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The Equivalent Linearization Method (ELM) with a weighted averaging is applied to analyze five undamped oscillator systems
with nonlinearities. The results obtained via this method are compared with the ones achieved by Parameterized Perturbation
Method (PPM), Min–Max Approach (MMA), Variational Iteration Method (VIM), Homotopy Perturbation Method (HPM),
Energy Balance Method (EBM), Harmonic Balance Method (HBM), 4th-Order Runge-Kutta Method, and the exact ones. The
obtained results demonstrate that this method is very convenient for solving nonlinear equations and also can be successfully
applied to a lot of practical engineering and physical problems.

1. Introduction

Nonlinear oscillation problem is very important in the
physical science, mechanical structures, and other kinds of
mathematical sciences. Most of real systems are modeled by
nonlinear differential equations which are important issues
in mechanical structures, mathematical physics, and engi-
neering. In most cases, it is difficult to solve such equations,
especially analytically; and in addition, the most important
information, such as the natural circular frequency of a
nonlinear oscillationwhich depends on the initial conditions,
will be lost during the procedure of numerical simulation.

Recently, nonlinear oscillator models have been widely
considered in physics and engineering. It is obvious that
there are many nonlinear equations in the study of dif-
ferent branches of science which do not have analytical
solutions. Due to the limitation of existing exact solutions,
many analytical approaches have been investigated. Many
researchers have been working on various analytical meth-
ods for solving nonlinear oscillation systems in the last
decades, such as Homotopy PerturbationMethod (HPM) [1–
5], Max–Min Approach (MMA) [5–10], Variational Iteration
Method (VIM) [2, 5], Energy Balance Method (EBM) [5, 11–
16], Amplitude-Frequency Formulation (AFF) [5–7, 15, 17,
18], ImprovedAmplitude-Frequency Formulation (IAFF) [5],

Parameter Expansion Method (PEM) [5, 7, 18–20], Homo-
topy Analysis Method (HAM) [5, 21], Modified Homotopy
Perturbation Method (MHPM) [5, 6], Modified Lindstedt-
Poincare Method [22], Harmonic Balance Method [23, 24],
and combined Newton’s Method with the Harmonic Balance
Method [25].

The Equivalent Linearization Method is one of the
common approaches to approximate analysis of dynamical
systems. The original linearization for deterministic systems
was proposed by Krylov and Bogoliuboff [26].Then Caughey
expanded the method for stochastic systems [27].Thencefor-
ward, there have been some extended versions of the Equiv-
alent Linearization Method [28–32]. It has been shown that
the Equivalent LinearizationMethod is presently the simplest
tool widely used for analyzing nonlinear stochastic problems.
Nevertheless, the accuracy of the Equivalent Linearization
Method with conventional averaging normally reduces for
middle or strong nonlinear systems. A reason is that some
terms will vanish in the averaging process; for example, the
averaging value of the functions sin(𝑡) and cos(𝑡) over one
period is equal to zero. Recently, Anh proposed a newway for
determining averaging values: instead of using conventional
averaging process the author introduced weighted coefficient
functions ℎ(𝑡) [31]; by this manner, the averaging value is
calculated in a new way called the weighted averaging value.
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This proposed method has been applied effectively to analyze
some strongly nonlinear oscillations such as the nonlinear
Duffing oscillator with third, fifth, and seventh powers of
the amplitude, the strongly nonlinear oscillators in forms(1 + 𝜀𝑢2)𝑢̈ + 𝑢 = 0 and 𝑢̈ + 𝑢3/(1 + 𝑢2) = 0, and the cubic
Duffing with discontinuity [33].

In this paper, the Equivalent Linearization Method with
a weighted averaging continues to be applied to analyze
five undamped nonlinear oscillators: the Duffing oscillator
with cubic nonlinearity (Example 1); the motion of simple
pendulum attached to a rotating rigid frame (Example 2); the
motion of a mass attached to the center of a stretched elastic
wire (Example 3); the Duffing oscillator with discontinuity
(Example 4); and the nonlinear oscillator with fractional
elastic force (Example 5). It should be emphasized that
the generalized forms of the Duffing equation (in Example
1) and the oscillator (in Example 3) have been solved by
Energy Balance Method [12, 16], and the generalized form
of the nonlinear oscillator with fractional elastic force (in
Example 5) has been solved by Energy Balance Method
and Variational Approach [14]; these solutions are achieved
by Younesian et al. [12, 14, 16]. The frequency-amplitude
relationship is analytically obtained by using this proposed
method. Accuracy and validity of results are then presented
by comparing the results with the ones obtained by the other
well-known techniques and the exact and numerical ones.

2. The Equivalent Linearization Method with
a Weighted Averaging

2.1. The Equivalent Linearization Method. In order to intro-
duce the general idea of the Equivalent LinearizationMethod,
we consider a nonlinear oscillator governed by the following
equation [33]:

𝑋̈ + 2ℎ𝑋̇ + 𝜔20𝑋 + 𝑔 (𝑋̇, 𝑋) = 0, (1)

where 𝑔(𝑋̇, 𝑋) is a nonlinear function only depending on two
variables of velocity 𝑋̇(𝑡) and displacement𝑋(𝑡) and ℎ and𝜔0
are constants. The equivalent linear oscillator is described by
the equation as follows:

𝑋̈ + (2ℎ + 𝜇) 𝑋̇ + (𝜔20 + 𝜆)𝑋 = 0. (2)

The equation error between the two oscillators is taken as

𝑒 (𝑋̇, 𝑋) = 𝑔 (𝑋̇, 𝑋) − 𝜇𝑋̇ − 𝜆𝑋. (3)

The coefficients of linearization in the linearized equation
(2) are found from an optimal criterion. There are some
criteria for determining these coefficients.Themost common
criterion is the mean square error criterion which requires
that the mean square of equation error be minimum:

