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We propose a generalized virus dynamics model with distributed delays and both modes of transmission, one by virus-to-cell
infection and the other by cell-to-cell transfer. In the proposedmodel, the distributed delays describe (i) the time needed for infected
cells to produce new virions and (ii) the time necessary for the newly produced virions to becomemature and infectious. In addition,
the infection transmission process is modeled by general incidence functions for both modes. Furthermore, the qualitative analysis
of the model is rigorously established and many known viral infection models with discrete and distributed delays are extended
and improved.

1. Introduction

Viruses aremicroscopic organisms that need to penetrate into
a cell of their host to duplicate and multiply. Many human
infections and diseases are caused by viruses such as the
human immunodeficiency virus (HIV) that is responsible
for acquired immunodeficiency syndrome (AIDS), Ebola that
can cause an often fatal illness called Ebola hemorrhagic fever,
and the hepatitis B virus (HBV) that can lead to chronic
infection, cirrhosis, or liver cancer.

In viral dynamics, infection processes and virus produc-
tion are not instantaneous. In reality, there are two kinds of
delays: one in cell infection and the other in virus production.
In the literature, these delays are modeled by discrete time
delays [1–6], by finite distributed delays [7–9], and by infinite
distributed delays [9–12]. The delay in cell infection can be
modeled by an explicit class of latently infected cells (see, e.g.,
[13–15]).

On the other hand, viruses can spread by two funda-
mental modes, one by virus-to-cell infection through the
extracellular space and the other by cell-to-cell transfer
involving direct cell-to-cell contact [16–19]. For these reasons,

we propose the following generalized virus dynamics model
with both modes of transmission and distributed delays:

𝑥̇ (𝑡) = 𝜆 − 𝑑𝑥 (𝑡) − 𝑓 (𝑥 (𝑡) , 𝑦 (𝑡) , V (𝑡)) V (𝑡)
− 𝑔 (𝑥 (𝑡) , 𝑦 (𝑡)) 𝑦 (𝑡) ,

̇𝑦 (𝑡) = ∫∞
0

ℎ1 (𝜏)
⋅ 𝑒−𝛼1𝜏 [𝑓 (𝑥 (𝑡 − 𝜏) , 𝑦 (𝑡 − 𝜏) , V (𝑡 − 𝜏)) V (𝑡 − 𝜏)
+ 𝑔 (𝑥 (𝑡 − 𝜏) , 𝑦 (𝑡 − 𝜏)) 𝑦 (𝑡 − 𝜏)] 𝑑𝜏 − 𝑎𝑦 (𝑡) ,

V̇ (𝑡) = 𝑘∫∞
0

ℎ2 (𝜏) 𝑒−𝛼2𝜏𝑦 (𝑡 − 𝜏) 𝑑𝜏 − 𝜇V (𝑡) ,

(1)

where 𝑥(𝑡), 𝑦(𝑡), and V(𝑡) are the concentrations of unin-
fected cells, infected cells, and free virus particles at time𝑡, respectively. The uninfected cells are produced at rate 𝜆,
die at rate 𝑑𝑥, and become infected either by free virus at
rate 𝑓(𝑥, 𝑦, V)V or by direct contact with an infected cell at
rate 𝑔(𝑥, 𝑦)𝑦. Hence, the term 𝑓(𝑥, 𝑦, V)V + 𝑔(𝑥, 𝑦)𝑦 denotes
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the total infection rate of uninfected cells. The parameters𝑎 and 𝜇 are, respectively, the death rates of infected cells
and free virus. 𝑘 is the production rate of free virus by an
infected cell. In this proposed model, we assume that the
virus or infected cell contacts an uninfected target cell at time𝑡 − 𝜏, and the cell becomes infected at time 𝑡, where 𝜏 is a
random variable taken from a probability distribution ℎ1(𝜏).
The term 𝑒−𝛼1𝜏 represents the probability of surviving from
time 𝑡 − 𝜏 to time 𝑡, where 𝛼1 is the death rate for infected
but not yet virus-producing cells. Similarly, we assume that
the time necessary for the newly produced virions to become
mature and infectious is a random variable with a probability
distribution ℎ2(𝜏). The term 𝑒−𝛼2𝜏 denotes the probability
of surviving the immature virions during the delay period,
where 1/𝛼2 is the average life time of an immature virus.
Therefore, the integral ∫∞

0
ℎ2(𝜏)𝑒−𝛼2𝜏𝑦(𝑡 − 𝜏)𝑑𝜏 describes the

mature viral particles produced at time 𝑡.
As in [20], the incidence functions 𝑓(𝑥, 𝑦, V) and 𝑔(𝑥, 𝑦)

for the two modes are continuously differentiable and satisfy
the following hypotheses:

(𝐻0) 𝑔(0, 𝑦) = 0, for all 𝑦 ≥ 0; (𝜕𝑔/𝜕𝑥)(𝑥, 𝑦) ≥ 0 (or 𝑔(𝑥,𝑦) is a strictly monotone increasing function with
respect to 𝑥 when 𝑓 ≡ 0) and (𝜕𝑔/𝜕𝑦)(𝑥, 𝑦) ≤ 0, for
all 𝑥 ≥ 0 and 𝑦 ≥ 0.

