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The determination of directional power density distribution of an electromagnetic wave
from the electromagnetic field measurement can be expressed as an ill-posed inverse
problem. We consider the resolution of this inverse problem via a maximum entropy
regularization method. A finite-dimensional algorithm is derived from optimality con-
ditions, and we prove its convergence. A variant of this algorithm is also studied. This
second one leads to a solution which maximizes entropy in the probabilistic sense. Some
numerical examples are given.

1. Introduction

In this paper, we present entropy regularization algorithms in order to determine electro-
magnetic wave propagation directions from the measurement of the six components of
the electromagnetic field. Most of existing methods assume that the electromagnetic wave
is similar to a single plane wave. In this case, for a fixed frequency, the electromagnetic
field is fully described by the wave normal direction vector k. Nevertheless, this assump-
tion is generally too restrictive. For a more realistic analysis of an electromagnetic wave
in a plasma, Storey and Lefeuvre have introduced the concept of wave distribution func-
tion (WDF) [5]. This function describes the wave energy density distribution for every
frequency and propagation modes. The WDF f is related to the spectral matrix V of the
electromagnetic field component by a Fredholm integral of the first kind [5]

V(w)=
∫
q(k,w) f (k,w)dk, (1.1)

where k is the wave normal vector and w the frequency. In practice, the WDF is com-
puted for the most significant frequency (often there is only one significant frequency) of
the spectrogram. The integrating kernel q is a known function depending on the propa-
gation media. The spectral matrix V is defined with the measured electromagnetic field
e :R+ →Rs by V = ê(w)ê∗(w) where ê denotes the Fourier transform of e and s∈N∗ is
the number of field components. It is a Hermitian matrix. This definition of the spectral
matrix is an approximation of the real spectral matrix. Indeed, e is a random signal and

Copyright © 2005 Hindawi Publishing Corporation
Journal of Applied Mathematics 2005:2 (2005) 127–152
DOI: 10.1155/JAM.2005.127

http://dx.doi.org/10.1155/S1110757X04401041


128 Determination of a power density

we should use mean values of e. Here we assume that e is deterministic. In what follows,
we will identify the spectral matrix with a vector of Cn, where n = s2. Solutions of the
inverse problem of determining f from measurements of V were proposed by Lefeuvre
using a maximum entropy method [6]. However, for a fixed frequency, we have to solve
the integral equation problem

V =
∫
q(x) f (x)dx, (1.2)

where the unknown function f is nonnegative. This inverse problem is known to be ill-
posed.

The concept of WDF can be transposed to the case of electromagnetic wave propa-
gating in vacuum. Equation (1.1) remains valid if we use the vacuum kernels instead of
the plasma kernels and if the electromagnetic wave has a single polarization mode [7].
The use of the WDF concept for electromagnetic wave propagating in vacuum has been
studied for the interpretation of ground penetrating radar investigations, and, in particu-
lar, the one proposed for the NetLander mission to Mars [7]. The aim of this instrument
was to explore the first kilometers of Mars subsurface to study its geological structure and
look for water.

Here we use a maximum entropy regularization method to solve this problem. We
minimize the quantity ∥∥∥∥V −∫ q(x) f (x)dx

∥∥∥∥2

Cn
+µH( f ) (1.3)

with the constraint f ≥ 0, where H is a negentropic term (to be defined later) and µ a
regularization parameter. In fact, H is not the negentropy in the probabilistic sense since
f is not a density. But the minimization of H leads to a smooth solution. The main dis-
advantage of the maximum entropy solution of [6] is that the constraints on the solution
are too strong. The regularization process provides a relaxed problem and the error we
introduce allows to search a solution in a much wider domain. Moreover, we obtain a
solution not far from the data that looks like a minimizer of H .

The maximum entropy regularization method is a useful tool to solve such inverse
problems. Amato and Hughes [1] have studied the convergence of this method to show
that it is a correct regularization process. This convergence is also studied in [3] by making
a link with the classical Tikhonov method [11, 12]. A generalization is investigated in [8].

The mathematical model of the problem is described in Section 2. We define the ne-
gentropy in Section 3. In Section 4, we set the optimization problem: the feasible do-
main of this problem has to be relaxed to find optimality conditions. We present two
algorithms, but the solutions we obtain do not minimize negentropy. So we modify the
optimization problem in Section 5. Finally, we present numerical tests in Section 6.

2. Mathematical model

In this section, we present the mathematical model. We consider a measured space (E,�,
σ), where E is a compact subset of Rp, p ≥ 1, and the measure σ verifies σ(E) < +∞. The
power density on (E,�) can be defined as follows.
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Definition 2.1. The power density is a couple (α,m), where α∈R+ and m is a probability
measure on (E,�). Let A⊂ E be the power πA of the subset A is given by

πA = αm(A). (2.1)

The aim of this paper is to determine a power density (α,m) which verifies the equation

α
∫
E
qdm=V , (2.2)

where V ∈ Cn is known and q ∈ L2(E,Cn,σ) is the integration kernel. In plasma physics,
we have to solve this kind of problem to determine the power density distribution of an
electromagnetic wave m and the total power α from the measurement of the electromag-
netic field components. In this case, we typically have n= 36.

The set of probability measures is too large and we will only consider measures that
are continuous with respect to the measure σ . We denote H = L2(E,R,σ) (⊂ L1(E,R,σ)
thanks to our assumptions). For all F ∈H and F ≥ 0 σ-a.e., we can define a power den-
sity (α, (F/α)dσ), where α= ‖F‖L1(E,R,σ) and (F/α)dσ is the measure of density F/α with
respect to σ . Note that F �→ ∫

E αqdm where α = ‖F‖L1(E,R,σ) and m = Fdσ/α is a linear
bounded operator fromH to Cn.

More generally, we consider a linear bounded operator ψ = (ψ1, . . . ,ψn) :H→ Cn, ψ∗ :
Cn → H its adjoint operator and we assume that R(ψ∗) ⊂ L∞(E,R,σ) (R denotes the
range). We have to solve

ψ[F]=V. (2.3)

From the Riesz theorem, we deduced that there exist n functions qi ∈ L2(E,C,σ), i =
1, . . . ,n, such that ψi[F]= 〈qi,F〉H. These functions are integration kernels, and we have

∀l ∈ Cn, ψ∗(l)= Re

( n∑
i=1

liq̄i

)
, (2.4)

where q̄i denotes the conjugate complex of qi. The condition R(ψ∗) ⊂ L∞(E,R,σ) is
equivalent to

∀i= 1, . . . ,n, qi ∈ L∞(E,C,σ). (2.5)

The problem of solving (2.3) is an ill-posed problem. Indeed, ψ is an operator from
H (an infinite-dimensional Hilbert space) to the finite-dimensional Hilbert space Cn. So,
the operator ψ is not injective and there is no uniqueness of the solution (if it exists). In
addition, we want to determine a solution which is also stable, that is continuous with
respect to the data V . This will be crucial for the physical and numerical stability. To deal
with this challenge, we use a maximum entropy regularization method.

The principle of Tikhonov’s regularization method is to minimize the quantity

∥∥ψ[F]−V∥∥2
Cn +µΩ(F), (2.6)
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where µ is called the regularization parameter and Ω is a suitable regularizing functional.
This method is equivalent to minimizing the functional Ω on the set {‖ψ[F]−V‖Cn ≤
δ(µ)} [1]. In this paper, we use an entropic term as the regularizing functional (see
Section 3) and we restrict the domain to the Hilbert space H whereas usually, maximum
entropy regularization is performed in L1. We will see in the following section that there
is no problem to define the entropy. First we recall some definitions.

