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Let𝑋 be a real locally uniformly convex reflexive Banach space with locally uniformly convex dual space𝑋∗. Let 𝑇 : 𝑋 ⊇ 𝐷(𝑇) →
2𝑋∗ be a maximal monotone operator and 𝐶 : 𝑋 ⊇ 𝐷(𝐶) → 𝑋∗ be bounded and continuous with 𝐷(𝑇) ⊆ 𝐷(𝐶). The paper
provides new existence theorems concerning solvability of inclusion problems involving operators of the type 𝑇 + 𝐶 provided that𝐶 is compact or𝑇 is of compact resolvents underweak boundary condition.TheNagumodegreemapping and homotopy invariance
results are employed.The paper presents existence results under the weakest coercivity condition on𝑇+𝐶.The operator𝐶 is neither
required to be defined everywhere nor required to be pseudomonotone type. The results are applied to prove existence of solution
for nonlinear variational inequality problems.

1. Introduction: Preliminaries

In what follows, the norm of the spaces 𝑋 and 𝑋∗ will be
denoted by ‖ ⋅ ‖. For 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝑋∗, the pairing ⟨𝑥∗, 𝑥⟩
denotes the value 𝑥∗(𝑥). Let 𝑋 and 𝑌 be real Banach spaces.
For an operator 𝑇 : 𝑋 → 2𝑌, we define the domain 𝐷(𝑇)
of 𝑇 by 𝐷(𝑇) = {𝑥 ∈ 𝑋 : 𝑇𝑥 ̸= 0}, and the range 𝑅(𝑇)
of 𝑇 by 𝑅(𝑇) = ⋃𝑥∈𝐷(𝑇) 𝑇𝑥. The symbol 𝐺(𝑇) denotes the
graph of 𝑇 given by {(𝑥, 𝑥∗) : 𝑥 ∈ 𝐷(𝑇), 𝑥∗ ∈ 𝑇𝑥}. An
operator 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 𝑌 is “demicontinuous” if it
is continuous from the strong topology of 𝐷(𝑇) to the weak
topology of 𝑌. It is “compact” if it is strongly continuous and
maps bounded subsets of 𝐷(𝑇) to relatively compact subsets
of 𝑌. An operator 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 2𝑌 is “bounded” if it
maps each bounded subset of𝐷(𝑇) into a bounded subset of
𝑌. The mapping 𝐽 : 𝑋 → 2𝑋∗ defined by

𝐽 (𝑥) = {𝑥∗ ∈ 𝑋∗ : ⟨𝑥∗, 𝑥⟩ = ‖𝑥‖2 , 𝑥∗ = ‖𝑥‖} (1)

is called the “normalized duality mapping”. It is known due
to Hahn-Banach theorem that 𝐽(𝑥) ̸= 0. In addition, the local
uniform convexity of𝑋 and𝑋∗ implies that 𝐽 is single valued,
bounded, monotone, bicontinuous, and of type (𝑆+).
Definition 1. An operator 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 2𝑋∗ is said to be

(i) “monotone” if ⟨𝑢∗ − V∗, 𝑥 − 𝑦⟩ ≥ 0 for all (𝑥, 𝑢∗) and(𝑦, V∗) in 𝐺(𝑇);
(ii) “maximal monotone” if 𝑇 is monotone and ⟨𝑢∗ −𝑢∗0 , 𝑥 − 𝑥0⟩ ≥ 0 for every (𝑥, 𝑢∗) ∈ 𝐺(𝑇) implies𝑥0 ∈ 𝐷(𝑇) and 𝑢∗0 ∈ 𝑇𝑥0;
(iii) “coercive” if either 𝐷(𝑇) is bounded or there exists a

function 𝜓 : [0,∞) → (−∞,∞) such that 𝜓(𝑡) →∞ as 𝑡 → ∞ and ⟨𝑦∗, 𝑥⟩ ≥ 𝜓(‖𝑥‖)‖𝑥‖ for all 𝑥 ∈𝐷(𝑇) and 𝑦∗ ∈ 𝑇𝑥;
(iv) “expansive” if there exists 𝛼 > 0 such that ‖𝑢∗ − V∗‖ ≥𝛼‖𝑥 − 𝑦‖ for all 𝑥 ∈ 𝐷(𝑇), 𝑦 ∈ 𝐷(𝑇), 𝑢∗ ∈ 𝑇𝑥, and