(𝐻1) 𝑓(0, 𝑦, V) = 0, for all 𝑦 ≥ 0 and V ≥ 0.
(𝐻2) 𝑓(𝑥, 𝑦, V) is a strictly monotone increasing function

with respect to 𝑥 (or (𝜕𝑓/𝜕𝑥)(𝑥, V, 𝑦) ≥ 0 when𝑔(𝑥, 𝑦) is a strictly monotone increasing function
with respect to 𝑥), for any fixed 𝑦 ≥ 0 and V ≥ 0.

(𝐻3) 𝑓(𝑥, 𝑦, V) is a monotone decreasing function with
respect to 𝑦 and V.

Biologically, the four hypotheses are reasonable and
consistent with the reality. For more details on the biological
significance of these four hypotheses, we refer the reader to
the works [20–22]. Further, the general incidence functions𝑓(𝑥, 𝑦, V) and 𝑔(𝑥, 𝑦) include various types of incidence rates
existing in the literature.

The probability distribution functions ℎ1(𝜏) and ℎ2(𝜏) are
assumed to satisfy ℎ𝑖(𝜏) ≥ 0 and ∫∞

0
ℎ𝑖(𝜏)𝑑𝜏 = 1 for 𝑖 = 1, 2.

When ℎ1(𝜏) = 𝛿(𝜏 − 𝜏1) and ℎ2(𝜏) = 𝛿(𝜏 − 𝜏2), where 𝛿(⋅)
is the Dirac delta function, system (1) becomes a model with
two discrete time delays 𝜏1 and 𝜏2 which is the generalization
of the models presented in [2–6]. When 𝑓(𝑥, 𝑦, V) = 𝛽1𝑥
and 𝑔(𝑥, 𝑦) = 0, where 𝛽1 is the virus-to-cell infection rate,
we get the HIV infection model with distributed intracellular
delays investigated by Xu [11]. On the other hand, the model
proposed by Lai and Zou [23] is a special case of our model
(1) when 𝑓(𝑥, 𝑦, V) = 𝛽1𝑥, 𝑔(𝑥, 𝑦) = 𝛽2𝑥, and ℎ2(𝜏) = 𝛿(𝜏),
where 𝛽2 is the cell-to-cell transmission rate. It is important
to note that the model studied by Nelson and Perelson in [10]
is a particular case of [23].

The main objective of this work is to investigate the
dynamical behavior of system (1). For this end, we start with
the existence, the positivity, and boundedness of solutions,
which implies that our model is well posed. After that, we
determine the basic reproduction number and steady states

of the model. The global stability of the disease-free equi-
librium and the chronic infection equilibrium is established
in Sections 3 and 4 by constructing appropriate Lyapunov
functionals. An application of our results is presented in
Section 5. Finally, the conclusion is summarized in Section 6.

2. Well-Posedness and Equilibria

For biological reasons, we suppose that the initial conditions
of system (1) satisfy

𝑥 (𝜃) = 𝜙1 (𝜃) ≥ 0,
𝑦 (𝜃) = 𝜙2 (𝜃) ≥ 0,
V (𝜃) = 𝜙3 (𝜃) ≥ 0,

𝜃 ∈ (−∞, 0] .
(2)

Define the Banach space for fading memory type as follows:

𝐶𝛼 = {𝜑 ∈ 𝐶 ((−∞, 0] ,R3+) : 𝜑 (𝜃)
⋅ 𝑒𝛼𝜃 is uniformly continuous on (−∞, 0] , 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩
= sup
𝜃≤0

󵄨󵄨󵄨󵄨𝜑 (𝜃)󵄨󵄨󵄨󵄨 𝑒𝛼𝜃 < ∞} ,
(3)

where 𝛼 is a positive constant and R3+ = {(𝑥1, 𝑥2, 𝑥3) : 𝑥𝑖 ≥0, 𝑖 = 1, 2, 3}.
Theorem 1. For any initial condition 𝜙 = (𝜙1, 𝜙2, 𝜙3) ∈ 𝐶𝛼
satisfying (2), system (1) has a unique solution on [0, +∞).
Furthermore, this solution is nonnegative and bounded for all𝑡 ≥ 0.
Proof. By the fundamental theory of functional differential
equations [24–26], system (1) with initial condition 𝜙 ∈ 𝐶𝛼
has a unique local solution on (0, 𝑇max), where 𝑇max is the
maximal existence time for solution of system (1).

First, we prove that 𝑥(𝑡) > 0 for all 𝑡 ∈ (0, 𝑇max). In fact,
supposing the contrary, let 𝑡1 > 0 be the first time such that𝑥(𝑡1) = 0 and 𝑥̇(𝑡1) ≤ 0. From the first equation of system (1),
we have 𝑥̇(𝑡1) = 𝜆 > 0which is a contradiction.Then 𝑥(𝑡) > 0
for all 𝑡 ∈ (0, 𝑇max).