3. About entropy

Let the function φ :R+ →R be defined by

φ(x)=
x ln(x) if x > 0,

0 else.
(3.1)

The notation m1 
m2 means that the measure m1 is absolutely continuous with respect
to the measure m2.

Definition 3.1. Let f ,g ∈ L1(E,R,σ) such that f dσ and gdσ are two probability measures
and f dσ
 gdσ . We define the relative information content of f with respect to g by

I( f ,g)=
∫
E
f ln

f

g
dσ. (3.2)

If the condition f dσ 
 gdσ is not verified, then I( f ,g) = +∞. If g is the noninforma-
tive probability density (see the definition below), then I( f ,g) is called the information
content of f . The negentropy (negative entropy) of f is then defined by

H( f )= I( f ,g). (3.3)

The noninformative probability density is a known function of the model. Physically,
it is the probability density of a noise measured in the system. For example, in the case
of an electromagnetic wave in vacuum WDF, E is the unit sphere. Now, since isotropy
occurs (there is no privileged direction of propagation for a plane wave in vacuum), we
deduce that the noninformative density probability is constant over the unit sphere. So,
we may assume that the noninformative probability density is given by

∀x ∈ E, g(x)= 1
σ(E)

. (3.4)

For the sake of simplicity, we will suppose that σ(E)= 1, so the negentropy of f is

H( f )=
∫
E
φ ◦ f dσ. (3.5)

Entropy of a probability density can be seen as a “distance” between f and the density
of the noninformative probability g. To calculate the solution of the inverse problem,
we minimize a functional involving negentropy. Thus, we determine the solution, which
contains less information with respect to the density g. From the physical point of view,
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this allows to preserve the physical significant information. So, it is primordial to know
the noninformative density g quiet accurately. One can refer to [10] for the axiomatic
derivation of the maximum entropy principle. The next lemma gives some properties
of H .

Lemma 3.2. In the sequel, denote K = { f ∈ L2(E,R,σ) | f ≥ 0 σ-a.e.}. For all f ∈ K ,
−e−1 ≤ H( f ) < +∞. The functional H : L2(E,R,σ) → R is lower semicontinuous (l.s.c.),
strictly convex on K and verifies that for all ε > 0, for all f ∈ K such that f ≥ ε σ-a.e., for all
g ∈ K , for all λ∈ [0,1],

H
(
f + λ(g − f )

)−H( f )= λ
∫
E

(
1 + ln f (x)

)
( f − g)(x)dσ(x) + o(λ). (3.6)

Proof. Let f ∈ L2(E,R,σ),

H( f )=
∫
{x∈E| f (x)<1}

φ ◦ f (x)dσ(x) +
∫
{x∈E| f (x)≥1}

φ ◦ f (x)dσ(x); (3.7)

as

∀x ∈ [0,1], −e−1 ≤ x lnx ≤ 0,

∀x ≥ 1, 0≤ x lnx < x2,
(3.8)

so we deduce

H( f )≤ ‖ f ‖L2(E,R,σ) < +∞, H( f )≥−e−1. (3.9)

The proof of the lower semicontinuity of functional H can be found in [1, 8].
We now prove (3.6): let f ∈ K such that f ≥ ε let g ∈ K . We have for a.e. x ∈ E,

φ
(
f (x)+λ

(
g(x)− f (x)

))−φ( f (x)
)=λ(1 + ln f (x)

)(
g(x)− f (x)

)
+ o(λ) (3.10)

since φ is derivable on R+∗ and φ′(x)= 1 + lnx.
The functional H is strictly convex by the strict convexity of φ on R+. �

4. A penalized problem

We now define the penalized cost functional or smoothing functional Jµ we want to min-
imize:

Jµ :H−→R, F �−→ ∥∥V −ψ[F]
∥∥2
Cn +µH(F), (4.1)

where µ > 0 is a regularization parameter. We have the following lemma.

Lemma 4.1. The functional Jµ is l.s.c. and strictly convex on K . In addition, if ε > 0, f ,g ∈ K
with f ≥ ε σ-a.e., then

∀λ∈ ]0,1[, Jµ
(
f + λ(g − f )

)− Jµ( f )= λ〈DJµ( f ),g − f
〉
H + o(λ), (4.2)
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where

DJµ( f )= µ(1 + ln f )− 2ψ∗
[
V −ψ[ f ]

]
, (4.3)

Jµ(g)≥ Jµ( f ) +
〈
DJµ( f ),g − f

〉
H. (4.4)

Proof. The functional F �→ ‖V −ψ[F]‖2
Cn is continuous onH by continuity of ψ, hence it

is l.s.c. We conclude that Jµ is l.s.c. on K by Lemma 3.2. Furthermore, F �→ ‖V −ψ[F]‖2
Cn

is Fréchet-differentiable and its gradient is −2ψ∗[V − ψ[F]], so (4.2) is proved by
Lemma 3.2 as well.

The functional Jµ is strictly convex on K by strict convexity of H and by convexity of
the term ‖V −ψ[F]‖2

Cn . So, we can write

Jµ
(
f + λ(g − f )

)
< (1− λ)Jµ( f ) + λJµ(g),

Jµ
(
f + λ(g − f )

)− Jµ( f )

λ
< Jµ(g)− Jµ( f ).

(4.5)

Equation(4.4) follows by taking the limit of the last equation when λ→ 0. �

The penalized optimization problem stands as follows:

(�µ)

min Jµ(F),

F ∈ K = { f ∈H | f ≥ 0 σ-a.e.
}
.

(4.6)

The existence of a solution to problem (�µ) is not obvious since the cost functional
is not coercive in H. To illustrate this fact, we give a simple counterexample: we set E =
[0,1], σ is the Lebesgue measure on [0,1] and f : E → R, x �→ x−1/2. Then H( f ) = 2 <
∞ and we can build a sequence { fk}k∈N ⊂H such that fk → f a.e., ‖ fk‖H → +∞, and
H( fk)→H( f ) < +∞.

Nevertheless, since Jµ is strictly convex, the solution to (�µ) is unique if it exists. It is a
function ofH : Fµ,V . The power density can be obtained by setting α= ‖Fµ,V‖L1(E,R,σ) and
m= (Fµ,V /α)dσ .

Therefore, we do not minimize the negentropy of Definition 3.1 since Fµ,V is not a
probability density. Rigorously, the negentropy of the solution is H(Fµ,V /α). Moreover,
the cost functional does not verify (4.2) on the whole set K because φ is not derivable at
0. So, we have to modify this problem, taking a smaller feasible set. We study the modified
problem in the next section to determine approximate first-order optimality conditions.