V∗ ∈ 𝑇𝑦.
It is well-known that a monotone operator 𝑇 is maximal

monotone if and only if 𝑅(𝑇 + 𝜆𝐽) = 𝑋∗ for every 𝜆 > 0
(cf. Theorem 2.2 [1]) and (𝑇 + 𝜆𝐽)−1 : 𝑋∗ → 𝐷(𝑇) is single
valued, monotone, and demicontinuous. For each 𝜆 > 0, the
operator 𝑇𝜆 : 𝑋 → 𝑋∗, defined by 𝑇𝜆𝑥 = (𝑇−1 + 𝜆𝐽−1)−1𝑥,
is the “Yosida approximant” of 𝑇. It is bounded, continuous,
and maximal monotone such that 𝑇𝜆𝑥 ⇀ 𝑇(0)𝑥 as 𝜆 → 0+,
for every 𝑥 ∈ 𝐷(𝑇), where ‖𝑇0𝑥‖ = inf{‖𝑦∗‖ : 𝑦∗ ∈ 𝑇𝑥}.The
operator 𝐽𝜆 : 𝑋 → 𝐷(𝑇) defined by 𝐽𝜆𝑥 = 𝑥 − 𝜆𝐽−1(𝑇𝜆𝑥),
is called the “Yosida resolvent” of 𝑇. It is continuous, 𝑇𝜆𝑥 ∈
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𝑇(𝐽𝜆𝑥) for every 𝑥 ∈ 𝑋 and lim𝜆→0𝐽𝜆𝑥 = 𝑥 for all 𝑥 ∈
𝑐𝑜𝐷(𝑇), where 𝑐𝑜𝐷(𝑇) is the convex hull of 𝐷(𝑇). For each𝑥 ∈ 𝐷(𝑇), ‖𝑇𝜆𝑥‖ ≤ |𝑇𝑥| for all 𝜆 > 0, where |𝑇𝑥| denotes‖𝑇0𝑥‖. A maximal monotone operator 𝑇 is called of compact
resolvents if 𝐽𝜆 is compact for all 𝜆 > 0. For further references
on monotonicity theory, the reader is referred to Pascali and
Sburlan [2], Barbu [1], Zeidler [3], Kenmochi [4], and the
references therein. The following Lemma is due to Brèzis,
Crandal, and Pazy [5].

Lemma 2. Let 𝐵 be a maximal monotone set in 𝑋 × 𝑋∗. If(𝑢𝑛, 𝑢∗𝑛 ) ∈ 𝐵 such that 𝑢𝑛 ⇀ 𝑢 in𝑋, 𝑢∗𝑛 ⇀ 𝑢∗ in𝑋∗, and
lim sup
𝑛→∞

⟨𝑢∗𝑛 − 𝑢∗, 𝑢𝑛 − 𝑢⟩ ≤ 0, (2)

then (𝑢, 𝑢∗) ∈ 𝐵 and ⟨𝑢∗𝑛 , 𝑢𝑛⟩ → ⟨𝑢∗, 𝑢⟩ as 𝑛 → ∞.
The main objective of this paper is to establish sufficient

conditions which guarantee existence of solution for inclu-
sions of the type (𝑇 + 𝐶)(𝐷(𝑇) ∩ 𝐵𝑅(0)) ∋ 𝑓∗ (where
𝑇 : 𝑋 ⊇ 𝐷(𝑇) → 2𝑋∗ is maximal monotone of compact
resolvents and 𝐶 : 𝑋 ⊇ 𝐷(𝐶) → 𝑋∗ is bounded and
continuous with 𝐷(𝑇) ⊆ 𝐷(𝐶)) provided that there exists𝑅 > 0 such that (𝑇 + 𝐶 + 𝜀𝐽)(𝐷(𝑇) ∩ 𝜕𝐵𝑅(0)) ̸∋ 𝑓∗ for all𝜀 > 0. Under this boundary condition, inclusion result of the
type 𝑓∗ ∈ (𝑇 + 𝐶)(𝐷(𝑇) ∩ 𝐵𝑅(0)) is included if 𝐶 is compact
with 𝐷(𝑇) ⊆ 𝐷(𝐶) and 𝑇 is arbitrary maximal monotone.
The case where 𝑇 is expansive maximal monotone and 𝐶 is
compact is also included.The operators of type𝐶 are available
in the formof lower order term inmany nonlinear differential
equations in appropriate function spaces.

The paper is organized as follows. In Section 2, the
main existence results (Theorems 3 and 6) are proved. The
arguments of the proofs of Theorem 3 are based on Nagumo
homotopy invariance result. Theorem 6 follows as a result
of Theorem 3. Nagumo [6] developed a degree theory in a
setting of linear convex topological space 𝑌 for operators of
the type 𝐼 − 𝐵, where 𝐵 : 𝐺 → 𝑌 is a compact operator,𝐼 is the identity mapping on 𝑌, and 𝐺 is a nonempty and
open subset of 𝑋. The important contributions of Nagumo
are (i) 𝐺 is a nonempty and open subset of𝑋 (not necessarily
bounded) and (ii) the degree is invariant under the homotopy
𝐻(𝑥, 𝑡) = 𝑥 − 𝑊(𝑡, 𝑥), (𝑡, 𝑥) ∈ [0, 1] × 𝐺 provided that𝑊 : [0, 1] × 𝐺 → 𝑋 is compact and 0 ∉ 𝐻(𝑡, 𝜕𝐺) for
all 𝑡 ∈ [0, 1]. For further references on Nagumo degree
and related results, the reader is referred to the paper due
to Nagumo [6, Theorem 5, 6, 7]. Throughout the paper 𝑑𝑁𝐴
stands for Nagumo degree. In Section 3, we demonstrated
the applicability of the abstract results to prove existence of
solution(s) for variational inequality problems.