From the second and third equations of system (1), we get

𝑦 (𝑡) = 𝜙2 (0) 𝑒−𝑎𝑡 + ∫𝑡
0
𝑒−𝑎(𝑡−𝑠) ∫∞

0
ℎ1 (𝜏)

⋅ 𝑒−𝛼1𝜏 [𝑓 (𝑥 (𝑠 − 𝜏) , 𝑦 (𝑠 − 𝜏) , V (𝑠 − 𝜏)) V (𝑠 − 𝜏)
+ 𝑔 (𝑥 (𝑠 − 𝜏) , 𝑦 (𝑠 − 𝜏)) 𝑦 (𝑠 − 𝜏)] 𝑑𝜏 𝑑𝑠,

V (𝑡) = 𝜙3 (0) 𝑒−𝜇𝑡 + 𝑘∫𝑡
0
𝑒−𝜇(𝑡−𝑠) ∫∞

0
ℎ2 (𝜏) 𝑒−𝛼2𝜏𝑦 (𝑠

− 𝜏) 𝑑𝜏 𝑑𝑠,

(4)

which implies that 𝑦(𝑡) and V(𝑡) are nonnegative for all 𝑡 ∈(0, 𝑇max).
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Now, we prove the boundedness of the solutions. From
the first equation of (1), we have 𝑥̇(𝑡) ≤ 𝜆 − 𝑑𝑥(𝑡) which
implies that

lim sup
𝑡→+∞

𝑥 (𝑡) ≤ 𝜆
𝑑 . (5)

Then 𝑥(𝑡) is bounded. Let
𝑇 (𝑡) = 𝑦 (𝑡) + ∫∞

0
ℎ1 (𝜏) 𝑒−𝛼1𝜏𝑥 (𝑡 − 𝜏) 𝑑𝜏. (6)

Since𝑥(𝑡) is bounded and∫∞
0

ℎ1(𝜏)𝑑𝜏 = 1, the integral in𝑇(𝑡)
is well defined and differentiable with respect to 𝑡. Hence,

𝑑𝑇 (𝑡)
𝑑𝑡 = 𝜆∫∞

0
ℎ1 (𝜏) 𝑒−𝛼1𝜏𝑑𝜏

− 𝑑∫∞
0

ℎ1 (𝜏) 𝑒−𝛼1𝜏𝑥 (𝑡 − 𝜏) 𝑑𝜏 − 𝑎𝑦 (𝑡)
≤ 𝜆𝜂1 − 𝛿𝑇 (𝑡) ,

(7)

where 𝛿 = min{𝑎, 𝑑} and
𝜂𝑖 = ∫∞

0
ℎ𝑖 (𝜏) 𝑒−𝛼𝑖𝜏𝑑𝜏, 𝑖 = 1, 2. (8)

Thus, 𝑇(𝑡) ≤ 𝑀 fl max{𝑇(0), 𝜆𝜂1/𝛿}, which implies that 𝑦(𝑡)
is bounded.

It remains to prove that V(𝑡) is bounded. By third equation
of system (1) and the boundedness of 𝑦(𝑡), we deduce that

V̇ (𝑡) ≤ 𝑘𝑀𝜂2 − 𝜇V (𝑡) . (9)

Then V(𝑡) ≤ max{V(0), 𝑘𝑀𝜂2/𝜇}. Therefore, V(𝑡) is also
bounded. We have proved that all variables of system (1) are
bounded which implies that 𝑇max = +∞ and the solution
exists globally.

If in addition to (2) we assume that 𝜙𝑖(0) > 0 for all 𝑖 =1, 2, 3, we easily obtain the following result.

Remark 2. When 𝜙 = (𝜙1, 𝜙2, 𝜙3) ∈ 𝐶𝛼 satisfying (2) with𝜙𝑖(0) > 0 (𝑖 = 1, 2, 3), all solution of (1) with initial condition𝜙 is positive for all 𝑡 ≥ 0.
2.1. Equilibria. Obviously, system (1) has always one disease-
free equilibrium of the form 𝐸𝑓(𝜆/𝑑, 0, 0). Therefore, the
basic reproduction 𝑅0 of system (1) can be defined by

𝑅0 = 𝑘𝜂1𝜂2𝑓 (𝜆/𝑑, 0, 0) + 𝜇𝜂1𝑔 (𝜆/𝑑, 0)𝑎𝜇 . (10)

As in [20], 𝑅0 can be rewritten as 𝑅0 = 𝑅01 + 𝑅02,
where 𝑅01 = 𝑘𝜂1𝜂2𝑓(𝜆/𝑑, 0, 0)/𝑎𝜇 is the basic reproduction
number corresponding to virus-to-cell infection mode and𝑅02 = 𝜂1𝑔(𝜆/𝑑, 0)/𝑎 is the basic reproduction number
corresponding to cell-to-cell transmission mode.

Theorem 3.

(i) If 𝑅0 ≤ 1, then system (1) has a unique disease-free
equilibrium of the form 𝐸𝑓(𝜆/𝑑, 0, 0).

(ii) If 𝑅0 > 1, the disease-free equilibrium is still present
and system (1) has a unique chronic infection equilib-
rium of the form 𝐸∗(𝑥∗, 𝑦∗, V∗) with 𝑥∗ ∈ (0, 𝜆/𝑑),𝑦∗ > 0, and V∗ > 0.