⟨𝑒2 (𝑋̇, 𝑋)⟩ = ⟨(𝑔 (𝑋̇, 𝑋) − 𝜇𝑋̇ − 𝜆𝑋)2⟩ 󳨀→ min
𝜇,𝜆
. (4)

Thus, 𝜕𝜕𝜆 ⟨𝑒2 (𝑋̇, 𝑋)⟩ = 0𝜕𝜕𝜇 ⟨𝑒2 (𝑋̇, 𝑋)⟩ = 0
(5)

yields

𝜆 = ⟨𝑔𝑋⟩⟨𝑋̇2⟩ − ⟨𝑔𝑋̇⟩ ⟨𝑋𝑋̇⟩⟨𝑋2⟩ ⟨𝑋̇2⟩ − ⟨𝑋𝑋̇⟩2 (6a)

𝜇 = ⟨𝑔𝑋̇⟩ ⟨𝑋2⟩ − ⟨𝑔𝑋⟩⟨𝑋𝑋̇⟩⟨𝑋2⟩ ⟨𝑋̇2⟩ − ⟨𝑋𝑋̇⟩2 . (6b)

In the formulations in (4), (6a), and (6b), the symbol⟨∙⟩ denotes the time-averaging operator in classical meaning
[26]:

⟨𝑓 (𝑡)⟩ = lim
𝑇→+∞

1𝑇 ∫
𝑇

0
𝑓 (𝑡) 𝑑𝑡. (7)

For a 𝜔-frequency function 𝑓(𝜔𝑡), the averaging process
is taken during one period 𝑇; that is,
⟨𝑓 (𝜔𝑡)⟩ = 1𝑇 ∫

𝑇

0
𝑓 (𝜔𝑡) 𝑑𝑡 = 12𝜋 ∫

2𝜋

0
𝑓 (𝜏) 𝑑𝜏,

𝜏 = 𝜔𝑡. (8)

In this technique, the importance of the attended terms
is considered to be the same on time scale. In fact, their
roles generally differ from time to time. That may be one of
the reasons causing the classical equivalent replacement to
be effective only for oscillators with weak nonlinearity but
normally not being good for ones with strong nonlinearity. In
order to improve this shortcoming, the averaging operation
with weighting functions is proposed as in the next section.
This idea is introduced by Anh [31].

2.2. The Weighted Averaging. The conventional averaging
value of an integrable deterministic function 𝑥(𝑡) on a
domain𝐷: (0, 𝑑) is a constant value defined by

⟨𝑥 (𝑡)⟩ = 1𝑑 ∫
𝑑

0
𝑥 (𝑡) 𝑑𝑡. (9)

In many cases when the function 𝑥(𝜔𝑡) is periodic with
period 2𝜋/𝜔, the value 𝑑 is taken as 2𝜋/𝜔 and it leads to the
averaging value of 𝑥(𝑡) over one period:

⟨𝑥 (𝜔𝑡)⟩ = 𝜔2𝜋 ∫
2𝜋/𝜔

0
𝑥 (𝜔𝑡) 𝑑𝑡 = 12𝜋 ∫

2𝜋

0
𝑥 (𝜏) 𝑑𝜏, (10)

where 𝜏 = 𝜔𝑡. Definition (9) has some deficiencies; for
example, if (9) or (10) are equal to zero, the information about
x(t) will be lost. For all harmonic functions such as cos(𝑛𝜔𝑡)
and sin(𝑛𝜔𝑡), this observation is true. In [31], Anh suggested
replacing the constant coefficient 1/𝑑 in (9) by a weighted
coefficient function ℎ(𝑡).Thus one gets the so-calledweighted
average value:

⟨𝑥 (𝑡)⟩ = ∫𝑑
0
ℎ (𝑡) 𝑥 (𝑡) 𝑑𝑡 (11)
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with the condition

∫𝑑
0
ℎ (𝑡) 𝑑𝑡 = 1. (12)

There are three basic weighted coefficients:

(i) Basic Optimistic Weighted Coefficients. They are in-
creasing functions of 𝑡 and denoted asO(t). Examples
are 𝛼𝑡𝛽and 𝛼𝑒𝛽𝑡, 𝛼, 𝛽 > 0.

(ii) Basic Pessimistic Weighted Coefficients. They are de-
creasing functions of 𝑡 and denoted as 𝑃(𝑡). Examples
are 𝛼𝑡𝛽 and 𝛼𝑒𝛽𝑡, 𝛼 < 0, 𝛽 > 0; or 𝛼 > 0, 𝛽 < 0.

(iii) Neutral Weighted Coefficients. They are denoted as𝑁(𝑡) and are constants.

An arbitrary weighted coefficient ℎ(𝑡) can be obtained
as summation and/or product of basic weighted coefficients.
Example is

ℎ (𝑡) = 𝑛∑
𝑖=1

𝐴 𝑖𝑂𝑖 (𝑡) + 𝐵𝑖𝑃𝑖 (𝑡) + 𝐶𝑖𝑂𝑖 (𝑡) 𝑃𝑖 (𝑡) + 𝑁 (𝑡) , (13)

where 𝐴 𝑖, 𝐵𝑖, 𝐶𝑖 are constant.
In this paper, a special form of weighted coefficient is

introduced as follows [31, 33]:

ℎ (𝑡) = 𝑠2𝜔2𝑡𝑒−𝑠𝜔𝑡, 𝑠 > 0, (14)

where 𝑠 is constant.
The properties of the weighted function ℎ(𝑡) in (14) can

be viewed in [31, 33].
Based on the weighted coefficient (14), a new weighted

averaging value is proposed:

