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Researchers using ordinary differential equations to model phenomena face two main challenges among others: implementing
the appropriate model and optimizing the parameters of the selected model. The latter often proves difficult or computationally
expensive. Here, we implement Particle Swarm Optimization, which draws inspiration from the optimizing behavior of insect
swarms in nature, as it is a simple and efficient method for fitting models to data. We demonstrate its efficacy by showing that it
outstrips evolutionary computing methods previously used to analyze an epidemic model.

1. Introduction

In mathematical biology, parameter estimation is one of
the most important components of model fitting procedure.
With poorly estimated parameters, even the most appro-
priate models perform poorly. Although there is already
an abundance of traditional algorithms in the literature,
such as Gauss-Newton methods, the Nelder-Mead method,
and simulated annealing (see [1] for a thorough review), as
models get more complex, researchers need more versatile
and capable optimization methods. Evolutionary computing
methods are becoming more frequently used tools, reducing
the computational cost ofmodel fitting, and starting to attract
interest among mathematical biologists.

Compartmental models that are frequently used in infec-
tious disease modeling have not escaped the computational
cost versus complex model dilemma either. Since parameter
estimation for compartmental models can be tackled by such
evolutionary computing methods, it is reasonable to examine
the goodness of fit versus the price of fit for these commonly
employed models.Therefore, we will focus on the lesser-used
evolutionary algorithms in comparison to Particle Swarm
Optimization (PSO). In particular, Genetic Algorithms (GA)
have been frequently used to optimize the parameters of

ordinary differential equations (ODE)models [2–7]. PSO has
thus far been underutilized in this area. It is an optimization
algorithm inspired by swarms of insects, birds, and fish in
nature. Although PSO has been applied in a number of
different scenarios [8], its performance on compartmental
models has not yet been studied.

In optimization, the computational cost of an algorithm
is just as important as the quality of its output. Unfortunately
for us, cost increases with quality. Evolutionary computing
algorithms are especially susceptible to this effect, wherein
small reductions in error must be paid for by disproportion-
ate amounts of additional computation. To reduce cost or
improve accuracy without compromising the other requires
the application of an innovative technique to the problem.
For example, Hallam et al. [9] implemented progressive
population culling in a genetic algorithm to hit a given error
target in fewer CPU cycles.

Here, we intend to show that PSO is not only a viable
technique for fitting ODE models to data, but also that it has
the potential to outperformGA, which was proposed in [2] as
a superior optimization method to the traditional ones for fit-
ting ODEmodels. Hence, with this study, we aim to establish
an even more viable tool for ODE model fitting. Specifically,
we apply PSO to kinetic parameter optimization/fitting in
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the context of ODEs, and we contrast the PSO and GA
algorithms using the cholera SIRB example as common
ground. The organization of this article is as follows: In
Section 2, we introduce PSO. Section 3 contains a description
of how PSO can be applied to ODE models. We illustrate an
implementation of PSO to optimize anODEmodel of cholera
infections during the recent Haitian epidemic in Section 4.
Finally, we provide concluding remarks in Section 5.

2. Particle Swarm Optimization

We are given an objective function 𝑓 : R𝐷 → R with the
goal ofminimization. Based on reasonable parameter bounds
for the problem at hand, we constrain our search space to the
Cartesian product

Σ =
𝐷

∏
𝑖=1

[𝐿 𝑖, 𝑈𝑖] (1)

for lower bounds {𝐿 𝑖} and upper bounds {𝑈𝑖}. We release a
“swarm” of point particles within the space and iteratively
update their positions. The simulation rules allow the parti-
cles to explore and exploit the space all the while communi-
cating with one another about their discoveries. Since PSO
does not rely on gradients or smoothness in general, it is
well-suited to optimizing chaotic and discontinuous systems.
This flexibility is an essential property in the domain of
ODEmodels, whose prediction errors may change drastically
with minute parameter variations. The swarm nature of
PSO makes it amenable to parallelization, giving it a sizable
advantage over sequential methods. The algorithm used for
our computations is largely based on SPSO 2011 as found in
[10]. We provide implementation details in Section 2. Then,
we discuss ODE models, as they are ubiquitous in the realm
ofmodeling natural phenomena.We provide a justification of
our procedure for hyperspherical sampling in the Appendix.

