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An evolutionary distribution (ED), denoted by z(x, t), is a distribution of density of phe-
notypes over a set of adaptive traits x. Here x is an n-dimensional vector that represents
the adaptive space. Evolutionary interactions among phenotypes occur within an ED and
between EDs. A generic approach to modeling systems of ED is developed. With it, two
cases are analyzed. (1) A predator prey inter-ED interactions either with no intra-ED
interactions or with cannibalism and competition (both intra-ED interactions). A preda-
tor prey system with no intra-ED interactions is stable. Cannibalism destabilizes it and
competition strengthens its stability. (2) Mixed interactions (where phenotypes of one
ED both benefit and are harmed by phenotypes of another ED) produce complete sep-
aration of phenotypes on one ED from the other along the adaptive trait. Foundational
definitions of ED, adaptive space, and so on are also given. We argue that in evolutionary
context, predator prey models with predator saturation make less sense than in ecolog-
ical models. Also, with ED, the dynamics of population genetics may be reduced to an
algebraic problem. Finally, extensions to the theory are proposed.

1. Introduction

The theory that links evolution and population genetics is well developed (e.g., Hartl
and Clark [10]). The theory that links evolution and population ecology is progressing
rapidly. Both of these theories are part of a “grander scheme.” At the risk of simplifying
more than necessary, Figure 1.1 illustrates the interactions among the relevant fields of
study and where this manuscript fits. The link between evolutionary ecology and pop-
ulation genetics is important because evolution by natural selection works directly on
phenotypes and indirectly on genotypes.

Evolutionary ecology models—that is, models that integrate evolutionary processes
with population ecology—usually start with

ż=H(x,z)z, (1.1)

where z is a vector, H is a matrix of “instantaneous fitness” functions and x is a vec-
tor (possibly of vectors) of adaptive traits—all of appropriate dimensions. Dots denote
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derivatives with respect to time. To (1.1) one then adds dynamics of the adaptive traits
(called strategies)

ẋ = f(x,z). (1.2)

With these two equations, ecological and evolutionary dynamics become intertwined
(Brown and Vincent [4]; Abrams et al. [1]; Vincent et al. [25]; Vincent et al. [26]; Tay-
lor and Day [23]; Cohen et al. [7]). This starting point—sparked by Maynard-Smith’s
[13] original work—turns the system into an evolutionary game. The approach above
has variations such as matrix games and differential games. One important variation is
the inclusion of space. This turns a model of a coevolutionary system from ordinary dif-
ferential equations to a system of partial differential equations. The edited volume by
Dieckmann et al. [9] is a good recent reference on the subject (in particular Chapter 22).

The approach in (1.1) and (1.2)—and its relatives—triggered a profound change in
the perception of coevolution—one no longer looks to maximize adaptations under con-
straints (essentially an optimization criterion), but rather maximize adaptations in the
context of other interacting organisms whose adaptations are maximized by coevolution
(essentially a game theoretic criterion). These developments in evolutionary ecology par-
allel those in economics, where starting with Nash’s [16] work, emphasis has shifted from
optimization to game theoretic solutions of capitalistic market problems.

The game theoretic criterion in evolutionary ecology is called evolutionarily stable
strategies (ESS), introduced by Maynard-Smith [13]. According to this criterion, coe-
volving organisms exhibit a set of genetically-based adaptations that taken together pre-
vent mutants from coexisting with the ESS set. The theory here builds on the foregoing
by using the concept of evolutionary distributions (we denote by ED both evolution-
ary distribution and evolutionary distributions). In fact, stable ED correspond to ESS.
Here, reaction-diffusion models are derived from first principles concerning ecological
and evolutionary processes. Reaction-diffusion is a large topic both in mathematics and
ecology. Smoller [22] and Murray [15] are good references on the subject. The former is
more mathematically oriented than the latter. An expository account is given in Britton
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[3]. Reaction-diffusion models are of considerable interest in ecology (Segel and Jack-
son [20]; Levin and Segel [12]; Rosen [19]; Mimura and Murray [14]; Okubo [17]; Con-
way [8]; Pease et al. [18]; Dieckmann et al. [8]; Alonso et al. [2]). A somewhat related
approach to the one taken here was taken by Slatkin [21].

So here is the plan. First, we introduce the important idea of ED. The exposition fol-
lows Cohen [5, 6], where detailed proofs are given. Next, we discuss single ED. Here,
we analyze the case where mutation rates along the adaptive trait are not equal in all
directions. This case is compared to the one in Cohen [5], where equal mutation rates
were analyzed. Next, we develop a generic approach to analyze multiple ED. This will
be followed by analysis of predator prey interactions. Under predator prey interactions
we consider the case where phenotypes within an ED compete and the case where can-
nibalism occurs. We then talk about mixed interactions where phenotypes in one ED
benefit and harm phenotypes in their own ED and in another ED. We close with a dis-
cussion.

Before moving on, some notes about notation. � means equal by definition and ≡
means identically equal. Unless otherwise stated, identical symbols may represent a con-
stant or a function; for example, β or β(·). Occasionally, identical symbols are used on
both sides of an equation; for example, β(x) � aβ(x) says “redefines β(x).” Bold letters
denote vectors and matrices (of constants or of functions). x sometimes represents a par-
ticular value, sometimes a space. When x represents a particular value, this value labels
a phenotype. All parameters (constants) are nonnegative real numbers, all densities are
nonnegative real numbers and all evolutionary traits are real numbers.