Existence results concerning pseudomonotone pertur-
bations of maximal monotone operators under coercivity
condition can be found in the papers due to Kenmochi
[4, 7, 8], Asfaw and Kartsatos [9], Le [10], Asfaw [11],
and the references therein. For related results concerning
existence of solution for inclusion problems of the type𝑇𝑢 + 𝑆𝑢 ∋ 𝑓∗ in 𝐷(𝑇), where 𝑆 is an everywhere
defined bounded pseudomonotone operator under Leray-
Schauder type boundary condition on 𝑇 + 𝑆, we cite the

results due to Asfaw and Kartsatos [9, Theorem 11, Theorem
13, pp. 127-133]. Analogous result for possibly unbounded
single multivalued pseudomonotone operator 𝑆 is due to
Figueiredo [12]. However, the cases where 𝑆 is not necessarily
pseudomonotone type is not studied earlier. It is the purpose
of the present paper to address analogous result for 𝑇 + 𝐶,
where 𝐶 is possibly not everywhere defined compact or 𝐶 is
bounded and continuous, and 𝑇 is of compact resolvents.

2. Main Results

In this section, we prove the main existence theorem.

Theorem3. Let𝑇 : 𝑋 ⊇ 𝐷(𝑇) → 2𝑋∗ bemaximalmonotone
and 𝐶 : 𝑋 ⊇ 𝐷(𝐶) → 𝑋∗ with 𝐷(𝑇) ⊆ 𝐷(𝐶). Let 𝑓∗ ∈ 𝑋∗.
Suppose there exists 𝑅 > 0 such that 𝐷(𝑇) ∩ 𝐵𝑅(0) ̸= 0 and

(𝑇 + 𝐶 + 𝜀𝐽) (𝐷 (𝑇) ∩ 𝜕𝐵𝑅 (0)) ̸∋ 𝑓∗ (3)

for all 𝜀 > 0. Then

(i) 𝑓∗ ∈ (𝑇 + 𝐶)(𝐷(𝑇) ∩ 𝐵𝑅(0)) if 𝐶 is compact;

(ii) 𝑓∗ ∈ (𝑇 + 𝐶)(𝐷(𝑇) ∩ 𝐵𝑅(0)) if 𝑇 is expansive and 𝐶 is
compact;

(iii) 𝑓∗ ∈ (𝑇 + 𝐶)(𝐷(𝑇) ∩ 𝐵𝑅(0)) if 𝐷(𝑇) ⊆ 𝐷(𝐶) and𝐶 : 𝐷(𝐶) → 𝑋∗ is completely continuous;

(iv) 𝑓∗ ∈ (𝑇+𝐶)(𝐷(𝑇)∩𝐵𝑅(0)) if𝑇 is of compact resolvent
and, 𝐶 is bounded and continuous.

Proof. Suppose the hypotheses hold.We divide the proof into
two steps.

Step 1. Let 𝜕𝐼𝑅 : 𝐵𝑅(0) → 2𝑋∗ be the subdifferential
of the indicator function 𝐼𝑅 on 𝐵𝑅(0) and 𝐴 = 𝑇 + 𝜕𝐼𝑅.
The operator 𝐴 is maximal monotone with bounded domain
𝐷(𝐴) = 𝐷(𝑇) ∩ 𝐵𝑅(0) because 𝐷(𝑇) ∩ 𝐷( ∘𝜕𝐼𝑅) = 𝐷(𝑇) ∩𝐵𝑅(0) ̸= 0. For each 𝜆 > 0, let 𝐴𝜆 : 𝑋 → 𝑋∗ and 𝐽𝜆 :𝑋 → 𝐷(𝐴) be the Yosida approximant and resolvent of 𝐴,
respectively. It is well-known that𝐴𝜆 is bounded, continuous,
and maximal monotone, and 𝐽𝜆 is bounded and continuous
such that 𝐴𝜆𝑥 = (1/𝜆)𝐽(𝑥 − 𝐽𝜆𝑥), 𝐽𝜆𝑥 ∈ 𝐷(𝐴), and 𝐴𝜆𝑥 ∈𝐴(𝐽𝜆𝑥) for all 𝑥 ∈ 𝑋. Let

𝐻𝜆𝜀 (𝑡, 𝑥) = 𝑥 −𝑊 (𝑡, 𝑥) , (𝑡, 𝑥) ∈ [0, 1] × 𝐵𝑅 (0) , (4)

where𝑊: [0, 1] × 𝐵𝑅(0) → 𝑋 is given by

𝑊(𝑡, 𝑥) = (𝜀𝐽 + 𝑡𝐴𝜆)−1 (−𝑡 (𝐶𝐽𝜆𝑥 − 𝑓∗)) . (5)

For each 𝜀 > 0 and 𝜆 > 0, we shall show that𝑊 is a compact
operator. Let (𝑡𝑛, 𝑥𝑛) → (𝑡0, 𝑥0), i.e., 𝑡𝑛 → 𝑡0 and 𝑥𝑛 → 𝑥0
as 𝑛 → ∞. The continuity of 𝐶 and 𝐽𝜆 implies −𝑡𝑛(𝐶𝐽𝜆𝑥𝑛 −𝑓∗) → −𝑡0(𝐶𝐽𝜆𝑥0 − 𝑓∗) as 𝑛 → ∞. Let