2.1. Particle Swarm Optimization Implementation

2.1.1. Initialization. First, we define a new objective function
𝑔 : [0, 1]𝐷 → R by

𝑔 (𝑥) = 𝑓 (𝑏 + 𝑀𝑥) , (2)

where 𝑏 = (𝐿1, ⋅ ⋅ ⋅ , 𝐿𝐷)
𝑇 and 𝑀 = diag(𝑈1 − 𝐿1, ⋅ ⋅ ⋅ , 𝑈𝐷 −

𝐿𝐷). Hence, the particles search within the unit hypercube,
which provides better hyperspherical sampling performance
than does a search space whose dimensions could be orders
of magnitude apart. The particles’ positions are then affinely
mapped to 𝑆 before evaluation by the objective function.

A swarm consists of an ordered list of 𝑆 particles. This
value is manually adjusted to fit the problem at hand,
although more advanced methods may attempt to select it
with ametaoptimizer or adaptively adjust it during execution.
If 𝑆 is too low, then the particles will not be able to explore the
space effectively; if it is too high, then computational costs
will rise, without yielding a significant improvement in the
final fitness. Each particle has attributes which are updated
at every iteration. The attributes are shown in Table 1, and

their initial values (𝑡 = 0) are given. We define 𝑈(𝑎, 𝑏) to
mean a value sampled uniformly from [𝑎, 𝑏]. The particles
are initially placed in the search space via Latin Hypercube
Sampling (LHS).This helps avoid the excessive clustering that
can occur with truly random placement, as we want all areas
of the search space to be considered. The reader is directed to
[11] for more details on LHS.

The PSO algorithm derives its power from the communi-
cation of personal best positions among particles. During the
initialization phase, each particle randomly and uniformly
selects 𝐾 natural numbers in [1, 𝑆] (with replacement) and
adds its own index 𝑗 to the list. Once again, 𝐾 is a tunable
parameter of the algorithm; one might use 𝐾 = 3 as a
good starting point. These numbers, with repeats discarded,
form a set 𝑁𝑗. They tell the particle which of its peers to
communicate with when it discovers lower values of the
objective function during the execution of the algorithm.This
communication is also performed once to initialize the 𝑙𝑗
values before any motion has taken place. In addition, 𝑁𝑗 is
continually updated based on the performance of the current
configuration; this aspect of the algorithm is known as its
adaptive random topology.

2.2. Pragmatic Considerations

2.2.1. Exploration and Exploitation. Thedegree of exploration
in a given PSO configuration refers to the propensity of the
particles to travel large distances within the search space
and visit different regions. This must be properly balanced
with exploitation, which is the tendency of particles to stay
within a given region and examine local features to seek
out even lower values of the objective function. The PSO
specification provides a parameter to this end, and itmay have
to be manually or automatically tuned for best results on a
particular function landscape.

2.3. Algorithm. We present a description of the algorithm
after initialization below. Each step is followed by a comment
that may describe its motivation, practical implementation
details, or pitfalls. Table 1 contains descriptions of the particle
attributes. The parameters 𝑐 and 𝜔 (not to be confused
with the 𝜔 in the SIRB model) used in the algorithm
must be selected beforehand. They control the exploration-
exploitation balance and the “inertia” of the particles, respec-
tively.

(1) Apply a random permutation to the indices of the
particles.
Permutations can be selected uniformly at random
with the simple Fisher-Yates shuffle.

(2) For 𝑗 = 0 to 𝑆 − 1,

(a) Set 𝐺𝑗 = 𝑥𝑗 + 𝑐(𝑝𝑗 + 𝑙𝑗 − 2𝑥𝑗)/3.
We define 𝐺𝑗 to be the “center of gravity” of these
points: 𝑥𝑗, 𝑥𝑗 + 𝑐(𝑝𝑗 − 𝑥𝑗), and 𝑥𝑗 + 𝑐(𝑙𝑗 − 𝑥𝑗).
This provides a mean position around which the
particle can search for new locations.The larger 𝑐
is, the farther the particle will venture on average.
Previous versions of SPSO had detectable biases
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Table 1: Particle attributes indexed by position in list.