4.1. Relaxation of the feasible set. We just mentioned that (�µ) cannot be directly solved
because Jµ is not coercive and (4.2) is not satisfied. So we choose a smaller feasible set to
ensure (4.2). To deal with the lack of coercivity, we bound this new domain. For 0 < ε <
T < +∞, we set

Kε,T =
{
f ∈H | ε ≤ f σ-a.e., ‖ f ‖H ≤ T

}
. (4.7)

It is a closed, convex subset ofH. The “relaxed” problem reads
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(�ε,T
µ )

min Jµ(F), F ∈ Kε,T . (4.8)

Theorem 4.2. Problem (4.8) has a unique solution Fε,Tµ ∈ Kε,T . A necessary and sufficient
condition of optimality is

∀ f ∈ Kε,T ,
〈
DJµ

(
Fε,Tµ

)
, f −Fε,Tµ

〉
H ≥ 0, (4.9)

where

DJµ
(
Fε,Tµ

)=−2ψ∗
[
V −ψ[Fε,Tµ ]]

+µ
(
1 + lnFε,Tµ

)
. (4.10)

Proof. The existence and uniqueness of the solution is standard, see [2, Corollary III.20,
page 46]. We call it Fε,Tµ . Then

∀g ∈ Kε,T , ∀λ∈ [0,1], Jµ
(
Fε,Tµ + λ

(
g −Fε,Tµ

))− Jµ(Fε,Tµ )≥ 0. (4.11)

With Lemmas 3.2 and 4.1, this is equivalent to

∀g ∈ Kε,T ,
〈
DJµ

(
Fε,Tµ

)
,g −Fε,Tµ

〉
H ≥ 0. (4.12)

�

With the optimality condition (4.9), we may now construct the solution to (�µ).

Lemma 4.3. If there exists Fε,Tµ ∈ Kε,T such that

Fε,Tµ = exp
(
− 1 +

2
µ
ψ∗
[
V −ψ[Fε,Tµ ]])

, (4.13)

that is, Fε,Tµ is a fixed point of a functional

Γµ :H−→H, F �−→ exp
(
− 1 +

2
µ
ψ∗
[
V −ψ[F]

])
, (4.14)

then for all 0 < ε′ ≤ ε and T′ ≥ T , Fε,Tµ is the unique solution of (�ε′,T′
µ ). Furthermore Fε,Tµ is

the unique solution of problem (�µ) and we denote it by Fµ,V .

Proof. Let Fε,Tµ ∈ Kε,T such that

Fε,Tµ = exp
(
− 1 +

2
µ
ψ∗
[
V −ψ[Fε,Tµ ]])

σ-a.e. (4.15)

We get

µ ln
(
Fε,Tµ

)=−µ+ 2ψ∗
[
V −ψ[Fε,Tµ ]]

σ-a.e. (4.16)

So

∀ f ∈ Kε,
〈− 2ψ∗

[
V −ψ[Fε,Tµ ]]

+µ
(
1 + ln

(
Fε,Tµ

))
, f −Fε,Tµ

〉
H = 0, (4.17)
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and we see that Fε,Tµ verifies (4.9). Therefore, Fε,Tµ is the solution of (4.8). As Kε,T ⊂ Kε′,T′
for all 0 < ε′ ≤ ε and T′ ≥ T , we conclude that Fε,Tµ is the solution of problem (�ε′,T′

µ ). It is
also the solution of problem (�µ). Suppose that F′ ∈ K exists such that Jµ(F′)≤ Jµ(Fε,Tµ ),
then the function

F̃ = Fε,Tµ +F′

2
(4.18)

verifies F̃ ≥ ε/2= ε̃ and ‖F̃‖H ≤ (1/2) f (‖Fε,Tµ ‖H + ‖F′‖H)= T̃ , so F̃ ∈ Kε̃,T̃ . Since Fε,Tµ is

the solution of (�ε̃,T̃
µ ), we have J(Fε,Tµ ) ≤ J(F′) and we deduce that Fε,Tµ is a solution of

(�µ). Moreover, it is the unique solution of (�µ) since Jµ is strictly convex. �

Lemma 4.3 also shows that if the functional Γµ has a fixed point, it is unique.
We are now able to find the solution as a fixed point. In the next subsection, we study

the existence of a sequence that converges to this fixed point. That will be the essential
tool to set an infinite-dimensional algorithm.

4.2. An infinite-dimensional algorithm. We define the sequence {Fk}k∈N ofH by

F0 ∈H,

Fk+1 = exp
(
− 1 +

2
µ
ψ∗
[
V −ψ[Fk]]). (4.19)

If it converges, the limit is a fixed point of the functional Γµ. It is also the solution to (�µ).

Lemma 4.4. The functional Γµ is continuous from H to L∞(E,R,σ). Furthermore, the in-
equality

∥∥Γµ(F)
∥∥
L∞(E,R,σ) ≤ exp

(
− 1 +

2
µ
Cψ∗

[∥∥V∥∥nC +Cψ
∥∥F∥∥H]) (4.20)

is obtained.

Proof. We remark that F �→ exp(F) is continuous from L∞(E,R,σ) to itself and ψ∗ is con-
tinuous from Cn to L∞(E,R,σ).

Inequalities are obtained with the continuity of operators ψ and ψ∗: there exist two
constants Cψ and Cψ∗ such that ∥∥ψ(F)

∥∥
Cn ≤ Cψ‖F‖H,∥∥ψ∗(x)

∥∥
L∞(E,R,σ) ≤ Cψ∗‖x‖Cn .

(4.21)

Since the exponential function is nondecreasing, one obtains the results by injecting the
last inequalities in the expression of Γµ. �

Now we show the convergence of the sequence {Fk}k∈N . The following lemma gives
a condition on the regularization parameter µ which implies that the sequence {Fk}k∈N
stays in a ball of fixed radius.
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Lemma 4.5. Let F be such that ‖F‖H ≤ R; if

µ≥ 2Cψ∗
[‖V‖Cn +CψR

]
1 + ln(R)

, (4.22)

then ‖Γµ(F)‖H ≤ R and ‖Γµ(F)‖L∞(E,R,σ) ≤ R.

Proof. We have

µ≥ 2Cψ∗[‖V‖Cn +CψR]

1 + ln(R)
,

µ[1 + ln(R)]≥ 2Cψ∗
[‖V‖Cn +CψR

]
,

(4.23)

so

R≥ exp
(
− 1 +

2
µ
Cψ∗

[‖V‖Cn +CψR
])

, (4.24)

and we deduce the two inequalities. �

We will use a fixed point criterion: if the functional Γµ is a contraction, then the se-
quence is converging. In the following lemma, we give a condition on µ for the sequence
to converge.

Lemma 4.6. Γµ is Fréchet differentiable onH and its derivative is

dΓµ(F) ·h=−2
µ
Γµ(F)ψ∗ ◦ψ[h]. (4.25)

Let ‖F0‖H ≤ R. If µ verifies (4.22) and if

µ > 2R2Cψ∗Cψ , (4.26)

then the sequence (Fk)k∈N converges in H and in L∞(E,R,σ) to the unique fixed point Fµ,V

of Γµ.

Proof. The functional Γµ is differentiable since F �→ exp(F) is differentiable from L∞(E,R,
σ) to itself, and F �→ ψ∗[ψ[F]] is linear continuous fromH to L∞(E,R,σ). By Lemma 4.5,
we deduce that for all k ∈N, 0≤ Fk ≤ R. Furthermore, (4.26) leads to

sup
{F∈H|0≤F≤R}

∥∥dΓµ(F)
∥∥

�(L∞,L∞) < 1. (4.27)

We conclude using the Banach fixed point theorem on the complete set {F ∈H | 0≤ F ≤
R} with the distance induced by L∞. The sequence converges to the unique fixed point
Fµ,V ∈ {F ∈H | 0≤ F ≤ R} of Γµ strongly in L∞(E,R,σ) and inH (by compactness). �

We may summarize in the following theorem.
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Theorem 4.7. If µ verifies (4.22) and (4.26) (i.e., µ large enough), then problem (�µ) has
a unique solution Fµ,V limit of the sequence {Fk}k∈N defined by

F0 ∈
{
F ∈H | 0≤ F ≤ R},

Fk+1 = exp
(
− 1 +

2
µ
ψ∗
[
V −ψ[Fk]])= Γµ

(
Fk
)
.