Proof. It is clear that 𝐸𝑓(𝜆/𝑑, 0, 0) is the unique steady state
of system (1) when 𝑅0 ≤ 1. To find the other equilibria, we
resolve the following system:

𝜆 − 𝑑𝑥 − 𝑓 (𝑥, 𝑦, V) V − 𝑔 (𝑥, 𝑦) 𝑦 = 0,
𝜂1 (𝑓 (𝑥, 𝑦, V) V + 𝑔 (𝑥, 𝑦) 𝑦) − 𝑎𝑦 = 0,

𝑘𝜂2𝑦 − 𝜇V = 0.
(11)

From (11), we obtain the equation

𝑘𝜂1𝜂2𝑓(𝑥, 𝜂1 (𝜆 − 𝑑𝑥)
𝑎 , 𝑘𝜂1𝜂2 (𝜆 − 𝑑𝑥)

𝑎𝜇 )

+ 𝜇𝜂1𝑔(𝑥, 𝜂1 (𝜆 − 𝑑𝑥)
𝑎 ) = 𝑎𝜇.

(12)

We have 𝑦 = (𝜂1(𝜆 − 𝑑𝑥))/𝑎 ≥ 0, which implies that 𝑥 ≤ 𝜆/𝑑.
Thus, there is no biological equilibrium when 𝑥 > 𝜆/𝑑.

Define the function 𝜓1 on the interval [0, 𝜆/𝑑] by

𝜓1 (𝑥) = 𝑘𝜂1𝜂2𝑓(𝑥, 𝜂1 (𝜆 − 𝑑𝑥)
𝑎 , 𝑘𝜂1𝜂2 (𝜆 − 𝑑𝑥)

𝑎𝜇 )

+ 𝜇𝜂1𝑔(𝑥, 𝜂1 (𝜆 − 𝑑𝑥)
𝑎 ) − 𝑎𝜇.

(13)

Clearly, 𝜓1(0) = −𝑎𝜇 < 0, 𝜓1(𝜆/𝑑) = 𝑎𝜇(𝑅0 − 1), and

𝜓󸀠1 (𝑥) = 𝑘𝜂1𝜂2 (𝜕𝑓
𝜕𝑥 − 𝑑𝜂1𝑎

𝜕𝑓
𝜕𝑦 − 𝑘𝑑𝜂1𝜂2𝑎𝜇

𝜕𝑓
𝜕V)

+ 𝜇𝜂1 (𝜕𝑔
𝜕𝑥 − 𝑑𝜂1𝑎

𝜕𝑔
𝜕𝑦) > 0.

(14)

Hence, if 𝑅0 > 1, there exists another biologically meaningful
equilibrium 𝐸∗(𝑥∗, 𝑦∗, V∗) with 𝑥∗ ∈ (0, 𝜆/𝑑), 𝑦∗ > 0, and
V∗ > 0. This completes the proof.

3. Stability of the Disease-Free Equilibrium

In this section, we establish the stability of the disease-free
equilibrium.

Theorem 4. The disease-free equilibrium 𝐸𝑓 is globally
asymptotically stable when 𝑅0 ≤ 1 and becomes unstable when𝑅0 > 1.
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Proof. To study the global stability of 𝐸𝑓, we consider the
following Lyapunov functional:

𝑉 (𝑡) = 1
𝜂1𝑦 (𝑡) +

𝑓 (𝜆/𝑑, 0, 0)
𝜇 V (𝑡) + 1

𝜂1 ∫
∞

0
ℎ1 (𝜏)

⋅ 𝑒−𝛼1𝜏 ∫𝑡
𝑡−𝜏

(𝑓 (𝑥 (𝑠) , 𝑦 (𝑠) , V (𝑠)) V (𝑠)
+ 𝑔 (𝑥 (𝑠) , 𝑦 (𝑠)) 𝑦 (𝑠)) 𝑑𝑠 𝑑𝜏
+ 𝑘𝑓 (𝜆/𝑑, 0, 0)

𝜇 ∫∞
0

ℎ2 (𝜏) 𝑒−𝛼2𝜏 ∫
𝑡

𝑡−𝜏
𝑦 (𝑠) 𝑑𝑠 𝑑𝜏.

(15)

Calculating the time derivative of 𝑉 along the positive
solution of system (1), we get

𝑉̇ (𝑡)󵄨󵄨󵄨󵄨󵄨(1)
= (𝑓 (𝑥, 𝑦, V) − 𝑓(𝜆𝑑 , 0, 0)) V

+ 𝑎
𝜂1𝑦(

𝑘𝜂1𝜂2𝑓 (𝜆/𝑑, 0, 0) + 𝜇𝜂1𝑔 (𝑥, 𝑦)𝑎𝜇 − 1) .
(16)

We have lim sup𝑡→∞𝑥(𝑡) ≤ 𝜆/𝑑, which implies that all omega
limit points satisfy𝑥(𝑡) ≤ 𝜆/𝑑.Thus, it is sufficient to consider
solutions for which 𝑥(𝑡) ≤ 𝜆/𝑑. By (10) and (𝐻1)–(𝐻3), we
obtain

𝑉̇ (𝑡)󵄨󵄨󵄨󵄨󵄨(1) ≤ (𝑓 (𝑥, 0, 0) − 𝑓(𝜆𝑑 , 0, 0)) V

+ 𝑎
𝜂1 (𝑅0 − 1) 𝑦 ≤ 𝑎

𝜂1 (𝑅0 − 1) 𝑦.
(17)

Therefore, 𝑉̇|(1) ≤ 0 when 𝑅0 ≤ 1. In addition, it is not hard
to verify that the largest compact invariant set in {(𝑥, 𝑦, V) |𝑉̇ = 0} is the singleton {𝐸𝑓}. From LaSalle invariance
principle [27], we deduce that the disease-free equilibrium𝐸𝑓
is globally asymptotically stable when 𝑅0 ≤ 1.