Property Domain Meaning Initial Value
𝑥𝑗 [0, 1]𝐷 position determined via LHS
V𝑗 R𝐷 velocity V𝑗,𝑑(0) = 𝑈(−𝑥𝑗,𝑑(0), 1 − 𝑥𝑗,𝑑(0))
𝑝𝑗 [0, 1]𝐷 personal best position 𝑥𝑗(0)
𝑞𝑗 R personal best fitness 𝑔(𝑥𝑗(0))
𝑁𝑗 2N neighborhood described below
𝑙𝑗 [0, 1]𝐷 local best position described below
𝑚𝑗 R local best fitness 𝑔(𝑙𝑗(0))

along the axes of the coordinate system. This
coordinate-free definition elegantly avoids such a
problem.

(i) If 𝑝𝑗 = 𝑙𝑗, let𝐺𝑗 = 𝑥𝑗 +𝑐(𝑝𝑗 −𝑥𝑗)/2 instead.
If the local best position is equal to the
particle’s personal best, then the original
formula would give a weight of 2/3 to 𝑥𝑗 +
𝑐(𝑝𝑗 − 𝑥𝑗) and only 1/3 to 𝑥𝑗. To avoid
this, we revise the definition of 𝐺𝑗 to be the
mean of only 𝑥𝑗 and 𝑥𝑗 + 𝑐(𝑝𝑗 − 𝑥𝑗) in
this case. Here, we are testing the coordinates
for bitwise equality, as opposed to the usual
floating point comparison. This is because a
particle will have 𝑝𝑗 exactly equal to 𝑙𝑗 when
it has the lowest personal best fitness in its
network of peers.

(b) Sample 𝑥𝑗 uniformly from the volume of a
hypersphere with center 𝐺𝑗 and radius 𝑟 =
‖𝑥𝑗 − 𝐺𝑗‖.
One might naively attempt this by generating a
vector representing displacement from 𝐺𝑗 whose
coordinates are 𝑈(0, 1) each and scaling it to a
length of 𝑈(0, 𝑟). However, this does not produce
a constant probability density.The proper method
is to generate a vector whose coordinates are
standard normal variates and scale it to a length
of 𝑟𝑈(0, 1)1/𝐷. Normal variates can be generated
from a uniform source with methods such as the
Box-Muller transform, and Ziggurat algorithm.

(c) Set V𝑗(𝑡 + 1) = 𝜔V𝑗(𝑡) + [𝑥𝑗(𝑡) − 𝑥𝑗(𝑡)].

The position 𝑥𝑗 represents where the particle
intends to travel next.The second term of V𝑗(𝑡+1)
contains the corresponding displacement from its
current position. However, we would also like to
retain some of the particle’s old velocity to lessen
the chance of getting trapped in local minimum.
To this end, we add an inertial term with a
“cooldown” factor 𝜔 that functions analogously
to friction.

(d) Set 𝑥𝑗(𝑡 + 1) = 𝑥𝑗(𝑡) + V𝑗(𝑡 + 1).
The next position of the particle is its current
position plus its updated velocity.

(e) Clamp position if necessary.

If any component of a particle’s position falls
outside [0, 1], we clamp it to the appropriate end-
point and multiply the corresponding component
of its velocity by −0.5. This inelastic “bouncing”
contains particles, while still allowing exploitation
of the periphery of the search space.

(f) Increment 𝑡.
(g) If 𝑔(𝑥𝑗(𝑡)) < 𝑞𝑗(𝑡 − 1), set 𝑝𝑗(𝑡) = 𝑥𝑗(𝑡) and

𝑞𝑗(𝑡) = 𝑔(𝑥𝑗(𝑡)). Else, carry forward values from
previous iteration.
If the value of the objective function at the current
position is better than the personal best value
from the previous iteration, set the personal best
position to the current position and the personal
best value to the current value.

(h) Communicate with neighbors.
When a particle finds a value of the objective
function lower than its 𝑚𝑗 (which corresponds
to the position 𝑙𝑗), it informs all of its neighbors
by updating their values of these attributes to its
current objective function value and position.

(i) Regenerate topology if global fitness min𝑘𝑞𝑘 did
not improve from previous step.
If the global fitness of the swarmhas not improved
at the end of the iteration, then the sets 𝑁𝑗
are updated by regenerating them as during the
initialization phase.