𝑧𝑛 = 𝑊(𝑡𝑛, 𝑥𝑛) = (𝜀𝐽 + 𝑡𝑛𝐴𝜆)−1 (−𝑡𝑛 (𝐶𝐽𝜆𝑥𝑛 − 𝑓∗)) (6)
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for all 𝑛, i.e., 𝜀𝐽𝑧𝑛 + 𝑡𝑛𝐴𝜆𝑧𝑛 + 𝑡𝑛(𝐶𝐽𝜆𝑥𝑛 − 𝑓∗) = 0 for all𝑛. Fix 𝑎0 ∈ 𝐷(𝐴). By applying the monotonicity of 𝐴𝜆 and
boundedness of 𝐽𝜆 and 𝐶, we obtain that

𝜀 𝑧𝑛2 = 𝜀 ⟨𝐽𝑧𝑛, 𝑧𝑛 − 𝑎0⟩ + 𝜀 ⟨𝐽𝑧𝑛, 𝑎0⟩
= 𝜀 ⟨𝐽𝑧𝑛, 𝑎0⟩ − 𝑡𝑛 ⟨𝐴𝜆𝑧𝑛, 𝑧𝑛 − 𝑎0⟩
− 𝑡𝑛 ⟨𝐶𝐽𝜆𝑥𝑛 − 𝑓∗, 𝑧𝑛 − 𝑎0⟩

= 𝜀 ⟨𝐽𝑧𝑛, 𝑎0⟩ − 𝑡𝑛 ⟨𝐴𝜆𝑧𝑛 − 𝐴𝜆𝑎0, 𝑧𝑛 − 𝑎0⟩
+ 𝑡𝑛 ⟨𝐴𝜆𝑎0, 𝑧𝑛 − 𝑎0⟩
− 𝑡𝑛 ⟨𝐶𝐽𝜆𝑥𝑛 − 𝑓∗, 𝑧𝑛 − 𝑎0⟩

≤ 𝑡𝑛 ⟨𝐴𝜆𝑎0, 𝑧𝑛 − 𝑎0⟩
− 𝑡𝑛 ⟨𝐶𝐽𝜆𝑥𝑛 − 𝑓∗, 𝑧𝑛 − 𝑎0⟩ + 𝜀 ⟨𝐽𝑧𝑛, 𝑎0⟩

≤ (𝐴𝜆𝑎0 + 𝐾) 𝑧𝑛 − 𝑎0 + 𝜀 𝑧𝑛 𝑎0
≤ (𝐴𝑎0 + 𝐾) 𝑧𝑛 − 𝑎0 + 𝜀 𝑧𝑛 𝑎0

(7)

for all 𝑛; i.e., 𝜀‖𝑧𝑛‖2 ≤ (|𝐴𝑎0| + 𝐾)‖𝑧𝑛 − 𝑎0‖ + 𝜀‖𝑧𝑛‖‖𝑎0‖ for all𝑛, where 𝐾 is an upper bound for {𝑡𝑛𝐶𝑥𝑛 − 𝑓∗} and |𝐴𝑎0| =
inf{‖𝑥∗‖ : 𝑥∗ ∈ 𝐴𝑎0}. Thus, we get the boundedness of {𝑧𝑛}.
Assume without loss of generality that 𝑧𝑛 ⇀ 𝑧0 as 𝑛 → ∞.
By the monotonicity of 𝐴𝜆, we arrive at

lim sup
𝑛→∞

⟨𝐽𝑧𝑛, 𝑧𝑛 − 𝑧0⟩
≤ lim sup
𝑛→∞

(−𝑡𝑛 ⟨𝐴𝜆𝑧𝑛, 𝑧𝑛 − 𝑧0⟩)
+ lim sup
𝑛→∞

(−𝑡𝑛 ⟨𝐶𝐽𝜆𝑥𝑛 − 𝑓∗, 𝑧𝑛 − 𝑧0⟩)
≤ −lim inf
𝑛→∞

𝑡𝑛 ⟨𝐴𝜆𝑧𝑛, 𝑧𝑛 − 𝑧0⟩
− lim inf
𝑛→∞

𝑡𝑛 ⟨𝐶𝐽𝜆𝑥𝑛 − 𝑓∗, 𝑧𝑛 − 𝑧0⟩
= −lim inf
𝑛→∞

𝑡𝑛 ⟨𝐴𝜆𝑧𝑛 − 𝐴𝜆𝑧0, 𝑧𝑛 − 𝑧0⟩
− lim inf
𝑛→∞

𝑡𝑛 ⟨𝐶𝐽𝜆𝑥𝑛 − 𝑓∗, 𝑧𝑛 − 𝑧0⟩
+ lim
𝑛→∞

𝑡𝑛 ⟨𝐴𝜆𝑧0, 𝑧𝑛 − 𝑧0⟩
≤ − lim
𝑛→∞

𝑡𝑛 ⟨𝐶𝐽𝜆𝑥𝑛 − 𝑓∗, 𝑧𝑛 − 𝑧0⟩
+ lim
𝑛→∞

𝑡𝑛 ⟨𝐴𝜆𝑧0, 𝑧𝑛 − 𝑧0⟩ = 0.