2. The adaptive space and ED

Appendix A includes mathematical definitions of adaptive spaces, evolutionary distribu-
tions and other terms used throughout. Heuristically, an adaptive space is constructed as
follows: a phenotype is a realization of n values of adaptive traits x. Here x is a collec-
tion of xi, i= 1, . . . ,n adaptive traits. Each xi is drawn from a set (bounded or not) of real
numbers. The restriction to real numbers is not necessary, but we will stick with it here.
A point in the adaptive space, x = [x1, . . . ,xn] represents a phenotype. That phenotype is
labeled x. The adaptive traits must be chosen such that they are independent. In other
words, we choose the minimum number n that describes the adaptive traits. It should be
noted that x may represent a linear combination of some values. For example, if height
and weight are perfectly correlated, then they do not represent two adaptive traits. Their
combination is a single adaptive trait.

Evolution by natural selection results in changes in the density of phenotypes in the
adaptive space. An adaptive trait is a set of values (say height, weight) that a phenotype
possesses. The values are heritable and are subject to natural selection. Therefore, trait
values are linked to the density of phenotypes that express particular trait values. An evo-
lutionary distribution (ED) is defined as a time dependent distribution of phenotypes
in the adaptive space where the dynamics involve evolutionary processes (e.g., competi-
tion that results in different phenotypes, mutations and assortative mating). A complete
description of the dynamics of ED of a biotic community with m distinct groups of func-
tional organisms is given by z(x,y(t), t). Here z is an m-component vector of ED, x is
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a vector of n values of n adaptive traits and y is a vector of p (possibly time dependent)
values of input components. As in Cohen [5, 6], we absorb y into x. The above are de-
scriptive definitions. Explicit definitions upon which the following theory relies are given
in Appendix A.

An ED describes changes in the density of phenotypes z(x, t) along x for which the
(frequency) consequences of changes in the values of x are similar. This concept corre-
sponds to what Brown and Vincent [4] called evolutionary identical species. These are
organisms that function similarly in biotic communities. For example, a single ED cor-
responds to prey. Predators are described by another ED. Two ED might have seemingly
common x. However, because the dynamics on x for one functional group of organisms
differ from that of another, x in one ED is interpreted differently from that in another ED.
For example, if x refers to phenotypes’ size in an ED of prey and in an ED of predators,
then x should be treated as having two scales. In fact, within an ED scale is comparable
among phenotypes, between it is not.

The theory to be discussed does not require a rigid taxonomic classification of pheno-
types; for example, species, sub-species and so on. It requires the concept of evolutionary
type (or simply type). A type is defined as a set of individuals whose trait values form an
interval on x; this interval contains special points on z(x, t). Special points are, for ex-
ample, local extrema. An ED at a particular t and for n = 1 and m = 1 is illustrated in
Figure 2.1 (after Cohen [6]). This definition of types is by no means the most general.
Yet, it is adopted here for simplicity.

The areas A and B in Figure 2.1 isolate two types. C isolates another. The classification
of organisms into types is arbitrary. It depends on biological and ecological details and
the scale of the trait. Scale does not pose a problem because all organisms that belong to
a single ED are evolving under the same scale. For example, x may represent tree-height.
An observer walking through a forest might surmise that the ED in Figure 2.1 represents
a forest with 3 main types: common short and tall trees and rare middle sized trees. The
choice of interval width is left to the observer and the biological details.

Only scalar adaptive traits are considered. Examples are height, weight, speed and
length. Because x represents a biological trait, it is to be bounded—except where
specified—between x and x (Figure 2.1). Therefore, in considering the dynamics of ED,
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we require that the first derivatives of the ED at the boundaries be zero (Neumann condi-
tions). Dirichlet’s represent reasonable boundary conditions. The Neumann conditions
only are addressed here. To achieve zero derivatives on the boundaries, we will use, with-
out loss of generality, sinusoid functions. These also represent nonhomogeneous pertur-
bations of the ED.

ED trace evolutionary dynamics. As such, understanding them is important. Adap-
tations by natural selection occur directly through phenotypes and indirectly through
genotypes—one can hardly expect environmental vicissitudes, for example, to change
the frequency of genes directly. Therefore, by studying the dynamics of ED one can hope
to reduce population genetics dynamics to an algebraic problem.

3. Example of ED construction

We mostly deal with a single evolutionary trait and with two ED. This may raise two
legitimate questions: how do we derive the ED equations? How applicable is the theory to
adaptive spaces with higher dimensions? Here is an example of how ED are constructed
from first principles for n= 2 and m= 2. We are going to show that as in all cases (here
and below), we get ED equations of the form

zt = A(·)zxx + f(z), (3.1)

where

zt �
[
∂tz1

∂tz2

]
, zxx �

[
∂x1x1z1

∂x2x2z2

]
, f(z) �

[
f1(z)
f2(z)

]
(3.2)

and A(·) is an appropriate matrix.

3.1. The ED. Consider two ED, z �[z1,z2]. The adaptive trait of zi is xi and let x �[x1,x2].
We model coevolution through influence on mortality. Let βi(·) and µi(·) denote the
birth and mortality rate functions. The starting point is

∂tzi(x, t)= βi(·)−µi(·) (3.3)

with initial conditions

z(x,0)= z0(x), (3.4)

where z0(x) are given nonnegative functions and boundary conditions

∂x1zi(x, t)= ∂x2zi(x,0)= 0. (3.5)

3.2. Births. Consider birth rates linearly density dependent with mutation rates ηi. Then

β1(·) �
(
1−η1

)
β1z1

(
x1,x2, t

)︸ ︷︷ ︸
births no mutations

+
1
2
η1β1z

(
x1−∆x1,x2, t

)
︸ ︷︷ ︸

births mutations up

+
1
2
η1β1z1

(
x1 +∆x1,x2, t

)
︸ ︷︷ ︸

births mutations down

.