(j) Check stopping condition. See below for exam-
ple conditions.

A multitude of conditions can be used to decide when to
stop. Some common ones are as follows:

(i) The iteration count exceeds a threshold 𝑇. For a fixed
threshold, this method gives more computation time
to larger swarms.

(ii) The product of the iteration count and the swarm
size (the number of objective function evaluations)
exceeds 𝑇. In this case, the threshold is a good
representation of how much total computation time
the swarm utilizes, as the computational resource
limit is nearly independent of swarm size.

(iii) The globally optimal objective function value
(min𝑗𝑞𝑗) falls below some threshold.
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Figure 1: Particle Swarm Optimization process.

(iv) The globally optimal objective function value has not
improved by more than 𝜖 within the last𝑁 iterations.

(v) Any combination of the above.

The output of the algorithm is then the 𝑝𝑗 value corre-
sponding to the minimum 𝑞𝑗 value.

The flowchart (Figure 1) summarizes the process of
Particle Swarm Optimization.

2.3.1. Discrete Parameters. If some (not necessarily all) of the
parameters in the problem are discrete, PSO can be adapted
by snapping the appropriate continuous coordinates in the
search space to the nearest acceptable values during each
iteration. This feature gives PSO great versatility, in that it can
solve problems with entirely continuous, mixed, or entirely
discrete inputs.

2.3.2. Parallel Computing. Most real-world objective func-
tions are sufficiently complex so that PSO will spend the
vast majority of its time evaluating them, as opposed to
executing the control logic. In our case, profiling showed that
numerically solving an ODE at many points consumed more
than 95% of the total CPU time. Therefore, in order to paral-
lelize the algorithm, one needs only to evenly distribute these
evaluations among different cores or possibly computers.The
remaining logic of the algorithm can be executed in a single
control thread that collates the fitness values and updates
particle attributes before offloading evaluations for the next
iteration.

2.3.3. Randomness. Far too often in our experience, proba-
bilistic numerical simulations are run with little thought to
the underlying random number generator (RNG). As Clerc
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Table 2: Parameter ranges for cholera model.

Name Description Lower bound Upper bound
𝑏 Natural birth rate of humans 0.000072 NA
𝑑 Natural death rate of humans 0.000044 NA
𝜅 Half-saturation constant of vibrios 106 NA
𝐵0 Starting bacterial concentration 0 1
ℎ Proportion of hospitalizations 0.001 1
𝛽𝐵 Ingestion rate of vibrios 0.001 1
𝛽𝐼 Infectivity for susceptible 0.001 0.5
𝜂 Rate of contribution by infected 0.001 1
𝛾 Recovery rate of infected 1/14 1/2
𝛿 Decay rate of vibrios to non-HI state 1/40 1/3
𝜔 Rate of waning immunity 0.0001 1/360

states in [10], the performance of PSO on some problems
is highly dependent on the quality of the RNG. The default
RNG in one’s favorite programming language is likely not
up to the task. By default, our code uses the fast, simple,
and statistically robust xorshift128+generator from [12]. It
outputs random 64-bit blocks, which are transformed using
standard algorithms into the various types of random samples
required. The use of a seed allows for exactly reproducible
simulations (this is more difficult to ensure if a single
generator is being accessed by multiple threads).

3. ODE Models

3.1. Introduction. Suppose we have data and a corresponding
system of ordinary differential equations which we believe
models the underlying process. The system takes parameters
and initial values (some known, some unknown) as input
and outputs functions, which can then be compared to the
data using some goodness of fit (GOF) metric (e.g., mean
squared error). Competing models can be evaluated using
frameworks introduced in [3].

If we take the vector of unknown inputs to be a position
within search space, then we can apply PSO in order to
minimize the model’s error. The choice of error function
is an important consideration. Those GOF metrics that are
superlinear in the individual deviations will preferentially
reduce larger deviations over smaller ones. Similarly, sub-
linear functions will produce good correspondence on most
data points at the expense of some larger errors.