(8)

Thus we conclude that 𝑧𝑛 → 𝑧0 as 𝑛 → ∞ because 𝐽 is
of type (𝑆+). Since 𝐽 and 𝐴𝜆 are continuous, it follows that𝜀𝐽𝑧0 + 𝑡0(𝐴𝜆𝑧0 + (𝐶𝐽𝜆𝑥0 − 𝑓∗)) = 0; i.e., we have

𝑧0 = (𝜀𝐽 + 𝑡0𝐴𝜆)−1 (−𝑡0 (𝐶𝐽𝜆𝑥0 − 𝑓∗)) = 𝑊(𝑡0, 𝑥0) . (9)

We notice here that the above argument holds for any
subsequence of {𝑧𝑛} (i.e., every subsequence of {𝑧𝑛} admits
a convergent subsequence). Consequently, we conclude that{𝑧𝑛} converges 𝑧0; i.e., the continuity of𝑊 is proved. Next we

assume {(𝑠𝑛, 𝑦𝑛)} is bounded in [0, 1]×𝐺.The sequence {𝐽𝜆𝑦𝑛}
is bounded because the sequences {𝑠𝑛} and {𝑦𝑛} are bounded.
Since 𝐽𝜆𝑦𝑛 ∈ 𝐷(𝐴) ⊆ 𝐷(𝐶) for all 𝑛 and 𝐶 is compact, we can
extract a subsequence, denoted again by {−𝑠𝑛(𝐶𝐽𝜆𝑦𝑛 − 𝑓∗)},
such that −𝑠𝑛(𝐶𝐽𝜆𝑦𝑛−𝑓∗) → 𝑎∗0 as 𝑛 → ∞. We notice here
that

𝑤𝑛 = 𝑊(𝑠𝑛, 𝑦𝑛) = (𝜀𝐽 + 𝑠𝑛𝐴𝜆)−1 (−𝑠𝑛 (𝐶𝐽𝜆𝑦𝑛 − 𝑓∗)) (10)

for all 𝑛 implies 𝜀𝐽𝑤𝑛 + 𝑠𝑛(𝐴𝜆𝑤𝑛 + (𝐶𝐽𝜆𝑦𝑛 −𝑓∗)) = 0 for all 𝑛.
By applying the argument used in the proof of continuity of𝑊, it follows that {𝑤𝑛} is bounded and admits a convergence
subsequence. Thus the compactness of 𝑊 is proved. The
same argument shows that 𝑊 is compact if 𝐶 is completely
continuous with𝐷(𝑇) ⊆ 𝐷(𝐶).

Next we fix 𝜀 > 0 temporarily and show that 0 ∉
𝐻𝜆𝜀 (𝑡, 𝜕𝐵𝑅(0)) for all 𝑡 ∈ [0, 1] and sufficiently small 𝜆 > 0.
Suppose not, i.e., there exists 𝜆𝑛 ↓ 0+, 𝜏𝑛 ∈ [0, 1] and 𝑢𝑛 ∈ 𝜕𝐺
such that

𝜀𝐽𝑢𝑛 + 𝜏𝑛 (𝐴𝜆𝑛𝑢𝑛 + (𝐶𝐽𝜆𝑛𝑢𝑛 − 𝑓∗)) = 0 (11)

for all 𝑛. If 𝜏𝑛 = 0 for some 𝑛, then it follows that 𝜀𝐽𝑢𝑛 = 0; i.e.,𝑢𝑛 = 0. But this is impossible because 𝑢𝑛 ∈ 𝜕𝐵𝑅(0). Assume𝜏𝑛 ∈ (0, 1] for all 𝑛 and 𝜏𝑛 → 𝜏0 ∈ [0, 1] as 𝑛 → ∞. The
boundedness of {𝐶𝐽𝜆𝑛𝑢𝑛} follows because of the boundedness
of 𝐶 and 𝐷(𝐴) is bounded and 𝐽𝜆𝑛𝑢𝑛 ∈ 𝐷(𝐴) for all 𝑛; i.e.,{𝐴𝜆𝑛𝑢𝑛} is bounded. Assume without loss of generality that
𝑢𝑛 ⇀ 𝑢0, 𝐴𝜆𝑛𝑢𝑛 ⇀ 𝑢∗0 , and 𝐶𝐽𝜆𝑛𝑢𝑛 → 𝑏∗0 as 𝑛 → ∞. By
the monotonicity of 𝐽 and (11), we claim that

𝛼 = lim inf
𝑛→∞

⟨𝐴𝜆𝑛𝑢𝑛, 𝑢𝑛 − 𝑢0⟩ ≥ 0. (12)