On the other hand, the characteristic equation at 𝐸𝑓 is
given by

(𝜉 + 𝑑) [(𝜉 + 𝜇) (𝜉 + 𝑎 − 𝜂1 (𝜉) 𝑔 (𝜆𝑑 , 0))

− 𝜂1 (𝜉) 𝜂2 (𝜉) 𝑘𝑓(𝜆𝑎 , 0, 0)] = 0,
(18)

where 𝜂𝑖(𝜉) = ∫∞
0

ℎ𝑖(𝜏)𝑒−(𝜉+𝛼𝑖)𝜏𝑑𝜏. Define a function 𝜓2 on[0, +∞) by
𝜓2 (𝜉) = (𝜉 + 𝜇) (𝜉 + 𝑎 − 𝜂1 (𝜉) 𝑔 (𝜆𝑑 , 0))

− 𝜂2 (𝜉) 𝜂2 (𝜉) 𝑘𝑓(𝜆𝑑 , 0, 0) .
(19)

We have 𝜓2(0) = 𝑎𝜇(1 − 𝑅0) < 0 and lim𝜉→+∞𝜓2(𝜉) = +∞,
which implies that 𝜓2 has a positive real root. Consequently,𝐸𝑓 is unstable for 𝑅0 > 1.

4. Stability of the Chronic
Infection Equilibrium

In this section, we investigate the global stability of the
chronic infection equilibrium 𝐸∗ by assuming that 𝑅0 > 1
and the functions 𝑓 and 𝑔 satisfy, for all 𝑥, 𝑦, V > 0, the
following hypothesis:

(1 − 𝑓 (𝑥, 𝑦, V)
𝑓 (𝑥, 𝑦∗, V∗))(𝑓 (𝑥, 𝑦∗, V∗)

𝑓 (𝑥, 𝑦, V) − V
V∗

) ≤ 0,

(1 − 𝑓 (𝑥∗, 𝑦∗, V∗) 𝑔 (𝑥, 𝑦)
𝑓 (𝑥, 𝑦∗, V∗) 𝑔 (𝑥∗, 𝑦∗))

⋅ (𝑓 (𝑥, 𝑦∗, V∗) 𝑔 (𝑥∗, 𝑦∗)
𝑓 (𝑥∗, 𝑦∗, V∗) 𝑔 (𝑥, 𝑦) − 𝑦

𝑦∗) ≤ 0.

(𝐻4)

Therefore, we get the following result.

Theorem 5. Assume that (𝐻4) holds. If 𝑅0 > 1, then the
chronic infection equilibrium 𝐸∗ is globally asymptotically
stable.

Proof. We define a Lyapunov functional as follows:

𝑊(𝑡) = 𝑥 (𝑡) − 𝑥∗ − ∫𝑥(𝑡)
𝑥∗

𝑓 (𝑥∗, 𝑦∗, V∗)
𝑓 (𝑠, 𝑦∗, V∗) 𝑑𝑠 + 1

𝜂1
⋅ 𝑦∗𝐻(𝑦 (𝑡)𝑦∗ ) + 𝑓 (𝑥∗, 𝑦∗, V∗) V∗

𝑘𝜂2𝑦∗ V∗𝐻(V (𝑡)
V∗

)

+ 1
𝜂1𝑓 (𝑥∗, 𝑦∗, V∗) V∗ ∫∞

0
ℎ1 (𝜏)

⋅ 𝑒−𝛼1𝜏 ∫𝑡
𝑡−𝜏

𝐻(𝑓 (𝑥 (𝑠) , 𝑦 (𝑠) , V (𝑠)) V (𝑠)
𝑓 (𝑥∗, 𝑦∗, V∗) V∗ )𝑑𝑠 𝑑𝜏

+ 1
𝜂1𝑔 (𝑥

∗, 𝑦∗) 𝑦∗ ∫∞
0

ℎ1 (𝜏)

⋅ 𝑒−𝛼1𝜏 ∫𝑡
𝑡−𝜏

𝐻(𝑔 (𝑥 (𝑠) , 𝑦 (𝑠)) 𝑦 (𝑠)
𝑔 (𝑥∗, 𝑦∗) 𝑦∗ )𝑑𝑠 𝑑𝜏 + 1

𝜂2
⋅ 𝑓 (𝑥∗, 𝑦∗, V∗) V∗ ∫∞

0
ℎ2 (𝜏)