(3.6)
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Rearranging, we get

β1(·)= β1z1
(
x1,x2, t

)
+

1
2
η1β1

[
z1
(
x1−∆x1,x2, t

)− z1
(
x1,x2, t

)︸ ︷︷ ︸
A

]

+
1
2
η1β1

[
z1
(
x1 +∆x1,x2, t

)− z1
(
x1,x2, t

)︸ ︷︷ ︸
B

]
.

(3.7)

Taylor series expansion of A and B give

A=−∂x1z1
(
x1,x2, t

)
∆xi +

1
2
∆x2

1∂x1x1z1
(
x′1,x2, t

)
,

B = ∂x1z1
(
x1i,x2, t

)
∆x1 +

1
2
∆x2

1∂x1x1z1
(
x′′1 ,x2, t

)
,

(3.8)

where x1−∆x1 ≤ x′′1 , x′1 ≤ x1 +∆x1. With small ∆x1 we write

A+B ∼= ∆x2
1∂x1x1zi

(
x1,x2, t

)
. (3.9)

Therefore,

βi(·)= βizi(x, t) +ηiβi∆x
2
i ∂xixi zi(x, t). (3.10)

3.3. Deaths. Suppose that z2 harms z1, and z1 benefits z2. All interactions are local with
respect to the adaptive traits and they affect changes in death rates. Death rates are as-
sumed quadratically density dependent. Then

µ1(·) �
[
µ1z1

(
x1,x2, t

)
+ c1

(
z2
(
x1,x2−∆x2, t

)
+ z2

(
x1,x2, t

)
+ z2

(
x1,x2 +∆x2, t

))]
z1
(
x1,x2, t

)
,

µ2(·) �
[
µ2z2

(
x1,x2, t

)− c2
(
z1
(
x1−∆x1,x2, t

)
+ z1

(
x1,x2, t

)
+ z1

(
x1 +∆x1,x2, t

))]
z1
(
x1,x2, t

)
.

(3.11)

We take c2 < c1. Following the procedure for βi(·), we get

µ1(·)= [µ1z1(x, t) + c1
[
∆x2

2∂x2x2z2(x, t) + 3z2(x, t)
]]
z1(x, t). (3.12)

Similarly

µ2(·)= [µ2z2(x, t)− c2
[
∆x2

1∂x1x1z1(x, t) + 3z1(x, t)
]]
z2(x, t). (3.13)

3.4. The ED. Substituting birth and death rates into (3.3), we obtain (3.1) with

A(z) � ∆2

[
η1β1 −c1z1

c2z2 η2β2

]
, f(z)=

[[
β1−µ1z1− 3c1z2

]
z1[

β2−µ2z2 + 3c2z1
]
z2

]
. (3.14)

Here ∆2 � ∆x2
i . The ED discussed below are all constructed similarly.
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4. Intra- and inter-ED generic interactions

The starting point is the set of equations

∂tzi(x, t)= βi
(

z(x, t)
)−µi

(
z(x, t)

)
, i= 1, . . . ,m, x ∈U ⊂Rn (4.1)

with data

z(x,0)= z0(x), ∂xz(x, t)= ∂xz(x, t)= 0, (4.2)

where m is the number of ED and x,x ∈ ∂U . Here βi(z) and µi(z) reflect addition and
subtraction processes from densities of phenotypes x where x is the phenotypic space: a
collection of say n adaptive traits. z0(x) is given. For definiteness, we call βi(·) and µi(·)
the birth and death rates. By deriving the additions and subtractions from first principles,
we will always end up with a set of R-D equations.

4.1. Births. With notable exceptions (see below), in many ecological interactions one
can assume that natural selection acts on a particular x via mortality, rather than through
birth. This is true even if the genetic makeup of a progeny renders it inviable. Death does
not occur directly because of genetic makeup but because of some physical force acting
on a phenotypic trait (e.g., organ failure). Therefore, we replace z with zi in βi(z).

Now suppose that upon birth, a fraction, ηi, of the newborn mutate to x±∆x. As a
first approximation, assume that birth rate is a linear function of phenotypes’ density,
with a constant coefficient βi. Then

βi
(
zi
)= βizi +ηiβi∆x

2∂xxzi, (4.3)

where zi ≡ zi(x, t) (see Cohen [5, 6] and the detailed example above).

4.2. Mortality. Now take µi(z) to be additive and proportional to zi. We consider 3
sources that increase or reduce mortality of phenotype x: density dependent term, µi(x,
t)zi > 0, changes due to intra-ED interactions, ξi(zi) ≥ 0, and changes due to inter-ED
interactions θi(zj)≥ 0. Then

µi(z)= [µi(x, t)zi + (−1)li ξi
(
zi
)

+ (−1)miθi
(
zj
)]

zi > 0, i �= j. (4.4)

External forces (e.g., environment) that change mortality rates are incorporated via µi(x,
t) (see Cohen [5, 6]). For now, we assume that interactions are localized. li and mi take on
the values 1 or 2. When li = 2, the intra-ED interactions among phenotypes result in in-
crease in the mortality rate of phenotypes (e.g., competition). When li = 1, the mortality
rate of x decreases (e.g., cannibalism). Similarly, mi parameterize inter-ED interactions.
Thus, various permutations of intra- and inter-ED interactions can be specified with li
and mi. This approach of generic interactions does not preclude the possibility that both
competition and cannibalism, for example, may occur—because it is unlikely that the
effect of both processes on mortality are exactly equal, the net effect within an ED will
almost always be one of the 3—competition, cannibalism, or none. Similar comment ap-
plies to θ(·). More generally, any intra- or inter-ED interactions boil down to mi and li
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equal either 1 or 2. In an even more general setting we may parameterize li and mi with
li(x, t) and mi(x, t). For the time being, we will consider mi and li constants. To a first
approximation, take ξi(·) and θi(·) to be linear functions. Because we consider localized
interactions (on x), we have