Suppose not, i.e., 𝛼 < 0. Then there exists a subsequence{⟨𝐴𝜀𝑛𝑢𝑛, 𝑢𝑛 − 𝑢0⟩} that converges to 𝛼 as 𝑛 → ∞. The
fact that 𝐽𝜆𝑛𝑢𝑛 ∈ 𝐷(𝐴), 𝐴𝜆𝑛𝑢𝑛 ∈ 𝐴(𝐽𝜆𝑛𝑢𝑛), and 𝐽𝜆𝑛𝑢𝑛 =
𝑢𝑛 − 𝜆𝑛𝐽−1(𝐴𝜆𝑛𝑢𝑛) for all 𝑛 implies

lim sup
𝑛→∞

⟨𝐴𝜆𝑛𝑢𝑛, 𝐽𝜆𝑛𝑢𝑛 − 𝑢0⟩
≤ lim sup
𝑛→∞

⟨𝐴𝜆𝑛𝑢𝑛, 𝐽𝜆𝑛𝑢𝑛 − 𝑢𝑛⟩
+ lim sup
𝑛→∞

⟨𝐴𝜆𝑛𝑢𝑛, 𝑢𝑛 − 𝑢0⟩
< −lim inf
𝑛→∞

(𝜆𝑛 𝐴𝜆𝑛𝑢𝑛2) + 𝛼 ≤ 𝛼 < 0.

(13)

Themaximality of𝐴 along with Lemma 2 implies 𝑢0 ∈ 𝐷(𝐴),𝑢∗0 ∈ 𝐴𝑢0, and ⟨𝐴𝜆𝑛𝑢𝑛, 𝐽𝜆𝑛𝑢𝑛 − 𝑢0⟩ → 0 as 𝑛 → ∞;
i.e., we get ⟨𝐴𝜆𝑛𝑢𝑛, 𝑢𝑛 − 𝑢0⟩ → 0 = 𝛼. However, this is
impossible; i.e., the claim holds. The case 𝜏0 = 0 implies
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𝑢𝑛 → 0 ∈ 𝜕𝐵𝑅(0) as 𝑛 → ∞. However this is impossible.
Assume that 𝜏0 ∈ (0, 1]. By using 𝛼 ≥ 0 in (11), we obtain that

lim sup
𝑛→∞

⟨𝐽𝑢𝑛, 𝑢𝑛 − 𝑢0⟩
= lim sup
𝑛→∞

(−𝜏𝑛 ⟨𝐴𝜆𝑛𝑢𝑛 + 𝐶𝐽𝜆𝑛𝑢𝑛 − 𝑓∗, 𝑢𝑛 − 𝑢0⟩)
= −𝜏0 lim inf

𝑛→∞
(⟨𝐴𝜆𝑛𝑢𝑛 + 𝐶𝐽𝜆𝑛𝑢𝑛 − 𝑓∗, 𝑢𝑛 − 𝑢0⟩)

≤ −𝜏0 lim inf
𝑛→∞

(⟨𝐴𝜆𝑛𝑢𝑛, 𝑢𝑛 − 𝑢0⟩)
+ lim inf
𝑛→∞

(⟨𝐶𝐽𝜆𝑛𝑢𝑛 − 𝑓∗, 𝑢𝑛 − 𝑢0⟩) ≤ 0.

(14)

The (𝑆+) condition on 𝐽 implies 𝑢𝑛 → 𝑢0 ∈ 𝐷(𝑇) ∩ 𝜕𝐵𝑅(0)
and 𝐽𝜆𝑛𝑢𝑛 → 𝑢0 as 𝑛 → ∞. The maximal monotonicity of
𝐴 together with Lemma 2 implies that 𝑢0 ∈ 𝐷(𝐴) and 𝑢∗0 ∈𝐴𝑢0. The continuity of 𝐶 and 𝐽 implies

𝜀𝐽𝑢𝑛 + 𝜏𝑛 (𝐴𝜆𝑛𝑢𝑛 + 𝐶𝐽𝜆𝑛𝑢𝑛 − 𝑓∗) →
𝜀𝐽𝑢0 + 𝜏0 (𝑢∗0 + 𝐶𝑢0 − 𝑓∗)

(15)

as 𝑛 → ∞. Consequently, letting 𝑛 → ∞ in (11) gives𝜀𝜏−10 𝐽𝑢0 + 𝑢∗0 + 𝐶𝑢0 = 𝑓∗; i.e., we obtain that

𝑢∗0 + 𝐶𝑢0 + 𝜀𝜏−10 𝐽𝑢0 ∈ 𝑇𝑢0 + 𝐶𝑢0 + 𝜕𝐼𝑅 (𝑢0) . (16)

This implies 𝑢∗0 = 𝑎∗0 + 𝑏∗0 for some 𝑎∗0 ∈ 𝑇𝑢0 and 𝑏∗0 ∈𝜕𝐼𝑅(𝑢0). However, it is well-known that

𝜕𝐼𝑅 (𝑥) =
{{{{{{{{{

{0} if 𝑥 ∈ 𝐵𝑅 (0) ,
{𝜆𝐽𝑥 : 𝜆 ≥ 0} if 𝑥 ∈ 𝜕𝐵𝑅 (0) ,
0 if 𝑥 ∈ 𝑋 \ 𝐵𝑅 (0).