⋅ 𝑒−𝛼2𝜏 ∫𝑡
𝑡−𝜏

𝐻(𝑦 (𝑠)𝑦∗ )𝑑𝑠 𝑑𝜏,

(20)

where 𝐻(𝑥) = 𝑥 − 1 − ln𝑥, 𝑥 > 0. Clearly, 𝐻 : (0, +∞) →[0, +∞) attains its strict globalminimumat 𝑥 = 1 and𝐻(1) =0. Hence,𝐻(𝑥) ≥ 0. Further, the functional𝑊 is nonnegative.
In order to simplify the presentation, we will use the

following notations: 𝑧 = 𝑧(𝑡) and 𝑧𝜏 = 𝑧(𝑡 − 𝜏) for any𝑧 ∈ {𝑥, 𝑦, V}. The time derivative of 𝑊 along the positive
solution of system (1) is given by

𝑊̇ (𝑡)󵄨󵄨󵄨󵄨󵄨(1) = (1 − 𝑓 (𝑥∗, 𝑦∗, V∗)
𝑓 (𝑥, 𝑦∗, V∗) ) 𝑥̇ + 1

𝜂1 (1 −
𝑦∗
𝑦 ) ̇𝑦

+ 𝑓 (𝑥∗, 𝑦∗, V∗) V∗
𝑘𝜂2𝑦∗ (1 − V∗

V
) V̇ + 1

𝜂1𝑓 (𝑥∗, 𝑦∗, V∗)
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⋅ V∗ ∫∞
0

ℎ1 (𝜏) 𝑒−𝛼1𝜏 (𝐻( 𝑓 (𝑥, 𝑦, V) V
𝑓 (𝑥∗, 𝑦∗, V∗) V∗)

− 𝐻( 𝑓 (𝑥𝜏, 𝑦𝜏, V𝜏) V𝜏𝑓 (𝑥∗, 𝑦∗, V∗) V∗))𝑑𝜏 + 1
𝜂1𝑔 (𝑥

∗, 𝑦∗)

⋅ 𝑦∗ ∫∞
0

ℎ1 (𝜏) 𝑒−𝛼1𝜏 (𝐻( 𝑔 (𝑥, 𝑦) 𝑦
𝑔 (𝑥∗, 𝑦∗) 𝑦∗)

− 𝐻( 𝑔 (𝑥𝜏, 𝑦𝜏) 𝑦𝜏𝑔 (𝑥∗, 𝑦∗) 𝑦∗))𝑑𝜏 + 1
𝜂2𝑓 (𝑥∗, 𝑦∗, V∗)

⋅ V∗ ∫∞
0

ℎ2 (𝜏) 𝑒−𝛼2𝜏 (𝐻( 𝑦
𝑦∗) − 𝐻(𝑦𝜏𝑦∗))𝑑𝜏.

(21)

Applying 𝜆 = 𝑑𝑥∗ + 𝑓(𝑥∗, 𝑦∗, V∗)V∗ + 𝑔(𝑥∗, 𝑦∗)𝑦∗ = 𝑑𝑥∗ +(𝑎/𝜂1)𝑦∗ and 𝑘𝜂2𝑦∗ = 𝜇V∗, we obtain
𝑊̇ (𝑡)󵄨󵄨󵄨󵄨󵄨(1) = 𝑑𝑥∗ (1 − 𝑥

𝑥∗ )(1 −
𝑓 (𝑥∗, 𝑦∗, V∗)
𝑓 (𝑥, 𝑦∗, V∗) )

+ 1
𝜂1𝑓 (𝑥∗, 𝑦∗, V∗) V∗ ∫∞

0
ℎ1 (𝜏) 𝑒−𝛼1𝜏 [3

− 𝑓 (𝑥∗, 𝑦∗, V∗)
𝑓 (𝑥, 𝑦∗, V∗) + 𝑓 (𝑥, 𝑦, V) V

𝑓 (𝑥, 𝑦∗, V∗) V∗ −
V
V∗

− 𝑓 (𝑥𝜏, 𝑦𝜏, V𝜏) V𝜏𝑦∗𝑓 (𝑥∗, 𝑦∗, V∗) V∗𝑦
+ ln(𝑓 (𝑥𝜏, 𝑦𝜏, V𝜏) V𝜏𝑓 (𝑥, 𝑦, V) V )]𝑑𝜏 + 1

𝜂1𝑔 (𝑥
∗, 𝑦∗)

⋅ 𝑦∗ ∫∞
0

ℎ1 (𝜏) 𝑒−𝛼1𝜏 [2 − 𝑓 (𝑥∗, 𝑦∗, V∗)
𝑓 (𝑥, 𝑦∗, V∗)

+ 𝑓 (𝑥∗, 𝑦∗, V∗) 𝑔 (𝑥, 𝑦) 𝑦
𝑓 (𝑥, 𝑦∗, V∗) 𝑔 (𝑥∗, 𝑦∗) 𝑦∗ −

𝑦
𝑦∗

+ 𝑔 (𝑥𝜏, 𝑦𝜏) 𝑦𝜏𝑔 (𝑥∗, 𝑦∗) 𝑦 + ln(𝑔 (𝑥𝜏, 𝑦𝜏) 𝑦𝜏𝑔 (𝑥, 𝑦) 𝑦 )]𝑑𝜏

− 1
𝜂2𝑓 (𝑥∗, 𝑦∗, V∗) V∗ ∫∞

0
ℎ2 (𝜏) 𝑒−𝛼2𝜏 [V

∗𝑦𝜏
V𝑦∗

− ln(𝑦𝜏𝑦 )]𝑑𝜏.