ξi
(
zi
)= (−1)li ai

[
zi(x−∆x, t) + zi(x+∆x, t)

]
. (4.5)

When ai = 0 there are no intra-ED interactions. Similar to the derivation of (4.3), we
obtain

ξi
(
zi
)= (−1)li ai

[
∆x2∂xxzi + 2zi

]
. (4.6)

Here ai scale the strength of the intra-ED interactions. When ai = 0 there are no intra-ED
interactions.

Regarding θi(·), we write

θi
(
zj
)= (−1)mi pi

[
zj(x−∆x, t) + zj(x, t) + zj(x+∆x, t)

]
(4.7)

or

θi
(
zj)= (−1)mi pi

[
∆x2∂xxzj + 3zj

]
. (4.8)

Here pi scale the strength of the inter-ED interactions. When pi = 0, there are no inter-ED
interactions.

This formulation encapsulates various interactions that affect the dynamics of ED. For
example, with li = 2, m1 = 2 and m2 = 1 we have predator prey (but see below) coevolu-
tion with intra-ED competition.

4.3. The generic equation. With ξ(·) and θ(·) linear, we have

∂tzi = k1
(
zi, li

)
∂xxzi− k2

(
zi,mi

)
∂xxzj +

(
βi− k3

(
zi, li

)− (−1)mi3pizj
)
zi, (4.9)

where

k1
(
zi, li

)
� ∆x2(βiηi− (−1)li aizi

)
,

k2
(
zi,mi

)
� (−1)mi∆x2pizi,

k3
(
zi, li

)
�
(
µi + (−1)li2ai

)
zi.

(4.10)

Now to set up the equation for zi such that the net effect is zi(x, t) benefiting from zi(x±
∆x, t), simply let li = 1. When zi(x, t) is harmed by zi(x±∆x, t), set li = 2. Set mi similarly
for inter-ED interactions. With no intra-ED interaction, set ai = 0, and with no inter-ED
interactions set pi = 0.

For homogeneous equilibria, we have f(z)= 0 with the solution

z̃i �
βiµj + (−1)l j 2ajβi− (−1)mi3piβj

A
, (4.11)
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where

A�
[
2(−1)l1a1 +µ1

][
2(−1)l2a2 +µ2

]− 9(−1)m1+m2 p1p2. (4.12)

The solution of z̃ does not shed much light on the stability of the homogeneous solution.
It is also too complex, and needs to be analyzed numerically. We are interested in pursuing
specific relations by building on the generic approach.

5. Predator prey

Let x be the prey’s adaptive trait that influences its vulnerability to predators. x is also the
predator’s adaptive trait—it influences the predator’s ability to catch prey. Let z1 and z2

denote the prey and predator ED. Predators z2(x, t) prey on z1(φx + j∆x, t), j = −1,0,1
where 0 < φ <M <∞. Similarly, prey z1(x, t) are eaten by predators z2(φ−1x+ j∆x, t). For
example, if x represents size, then φ scales the relation between prey and predator sizes.
We will take φ = 1. The more general case where φ �= 1 is much more difficult to analyze.

A notable exception to (4.3) is predator prey interactions. Here, we must approach
the effect of changes in the density of prey phenotypes on the density of predator phe-
notypes through βi(z) as opposed to through µi(z). This is so because we must assume
that there could be no births of predators without the presence of prey. Then for the
prey we have β1(z1) as in (4.3). For the predators, we assume that z2(x, t) gives birth
to z2(x + j∆x, t), j =−1,0,1 with mutation fraction η2. Furthermore, z2(x, t) prey upon
z1(x± j∆xt). Then

β2(z)= p2
(
1− 2η2

)
β2
[
z1 + z1(x−∆x, t) + z1(x+∆x, t)

]
z2, (5.1)

where p2 is the proportion of prey biomass that is transformed into predator biomass.
This reduces to

β2(z)= p2
(
1− 2η2

)[
∆x2∂xxz1 + 3z1

]
z2. (5.2)

So in predator prey interactions β1(·) is given in (4.3) and β2(·) is given above. What
about mortality? The intra-ED portion of mortality is expressed in ξi(zi). The inter-ED
portion has been traditionally modeled with saturation effects, a la Michaelis-Menten. In
the ecological milieu, predator saturation makes sense; not so much in the evolutionary
milieu. There is no a priori reason to presume that somehow predators will not continue
to evolve so as to kill as many prey as available. Thus, we set m1 = 2 and θ2 = 0. For the
predators, θ2 is not necessary as we already included the effect of predation by increasing
the predators’ birth rate (5.2). Therefore, for linear ξ(·) and θ(·) we have

µ1(z)= [µ1z1 + (−1)l1a1
(
∆x2∂xxz1 + 2z1

)
+ p1

(
∆x2∂xxz2 + 3z2

)]
z1,

µ2(z)= [µ2z2 + (−1)l2a2
(
∆x2∂xxz2 + 2z2

)]
z2.