3.2. Compartmental Models. In epidemiology, a common
tool for studying the spread of an infectious disease is
the compartmental model. The prototypical example is the
SIR model, in which the population is divided into three
compartments: Susceptible, Infected, and Recovering. Differ-
ential equations describe how individuals flow between the
compartments over time. The behavior of a specific disease
is captured by parameters, and it is here that we use model
fitting techniques to derive these parameters from data. The
simplest form of SIR does not include birth or death (the
dynamics of the disease are assumed to be sufficiently rapid),
so it holds that the population size𝑁 = 𝑆 + 𝐼 + 𝑅 is constant.

More advanced models include more compartments and
incorporate factors such as demography. In the field, it is often
easiest to measure the number of infected individuals; thus a
viable GOF metric may compute the distance between time
series infection data and the corresponding points on the 𝐼(𝑡)
curve for a given set of parameters.

Chubarova [13] implemented GA for fitting ODE mod-
els to cholera epidemic data. Although better errors were
achieved than similar studies that used traditional methods,
the computational cost required was substantial. This led
to our consideration of a technique which could achieve
similar accuracy with fewer cycles, namely PSO. One of the
models studied in [13] was SIRB, which is a refinement of
SIR: it includes birth and death rates for the population and a
compartment 𝐵 representing the concentration of bacteria in
the water supply.We present equations for SIRB and describe
the roles of its parameters in Section 4.

4. Application

4.1. SIRB. The SIRBmodel is a system of four nonlinear first-
order ODEs that capture how quickly individuals progress
through the susceptibility-infection-recovery cycle and how
bacteria are exchanged between the population and the water
supply:

𝑑𝑆
𝑑𝑡

= 𝑏𝑁 − 𝑑𝑆 − 𝛽𝐵
𝐵𝑆

𝜅 + 𝐵
− 𝛽𝐼

𝑆𝐼
𝑁

+ 𝜔𝑅

𝑑𝐼
𝑑𝑡

= −𝑑𝐼 + 𝛽𝐵
𝐵𝑆

𝜅 + 𝐵
+ 𝛽𝐼

𝑆𝐼
𝑁

− 𝛾𝐼

𝑑𝑅
𝑑𝑡

= −𝑑𝑅 + 𝛾𝐼 − 𝜔𝑅

𝑑𝐵
𝑑𝑡

= 𝜂𝐼 − 𝛿𝐵

(3)

The parameters and their ranges are listed in Table 2
(derived from [2] with some later corrections from the
authors). An upper bound of NA means that the value is
constant and not optimized by PSO. The bacteria being
studied in this case are of the genus Vibrio. They decay from
a state of hyperinfectivity (HI) to a non-HI state (only the
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Figure 2: Example run.

former is considered infectious in this model) at a rate of 𝛿.
The parameter 𝜅 has units of cells per milliliter, while the rest
have units of inverse days.

4.2. Model Fitting. We apply PSO to fit the SIRB model to
epidemic data from [14] using our own C code and the rkf45
ODE solver in the GNU Scientific Library. Since the data
were obtained from hospitals, we must correct for the fact
that not every infected person received care.We introduce the
parameter ℎ as the proportion of recorded infections. Instead
of presuming a certain value, we allow ℎ to be optimized by
PSO. The initial values for the system for Department Nord
are 𝑆(0) = 549,486, 𝐼(0) = 1/ℎ, 𝑅(0) = 0, and 𝐵(0) = 𝜅𝐵0,
where 𝐵0 is another parameter to be optimized by PSO. The
particles explore an 8-dimensional search space with generic
position vector

𝑥 = (𝐵0, ℎ, 𝛽𝐵, 𝛽𝐼, 𝜂, 𝛾, 𝛿, 𝜔)𝑇 . (4)

We measure GOF using the mean absolute deviation:

𝑓 (𝑥) = 1
𝑛

𝑛

∑
𝑖=1

ℎ𝐼 (𝑡𝑖) − 𝑦𝑖
 , (5)

where {(𝑡𝑖, 𝑦𝑖)} is the time series infection data. Figure 2 shows
a plot of ℎ𝐼(𝑖) and 𝑦𝑖 versus 𝑡 for an example run of the PSO
algorithm. The tail behavior of our model is typical in that it
fails to account for cyclical recurrence of the disease. Akman
et al. address this phenomenon in [2].