⟨𝑥 (𝜔𝑡)⟩ = ∫∞
0
𝑠2𝜔2𝑡𝑒−𝑠𝜔𝑡𝑥 (𝜔𝑡) 𝑑𝑡

= ∫∞
0
𝑠2𝜏𝑒−𝑠𝜏𝑥 (𝜏) 𝑑𝜏 (15)

which is a linear operator. From Laplace transform, we get,
for example,

⟨cos (𝑛𝜔𝑡)⟩ = ∫∞
0
𝑠2𝜔2𝑡𝑒−𝑠𝜔𝑡 cos (𝑛𝜔𝑡) 𝑑𝑡

= ∫∞
0
𝑠2𝜏𝑒−𝑠𝜏 cos (𝑛𝜏) 𝑑𝜏 = 𝑠2 𝑠2 − 𝑛2(𝑠2 + 𝑛2)2

⟨sin (𝑛𝜔𝑡)⟩ = ∫∞
0
𝑠2𝜔2𝑡𝑒−𝑠𝜔𝑡 sin (𝑛𝜔𝑡) 𝑑𝑡

= ∫∞
0
𝑠2𝜏𝑒−𝑠𝜏 sin (𝑛𝜏) 𝑑𝜏 = 𝑠2 2𝑠𝑛(𝑠2 + 𝑛2)2 .

(16)

As 𝜔-periodic functions 𝑥(𝜔𝑡) can be expanded into
Fourier series; hence we can easily calculate (15) by using (16).

In this paper, for the sake of comparison, the parameter𝑠 is chosen equal to 2. In the next section, some practical
examples for some strongly nonlinear vibration systems are
illustrated to show the applicability, accuracy, and effective-
ness of the present method.

3. Some Examples and Discussions

3.1. Example 1. Consider the followingDuffing equation with
cubic nonlinearity:

𝑢̈ + 𝛼𝑢 + 𝛽𝑢3 = 0, 𝑢 (0) = 𝐴, 𝑢̇ (0) = 0. (17)

The linearized equation of (17) is

𝑢̈ + 𝜔2𝑢 = 0. (18)

The equation error between (17) and (18) is

𝑒 (𝑢) = 𝛼𝑢 + 𝛽𝑢3 − 𝜔2𝑢, (19)

where 𝜔2 is determined by using the mean square criterion,
as follows:

𝜔2 = 𝛼⟨𝑢2⟩ + 𝛽⟨𝑢4⟩⟨𝑢2⟩ . (20)

The periodic solution of the linearized equation (18) is𝑢 (𝑡) = 𝐴 cos (𝜔𝑡) . (21)

Using definition (11) and weighted coefficient (14), we can
calculate averaging operators in (20):

⟨𝑢2⟩ = ⟨𝐴2𝑐os2 𝜔𝑡⟩
= ∫+∞
0

𝐴2𝑠2𝜔2𝑡𝑒−𝑠𝜔𝑡cos2 (𝜔𝑡) 𝑑𝑡
= ∫+∞
0

𝐴2𝑠2𝜏𝑒−𝑠𝜏cos2 (𝜏) 𝑑𝜏 = 𝐴2 𝑠4 + 2𝑠2 + 8(𝑠2 + 4)2
⟨𝑢4⟩ = ⟨𝐴4cos4 𝜔𝑡⟩

= ∫+∞
0

𝐴4𝑠2𝜔2𝑡𝑒−𝑠𝜔𝑡cos4 (𝜔𝑡) 𝑑𝑡
= ∫+∞
0

𝐴4𝑠2𝜏𝑒−𝑠𝜏cos4 (𝜏) 𝑑𝜏
= 𝐴4 248𝑠4 + 416𝑠2 + 1536 + 28𝑠6 + 𝑠8(𝑠2 + 4)2 (𝑠2 + 16)2 .

(22)

Substituting (22) into (20), we get the approximate fre-
quency of this oscillator:

𝜔 = √𝛼 + 𝛽𝐴2 248𝑠4 + 416𝑠2 + 1536 + 28𝑠6 + 𝑠8(𝑠4 + 2𝑠2 + 8) (𝑠2 + 16)2 . (23)

With 𝑠 chosen equal to 2, we have

𝜔 = √𝛼 + 921612800𝛽𝐴2 = √𝛼 + 0.72𝛽𝐴2. (24)

From (21), the approximate solution of this oscillator is

𝑢 (𝑡) = 𝐴 cos(√𝛼 + 0.72𝛽𝐴2𝑡) . (25)

Accuracy of this method for this example is shown in
Table 1 and Figures 1 and 2. Table 1 shows the comparison
between the approximate frequencies𝜔present obtained by this
method, the ones obtained by Parameterized Perturbation
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Method 𝜔PPM (PPM) [5], and the exact ones 𝜔𝑒; the relative
error is again obtained for small and large values of the
oscillation amplitude 𝐴. Table 1 shows that the maximum
relative error is less than 0.4733 for thismethod and 2.2135 for
Parameterized Perturbation Method. The numerical results
obtained by three different methods are illustrated in Figures
1 and 2. Numerical results validate again accuracy of this
method. As it is shown in Figures 3 and 4, validity of the
solution technique is guaranteed for stronger nonlinearities.
Relative error versus the oscillation amplitude is illustrated in
Figure 3.

The approximate frequency obtained by PPM [5] is the
same as that obtained by EMB [12], as follows:

𝜔PPM = 𝜔EBM = √𝛼 + 34𝛽𝐴2. (26)

And the exact frequency of this oscillator is [5]

𝜔𝑒 = 2𝜋
4√2∫𝜋/2

0

𝑑𝑡
√𝛽𝐴2cos2 (𝑡) + 𝛽𝐴2 + 2𝛼

.
(27)

3.2. Example 2. Themotion of a simple pendulum attached to
a rotating rigid frame that is shown in Figure 4 has following
nonlinear differential equation [6, 14]:

̈𝜃 + [1 − Λ cos (𝜃)] sin (𝜃) = 0 (28)

with the initial conditions:

𝜃 (0) = 𝐴,
̇𝜃 (0) = 0, (29)

in which 𝜃 and 𝑡 are generalized dimensionless displace-
ments and time variables, and Λ = Ω2𝑟/𝑔.