(22)

Hence,

𝑊̇ (𝑡)󵄨󵄨󵄨󵄨󵄨(1) = 𝑑𝑥∗ (1 − 𝑥
𝑥∗ )(1 −

𝑓 (𝑥∗, 𝑦∗, V∗)
𝑓 (𝑥, 𝑦∗, V∗) )

+ 𝑓 (𝑥∗, 𝑦∗, V∗) V∗ (−1 − V
V∗

+ 𝑓 (𝑥, 𝑦∗, V∗)
𝑓 (𝑥, 𝑦, V)

+ 𝑓 (𝑥, 𝑦, V) V
𝑓 (𝑥, 𝑦∗, V∗) V∗) + 𝑔 (𝑥∗, 𝑦∗) 𝑦∗ (−1 − 𝑦

𝑦∗

+ 𝑓 (𝑥, 𝑦∗, V∗) 𝑔 (𝑥∗, 𝑦∗)
𝑓 (𝑥∗, 𝑦∗, V∗) 𝑔 (𝑥, 𝑦)

+ 𝑓 (𝑥∗, 𝑦∗, V∗) 𝑔 (𝑥, 𝑦) 𝑦
𝑓 (𝑥, 𝑦∗, V∗) 𝑔 (𝑥∗, 𝑦∗) 𝑦∗) − 1

𝜂1𝑓 (𝑥∗, 𝑦∗, V∗)

⋅ V∗ ∫∞
0

ℎ1 (𝜏) 𝑒−𝛼1𝜏 [𝐻(𝑓 (𝑥∗, 𝑦∗, V∗)
𝑓 (𝑥, 𝑦∗, V∗) )

+ 𝐻(𝑓 (𝑥𝜏, 𝑦𝜏, V𝜏) V𝜏𝑦∗𝑓 (𝑥∗, 𝑦∗, V∗) V∗𝑦)

+ 𝐻(𝑓 (𝑥, 𝑦∗, V∗)
𝑓 (𝑥, 𝑦, V) )] 𝑑𝜏 − 1

𝜂1𝑔 (𝑥
∗, 𝑦∗)

⋅ 𝑦∗ ∫∞
0

ℎ1 (𝜏) 𝑒−𝛼1𝜏 [𝐻(𝑓 (𝑥∗, 𝑦∗, V∗)
𝑓 (𝑥, 𝑦∗, V∗) )

+ 𝐻(𝑔 (𝑥𝜏, 𝑦𝜏) 𝑦𝜏𝑔 (𝑥∗, 𝑦∗) 𝑦 )

+ 𝐻(𝑓 (𝑥, 𝑦∗, V∗) 𝑔 (𝑥∗, 𝑦∗)
𝑓 (𝑥∗, 𝑦∗, V∗) 𝑔 (𝑥, 𝑦) )]𝑑𝜏 −

1
𝜂2

⋅ 𝑓 (𝑥∗, 𝑦∗, V∗) V∗ ∫∞
0

ℎ2 (𝜏) 𝑒−𝛼2𝜏𝐻(V∗𝑦𝜏
V𝑦∗ )𝑑𝜏.

(23)

Since the function𝑓(𝑥, 𝑦, V) is strictlymonotonically increas-
ing with respect to 𝑥, we have

(1 − 𝑥
𝑥∗ )(1 −

𝑓 (𝑥∗, 𝑦∗, V∗)
𝑓 (𝑥, 𝑦∗, V∗) ) ≤ 0. (24)

From (𝐻4), we have
− 1 − V

V∗
+ 𝑓 (𝑥, 𝑦∗, V∗)

𝑓 (𝑥, 𝑦, V) + V
V∗

𝑓 (𝑥, 𝑦, V)
𝑓 (𝑥, 𝑦∗, V∗)

= (1 − 𝑓 (𝑥, 𝑦, V)
𝑓 (𝑥, 𝑦∗, V∗))(𝑓 (𝑥, 𝑦∗, V∗)

𝑓 (𝑥, 𝑦, V) − V
V∗

) ≤ 0,

− 1 − 𝑦
𝑦∗ +

𝑓 (𝑥, 𝑦∗, V∗) 𝑔 (𝑥∗, 𝑦∗)
𝑓 (𝑥∗, 𝑦∗, V∗) 𝑔 (𝑥, 𝑦)

+ 𝑓 (𝑥∗, 𝑦∗, V∗) 𝑔 (𝑥, 𝑦) 𝑦
𝑓 (𝑥, 𝑦∗, V∗) 𝑔 (𝑥∗, 𝑦∗) 𝑦∗

= (1 − 𝑓 (𝑥∗, 𝑦∗, V∗) 𝑔 (𝑥, 𝑦)
𝑓 (𝑥, 𝑦∗, V∗) 𝑔 (𝑥∗, 𝑦∗))

⋅ (𝑓 (𝑥, 𝑦∗, V∗) 𝑔 (𝑥∗, 𝑦∗)
𝑓 (𝑥∗, 𝑦∗, V∗) 𝑔 (𝑥, 𝑦) − 𝑦

𝑦∗) ≤ 0.