(4.28)

The convergence stands in L∞ and inH.

Shortly speaking, we have an infinite-dimensional algorithm that converges to the so-
lution of the maximum entropy regularization problem for a fixed parameter µ great
enough. Theorem 4.7 shows that the solution Fµ,V of (�µ) is obtained as the limit of the
sequence {Fk}k∈N and belongs to L∞(E,R,σ).

However this algorithm is not useful from the numerical point of view. Indeed, it is
an infinite-dimensional one and an inappropriate discretization process may lead to slow
computations. Nevertheless, we are able to derive a finite-dimensional algorithm from
the optimality condition (4.9). This is the aim of the next subsection.

4.3. A finite-dimensional algorithm. Lemma 4.3 suggests to look for the solution Fµ,V

of problem (�µ) as Fµ,V =Gµ,V , where

Gµ,V = exp
(
− 1 +

2
µ
ψ∗[λ]

)
, (4.29)

where λ∈ Cn has to be determined. The next lemma gives a sufficient optimality condi-
tion on λ to solve (�µ). In addition, we have an analytic expression for the solution.

Lemma 4.8. Let λ∈ Cn such that

λ=V −
∫
E
q(σ)exp

(
− 1 +

2
µ
ψ∗[λ](σ)

)
dσ , (4.30)

then the function Gµ,V ∈H, defined by (4.29), is the unique solution of (�µ).

Proof. By the definition ofGµ,V and with the assumption R(ψ∗)⊂ L∞(E,R,σ), there exist
ε > 0 and T > ε such that Gµ,V ∈ Kε,T . Writing the expression of Fµ,V in (4.9), we can see
that it is verified. So Fµ,V is the unique solution of problem (4.8). With Lemma 4.3 and
the strict convexity of Jµ, it follows that it is the unique solution of (�µ). �

Therefore, we only need to find the value of λ∈ Cn to determine Gµ,V . So the problem
turns to be a finite-dimensional one. We define the sequence {λk}k∈N of Cn as

λ0 ∈ Cn,

λk+1 = γµ
(
λk
) def= V −

∫
E
q(σ)exp

(
− 1 +

2
µ
ψ∗
[
λk
]
(σ)
)
dσ.

(4.31)

The function γµ : Cn→ Cn defined in (4.31) is differentiable and its derivative is

dγµ(λ) ·h=−2
µ

∫
E
q(σ)q̄t(σ)exp

(
− 1 +

2
µ
ψ∗[λ](σ)

)
·hdσ ; (4.32)
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thus ∥∥dγµ(λk) ·h∥∥Cn ≤ 2
µ
ρ(k)
µ ‖h‖Cn , (4.33)

where ρ(k)
µ is the spectral radius of matrix M(k)

µ of dimension (n,n) such that for all 1 ≤
i, j ≤ n (we use the Euclidean norm on Cn),

M(k)
µ,i j =

∫
E
qi(σ)q̄ j(σ)exp

(
− 1 +

2
µ
ψ∗
[
λk
]
(σ)
)
dσ. (4.34)

Using the Frobenius norm of matrix M(k)
µ , we have the inequality

ρ(k)
µ ≤ ∥∥M(k)

µ

∥∥
Fr ≤ exp

(
− 1 +

2
µ
Cψ∗

∥∥λk∥∥Cn)
√√√√√ ∑

1≤i, j≤n

∣∣∣∣∫
E
qi(σ)q̄ j(σ)dσ

∣∣∣∣2

. (4.35)

The sequence {λk}k∈N converges to the fixed point of γµ only if ρ(k)
µ is small enough

for any k. So we cannot use it to calculate λ. However, we are able to construct an-
other sequence converging to λ noting that for all τ > 0, λ = γµ(λ) is equivalent to λ =
λ− τ[λ− γµ(λ)]. So we can obtain λ as limit of the sequence {lk}k∈N

l0 ∈ Cn,

lk+1 = lk − τ
[
lk − γµ

(
lk
)]
.

(4.36)

This sequence will be used to determinate the solution practically. If τ is chosen small
enough and µ is great enough, it converges.

Lemma 4.9. Assume that for every k ∈N, the spectral radius of M(k)
µ is less than mµ ∈R+∗;

then the sequence lk converges if 0 < τ < 1/(1 + (2/µ)mµ).

Proof. The matrix M(k)
µ is Hermitian of nonnegative type since for all σ ∈ E, q(σ)q̄t(σ) is

nonnegative Hermitian and exp(−1 + (2/µ)ψ∗[λk](σ)) > 0. Let hτ : Cn→ Cn be the func-
tion λ �→ λ− τ[λ− γµ(λ)]. The derivative of hτ is

∀λ,v ∈ Cn, dhτ(λ) · v =
(

[1− τ]I − 2
µ
τMµ

)
v. (4.37)

Since M(k)
µ is Hermitian, there exists an orthogonal basis of eigenvectors and we call B(k)

the transition matrix. So B(k)
∗ ([1− τ]I − (2/µ)τM(k)

µ )B(k) = [1− τ]I − (2/µ)τ∆(k)
µ , where

(2/µ)τ∆(k)
µ is a diagonal matrix with positive elements. Thus, the spectral radius of [1−

τ]I − (2/µ)τM(k)
µ is strictly less than 1− τ since the spectral radius of M(k)

µ is less than mµ

and 0 < τ < 1/(1 + (2/µ)mµ). We deduce∥∥lk+1− lk
∥∥
Cn ≤

∥∥(1− τ)I − τM(k)
µ

∥∥∥∥lk − lk−1
∥∥
Cn

≤ (1− τ)
∥∥lk − lk−1

∥∥
Cn

(4.38)

because ‖A‖2 = ρ(A∗A). So the sequence converges. �
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We have a proof of the convergency of sequence {lk}k∈N if the spectral radius of the
matrix M(k)µ is uniformly bounded with respect to k. In the next lemma, we give an
estimate of the spectral radius of M(k)µ with the Frobenius norm.

Lemma 4.10. Let ‖l0‖Cn ≤ R; if

µ≥ 2Cψ∗R
(

log
(
R−‖V‖Cn

C′ψ

)
+ 1
)−1

, (4.39)

where C′ψ > 0 verifies ∥∥ψ(F)
∥∥
Cn ≤ C′ψ‖F‖L∞(E,R,σ), (4.40)

then the whole sequence is bounded by R, and the spectral radius ρ(k)
µ of M(k)

µ satisfies

ρ(k)
µ ≤ exp

(
− 1 +

2
µ
Cψ∗R

)√√√√√ ∑
1≤i, j≤n

∣∣∣∣∫
E
qi(σ)q̄ j(σ)dσ

∣∣∣∣2

. (4.41)

Proof. We prove the result by induction. We assume that there exists k ∈N∗ such that for
all j ≤ k, ‖l j‖Cn ≤ R, then

∥∥lk+1
∥∥
Cn ≤ (1− τ)R+ τ

(
‖V‖Cn +C′ψ exp

(
− 1 +

2
µ
Cψ∗R

))
(4.42)

and condition (4.39) implies

‖V‖Cn +C′ψ exp
(
− 1 +

2
µ
Cψ∗R

)
≤ R. (4.43)

For all k ∈N, we have ‖lk‖ ≤ R and (4.41) is a direct consequence of (4.35). �

Proposition 4.11. If (µ,R) satisfies condition (4.39), then γµ has a unique fixed point λ in
the closed ball B(0,R). Moreover, if ‖l0‖Cn ≤ R and τ is small enough, then λ is the limit of
the sequence {lk}k∈N.