(17)

As a result, 𝑏∗0 = 𝜇𝐽𝑢0 for some 𝜇 ≥ 0; i.e., we get (𝑇 + 𝐶 +
(𝜏−10 𝜀+𝜇)𝐽)(𝐷(𝑇)∩𝜕𝐵𝑅(0)) ∋ 𝑓∗. However, this is impossible
because of the hypothesis of the theorem.Therefore, for fixed
𝜀 > 0, there exists 𝜆0 > 0 such that 0 ∉ 𝐻𝜆𝜀 (𝑡, 𝜕𝐵𝑅(0)) for all𝑡 ∈ [0, 1] and 𝜆 ∈ (0, 𝜆0); i.e., {𝐻𝜀𝜆(𝑡, .)}𝑡∈[0,1] is an acceptable
Nagumo homotopy.

Step 2. Fix 𝜀 > 0. By using the admissible Nagumo homotopy
{𝐻𝜆𝜀 (𝑡, .)}𝑡∈[0,1] obtained in Step 1 and applying the homotopy
invariance properties of 𝑑𝑁𝐴, we see that 𝑑𝑁𝐴(𝐻𝜀𝜆(𝑡, .), 𝐺, 0) is
independent of 𝑡 ∈ [0, 1]; i.e.,

𝑑𝑁𝐴 (𝐻𝜆𝜀 (1, 𝐵𝑅 (0) , 0) = 𝑑𝑁𝐴 (𝐻𝜆𝜀 (0, 𝐵𝑅 (0) , 0)
= 𝑑𝑁𝐴 (𝐼, 𝐵𝑅 (0) , 0) = 1

(18)

for all sufficiently small 𝜆 > 0. Thus for each 𝜆𝑛 ↓ 0+, there
exists V𝑛 ∈ 𝐵𝑅(0) such that

𝜀𝐽V𝑛 + 𝐴𝜆𝑛V𝑛 + 𝐶𝐽𝜆𝑛V𝑛 = 𝑓∗ (19)

for all 𝑛. The boundedness of {𝐶𝐽𝜆𝑛V𝑛} and {𝐴𝜆𝑛V𝑛} follows
because of the boundedness of {V𝑛}, 𝐷(𝐴), and 𝐶. As a result

we can easily follow the arguments used in the last part of Step
1 to conclude the existence of 𝑧𝜀 ∈ 𝐷(𝑇)∩𝐵𝑅(0) and 𝑧∗𝜀 ∈ 𝐴𝑧𝜀
such that 𝜀𝐽𝑧𝜀 + 𝑧∗𝜀 + 𝐶𝑧𝜀 = 𝑓∗; i.e., for each 𝜀𝑛 ↓ 0+, there
exist 𝑧𝑛 ∈ 𝐷(𝑇) ∩ 𝐵𝑅(0) and 𝑧∗𝑛 ∈ 𝐴𝑧𝑛 such that

𝜀𝑛𝐽𝑧𝑛 + 𝑧∗𝑛 + 𝐶𝑧𝑛 = 𝑓∗ (20)

for all 𝑛; i.e., we get
𝜀𝑛𝐽𝑧𝑛 + 𝑎∗𝑛 + 𝑏∗𝑛 + 𝐶𝑧𝑛 = 𝑓∗ (21)

for all 𝑛 and for some 𝑎∗𝑛 ∈ 𝜕𝐼𝑅(𝑧𝑛) and 𝑏∗𝑛 ∈ 𝑇𝑧𝑛. However,
applying the boundary hypothesis on 𝑇+𝐶, we conclude that𝑧𝑛 ∈ 𝐵𝑅(0) for all 𝑛 and 𝑎∗𝑛 = 0 for all 𝑛. Consequently, we
arrive at

𝜀𝑛𝐽𝑧𝑛 + 𝑏∗𝑛 + 𝐶𝑧𝑛 = 𝑓∗ (22)

for all 𝑛. The boundedness of {𝐽𝑧𝑛} implies that 𝑏∗𝑛 + 𝐶𝑧𝑛 →𝑓∗; i.e., 𝑓∗ ∈ (𝑇 + 𝐶)(𝐷(𝑇) ∩ 𝐵𝑅(0)). This completes the
proof of (i). Next we prove (ii). Suppose 𝑇 is expansive and𝐶 is compact. By the compactness of 𝐶 we assume without
loss of generality that 𝐶𝑧𝑛 → 𝑔∗0 ; i.e., 𝑏∗𝑛 → 𝑓∗ − 𝑔∗0 . The
expansiveness of 𝑇 implies 𝑧𝑛 → 𝑧0 ∈ 𝐵𝑅(0) as 𝑛 → ∞.
The maximality of 𝑇 along with Lemma 2 yields 𝑧0 ∈ 𝐷(𝑇) ⊆𝐷(𝐶) and 𝑓∗ − 𝑔∗0 ∈ 𝑇𝑧0. As a result we conclude that
𝑓∗ − 𝐶𝑧0 ∈ 𝑇𝑧0 ( i.e., 𝑓∗ ∈ (𝑇 + 𝐶)(𝐷(𝑇) ∩ 𝐵𝑅(0)) ) because
of the continuity of 𝐶; i.e., (ii) holds.