(25)

Since 𝐻(𝑥) ≥ 0 for 𝑥 > 0, we have 𝑊̇|(1) ≤ 0 with equality
if and only if 𝑥 = 𝑥∗, 𝑦 = 𝑦∗, and V = V∗. It follows from
LaSalle invariance principle that𝐸∗ is globally asymptotically
stable.
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5. Application

In this section, we consider the following HIV infection
model with distributed delays:

𝑥̇ (𝑡) = 𝜆 − 𝑑𝑥 (𝑡) − 𝛽1𝑥 (𝑡) V (𝑡)1 + 𝛾1V (𝑡) − 𝛽2𝑥 (𝑡) 𝑦 (𝑡)1 + 𝛾2𝑦 (𝑡) ,

̇𝑦 (𝑡) = ∫∞
0

ℎ1 (𝜏) 𝑒−𝛼1𝜏 [𝛽1𝑥 (𝑡 − 𝜏) V (𝑡 − 𝜏)
1 + 𝛾1V (𝑡 − 𝜏)

+ 𝛽2𝑥 (𝑡 − 𝜏) 𝑦 (𝑡 − 𝜏)
1 + 𝛾2𝑦 (𝑡 − 𝜏) ] 𝑑𝜏 − 𝑎𝑦 (𝑡) ,

V̇ (𝑡) = 𝑘∫∞
0

ℎ2 (𝜏) 𝑒−𝛼2𝜏𝑦 (𝑡 − 𝜏) 𝑑𝜏 − 𝜇V (𝑡) ,

(26)

where 𝛾1 and 𝛾2 are nonnegative constants that measure the
saturation effect. The parameters 𝛽1 and 𝛽2 are the virus-
to-cell infection rate and the cell-to-cell transmission rate,
respectively. The other parameters have the same biological
meanings as inmodel (1). Further, system (26) is a special case
of (1) with 𝑓(𝑥, 𝑦, V) = 𝛽1𝑥/(1 + 𝛾1V) and 𝑔(𝑥, 𝑦) = 𝛽2𝑥/(1 +𝛾2𝑦). Notice that the HIV infection model presented by Lai
and Zou [23] is a particular case of our model (26), it suffices
to take 𝛾1 = 𝛾2 = 0 and ℎ2(𝜏) = 𝛿(𝜏). In addition, system
(26) always has a disease-free equilibrium 𝐸𝑓(𝜆/𝑑, 0, 0) and
a unique chronic infection equilibrium 𝐸∗(𝑥∗, 𝑦∗, V∗) when𝑅0 = 𝛽1𝜆𝑘𝜂1𝜂2/𝑑𝑎𝜇 + 𝛽2𝜆𝜂1/𝑑𝑎 > 1.

On the other hand, it is easy to see that the hypotheses(𝐻0)–(𝐻3) are satisfied. Furthermore, we have

(1 − 𝑓 (𝑥, 𝑦, V)
𝑓 (𝑥, 𝑦∗, V∗))(𝑓 (𝑥, 𝑦∗, V∗)

𝑓 (𝑥, 𝑦, V) − V
V∗

)

= −𝛿1 (V − V∗)2
V∗ (1 + 𝛿1V∗) (1 + 𝛿1V) ≤ 0,

(27)

(1 − 𝑓 (𝑥∗, 𝑦∗, V∗) 𝑔 (𝑥, 𝑦)
𝑓 (𝑥, 𝑦∗, V∗) 𝑔 (𝑥∗, 𝑦∗))

⋅ (𝑓 (𝑥, 𝑦∗, V∗) 𝑔 (𝑥∗, 𝑦∗)
𝑓 (𝑥∗, 𝑦∗, V∗) 𝑔 (𝑥, 𝑦) − 𝑦

𝑦∗)

= −𝛿2 (𝑦 − 𝑦∗)2
𝑦∗ (1 + 𝛿1𝑦∗) (1 + 𝛿1𝑦) ≤ 0.

(28)

Consequently, the hypothesis (𝐻4) is satisfied. By applying
Theorems 4 and 5, we get the following result.

Corollary 6.

(i) If𝑅0 ≤ 1, then the disease-free equilibrium𝐸𝑓 of system
(26) is globally asymptotically stable.

(ii) If 𝑅0 > 1, then the disease-free equilibrium 𝐸𝑓 becomes
unstable and the chronic infection equilibrium 𝐸∗ of
(26) is globally asymptotically stable.

6. Conclusion

In this work, we have proposed a mathematical model that
describes the dynamics of viral infections, such as HIV and
HBV, and takes into account the two modes of transmission
and the two kinds of delays, one in cell infection and the
other in virus production. The transmission process for
both modes is modeled by two general incidence functions
that include many types of incidence rates existing in the
literature. Further, the two delays are modeled by infinite
distributed delays. Under some assumptions on the general
incidence functions, we have proved that the global stability
of the proposed model is fully determined by one threshold
parameter that is the basic reproduction number 𝑅0. In
addition, the viral infection models with infinite distributed
delays and the corresponding results presented in several
previous studies are extended and generalized.

In this study, we have neglected the mobility of cells and
virus.Motivated by theworks in [28–32], wewill consider this
mobility in our future project in order to improve our present
model.
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