We now give a more precise description of the algorithm defined by (4.36).

Algorithm 4.12.

(1) Initialization. Given V ∈ Cn, choose l0 ∈ Cn, µ > 0, ε > 0, τ ∈ ]0,1].
(2) Iteration k. (a) Compute

γµ
(
lk−1

)=V −∫
E
q(σ)exp

(
− 1 +

2
µ
ψ∗
[
lk−1

]
(σ)
)
dσ. (4.44)

(b) Compute lk = lk−1− τ[lk−1− γµ(lk−1)].
(3) Stopping criterion. If |lk − lk−1| < ε, then STOP, else k := k+ 1 and go to (2).

The algorithm converges if the regularization parameter is great enough. The main
advantage of this method is that it determines a vector of Cn which is the fixed point of
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a functional. Moreover, we have an analytic expression for this solution. The convergence
of the algorithm is linear since we have shown that ‖lk+1− lk‖Cn ≤ (1− τ)‖lk − lk−1‖Cn in
Lemma 4.9. The number τ has to be chosen as great as possible for a faster convergence.

Now we perform a sensitivity analysis of the optimal value function with respect to µ
andV . LetV ∈ Cn be fixed. We suppose that for the dataV , the sequence (4.31) converges
for all µ≥ µo > 0. We define the function C1 by

C1 :
[
µo,+∞

[−→R, µ �−→ Jµ
(
Fµ,V

)
+µe−1. (4.45)

Similarly for any λ > 0 fixed, we suppose that the sequence (4.31) converges for all V ∈
B(0,R), where R > 0, and we define the function C2 by

C2 : B(0,R)⊂ Cn −→R, V �−→ Jµ
(
Fµ,V

)
+µe−1. (4.46)

Proposition 4.13. Let C1 and C2 be the functions defined by (4.45) and (4.46).

(1) C1 is continuous and increasing.
(2) C2 is continuous and verifies

C2 ≤ ‖V‖2
Cn +

µ

e
. (4.47)

Proof. Let µ1 > µ2 ≥ µo. For all F ∈ K , Jµ1 (F) > Jµ2 (F) since (H(F) + e−1)≥ 0, hence C1 is
increasing. To prove continuity, we suppose there exists a sequence {µk}k∈N and a δ > 0
such that µk → µ and for all k, |C1(µk)−C1(µ)| > δ. Let ε > 0 be small enough, so there
exists N ∈N such that |µ− µN | < δ(µ− ε)/2C1(µ) and |µ− µk| < ε. Assume that µN < µ,
then

Jµ
(
FµN ,V

)−C1
(
µN
)= (µ−µN)H(FµN ,V

)
(4.48)

so |Jµ(FµN ,V )−C1(µN )| < δ/2 since H(FµN ,V )≤ C1(µ)/µN . Hence, Jµ(FµN ,V ) < C1(µ). This
contradiction proves the result. The case µN ≥ µ can be shown similarly.

We can show the continuity of C2 by the same way. The inequality (4.47) is obtained
by taking F = 0. �

We just proved the fixed point existence if µ is large enough; in fact, it is true for any
µ > 0. We use a scaling method to prove it.

Proposition 4.14. For every µ > 0, the solution Fµ of problem (�µ) exists and verifies
(4.13). Moreover, Fµ can be computed with the sequence {�′k}n∈N defined by

�′o ∈ Cn,

�′k+1 =
(

1− τo
α

)
�′k + τoγµo

(
�′k
) (4.49)

for some µo > µ > 0, τo ∈ ]0,1[ and α= µo/µ.

Proof. With Proposition 4.11, we know that there exist �o ∈ Cn, µo > 0 and 0 < τo < 1 such
that the sequence {�k}k∈N defined by (4.36) converges. Then the solution Fµ of problem
(�µ) exists for every µ≥ µo.
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Assume now that µ < µo and set α := µo/µ > 1. As shown in the proof of Lemma 4.9, the
eigenvalues of the gradient of the function � �→ (1− τo)� + τoγµo(�) are nonnegative, and
the spectral radius is bounded by 1− τo. As −dγµo is nonnegative and α > 1, we deduce as
before that the sequence {�′k} defined by

�′o ∈ Cn,

�′k+1 =
(

1− τo
α

)
�′k + τoγµo

(
�′k
) (4.50)

is converging to some �′ that verifies

�′ =
(

1− τo
α

)
�′ + τoγµo(�

′),

τo
α
�′ = τoγµo(�′).

(4.51)

Setting λ= �′/α yields

λ= γµo(αλ)=V −ψ
[

exp
(
− 1 +

2
µo
ψ∗(αλ)

)]
,

λ=V −ψ
[

exp
(
− 1 +

2α
µo
ψ∗(λ)

)]
=V −ψ[exp

(− 1 + 2µψ∗(λ)
)]= γµ(λ).

(4.52)

We conclude with Lemma 4.8 that (�µ) has a (unique) solution. �

In summary, we have a finite-dimensional algorithm that converges to the solution
of maximum entropy regularization for all µ > 0. However, Proposition 4.14 shows that
the number of iteration increases when µ decreases since the speed of convergency is
(1− τoµ/µo).

We know the analytic expression of the solution and the problem is now a finite-
dimensional one. However, the entropy involved in the functional we have minimized
is not the entropy in the sense of Definition 3.1 because the solution is not a probabil-
ity density. The algorithm we present in the next section allows to find a solution which
maximize the true entropy. It is a variant of the previous one.

5. Computing the probability density

We look for a solution that maximizes entropy in the sense of Definition 3.1. This leads
to the problem

(�̃µ)

min
∥∥V −αψ[F]

∥∥2
Cn +µH(F),

(α,F)∈R+× { f ∈ K | ‖ f ‖L1(E,R,σ) = 1
}
.

(5.1)

Here, α∈R+ is the total power and F is a probability density because of the constraint F ∈
{ f ∈ K | ‖ f ‖L1(E,R,σ) = 1}. So, if the solution exists, it minimizes negentropy as defined
in Definition 3.1.
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We cannot solve (5.1) in the same way as problem (�µ). Indeed, the cost functional
is no more convex because of the bilinear term αψ[F]. On the other hand, the feasible
domain is convex since for all f ,g ∈ { f ∈ K | ‖ f ‖L1(E,R,σ) = 1}, for all λ∈ [0,1], we have
λ f + (1− λ)g ∈ K , and∥∥λ f + (1− λ)g

∥∥
L1(E,R,σ) = λ‖ f ‖L1(E,R,σ) + (1− λ)‖g‖L1(E,R,σ) = 1 (5.2)

by positivity of f , g. Anyway, if F is solution of (�µ), we can view ‖F‖L1(E,R,σ) as an
approximation of the power. So we use the previous section results on (�µ). We define
the sequence {lk}k∈N by

lo ∈ Cn,

δk,µ =
Re
(〈
V ,gµ

(
lk
)〉
Cn
)〈

gµ
(
lk
)
,gµ
(
lk
)〉
Cn

,

lk+1 =V − δk,µgµ
(
lk
)
,

(5.3)

where gµ : Cn→ Cn is defined by

gµ(l)=V − γµ(l)=
∫
E
q(σ)exp

(
− 1 +

2
µ
ψ∗[l](σ)

)
dσ. (5.4)

We assume that

∀l ∈ Cn, Re
(〈
V ,gµ(l)

〉
Cn
)≥ 0; (5.5)

since δk,µ is an estimation of the power, it has to be positive. If δk,µ→ δ∗ and lk → l∗, then

l∗ =V − δ∗gµ(l∗). (5.6)

Last equation is quite similar to the necessary and sufficient condition of optimality (4.9)
of problem (�µ).