Equation (28) can be rewritten as follows:

̈𝜃 + sin (𝜃) − Λ2 sin (2𝜃) = 0. (30)

Based on Taylor-Maclaurin expansion, the approxima-
tions of sin(𝜃) and sin(2𝜃) are considered:

sin (𝜃) ≈ 𝜃 − 𝜃36 + 𝜃5120 ,
sin (2𝜃) ≈ 2𝜃 − 4𝜃33 + 4𝜃515 .

(31)

Substituting (31) into (30) yields

̈𝜃 + (1 − Λ) 𝜃 + (−16 + 2Λ3 ) 𝜃3 + ( 1120 − 2Λ15 ) 𝜃5
= 0. (32)

The linearized equation of (32) is

̈𝜃 + (1 − Λ + 𝛼) 𝜃 = 0. (33)

The equation error between (32) and (33) is

𝑒 (𝜃) = (−16 + 2Λ3 ) 𝜃3 + ( 1120 − 2Λ15 ) 𝜃5 − 𝛼𝜃. (34)

The unknown coefficient 𝛼 is determined from the mean
square error criterion:

𝜕𝜕𝛼 ⟨𝑒2 (𝜃)⟩ = 0. (35)

It yields

𝛼 = (−1/6 + 2Λ/3) ⟨𝜃4⟩ + (1/120 − 2Λ/15) ⟨𝜃6⟩⟨𝜃2⟩ . (36)

The periodic solution and the frequency of (33) are

𝜃 (𝑡) = 𝐴 cos (𝜔𝑡) , 𝜔 = √1 − Λ + 𝛼. (37)

Similarly to Example 1, we calculate averaging operators⟨𝜃2⟩, ⟨𝜃4⟩, and ⟨𝜃6⟩:
⟨𝜃2⟩ = ⟨𝐴2cos2 (𝜔𝑡)⟩ = 𝐴2 𝑠4 + 2𝑠2 + 8(𝑠2 + 4)2
⟨𝜃4⟩ = ⟨𝐴4cos4 (𝜔𝑡)⟩ = 𝐴2 248𝑠4 + 416𝑠2 + 1536 + 28𝑠6 + 𝑠8(𝑠2 + 4)2 (𝑠2 + 16)2
⟨𝜃6⟩ = ⟨𝐴6cos6 (𝜔𝑡)⟩ = 𝐴6 1658880 + 440064𝑠2 + 282496𝑠4 + 45712𝑠6 + 3168𝑠8 + 94𝑠10 + 𝑠12(𝑠2 + 4)2 (𝑠2 + 16)2 (𝑠2 + 36)2 .

(38)

Substituting averaging operators in (38) into (36), and
then substituting (36) into (37), we get the approximate
frequency (with 𝑠 chosen equal to 2):

𝜔
= √1 − Λ + 0.72 (−16 + 2Λ3 )𝐴2 + 0.575 ( 1120 − 2Λ15 )𝐴4,

(39)
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Table 1: Comparison of the approximate frequencies with the exact frequency, Example 1.

𝐴 𝛼 𝛽 𝜔𝑒 𝜔PPM 𝑅. error (%) 𝜔Present 𝑅. error (%)
0.1 0.5 0.1 0.7076 0.7076 0.0000 0.7076 0.0000
0.5 0.1 2 0.6800 0.6892 1.3501 0.6782 0.2647
1 2 0.5 1.5403 1.5411 0.0520 1.5362 0.2662
2 5 2 3.2958 3.3166 0.6313 3.2802 0.4733
5 2 5 9.5818 9.7852 2.1228 9.5917 0.1033
10 1 0.5 6.0722 6.2048 2.0994 6.0828 0.1746
15 0.5 2 17.9866 18.3848 2.2135 18.0139 0.1518
20 5 1 17.0977 17.4642 2.1436 17.1172 0.1141
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Figure 1: Comparison of time history diagram of displacement between the present, PPM, and exact solutions at 𝛼 = 2, 𝛽 = 10, 𝐴 = 2,
Example 1.
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Figure 2: Comparison of time history diagram of displacement between the present, PPM, and exact solutions at 𝛼 = 5, 𝛽 = 5, 𝐴 = 10,
Example 1.
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Figure 3: Comparison of relative error between the present and PPM solutions with 𝛼 = 2 and 𝛽 = 5, Example 1.

and the approximate solution:

𝜃 (𝑡) = 𝐴 cos[√1 − Λ + 0.72 (−16 + 2Λ3 )𝐴2 + 0.575 ( 1120 − 2Λ15 )𝐴4𝑡] . (40)

Comparisons between the results of the present method
and the ones achieved by Jouybari and Ramzani [6] using
Min–Max Approach (MMA), by Younesian et al. [14] using
EBM, and using accurate numerical method are demon-
strated in Tables 2 and 3, for two cases ofΛ = 0.75 andΛ = 1.
A very interesting agreement between the results is observed.

To illustrate and verify the accuracy of the current
analytical approach, the Equivalent Linearization Method
with a weighted averaging, in comparison with other well-
known techniques, we performed a comparison between the
results obtained by this method and outcomes achieved by
Jouybari and Ramzani [6], by Younesian et al. [15], and by
using the Runge-Kutta 4th-Order Method. Variations of 𝜃(𝑡)
for different Λ are illustrated in Figures 5–7.