We performed 12 runs of the algorithm with the param-
eters 𝑐 = 1.193, 𝜔 = 0.721, 𝑆 = 40, and 𝐾 = 3
(suggested values from [10]). We chose a stopping condition
of two million objective function evaluations. We found this
condition experimentally by observing that fitness values
rarely, if ever, improved beyond this point. Our results are
given in Table 3. An individual run only takes around 8
minutes on a quad-core Intel Celeron J1900 @ 1.99 GHz
(compiled with icc -O2). The same optimization problem,
approached using GA in [13], took between approximately
1 and 6.4 days to run on two hexa-core Intel Xeon X5670s
@ 2.93 GHz (see Table 4). Considering the similarity of
the fitness values to the evolutionary computing results,
PSO appears to be an attractive method for model fitting,

especially for the case of expensive objective functions. It
uses smaller populations and fewer timesteps due to the fast
convergence of the fitness values, which distinguishes it from
GA.

Code for PSO and the SIRB model with sample data is
available at [11].

5. Concluding Remarks

The use of PSO is a novel approach in ODE modeling,
particularly in the field of epidemiology. Where previous
algorithms such as GA have taken excessively long to run in
the face of complex models, PSO demonstrates its effective-
ness by providing comparable results in an impressively small
fraction of the time. It has a structural advantage over GA that
cannot be attributed to the complexity of the control logic;
PSO requires many fewer objective function calls to reach
the same level of accuracy. We implemented PSO to optimize
an ODE model given cholera data. Although there are other
global optimization methods that are also used in fitting
parameters of ODE models, such as simulated annealing
or scatter search, we restricted our comparison only to the
performance of GA, since it was extensively used for the same
infectious disease model. We achieved similar model errors
in a substantially shorter period of time, as explained above,
due to the fundamental differences of operation between PSO
and GA. Additionally, we compared the performance of PSO
with that of DIRECT [15–19] per the suggestion of a referee.
DIRECT evaluated the objective function approximately six
thousand times in the same amount of time it took PSO to
perform twomillion evaluations, and it appeared to converge
to a worse fitness value.

As with most optimization algorithms, the remaining
challenge of PSO is algorithm parameter selection. In the
context of our study, this is similar to selecting the right GA
parameters, such as population size, number of generations,
cross-over rate, and mutation rates; that all may have an
impact on the accuracy and runtime. One possible improve-
ment is to add a metaoptimizer to choose the algorithm
parameters without human intervention. A fruitful potential
topic of investigation is to extend PSO to approximating
unknown functions (such as probability distributions) rather
than merely selecting parameters.

Appendix

Hyperspherical Sampling

In this appendix, we justify our procedure for uniform
hyperspherical sampling. Our goal is to provide a practical
construction for a random variable 𝑊 which takes on values
from the unit𝐷-ball with a uniform probability density.Then
𝑟𝑊 will provide the appropriate distribution for the PSO
algorithm. Let 𝑍 be a random variable distributed according
to the 𝐷-variate normal distribution of identity covariance,
centered at the origin. We can sample from 𝑍 in our code
by generating a vector with 𝐷 independent standard normal
components. It is well known that the distribution of 𝑍 is
rotationally symmetric. Therefore, defining 𝑓(𝑧) = 𝑧/‖𝑧‖, we
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find that 𝑓(𝑍) must be uniformly distributed on the surface
of the unit 𝐷-sphere. Since a 𝐷-ball with radius 𝑠 ≤ 1 has
volume proportional to 𝑠𝐷, we would like to find a random
variable 𝑌 supported on [0, 1] such that

𝑃 (𝑌𝑓 (𝑍) ≤ 𝑠) ∝ 𝑠𝐷 ⇒

𝑃 (𝑌 ≤ 𝑠) ∝ 𝑠𝐷.
(A.1)

It is easily shown that 𝑌 = 𝑈(0, 1)1/𝐷 has a cumulative
distribution function of 𝐺(𝑠) = 𝑠𝐷. Setting 𝑊 = 𝑌𝑓(𝑍)
produces the desired result.

The same distribution can also be produced in a simpler
fashion by repeatedly generating a vector 𝑧 with components
of 𝑈(−𝑟, 𝑟) and rejecting it if ‖𝑧‖ > 𝑟. However, the expected
number of tries per sample is equal to the ratio of the volume
of a 𝐷-cube to that of an inscribed 𝐷-ball, which grows too
rapidly with 𝐷.
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