Proposition 5.1. Let l∗ =V − δ∗gµ(l∗) with δ∗ > 0; define

Fl∗ = exp
(
− 1 +

2
µ
ψ∗
[
l∗
])

, fl∗ = Fl∗∥∥Fl∗∥∥L1(E,R,σ)

. (5.7)

Then fl∗ is a probability density and it is the unique solution of problem

min
∥∥∥∥ V

δ∗
∥∥Fl∗‖L1(E,R,σ)

−ψ(F)
∥∥∥∥2

Cn
+

µ

δ∗
∥∥Fl∗∥∥L1(E,R,σ)

∫
E
φ ◦F(σ)dσ ,

F ∈ { f ∈H | f ≥ 0 σ-a.e., ‖ f ‖L1(E,R,σ) = 1
}
.

(5.8)

Moreover, fl∗ verifies

∀α∈R,
∥∥V − δ∗∥∥Fl∗∥∥L1(E,R,σ)ψ

[
fl∗
]∥∥2
Cn ≤

∥∥V −αψ[ fl∗]∥∥2
Cn . (5.9)
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Proof. We have

l∗ =V − δ∗gµ
(
l∗
)=⇒−2ψ∗

[
V − δ∗gµ(l∗)− l∗]= 0

=⇒−2ψ∗
[
V − δ∗gµ(l∗)

]
+µ
(

2
µ
ψ∗
[
l∗
])= 0

=⇒−2ψ∗
[
V − δ∗ψ[Fl∗]]+µ

(
1 + lnFl∗

)= 0.

(5.10)

Dividing the last equation by δ∗ gives a sufficient optimality condition for problem (5.8).
So Fl∗ is the unique solution to this problem. As { f ∈H | f ≥ 0 σ-a.e., ‖ f ‖L1 = 1} ⊂ K ,
we get the conclusion.

To show (5.9), we suppose that ψ[ fl∗] �= 0 (otherwise the result is obvious). We define

θ :R−→R, α �−→ ∥∥V −α∥∥Fl∗∥∥L1(E,R,σ)ψ
[
fl∗
]∥∥2
Cn . (5.11)

It is a continuous and strictly convex function. The unique minimizer of θ (denoted α∗)
verifies

θ′(α)=−2
∥∥Fl∗∥∥L1(E,R,σ) Re

(〈
V −α∗∥∥Fl∗∥∥L1(E,R,σ)ψ

[
fl∗
]
,ψ
[
fl∗
]〉
Cn

)
= 0, (5.12)

that is,

α∗ = Re
(〈
V ,ψ

[
fl∗
]〉
Cn
)∥∥Fl∗∥∥L1(E,R,σ)

∥∥ψ[ fl∗]∥∥2
Cn

= δ∗. (5.13)

�

The above proposition shows that if the sequence given by (5.3) converges, then its
limit provides a power density (δ∗, fl∗dσ), which minimizes the error with the data V .
Moreover, fl∗ has a minimal negentropy in the probabilistic sense. Now, we show that the

obtained solution is the unique solution of problem (�̃δ∗‖Fl∗‖µL1(E,R,σ)
). We call

Jµ(α,F)= ∥∥V −αψ[F]
∥∥2
Cn +µH(F), (5.14)

we have Jµ(1,F)= Jµ(F).
The previous result proves that if the sequence defined by (5.3) converges, then its

limit is a solution of problem (�̃δ∗‖Fl∗‖µL1(E,R,σ)
). We have a result of convergence.

Proposition 5.2. Assume that there exists c > 0 such that

∀µ≥ 0, ∀l ∈ Cn,
∥∥gµ(l)

∥∥
Cn ≥ c, (5.15)

then there exists a µo such that the sequence defined by (5.3) converges for every µ≥ µo large
enough.

Proof. We have to compute the derivative of the function defining the sequence (5.3):

ϕµ : l �−→V − Re
(〈
V ,gµ(l)

〉
Cn
)〈

gµ(l),gµ(l)
〉
Cn

gµ(l). (5.16)



Olivier Prot et al. 143

We get

ϕ′µ(l)=− Re
(〈
V ,gµ(l)

〉
Cn
)∥∥gµ(l)

∥∥2
Cn

∇gµ(l)

− gµ(l)

[
Re
(〈
V ,∇gµ(l)

〉
Cn
)∥∥gµ(l)

∥∥2
Cn

− 2
Re
(〈
V ,∇gµ(l)

〉
Cn
)∥∥gµ(l)

∥∥2
Cn

Re
(〈
gµ(l),∇gµ(l)

〉
Cn
)∥∥gµ(l)

∥∥2
Cn

]
.

(5.17)

A short computation gives

sup
l∈Cn

∥∥ϕ′µ(l)
∥∥≤ 2‖V‖κµ

(
1 + 2κµ

)
, (5.18)

where

κµ
def= sup

l∈Cn

∥∥∇gµ(l)
∥∥∥∥gµ(l)
∥∥ . (5.19)

Thanks to assumption (5.15) and (4.33), there exists a constant c′ > 0 such that κµ < c′/µ.
It is clear that there exists µo > 0 such that ϕµ is contractive for every µ≥ µo. �

Remark 5.3. Assumption (5.15) seems to be surprising, but in fact it is primordial. This
assumption can easily be derived from the physical model: gµ(l) is the spectral matrix
corresponding to the WDF exp(−1 + (2/µ)ψ∗[l]) > 0. Since the WDF is positive, it means
that the electromagnetic wave has a nonzero energy, and thus the spectral matrix cannot
be zero. We can see (5.15) from the model noting that the spectral matrix trace is the
constant function 1 on the sphere.

Remark 5.4. We have not prove the convergency for all µ > 0. Anyway, in practice,V 
 ψ.
So we have to perform a (physical) normalization process; this means that we use the
operator εψ instead of ψ, where ε > 0 is a small number (usually ε � ‖V‖/‖ψ‖). Hence,

we have to solve the problem (�̃µ/ε2 ) (according to the proof of Proposition 4.14), and
the new regularization parameter µ̃= µ/ε2 is large.

We now can write the algorithm more precisely and we introduce a relaxation param-
eter τ useful for numerical computations.

Algorithm 5.5.