(5.3)

Here p1 is the (biomass) fraction of prey removed by predators. In general, thermody-
namic considerations dictate p1 > p2. Furthermore, predators may inflict injuries on the
prey and these injuries do not necessarily translate to predator biomass.
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Inserting βi(·) and µ(·) from above into (4.1) and simplifying, we obtain (see
Appendix C)

∂tz= A(z)∂xxz + f(z), (5.4)

where

A(z)=
∆x2

(
β1η1− (−1)l1a1z1

) −∆x2p1z1

∆x2p2
(
1− 2η2

)
β2z2 −(−1)l2∆x2a2z2

 ,

f(z)=
(β1−

(
µ1 + (−1)l1 2a1

)
z1− 3p1z2

)
z1(

Kz1−
(
µ2 + (−1)l2 2a2

)
z2
)
z2

 ,

(5.5)

where

K � 3p2β2
(
1− 2η2

)
. (5.6)

Here K scales the conversion of prey biomass to the biomass of predators that do not
mutate. With this formulation, we can examine predator prey interactions in evolution-
ary context with a variety of permutations of net intra-ED interactions. For example, for
no intra-ED interactions we set ai = 0; for cannibalism we set li = 1 and for competition
li = 2. There are 9 permutations in all (e.g., a1 > 0, a2 = 0 and l1 = 1 or 2). We will pur-
sue only three cases: no intra-ED interactions, cannibalism and competition among prey
phenotypes. In each case, we will see how some of the parameters influence the stability
of the predator prey coevolutionary system.

5.1. No intra-ED interactions. To analyze this case, we set ai = 0 in (5.5). A homoge-
neous equilibrium solution of (5.4) requires that ∂tz= 0 and ∂xxz= 0. In this case, the
nontrivial equilibrium solution of f is

z̃1 = β1µ2

D
, z̃2 = Kβ1

D
, (5.7)

where

D = 3Kp1 +µ1µ2. (5.8)

Here

z̃1

z̃2
= µ2

3p2β2
(
1− 2η2

) . (5.9)

These equations lead to a few interesting conclusions. First, the equilibrium popula-
tions are not controlled by the mutation rate of the prey. Second, as the mutation rate
of the predator increases (and remains below 0.5), K becomes smaller and the equilib-
rium populations of both predator and prey become larger; however, smaller K also re-
sults in a larger ratio of z̃1 to z̃2. In short, higher mutation rates by the predator leave
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relatively more prey alive. This is so because large η2 results in fewer births of z2(x, t)—
evolutionarily, a good reason for η2 to remain small! Third, as expected, larger µ1 results
in smaller equilibrium populations while larger µ2 results in larger prey populations.

At any rate, at the equilibrium solution the expressions for the eigenvalues of ∂zf(z̃)
are not pretty. However, the relevant parts of the expression (those that control the sign
of the eigenvalues) are

λ1,2 ∝−A±
√
B, (5.10)

where

A= √µ2
(
µ1 +K

)
,

B = µ2
(
µ2

1 +K2)− 2K
(
6p1K +µ1µ2

)
.

(5.11)

We can reasonably expect η2 � 0.5, and therefore K > 0. This means that the real part of
one of the eigenvalues will always be negative. It turns out that |A| > |√B|. To see this,
write the last condition as

A2 > B (5.12)

and simplify. We thus get

4µ1µ2 + 12Kp1 > 0. (5.13)

With ηi � 0.5, this expression is true for any parameter values. From this we conclude
that regardless of the parameter values, we always get homogeneous stable equilibrium.
A rather dull model one might say. Is this reason enough to reject the generic system
(5.4)-(5.5) as reasonable for coevolutionary predator prey ED? The model, albeit a first
approximation, is based on first principles and we may simply have to admit that na-
ture may be sometimes dull (or equivalently that predator prey cycles are controlled by
cyclic input to the system). Furthermore, we are yet to examine the system with intra-ED
interactions. We purse two specific cases in the next section. Finally, the road to stable
equilibrium or unreasonable instability (where phenotypes densities become infinite) is
of interest. After all, if that road is taken slowly, we are likely to observe its expression in
nature. One might even argue that all extinctions are eventually certain, and therefore the
road to stable equilibrium or unreasonable instability may even be more interesting than
the stable equilibrium itself. Here is an example.

Example 5.1. We use (5.4) and (5.5) with parameters

a1 = a2 = 0, β1 = 1, β2 = 0.2, µ1 = 0.01, µ2 = 0.02,

p1 = 0.1, p2 = 0.01, η1 = η2 = 0.01, ∆x = 0.001
(5.14)

(the parameter values, albeit in the range expected, are set for illustrative purposes only)
and data

z1(x,0)= 9 + 2cos(x), z2 = 3 + cos(x), ∂xz(0, t)= ∂xz(4π, t)= 0. (5.15)
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Figure 5.1

Figure 5.1 illustrates the road to stable equilibrium. A particular cross section (t = 15) is
compared to the initial data (Figures 5.2 and 5.3).

The example illustrates interesting dynamics. One might start with 5 types of prey and
5 types of predators, but along the way the predators cause increase in biodiversity and we
observe 9 types of prey, while the predators remain with 5 types. Note also that in some
cases, the densities of types for prey and predators are reversed (with some phase shifts
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along x). So along the way to homogeneous equilibrium we start with certain biodiversity.
It increases (due to predation) and then ends up with homogeneous equilibrium.