The approximate frequency obtained by using MMA [6]
is

𝜔MMA = √1 − 18𝐴2 − 112Λ𝐴4 + 12Λ𝐴2 − Λ + 1192𝐴4. (41)

The approximate frequency obtained by using EBM [15]
is

𝜔EBM = 2𝐴
⋅ √cos( 𝐴√2) − cos (𝐴) − Λ4 cos (√2𝐴) + Λ4 cos (2𝐴). (42)

3.3. Example 3. The equation of motion of a mass attached to
the center of a stretched elastic wire in dimensionless form is
as follows [5, 16, 18]:

𝑢̈ + 𝑢 − 𝜂𝑢√1 + 𝑢2 = 0, 𝑢 (0) = 𝐴, 𝑢̇ (0) = 0, (43)

where 𝜂 is a parameter, 0 < 𝜂 ≤ 1.
Equation (43) can be written as follows:

√1 + 𝑢2𝑢̈ + √1 + 𝑢2𝑢 − 𝜂𝑢 = 0. (44)

The linearized equation of (44) is

𝑢̈ + 𝜔2𝑢 = 0. (45)

The equation error between (44) and (45) is

𝑒 (𝑢) = √1 + 𝜀𝑢2𝑢̈ + (1 + 𝜀𝑢2) 𝑢 − 𝜂𝑢 − 𝑢̈ − 𝜔2𝑢, (46)

where 𝜔2 is determined by using the mean square criterion,
as follows:

𝜔2
= ⟨√1 + 𝑢2𝑢̈𝑢⟩ + ⟨𝑢2√1 + 𝑢2⟩ − 𝜂 ⟨𝑢2⟩ − ⟨𝑢𝑢̈⟩⟨𝑢2⟩ . (47)

The periodic solution of the linearized equation (45) is

𝑢 (𝑡) = 𝐴 cos (𝜔𝑡) . (48)

Using (48), we have

𝑢𝑢̈ = −𝐴 cos (𝜔𝑡) 𝐴𝜔2 cos (𝜔𝑡) = −𝐴2𝜔2cos2 (𝜔𝑡)
= −𝜔2𝑢2. (49)
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Figure 4: A simple pendulum attached to a rotating rigid frame.

Table 2: The results of present, approximate, obtained by Jouybari & Ramzani and by Yousesian et al., and numerical solution for 𝜃(𝑡) whenΛ = 0.75 and 𝐴 = 1, Example 2.

𝑡 Numerical
solution [12]

MMA solution
[6]

𝑅. error
(%)

EBM solution
[14]

𝑅. error
(%)

Present
solution

𝑅. error
(%)

0 1.000000000 1.000000000 0.000000000 1.000000000 0.000000000 1.000000000 0.000000000
0.5 0.939545503 0.945169971 0.598637105 0.944189348 0.494265045 0.945834709 0.669388122
1 0.769687769 0.786692549 2.20930885 0.782987048 1.727879737 0.789206596 2.535940908
1.5 0.520367974 0.541946378 4.146758655 0.534386712 2.694004762 0.547083274 5.13392471
2 0.226896964 0.237770336 4.792206916 0.226137434 0.334746656 0.245694103 8.284438306
2.5 −0.082424976 −0.092479615 12.19853434 −0.107353589 30.24400395 −0.082311253 0.137971529
3 −0.386261801 −0.412588246 6.815699852 −0.428861683 11.0287587 −0.401399783 3.919098902
3.5 −0.660436345 −0.687452426 4.090641165 −0.702499667 6.369019864 −0.677004442 2.50865918
4 −0.871990011 −0.886930535 1.713382471 −0.897723721 2.951147338 −0.879268816 0.834734906
4.5 −0.986529936 −0.989147789 0.265359712 −0.992742682 0.629757473 −0.986281489 0.025183929
5 −0.982752773 −0.982895042 0.014476581 −0.970950401 1.200950262 −0.986449715 0.376182302
5.5 −0.861382758 −0.868857967 0.867815025 −0.852109657 1.07653664 −0.879755271 2.132909305
6 −0.644890958 −0.659541879 2.271844692 −0.632155313 1.974852468 −0.677756428 5.09628327
6.5 −0.368002797 −0.377900390 2.689542873 −0.341638967 7.164029789 −0.402335838 9.329559797
7 −0.063204827 −0.054818323 13.26877139 −0.012988435 79.45024832 −0.083329972 31.84115194
7.5 0.245785975 0.274275125 11.59103972 0.317111883 29.01951912 0.244703077 0.440585758
8 0.537446333 0.573291546 6.669542762 0.611815759 13.8375539 0.546227301 1.633831596
8.5 0.78289188 0.809440784 3.391132885 0.838227903 7.068156461 0.788578403 0.726348445
9 0.946701653 0.956826699 1.069507586 0.971676667 2.638108207 0.945502349 0.12668236
9.5 0.999764591 0.999286944 0.047775947 0.995531392 0.423419577 0.999999478 0.023494231
10 0.931963943 0.932165326 0.021608454 0.908764206 2.489338474 0.946166081 1.523893505

Thus

⟨√1 + 𝑢2𝑢̈𝑢⟩ = −𝜔2 ⟨𝑢2√1 + 𝑢2⟩ ,
⟨𝑢𝑢̈⟩ = −𝜔2 ⟨𝑢2⟩ . (50)

Substituting (49) and (50) into (47), we get

𝜔2 = (1 − 𝜔2) ⟨𝑢2√1 + 𝑢2⟩⟨𝑢2⟩ − 𝜂 + 𝜔2. (51)

Using definition (11) and weighted coefficient (14), we
calculate averaging operators in (51):

⟨𝑢2⟩ = ⟨𝐴2cos2𝜔𝑡⟩ = ∫+∞
0

𝐴2𝑠2𝜔2𝑡𝑒−𝑠𝜔𝑡cos2 (𝜔𝑡) 𝑑𝑡
= ∫+∞
0

𝐴2𝑠2𝜏𝑒−𝑠𝜏cos2 (𝜏) 𝑑𝜏 = 𝐴2 𝑠4 + 2𝑠2 + 8(𝑠2 + 4)2
⟨𝑢2√1 + 𝑢2⟩ = ⟨𝐴2cos2 (𝜔𝑡)√1 + 𝐴2cos2 (𝜔𝑡)⟩
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Table 3: The results of present, approximate obtained by Jouybari & Ramzani, and numerical solution for 𝜃(𝑡) when Λ = 1 and 𝐴 = 1,
Example 2.