(1) Initialization. Given V ∈ Cn, choose �o ∈ Cn, µ > 0, τ ∈ ]0,1[, ε > 0.
(2) Iteration k. (a) Compute

gµ(�k−1)=
∫
E
q(σ)exp

(
− 1 +

2
µ
ψ∗
[
�k−1

]
(σ)
)
dσ. (5.20)

(b) Compute

δk−1,µ =
Re
(〈
V ,gµ

(
�k−1

)〉
Cn
)〈

gµ
(
�k−1

)
,gµ
(
�k−1

)〉
Cn
. (5.21)

(c) Compute �k = (1− τ)lk−1 + τ[V − δk−1,µgµ(�k−1)].
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(3) Stopping criterion. If |�k − �k−1| < ε, then STOP, else k := k+ 1 and go to (2).

Remark 5.6. In this section, we have supposed that R(ψ∗) ⊂ L∞(E,R,σ) to establish the
algorithms. If this condition is not verified, we can slightly modify the operator ψ to
overcome this problem. More precisely, if ψ : F �→ ∫

E q(σ)F(σ)dσ with q �∈ L∞(E,Cn,σ),
we can find a qε ∈ L∞(E,Cn,σ) such that ‖q− qε‖L2(E,Cn,σ) ≤ ε. The function qε allows
to define a new operator ψε : F �→ ∫

E q
ε(σ) f (σ)dσ , which verifies R(ψε)⊂ L∞(E,R,σ) and

‖ψε[F]−ψ[F]‖Cn ≤ ε‖F‖H. This new operator can be used for the computation instead
of ψ, and it verifies the desired condition.

6. Numerical tests

In this section, we perform some numerical tests for the resolution of (2.3) with the two
algorithms previously described. For these tests, we consider the propagation of an elec-
tromagnetic wave in vacuum. We give below the corresponding expression of operator ψ.
We denote by εr = ‖V −ψ[Fµ,V ]‖2

Cn the error and α is the computed approximation of
total power P.

For the numerical computation of the solution, we need to find τ > 0 small enough for
the algorithms to converge. The number τ must be great enough for a fast computation.
To determine this parameter, we have used the following rules:

(i) let τo > 0, k = 0, and �o = 0;
(ii) iteration k : τk and �k are known; compute �k+1;

(iii) if ‖�k+1− �k‖Cn ≥ ‖�k − �k−1‖Cn , then τk+1 = τkr, where 0 < r < 1.

In the computation, we used r = 0.5. We can also utilize a linear search strategy for
the best value of τ. We have chosen to stop the algorithms when ‖lk+1− lk‖Cn < ε, where
ε > 0 is chosen small enough (here ε = 10−12).

All numerical tests were performed on a Power Mac 2×G4 with the scientific software
Scilab 2.6. For these examples, the average time for one iteration was 28.5 milliseconds.
This is corresponding to the average number of 35 iterations per second.

6.1. Wave distribution function in vacuum. In the case of an electromagnetic wave
propagating in vacuum, we have the relation

V =
∫ π

0

∫ 2π

0
q(θ,φ)F(θ,φ)sinθdφdθ, (6.1)

where V is the data vector, F is the WDF of the electromagnetic wave, and q is the in-
tegrating kernel of vacuum. Writing the components of the spectral matrix as a vector
provides the data V . We see with (6.1) that we integrate over the unit sphere: θ ∈ [0,π]
denotes the polar angle and φ ∈ [0,2π] the azimuthal angle. This is quite clear because
WDF is the directional distribution of the power of electromagnetic wave. The expression
of q is analytically known [7].

According to (6.1), we put E = [0,π]× [0,2π], dσ = (sinθ/2π)dθdφ, and we define the
operator ψ by

ψ :H−→ Cn, F �−→
∫ π

0

∫ 2π

0
q(θ,φ)F(θ,φ)sinθdφdθ. (6.2)
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µ �→ ‖V − ψ[F]‖

δ

µ2 µ1 µo0

µ

‖V
−
ψ

(F
)‖

Figure 6.1. Iterative search of the regularization parameter µ that fits the Morozov discrepancy prin-
ciple.

This operator is continuous on H and the adjoint operator verifies R(ψ∗) ⊂ L∞(E,Cn,
σ) [7]. From the expression of ψ, we see that we have to compute a double integral. For
this computation, we have used the Gauss-Legendre quadrature method with 20 points
on the interval [0,π] and 40 points on [0,2π]. In the following tests, this integration
method seems to be accurate enough because the results do not change dramatically if
the number of Gauss points is larger.

Numerical validation of algorithms was done with simulated data. In the first tests, V
was obtained for a WDF that was a sum of Dirac measures. The data vector of a Dirac
in (θd,φd) of power P is simulated by taking V = P/ sin(θd)q(θd,φd). The case of a Dirac
is important because it physically corresponds to an electromagnetic plane wave. Second
tests are performed with data corresponding to an a.e. continuous WDF. The simulation
has been made by computing the integral (6.1). For some of these examples, a noisy data
Vδ was introduced with ‖V −Vδ‖Cn ≤ δ, where δ > 0 is the noise level.

The choice of the regularization parameter is a difficult task in the case of noisy data.
It must be chosen small enough to make a small error, and large enough to guarantee
stability. A commonly used rule is the discrepancy principle of Morozov [4]. We choose µ
such that ‖V −ψ[Fµ]‖Cn = δ, that is, we do not make a smaller error than the noise level.
In the numerical tests, since we used simulated data, we decided to choose µ such that
δ ≤ ‖V −ψ[Fµ]‖Cn ≤ 2δ. This choice is made a posteriori using the fact that the function
µ �→ ‖V −ψ[Fµ,V ]‖Cn is quite linear when µ is small (see Figure 6.1). Note that the noise
level δ is known from the experience.

6.2. Test of Algorithm 4.12. We first used Algorithm 4.12 for data corresponding to a
Dirac measure or a sum of Dirac measures. We present the results in the case of one-single
Dirac and the sum of three Dirac measures to illustrate the behaviour of the algorithm
that is able to detect more than one direction.

6.2.1. Case of one Dirac measure. We have made computations with θd = 1.5, φd = 2 and
for Pi = i/2 with i= 1, . . . ,50. For each value of Pi, we have computed the relative power
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error given by

εiα =
∣∣αi−Pi∣∣

Pi
, (6.3)

where αi is the computed approximation of total power Pi. For this example, we set µ= 1.
The function εα(P) is plotted in Figure 6.1. We see that the error increases when P de-
creases; it is less than 10% for a power P ≥ 4. We have also computed the mean direction
(θ̄, φ̄) given by

θ̄ = 1
‖F‖L1(E,R,σ)

∫
E
θF(θ,φ)dσ(θ,φ),

φ̄= 1
‖F‖L1(E,R,σ)

∫
E
φF(θ,φ)dσ(θ,φ)

(6.4)

of a Dirac with φd = 2, P = 8 and for θd varying from 0 to π. From these values, we can
compute the angles errors εθ and εφ by

εθ =
∣∣θd − θ̄∣∣

π
, εφ =

∣∣φd − φ̄∣∣
2π

. (6.5)

We can see how the average direction changes with θd. We see that the average direction
is close to the true one when it is far enough from the poles. The “large” error on φd
near the poles can be explained by the “bad” representation of the unit sphere in (6.4).
Similarly, we obtain a large error if φd is chosen near 0 or 2π. Another value for φd far
enough from the edge of E gives a similar result as that plotted in Figure 6.2. We conclude
that the results obtained in this case are satisfactory. The method is able to detect the
direction and the power of a Dirac with small errors if the direction is not too close to the
edge of E and if the power is great enough.