5.2. Cannibalism among preys. For a1 > 0, a2 = 0, and l1 = 1, we obtain

z̃1 = β1µ2

D′
, z̃2 = Kβ1

D′
, (5.16)

where

D′ =D− 2a1µ1. (5.17)
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Here again z̃1/z̃2 is as in (5.9). However, the equilibria in this case are larger because of
the relation between D′ and D. At the equilibrium solution the expressions for the eigen-
values of ∂zf(z̃) are

λ1,2 = β1
√
µ2

2D′
[− (A− 2a1

√
µ2
)±√B′], (5.18)

where B′ is an ugly expression. However, things can be simplified considerably. For the
system to be stable, we require that(

A− 2a1
√
µ2
)
> 0,

(
A− 2a1

√
µ2
)2

> B′. (5.19)

The last equation simplifies to the requirement that

D′ > 0 (5.20)

or

9p1p2β2
(
1− 2η2

)
+µ1µ2− 2a1µ2 > 0. (5.21)

All of the parameters are positive fractions. In particular, p1 · p2 is on the order of 10−2.
Therefore, a1 must be small for the above condition to be satisfied. In other words, the
scale of cannibalism must be small.

All else being equal, as a1 increases from 0 (the case of no intra-ED interactions), the
system moves from stability to instability as one of the eigenvalues moves from negative
to positive values.

5.3. Competition among the preys. Here we take a1 > 0, a2 = 0 and l1 = 2. The equilib-
rium solution is as in (5.16), except that now

D′ =D+ 2a1µ1. (5.22)

In other words, z̃ with competition < z̃ with no intra-ED interactions < z̃ with canni-
balism (where interactions are among prey phenotypes). The eigenvalues of ∂zf(z̃) are
now

λ1,2 = 1
2D′

(
A±√B′), (5.23)

where

A=−β1µ2
(
2a1 +K +µ1

)
(5.24)

and B′ not pretty. However,

−A2 +B′ = −4β2
1µ2
[
3Kp1 +µ2

(
2a1 +µ1

)]
. (5.25)

This expression will always be negative and therefore λ1,2 are negative and the system is
stable. In other words, competition stabilizes the system compared to cannibalism.

Time to examine a different case.
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6. Mixed interactions

Let x be the adaptive trait of z1 and of z2. Mutations ηi occur at birth to x±∆x. Assume
that z1(x, t) benefit from z2(x, t). However, z1(x, t) are harmed by z2(x±∆x, t). Similarly,
z2(x, t) benefit from z1(x, t) but are harmed by z1(x±∆x). Ecologically, this is a version
of specific symbiotic relations. If zi do not exactly fit, they actually harm each other. Then
from Appendix C,

A(z)= ∆

[
β1η1− (−1)l1a1z1 −p1z1

−p2z2 β2η2− (−1)l2a2z2

]
,

f(z)=
(β1−

(
µ1 + (−1)l1 2a1

)
z1− p1z2

)
z1(

β2−
(
µ2 + (−1)l2 2a2

)
z2− p2z1

)
z2


(6.1)

where ∆ � ∆x2 (compare to (5.5)). Again, several combinations can be used to reflect
intra-ED interactions by setting li = 1,2. The analytical expressions for z̃ and λ are messy
and not very revealing. However, when values are assigned to the parameters, it turns out
that for ai ≥ 0 and a variety of combinations of li = 1,2 we get a pair of real eigenvalues;
one negative and one positive. The dynamics of the ED are truly remarkable. Over time,
we get a complete separations of phenotypes along x. Here is an example.

Example 6.1. The parameter values are:

ai = 0, ηi = 0.01, β1 = 0.4, β2 = 0.5,

µi = 0.01, ∆x = 0.001, pi = 0.1.
(6.2)

The data are

z1(x,0)= 4.6 + 0.46cos(4x),

z2(x,0)= 3.5 + 0.35cos(4x),

∂xz(0, t)= ∂xz(4π, t)= 0.

(6.3)

With these and the assumption of homogeneous equilibrium, we get z̃ = (4.6,3.5) and
λ1,2 = (−0.6,0.2). The evolutionary dynamics of the ED are shown in Figures 6.1 and 6.2.
The cross sections at t = 0 and t =“∞” are shown in Figure 6.3.

Figures 6.1 and 6.2 show the coevolution to stable ED. The coevolution to stable ED
are also illustrated in Figure 6.3. Here the cross sections at t = 0 (thick curve) and t =
1000,2000. For t = 1000 and 2000 the cross sections are indistinguishable for both ED.

The results of this example merit a few comments. The coevolutionary process spaces
z1 and z2 such that phenotypes with similar traits values from different ED do not overlap.
If the amplitudes b in the initial conditions a+ bcos(4x) are sufficiently small, one ends
with a homogeneous equilibrium ED. In other words, the peculiar biodiversity here can
be produced only with sufficiently nonhomogeneous (along x) perturbations. This con-
clusion was first suggested and observed by Turing [24]; see also discussion in Levin [11].
Based on the mutual benefits of specific phenotypes and mutual harm to other pheno-
types, one would have expected the ED of both functional types to overlap considerably.
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In fact, the opposite happens—a form of “coevolutionary exclusion.” Finally, because in-
teractions are local, we end with 3 types of z1 that do not interbreed and 2 types of z2 that
do not interbreed.
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7. Discussion

The ED approach raises legitimate questions. One might argue that a population is com-
posed of discrete units (individuals) and thus there are no individuals of phenotype
x±∆x when ∆x is sufficiently small. Like any other model of diffusion, the continuous
approach is based on small scale averaging. This is justified only for large populations.
The approach taken here does not apply to small populations, where individual based
stochastic models are appropriate.