𝑡 Numerical
solution [2]

MMA solution
[6]

𝑅. error
(%)

EBM solution
[14]

𝑅. error
(%)

Present
solution

𝑅. error
(%)

0 1.000000000 1.000000000 0.000000000 1.000000000 0.000000000 1.000000000 0.000000000
0.5 0.953968489 0.963119576 0.959265123 0.961786066 0.819479583 0.964200044 1.072525468
1 0.825442672 0.855198634 3.604849011 0.850064873 2.982908666 0.859363450 4.109404463
1.5 0.638888746 0.684197515 7.091808908 0.673375035 5.397855138 0.692996509 8.469043059
2 0.422287711 0.462729406 9.576810773 0.445220578 5.430626183 0.477011079 12.95878771
2.5 0.195637881 0.207129984 5.874170657 0.183038862 6.439969057 0.226871698 15.96511721
3 −0.032545617 −0.063747522 95.87129659 −0.093132124 186.1587291 −0.039511677 21.40398813
3.5 −0.260619945 −0.329922957 26.5915995 −0.362185221 38.97064593 −0.303066019 16.28657929
4 −0.485739543 −0.571762994 17.70978959 −0.603557273 24.25533019 −0.544920861 12.18375544
4.5 −0.696309233 −0.771429307 10.78832083 −0.79880073 14.71925003 −0.747759417 7.388984888
5 −0.869266232 −0.914194339 5.16850941 −0.93299355 7.331162267 −0.897058465 3.197206101
5.5 −0.976272484 −0.989527622 1.357729345 −0.995879662 2.008371466 −0.982128207 0.599804163
6 −0.996192580 −0.991872507 0.43365842 −0.982652815 1.35915136 −0.996877655 0.068769334
6.5 −0.924854298 −0.921056034 0.410687825 −0.894323908 3.301102678 −0.940250751 1.664743629
7 −0.776876524 −0.782301685 0.698329893 −0.737643731 5.050068034 −0.816301976 5.074867213
7.5 −0.579081909 −0.585844101 1.167743612 −0.524587017 9.410567167 −0.633906052 9.467424582
8 −0.358097172 −0.346174158 3.329547098 −0.271437236 24.20011739 −0.406122511 13.41125894
8.5 −0.130576292 −0.080970115 37.99018661 0.002457915 101.8823593 −0.149260634 14.30913814
9 0.097635936 0.190206352 94.8118283 0.276165213 182.8520157 0.118288292 21.15241257
9.5 0.325420035 0.447353037 37.46942071 0.528765792 62.48716586 0.377367786 15.96329218
10 0.548087739 0.671502582 22.51735155 0.740953929 35.1889262 0.609427780 11.19164627
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Figure 5: A comparison between the approximate and numerical solutions with Λ = 1 and 𝐴 = 0.5, Example 2.

= ∫+∞
0

𝐴2𝑠2𝜔2𝑡𝑒−𝑠𝜔𝑡cos2 (𝜔𝑡)√1 + 𝐴2cos2 (𝜔𝑡)𝑑𝑡
= ∫+∞
0

𝐴2𝑠2𝜏𝑒−𝑠𝜏cos2 (𝜏)√1 + 𝐴2cos2 (𝜏)𝑑𝜏.
(52)

With 𝑠 chosen equal to 2, substituting (52) into (51), we
get the approximate frequency of this oscillator:

𝜔 = √1 − 𝜂𝐴22𝐼 (53)
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Figure 6: A comparison between the approximate and numerical solutions with Λ = 1 and 𝐴 = 0.3, Example 2.
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Figure 7: A comparison between the approximate and numerical solutions with Λ = 1 and 𝐴 = 1, Example 2.

and the approximate solution of this oscillator:

𝑢 (𝑡) = 𝐴 cos(√1 − 𝜂𝐴22𝐼 𝑡) , (54)

where

𝐼 = ∫+∞
0

4𝐴2𝜏𝑒−2𝜏cos2 (𝜏)√1 + 𝐴2cos2 (𝜏)𝑑𝜏. (55)

Thus, the approximate period of this oscillator is

𝑇 = 2𝜋𝜔 = 2𝜋
√1 − 𝜂𝐴2/2𝐼 . (56)

For 𝜂 = 0.1, 𝜂 = 0.5, 𝜂 = 0.75, and 𝜂 = 0.95, comparison
of the approximate periods 𝑇 in (56), the approximate
Variational IterationMethod (VIM) periods 𝑇VIM [5] in (57),
and the Energy Balance Method (EBM) periods 𝑇EBM [16]
in (58) with exact periods 𝑇ex in (59) is tabulated in Table 4.
From Table 4, the accuracy of this proposed method can be
observed.

The approximate period obtained by Variational Iteration
Method is as follows [5]:

𝑇VIM = 2𝜋√1 + 𝐴2
√1 + 𝐴2 − √1 + 𝐴2𝜂 . (57)
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Table 4: Comparison of the approximate periods with the exact periods, Example 3.

