣γ dx if
∫

�2

∣∣∇vn

∣∣γ dx ≥ 1

∫
�1

∣∣∇vn

∣∣γ dx if
∫

�2

∣∣∇vn

∣∣γ dx < 1

≥ min
{
a1,a2

}(∫
�

∣∣∇vn

∣∣γ dx −1

)
,

(3.52)

since∫
�1

∣∣∇vn

∣∣γ dx =
∫

�

∣∣∇vn

∣∣γ dx −
∫

�2

∣∣∇vn

∣∣γ dx ≥
∫

�

∣∣∇vn

∣∣γ dx −1 (3.53)

if
∫
�2

|∇vn|γ dx ≤ 1. This proves that

lim
n→∞

〈
Aσn

(
vn

)
,vn

〉∥∥vn

∥∥
X

≥ min
{
a1,a2

}
lim

n→∞
1∥∥vn

∥∥
X

(∥∥vn

∥∥γ

X
−1

) = ∞. (3.54)

Thus (H4) is verified.
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Now, we consider the homogenization of B. Let B0 : Lp(�)×R(= Z×R) →
Lp′

(�)(= Z∗) (p′ is the Hölder conjugate of p) be defined by

〈
B0(u,λ),v

〉 = ∫
�

λ|u|p−2uvdx, (3.55)

for u,v ∈ Lp(�), λ ∈ R. It is clear that B0 is defined and continuous. We check
(H2a). Assume σn → 0+, vn → v in Lp(�), and λn → λ. Since

〈
Bσn

(
vn,λn

)
,v

〉 = ∫
�

F
(
x,σnvn,λn

)
v

σ
p−1
n

dx, ∀v ∈ Lp(�), (3.56)

by using (3.5), (3.6), and the dominated convergence theorem, we immediately
have (2.36). Note that (3.56) and (3.5) also imply (H2b). On the other hand, the
arguments used in the proof of (H1) also prove (H5). We have just checked all
background assumptions so that the bifurcation Theorem 2.9 is applicable.

Now, we consider the homogenized equation associated to (3.1). From (3.21)
and (3.55) we see that the homogenized equation (2.44) associated to (2.1) is in
our example given by

β

∫
�

|∇u|p−2∇u ·∇v dx−λ

∫
�

|u|p−2uvdx =0, ∀v ∈ W
1,p

0 (�), u ∈ W
1,p

0 (�).

(3.57)
This equation is the weak form of the p-Laplacian equation

−β

p
div

(|∇u|p−2∇u
) = λ|u|p−2u in �, u = 0 on ∂�. (3.58)

Let λ1 be the principal eigenvalue of the p-Laplacian,

λ1 = min

{∫
�

|∇u|pdx : u ∈ W
1,p

0 (�),

∫
�

|u|pdx = 1

}
. (3.59)

Then, as proved in [3],

d
W

1,p
0 (�)

(
I −P0

[
B0(·,λ)

]
,B

W
1,p
0 (�)

r (0, r),0
)

=




1 if 0 < λ <
βλ1

p
,

−1 if λ >
βλ1

p
,(

and close to
βλ1

p

)
,

(3.60)

where P0 : [W 1,p

0 (�)]∗ → W
1,p

0 (�) is the solution operator associated with

(3.57) (or (3.58)), that is, for f ∈ [W 1,p

0 (�)]∗, u = P0(f ) if and only if
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u ∈ W
1,p

0 (�) and

β

∫
�

|∇u|p−2∇u ·∇v dx = 〈f,v〉, ∀v ∈ W
1,p

0 (�). (3.61)

Note that i is the embedding of W
1,p

0 (�) into Lp(�) and B0(·,λ)◦ i is just the

restriction of B0(·,λ) in (3.55) onto W
1,p

0 (�).
For λ close enough to βλ1/p, λ is not an eigenvalue of (3.58) and 0 is

the unique zero of the mapping I − P0 ◦ B0(·,λ) ◦ i (= I − P0[B0(·,λ) ◦ i])
and of I − i ◦P0 ◦B0(·,λ) in Lp(�). By using the excision and commutativity
properties of the Leray-Schauder degree for any bounded open sets U1 and U2

of W
1,p

0 (�) and of Lp(�), respectively that contain 0, we always have

d
W

1,p
0 (�)

(
I −P0

[
B0(·,λ)◦ i

]
,U1,0

) = dLp(�)

(
I − i ◦P0

[
B0(·,λ)

]
,U2,0

)
,

(3.62)

for all λ close to βλ1/p and different from βλ1/p. Hence, by using (3.57)
and (3.62) together with the bifurcation Theorem 2.9, we have the following
bifurcation for (3.1).

Theorem 3.1. There is a branch of nontrivial solutions of (3.1) that bifurcates
from (0,βλ1/p) and either is unbounded in Lp(�) × R or contains another
bifurcation point (0,µ) where µ �= βλ1/p and µ is an eigenvalue of (3.58).
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