6.2.2. Case of the sum of three Dirac measures. We have built an example for a sum of three
Dirac measures which support the vertices of an equilateral triangle on E. For this exam-
ple, we have added a noise to the simulated data V . It verifies ‖V −Vδ‖Cn < 1 (precisely
= 0.764, this correspond to a relative noise level of 3.1%). The regularization parameter µ
was chosen according to the noise level; we have taken µ= 0.5 because the corresponding
solution has a small error and 1= δ < ‖V −ψ[F]‖Cn , more precisely, the relative error is
5.5% (see Table 6.1 for the results). We plot the contour of the solution on Figure 6.3. We
observe three peaks centered on the directions of the three Dirac measures. The solution
is in this way satisfactory.

We have performed a sensitivity analysis with respect to µ. Indeed, in Section 3, we
gave an interpretation of entropy as the “distance” to the noninformative probability den-
sity g. To see the numerical effects of entropy, we computed the solution for the same data
with different values for µ. Theoretically, a great value of µ leads to a solution with a great
entropy, that is a solution not too “far” from g. In Figure 6.3, we see the result obtain for
µ= 50 and the different results are reported in Table 6.1. We see that the error εr quickly
increases with µ whileH is decreasing. The number of iteration is dramatically increasing
when µ becomes small, so that we are not able to compute the µ-solution for all µ with
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Figure 6.2. Variation of the average direction θ̄ (plotted with +, the true value is the solid line), φ̄
(plotted with×), and errors εθ , εφ for a Dirac with P = 8, φd = 2, and θd varying from 0 to π. The plot
named “relative power error” show the variation of εα for a Dirac with θd = 1.5, φd = 2 and P varying
from 0.5 to 25.

Table 6.1. Results obtained for a simulated noisy data V of a sum of three Dirac measures. We have
made four computations for different values of the regularization parameter µ. The Min and Max are,
respectively, the minimum and the maximum of the solution on E.

µ α εα εr H Jµ Min Max #It. τ

0.5 9.891 2.07% 1.842 −1.452 5.741 2.200E− 6 6.947 8377 2.5E− 3

1 9.868 1.83% 3.159 −1.660 9.360 1.521E− 4 4.597 3317 6.25E− 2

5 9.814 1.27% 10.27 −1.990 24.691 2.678E− 2 3.136 465 0.05

50 8.008 17.35% 117.633 −2.338 17.862 0.195 1.725 7 1

this algorithm. We observe that we need more and more iteration when µ→ 0 to converge.
The solution obtained for µ= 50 is very flat and has a very large error εr = 117.6. We re-
mark that the optimal value function is not increasing but there is no contradiction with
Proposition 4.13 since we have to add µ/e to obtain an increasing function.
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Figure 6.3. (a) Contour plot of the solution obtained by algorithm (4.36) for three Dirac measures
with µ= 0.5. (b) Solution obtained for three Dirac measures with µ= 50.

6.3. Test of Algorithm 5.5 on a continuous density. In the previous section, we pre-
sented tests of the first algorithm to identify a three-Dirac distribution. Now we give
an example of reconstruction of an a.e. continuous distribution with Algorithm 5.5. Let
Ft(θ,φ)= 4(cos2 θ + sin2φ), the function used to simulate the data vectorV . In this exam-
ple, we use a noisy data Vδ with ‖V −Vδ‖ = 0.670, which is about 5.1% compared with
‖V‖Cn . To avoid so-called inverse crime, we have used a finer quadrature rule to compute
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the data V : more precisely, we used 64 points on the interval [0,π] and 128 points on
[0,2π].

The function Ft is represented in Figure 6.4. We use a spherical plot: the value of the
function is described by a gray-level code on each hemisphere. We see that Ft is not con-
tinuous at the two poles of the sphere. This discontinuity is explained by the “bad” repre-
sentation of the unit sphere: E = [0,π]× [0,2π]. The solution obtained by Algorithm 5.5
is also plotted in Figure 6.4.

We see that the computed solution looks like Ft. We used the following parameters:
ε = 10−12, µ = 3, τ = 0.008. The algorithm stopped after 1818 iterations, the error with
respect to the data εr and the negentropy H are, respectively, 1.127 and −2.460. (The
error is about 8.0% compared to ‖V‖Cn .) We see that this solution is satisfying because
εr is greater than the noise level but it is small enough anyway.

This example allows to compare problems (�µ) and (5.1). Let µe be defined by µe =
µδ∗‖Fl∗‖L1(E,R,σ) with the notations of Proposition 5.1. With this proposition, we know
that fl∗ achieves the minimum of functional

F �−→
∥∥∥∥V − µe

µ
ψ[F]

∥∥∥∥2

Cn
+µeH(F) (6.6)

over K . So fl∗ is the solution of (�̃µe). We can now compare the two problems by com-
puting the solution of (�µe).

We found µe = 176.35 with the computation of the solution of (�̃µe). The computed
solution of problem (�µe) is very far from the data (εr = 5133.6). So, for this example,

the solution of (�̃µe) is much better than the solution of (�µe). For (5.1), we get a much
smaller error for a much larger µ.

7. Conclusion

In plasma physics, the determination of the directional power density distribution of an
electromagnetic wave from the measurement of the field components is an inverse ill-
posed problem. This problem can be written as

ψ[F]=V , (7.1)

where ψ is a linear bounded operator from H= L2(E,R,σ) to Cn, V the spectral matrix,
and F the wave distribution function (WDF). Lefeuvre and Delannoy [6] have proposed
to solve this problem by maximizing an entropic term −H(F)=−∫E F lnF dσ under the
constraint ψ[F]=V . However, this constraint is too “restrictive,” it indeed limits the fea-
sible domain to a linear subspace of H. That is why we have studied the relaxed problem
(�µ):

min Jµ(F)= ∥∥V −ψ[F]
∥∥2
Cn +µH(F),

F ∈ K = { f ∈H | f ≥ 0 σ-a.e.
}

,
(7.2)

where µ is a regularization parameter. The latter parameter has to be chosen small enough
to allow a solution with a small error thanks to the data V , and large enough for stability.
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Figure 6.4. (a) Spherical plot of the initial function Ft which provides the data vector V . (b) Solution
obtained by Algorithm 5.5 corresponding to the data V of the function Ft .

Solving (�µ) permits us to search the solution in a much larger domain. More pre-
cisely, the obtained solution verifies ‖ψ[F]−V‖Cn ≤ ε with ε > 0, this inequality is clearly
more realistic from the numerical point of view. The regularization by the negentropy
functional is also important from the physical point of view. Instead of using standard
method to solve the problem (�µ), we have first built a fixed point algorithm in Cn

(Algorithm 4.12) thanks to a sufficient condition of optimality. Moreover, the uniqueness
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of the obtained solution has been proved. We have shown the existence of the solution for
every value of the regularization parameter. Nevertheless, in the numerical computation,
we have seen that it is not possible to compute the solution for too small value since the
computational time goes to infinity.

As both the above method and the Lefeuvre’s one give solutions which do not maxi-
mize entropy in the probabilistic sense, since they are not probability densities, we have
built a second algorithm (Algorithm 5.5) derived from the first one which allows the
“true” entropy to be maximized.

We have performed numerical tests on experimental data from a satellite that is de-
voted to the study of magnetosphere. We have compared the solution given by the algo-
rithms described in the present paper to the ones obtained with two different methods
that are commonly used by physicists. Results show that the method we described is more
accurate and stable. They are reported in [9].
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