𝐴 𝜂 𝑇ex [18] 𝑇VIM [5] 𝑅. error (%) 𝑇Present 𝑅. error (%) 𝑇EBM [16] 𝑅. error (%)
0.1 0.1 6.62168 6.621237 0.00669 6.62174 0.00091 6.62169 0.00011
1 0.1 6.537508 6.517854 0.30063 6.53806 0.00844 6.53573 0.02723
10 0.1 6.322938 6.314678 0.13064 6.32097 0.03112 6.32006 0.04558
100 0.1 6.287182 6.286329 0.01357 6.28696 0.00353 6.28687 0.00498
0.1 0.5 8.869257 8.863794 0.06159 8.86990 0.00725 8.86925 0.0001
1 0.5 7.992133 7.814722 2.21982 7.99408 0.02436 7.97282 0.2416
10 0.5 6.490208 6.445572 0.68774 6.47925 0.16884 6.47431 0.24498
100 0.5 6.303280 6.298952 0.06866 6.30214 0.01809 6.30167 0.02557
0.1 0.75 12.49673 12.47385 0.18309 12.49943 0.02161 12.4967 0.00041
1 0.75 9.625404 9.168186 4.75012 9.61936 0.06279 9.56406 0.63733
10 0.75 6.602092 6.531632 1.06724 6.58442 0.26767 6.57665 0.38536
100 0.75 6.313404 6.306879 0.10335 6.31168 0.02731 6.31097 0.03854
0.1 0.95 27.15679 26.86136 1.08787 27.18975 0.12137 27.1540 0.01043
1 0.95 12.075277 10.96676 9.18005 12.00887 0.54994 11.8737 1.66932
10 0.95 6.696117 6.60302 1.39031 6.67235 0.35494 6.66211 0.50781
100 0.95 6.321539 6.313243 0.13123 6.31934 0.03479 6.31844 0.04897

The approximate period obtained by Energy Balance
Method is as follows [16]:

𝑇EBM = 2𝜋
(2/𝐴)√𝐴2/4 − 𝜂 (−√𝐴2/2 + 1 + √𝐴2 + 1) . (58)

The exact period of this oscillator is as follows [18]:

𝑇ex = 4∫𝜋/2
0

[1 − 2𝜂√1 + 𝐴2sin2𝜃 + √1 + 𝐴2 ]
−1/2 𝑑𝜃. (59)

Comparisons of the approximate solutions obtained by
two analytical methods with the exact ones is presented in
Figures 8 and 9. And the relative error versus the oscillation
amplitude is illustrated in Figure 10.

3.4. Example 4. Consider the Duffing oscillator with discon-
tinuity [3]:

𝑢̈ + 𝛼𝑢 + 𝛽𝑢 |𝑢| = 0, 𝑢 (0) = 𝐴, 𝑢̇ (0) = 0. (60)

The linearized equation of (60) is

𝑢̈ + 𝜔2𝑢 = 0. (61)

The equation error between (60) and (61) is

𝑒 (𝑢) = 𝛼𝑢 + 𝛽𝑢 |𝑢| − 𝜔2𝑢. (62)

The unknown coefficient𝜔2 is determined from themean
square error criterion, as follows:

𝜔2 = 𝛼 + 𝛽⟨𝑢2 |𝑢|⟩⟨𝑢2⟩ . (63)

The periodic solution of (61) is

𝑢 (𝑡) = 𝐴 cos (𝜔𝑡) . (64)

Similar to Examples 1–3, we calculate averaging operators⟨𝑢2⟩ and ⟨𝑢2|𝑢|⟩; then, substituting these operators into (63)
with note that the parameter 𝑠 is chosen equal to 2, we have
the approximate frequency of this oscillator:

𝜔 = √𝛼 + 0.8324𝛽𝐴. (65)

Thus, the approximate solution is

𝑢 (𝑡) = 𝐴 cos (√𝛼 + 0.8324𝜀𝐴𝑡) . (66)

Accuracy of the approach for this example is shown in
Figures 11 and 12. We performed a comparison between
the results obtained by this method, the ones obtained
by He [3] using the Homotopy Perturbation Method, and
outcomes achievedusing theRunge-Kutta 4th-OrderMethod
for different values of 𝐴, 𝛼, and 𝛽.
3.5. Example 5. Consider the nonlinear oscillator equation of
the form [23, 24, 34]

𝑢̈ + 𝑢1/(2𝑛+1) = 0, 𝑢 (0) = 𝐴, 𝑢̇ (0) = 0, (67)

where 𝑛 is a positive integer.
The linearized equation of (67) is

𝑢̈ + 𝜔2𝑢 = 0. (68)

The equation error between (67) and (68) is

𝑒 (𝑢) = 𝑢1/(2𝑛+1) − 𝜔2𝑢. (69)

The unknown coefficient𝜔2 is determined from themean
square error criterion, as follows:

𝜔2 = ⟨𝑢𝑢1/(2𝑛+1)⟩⟨𝑢2⟩ . (70)
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Figure 8: Comparison of time history diagram of displacement between the present, VIM, and exact solutions at 𝜂 = 0.9, 𝐴 = 1, Example 3.
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Figure 9: Comparison of time history diagram of displacement between the present, VIM, and exact solutions at 𝜂 = 0.7, 𝐴 = 10, Example 3.
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Figure 11: Comparison of time history diagram of displacement
between the present, HPM, and numerical solutions at 𝛼 = 0, 𝛽 =10, 𝐴 = 0.1, Example 4.
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between the Present, HPM, and numerical solutions at 𝛼 = 10, 𝛽 =100, 𝐴 = 2, Example 4.

The periodic solution of (68) is

𝑢 (𝑡) = 𝐴 cos (𝜔𝑡) . (71)

Using definition (11) and weighted coefficient (14), we
calculate averaging operators in (70):

⟨𝑢2⟩ = ⟨𝐴2cos2𝜔𝑡⟩ = ∫+∞
0

𝐴2𝑠2𝜔2𝑡𝑒−𝑠𝜔𝑡cos2 (𝜔𝑡) 𝑑𝑡
= ∫+∞
0

𝐴2𝑠2𝜏𝑒−𝑠𝜏cos2 (𝜏) 𝑑𝜏 = 𝐴2 𝑠4 + 2𝑠2 + 8(𝑠2 + 4)2
(72)

⟨𝑢𝑢1/(2𝑛+1)⟩ = ⟨𝐴 cos (𝜔𝑡) 𝐴1/(2𝑛+1) (cos (𝜔𝑡))1/(2𝑛+1)⟩
= ∫+∞
0

𝐴𝐴1/(2𝑛+1)𝑠2𝜔2𝑡𝑒−𝑠𝜔𝑡 cos (𝜔𝑡)
⋅ (cos (𝜔𝑡))1/(2𝑛+1) 𝑑𝑡 = ∫+∞

0
𝐴𝐴1/(2𝑛+1)𝑠2𝜏𝑒−𝑠𝜏

⋅ cos (𝜏) (cos (𝜏))1/(2𝑛+1) 𝑑𝜏.