Three important issues are challenging. First, the dimensionality of the adaptive space
(i.e., the dimensionality of x) is imposed on the system a priori. A fundamental general-
ization of the theory should provide the means to decide on the appropriate dimension-
ality. One may even go further and say that the ED dimensionality is in fact a dynamic
feature of the system. This boils down to a fundamental question in the theory of evolu-
tion: what is the meaning of “innovative” adaptation? Perhaps it is a new dimension in
the adaptive space. Of course what might look as an innovative adaptation on one scale
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(say organismal) may not be on another (say molecular). Furthermore, without clear def-
initions (e.g., as in Appendix A) of concepts such as evolutionary innovation , I do not
know how to begin addressing this question.

Second, how would assortative mating and intra-ED interactions—among phenotypes
that are not necessarily close—affect the interactions among evolutionary distributions?
One can go even further and ask: how can the theory lead to the emergence (evolution) of
assortative mating and specific intra-ED rules? Indications are that competition among
distant phenotypes, for example, end in smoothing the nonhomogeneous equilibrium of
predator prey relations compared to x-local competition (see Cohen [6]).

Third, inter-ED interactions—such as predator prey—among functionally different
organisms are specified arbitrarily. How can the theory give rise to such interactions?
In other words, can the theory give rise to the emergence of one ED from another? Of
course uncovering such generalizations will lead to ever more fundamental questions and
eventually to the “theory of everything” (and perhaps of nothing). Needless to say, at this
time, I have no answers to these questions.

A flicker of how some of these questions may be addressed appears in (4.9): one may
consider ki(·) to be unknown functions whose solutions give rise to intra- and inter-ED
interactions. This requires articulation of some game-theoretic or optimization criteria.
Solving for the criteria, with (4.9) as a constraint, should result in appropriate ki(·). Also,
one may approach ED as a single hyper-distribution with added dimension xn+1. This
requires a fundamental shift in our concept of phenotypes function in ecosystems. They
may be prey at one time and predators at another—all in a single adaptive space x.

The approach taken here lends itself to extensions with little conceptual (but otherwise
much) effort. For example, x can be taken as x of arbitrary dimension and z can have a
dimension larger than 2. In fact, spatial coordinates can be viewed as values of adaptive
characters, particularly for sessile organisms. Yet, even with low dimensional ED we al-
ready get rich results. Of course the examples are limited to the specific models of intra-
and interspecific interactions. Yet, they establish possible consequences of the theory.

Appendices

A. Definitions

The theory discussed in this manuscript relies, implicitly, on the following formal defi-
nitions. Rn denotes an n-dimensional Euclidean space. Each dimension is represented by
the extended real line (but see Comments below).

Adaptive space and phenotypes. Each dimension in Rn represents an adaptive trait. Be-
cause of physical and biological constraints, adaptive traits take an open bounded set of
real values, Ω ⊂ Rn. The set Ω is said to be the adaptive space. Elements of Ω, denoted
by x = [x1, . . . ,xn], are called points. An organism that possesses a point, say x, is called a
phenotype and is labeled by x.

Adaptive trait. Let e be the basis of Ω. Then each ek, k = 1, . . . ,n represents an adaptive
trait. Let xk be the value of the kth adaptive trait. xk are heritable (with mutations). xk, as
expressed in phenotypes are subject to natural selection.
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Natural selection. Phenotypes are characterized by x =∑n
k=1 xkek where xk is a value of

the adaptive trait k for the phenotype x. The otherwise (biologically) inherent mortality
of each x is influenced by three factors: x’s interactions with the environment, x’s in-
teractions with phenotypes and chance. The contribution of the first two factors to the
mortality of x constitute natural selection. So natural selection can be decomposed into
external and internal. External is due to physiological and other constraints (e.g., resis-
tance to extreme heat and cold). Internal is due to interactions among phenotypes (e.g.,
competition).

Heritable trait. A trait is said to be heritable if a progeny of x becomes ym = x +∑n
k=1( jmk∆x)ek where ∆x is small and jmk = −1, 0 or 1. Here m = 1, . . . , total number

of progeny of x.

Mutation. The term
∑n

k=1( jmk∆x)ek is said to be mutation. If, for a given m, jmk = 1 or
−1 for at least one k, then ym is said to be the mth mutant with respect to the x phenotype.

Type. Choose points of interest pi ∈ Ω, i = 1, . . . ,s. Now define a type Ai, i = 1, . . . ,s as
follows:

Ai =
{

x : d
(

x,pi

)
< δi, where δi are chosen such that Ai are disjoint

}
. (A.1)

Here d(a,b) denotes the distance (based on an appropriate norm) between a and b and
δi > 0. Phenotypes xp ∈ Ai are said to be of type Ai, where Ai ⊂Ω.

Evolutionary distribution (ED). Let z(x, t), x ∈Ω, z ∈R0+ be the density of z with adap-
tive traits x at t. If the dynamics of z give rise to changes in the relative frequencies of
z(x, t) due to natural selection, then z(x, t) is said to be an evolutionary distribution. If
limt→∞ z(x, t)= z̃(x) exists, then z̃(x) is said to be equilibrium ED. If, in addition, z̃(x) is
stable, then z̃(x) is said to be stable ED.

Evolutionary system. A collection of m ED, z(x,t), z∈ Rm
0+, is called an evolutionary sys-

tem.

Genotype. Let Γ be the set of all unique genes, g, among phenotypes that belong to a
single ED z. We say that Γ is the genome of z. Let �(Γ) denote the power set of Γ. Choose
G⊂ �(Γ) such that f −1 : G→Ω where f is one-to-one. G is said to be the genetic space
that corresponds to the genome Γ. Now f (Ai), i = 1, . . . ,s induces a partition of G into
disjoint subsets, {Gk}, where {Gk} is said to be a genotype of z in the adaptive space Ω.