(73)

With 𝑠 chosen equal to 2, from (72) and (73), we have

⟨𝑢2⟩ = 𝐴22 (74)

⟨𝑢𝑢1/(2𝑛+1)⟩ = ∫+∞
0

𝐴(2𝑛+2)/(2𝑛+1)4𝜏𝑒−2𝜏 cos (𝜏)
⋅ (cos (𝜏))1/(2𝑛+1) 𝑑𝜏. (75)

Substituting (71) and (72) into (70), we get the approxi-
mate frequency of this oscillator:

𝜔 = 𝐴−𝑛/(2𝑛+1)√2𝐼𝑛, (76)

where

𝐼𝑛 = ∫+∞
0

4𝜏𝑒−2𝜏 cos (𝜏) (cos (𝜏))1/(2𝑛+1) 𝑑𝜏. (77)

For 𝑛 = 0 (the harmonic oscillator case) it follows from
(77) and (76) that 𝜔 is equal to the well-known value 1. And,
for 𝑛 → ∞, 𝜔 is equal to 0.97979𝐴−1/2. For other values
of 𝑛, the integral in (77) can be calculated numerically by
using the formula manipulation package Maple. For some
values of 𝑛 approximations of the frequency are given in
Table 5. Table 5 presents the comparison of the approximate
frequencies 𝜔present in (76), the approximate frequencies𝜔app obtained by van Horssen [34], and the approximate
frequencies 𝜔HBM obtained by Mickens [23]. As can be seen
from this table the fractional errors of the approximations
obtained in [34] for 𝑛 ≥ 1 range from approximately 2 to
approximately 11 percent, while the fractional errors of the
approximations obtained in this paper range from 2 to 10
percent. And, from Table 5, when 𝑛 increases, the relative
error of the approximate frequencies 𝜔app obtained by van
Horssen increases, while the relative error of the approximate
frequencies 𝜔app in this paper decreases.

Comparison of the approximate solutions obtained by
three methods is present in Figures 13 and 14.

4. Conclusions

In this paper, the Equivalent Linearization Method with
a weighted averaging is applied to analyze five undamped
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Table 5: Comparison of the approximate frequencies, Example 5.

𝑛 𝜔HBM [23] 𝜔app [34] 𝑅. error (%) 𝜔present 𝑅. error (%)
0 1.00000 1.000000 0.00000 1.000000 0.00000
1 𝐴−1/31.04912 𝐴−1/31.07045 2.03313 𝐴−1/30.94307 10.10847
2 𝐴−2/51.04812 𝐴−2/51.08613 3.62649 𝐴−2/50.95714 8.680304
3 𝐴−3/71.04405 𝐴−3/71.09302 4.69039 𝐴−3/70.96342 7.72281
4 𝐴−4/91.04017 𝐴−4/91.09689 5.45295 𝐴−4/90.96697 7.037311
5 𝐴−5/111.03684 𝐴−5/111.09938 6.03179 𝐴−5/110.96926 6.517881
6 𝐴−6/131.03403 𝐴−6/131.10110 6.48627 𝐴−6/130.97085 6.110074
7 𝐴−7/151.03164 𝐴−7/151.10238 6.85704 𝐴−7/150.97202 5.779148
8 𝐴−8/171.02960 𝐴−8/171.10335 7.16298 𝐴−8/170.97293 5.504079
9 𝐴−9/191.02783 𝐴−9/191.10412 7.42243 𝐴−9/190.97364 5.272273
10 𝐴−10/211.02628 𝐴−10/211.10474 7.64509 𝐴−10/210.97422 5.07269
50 𝐴−50/1011.00919 𝐴−50/1011.10947 9.93668 𝐴−50/1010.97863 3.028171
500 𝐴−500/10011.00149 𝐴−500/10011.11059 10.8938 𝐴−500/10010.97968 2.17776∞ 𝐴−1/21.00000 𝐴−1/2 (𝜋/2√2) 11.07200 𝐴−1/20.97979 2.02100
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Figure 13: Comparison of time history diagramof displacement between the present, HBM [23], andApp [34] solutions with 𝑛 = 10, Example
5.

nonlinear oscillation systems. This method is proposed by
Anh in 2015. Instead of using the classical averaging process
in (9) and (10), a special form of weighted coefficient ℎ(𝑡) is
introduced in (14), whereby a new weighted average value
is computed by (15). The proposed weighted function is a
combination of two basic coefficient functions (the optimistic
weighted coefficient 𝑡 and the pessimistic weighted coefficient𝑒−𝑠𝜔𝑡).The frequency-amplitude relationship was analytically
obtained by this method.The frequency depends not only on
the initial amplitude of the oscillator but also on the parame-
ter 𝑠 in the expression of weighted coefficient ℎ(𝑡). Accuracy
of this method is investigated by five nonlinear oscilla-
tion systems. The results show that this method is useful
in obtaining analytical solutions for oscillators and vibration

problems with nonlinearities. The approximate solutions
obtained by this method are valid not only for small param-
eters but also for very large parameters. And the results
indicate that the solution procedure is easy and provides a
remarkable accuracy. In this paper, 𝑠 is chosen equal to 2 for
comparison and convenient calculating purposes. However,
the value of the parameter 𝑠 in the expression of the weighted
coefficient ℎ(𝑡) should be chosen to give better results and the
best solution still requires further investigation.
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