Comments. (i) To the best of my knowledge, this is the first time that such definitions are
formalized in the above terms. Therefore, they may not be widely accepted.

(ii) A phenotype displays many traits. Not all of them adaptive. Because f is one-
to-one (but not necessarily onto), the definitions allow for g /∈ G. These are genes that
do not have phenotypic expressions or genes whose expressions are not subject to natural
selection. The reverse is not true. That is, all phenotypic traits are, by definition, heritable.

(iii) From the definitions, it is clear thatG is constructed from Γ using the definitions of
Ai and invoking f on Ai. The existence of f reduces the dynamics of population genetics
to an algebraic problem whose solution is obtained from z.

(iv) Because Ai are disjoint,
⋃
Ai =

∑
Ai.
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(v)
∑s

i=1Ai do not necessarily completely cover Ω. Here s is a particular measure of
biodiversity.

(vi) From the definitions one concludes that x may be classified as one and only one
type or as no-type at all. No type is defined as x ∈ (

∑s
i=1Ai)c where c denotes a comple-

ment.
(vii) A type is an abstract taxonomic classification. Depending on the biological details

of the adaptive space Ω, a type may be a species, a subspecies, a phenotype x, no type and
so on.

(viii) Every ED has its own adaptive space Ωz and genetic space Gz. When dealing with
a single ED, the subscript is dropped. For example, in a predator prey system, one has
two ED, z1 and z2 and two adaptive spaces, Ωz1 and Ωz2 . Furthermore, even if both ED
are measured for identical traits (say size of phenotypes), x in Ωz1 should be interpreted
differently from x in Ωz2 . This is so because the consequences of evolutionary changes
(e.g., adaptation) in x in the two spaces may be different for the organisms in these spaces.
∪Ωzi may be interpreted as the coevolutionary space.

(ix) Stable ED correspond to ESS.
(x) The preceding definitions are not the most general. In nature, adaptive traits need

not cover a contiguous interval on R. Many adaptive trait values are not real numbers.
For example, male-female is a binary trait. There are other traits that may be represented
by integers. Yet others may be categorical. The definitions can be generalized by defining
Ω in abstract metric spaces, instead of in Ω⊂Rn.

B. Derivation of (5.5)

We have

β1
(
z1
)= β1z1 +η1β1∆x

2∂xxz1,

β2(z)= p2
(
1− 2η2

)
β2
[
∆x2∂xxz1 + 3z1

]
z2,

µ1(z)= [µ1z1 + (−1)l1a1
(
∆x2∂xxz1 + 2z1

)
+ p1

(
∆x2∂xxz2 + 3z2

)]
z1,

µ2(z)= [µ2z2 + (−1)l2a2
(
∆x2∂xxz2 + 2z2

)]
z2.

(B.1)

Thus,

∂tz1 = β1z1 +η1β1∆x
2∂xxz1

− [µ1z1 + (−1)l1a1
(
∆x2∂xxz1 + 2z1

)
+ p1

(
∆x2∂xxz2 + 3z2

)]
z1

= ∆x2(η1β1− (−1)l1a1z1
)
∂xxz1− p1∆x

2z1∂xxz2

+
(
β1−µ1z1− 2(−1)l1a1z1− 3p1z2

)
z1,

∂tz2 = p2
(
1− 2η2

)
β2
[
∆x2∂xxz1 + 3z1

]
z2

− [µ2z2 + (−1)l2a2
(
∆x2∂xxz2 + 2z2

)]
z2

= p2
(
1− 2η2

)
β2∆x

2z2∂xxz1− (−1)l2a2∆x
2z2∂xxz2

+
(
3β2p2

(
1− 2η2

)
z1−µ2z2− (−1)l2a22z2

)
z2.

(B.2)

Thus, we obtain (5.5).
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C. Derivation of the mixed interaction equation

As before,

βi
(
zi
)= βizi +βiηi(∆x)2∂xxzi. (C.1)

Let x be the adaptive trait of z1 and of z2. Mutations ηi occur at birth to x±∆x. Assume
that z1(x, t) benefit from z2(x, t). However, z1(x, t) are harmed by z2(x±∆x, t). Similarly,
z2(x, t) benefit from z1(x, t) but are harmed by z1(x±∆x). Ecologically, this is a version of
specific symbiotic relations. If zi do not exactly fit, they actually harm each other. Based
on the assumptions in Section 6 we obtain

µi(z)= [µizi + (−1)li ξi
(
zi
)

+ (−1)1θi
(
zj
)]
zi

= [µizi + (−1)li ai
[
∆x2∂xxzi + 2zi

]− θi
(
zj
)]
zi.

(C.2)

Here

θi
(
zj
)= pi

(
zj − zj(x−∆x, t)− zj(x+∆x, t)

)
=−pi

(
zj(x−∆x, t)− zj + zj(x+∆x, t)− zj + zj

)
=−pi

(
∆x2∂xxzj + zj

)
.

(C.3)

So

∂tzi = βizi +βiηi(∆x)2∂xxzi−
[
µizi + (−1)li ai

(
∆x2∂xxzi + 2zi

)
+ pi

(
∆x2∂xxzj + zj

)]
zi

= (∆x)2(βiηi− (−1)liaizi
)
∂xxzi− pi∆x

2zi∂xxzj +
[
βi−

(
µi + (−1)li2ai

)
zi− pizj

]
zi.

(C.4)

In matrix notation:

∂tz= A(z)∂xxz + f(z), (C.5)

where A and f are given in (6.1).
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