(iii) Suppose 𝐶 is completely continuous and 𝐷(𝑇) ⊆𝐷(𝐶). Assume by passing into a subsequence that 𝑧𝑛 ⇀ 𝑑0
as 𝑛 → ∞. The maximality of 𝑇 implies that 𝐷(𝑇) ∩ 𝐵𝑅(0)
is closed and convex; i.e., it is weakly closed and 𝑑0 ∈ 𝐷(𝑇) ∩𝐵𝑅(0). The complete continuity of 𝐶 implies 𝐶𝑧𝑛 → 𝐶𝑑0
and 𝑏∗𝑛 → 𝑓∗ − 𝐶𝑑0; i.e., 𝑑0 ∈ 𝐷(𝑇) ∩ 𝐵𝑅(0) and 𝑓∗ ∈
(𝑇 + 𝐶)(𝐷(𝑇) ∩ 𝐵𝑅(0)); i.e., (iii) is proved.

(iv) Suppose 𝑇 is of resolvent compact and 𝐶 is bounded
and continuous such that the boundary condition on 𝑇 + 𝐶
holds. It is known due to Kartsatos [13, Lemma 3, pp. 1684]
that 𝐽𝜆 is compact if and only if (𝜆𝑇 + 𝐽)−1 is compact, and 𝐽𝜆
is compact for all 𝜆 > 0 if 𝐽𝜇 is compact for some 𝜇 > 0. As a
result, the compactness of (𝑇+𝐽)−1 and 𝐽1 is used equivalently.
Since 𝐶 is bounded and 𝐽𝜆 is compact, it follows that 𝐶𝐽𝜆 is
a compact operator; i.e., we can follow the arguments used
in the proof of the first part of Theorem 3 to conclude that𝑊: [0, 1] × 𝐵𝑅(0) → 𝑋 given by

𝑊(𝑡, 𝑥) = (𝜀𝐽 + 𝑡𝑇𝜆)−1 (−𝑡 (𝐶𝐽𝜆𝑥 − 𝑓∗)) (23)

is a compact operator. By following exactly analogous argu-
ments used in the proof of (i) through (iii) of this theorem,
for each 𝜀𝑛 ↓ 0+ there exist 𝜏𝑛 ∈ 𝐷(𝑇) ∩ 𝐵𝑅(0) and ]∗𝑛 ∈ 𝑇𝜏𝑛
such that

]∗𝑛 + 𝐶𝜏𝑛 + 𝜀𝑛𝐽𝜏𝑛 = 𝑓∗ (24)

for all 𝑛; i.e., we get ]∗𝑛 +𝐽𝜏𝑛 = −𝐶𝜏𝑛 −𝜀𝑛𝐽𝜏𝑛 +𝐽𝜏𝑛 for all 𝑛; i.e.,
𝜏𝑛 = (𝑇 + 𝐽)−1 (𝑏𝑛) (25)
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for all 𝑛, where 𝑏𝑛 = −𝐶𝜏𝑛 − 𝜀𝑛𝐽𝜏𝑛 + 𝐽𝜏𝑛 for all 𝑛. By the
compactness of (𝐽 + 𝑇)−1, there exists a subsequence of {𝑏𝑛},
denoted again by {𝑏𝑛}, such that 𝜏𝑛 = (𝑇 + 𝐽)−1(𝑏𝑛) → 𝜏0
as 𝑛 → ∞. Assume without loss of generality (by passing
into a subsequence) that 𝐶𝜏𝑛 ⇀ 𝑔∗ and V∗𝑛 ⇀ 𝑓∗ − 𝑔∗
as 𝑛 → ∞. The maximal monotonicity of 𝑇 along with
Lemma 2 implies that 𝜏0 ∈ 𝐷(𝑇) and 𝑓∗ − 𝑔∗ ∈ 𝑇𝜏0. On the
other hand, the continuity of 𝐶 implies 𝐶𝜏𝑛 → 𝐶𝜏0 = 𝑔∗;
i.e., V∗𝑛 → 𝑓∗ − 𝐶𝜏0; i.e., 𝑓∗ ∈ (𝑇 + 𝐶)(𝐷(𝑇) ∩ 𝐵𝑅(0)). The
proof is complete.

The following corollary holds.

Corollary 4. Let 𝑇 and 𝐶 be as given in Theorem 3. The
conclusions in Theorem 3 hold if

(a) the boundary condition

(𝑇 + 𝐶 + 𝜀𝐽) (𝐷 (𝑇) ∩ 𝜕𝐵𝑅 (0)) ̸∋ 𝑓∗ (26)

for all 𝜀 > 0 is replaced by
(𝑇 + 𝐶 + 𝜀�̃�) (𝐷 (𝑇) ∩ 𝜕𝐵𝑅 (0)) ̸∋ 𝑓∗ (27)

for all 𝜀 > 0 and some 𝑢0 ∈ 𝐷(𝑇)∩𝐵𝑅(0), where �̃�(𝑥) =𝐽(𝑥 − 𝑢0) for 𝑥 ∈ 𝑋;
(b) there exist 𝑅 > 0 and V0 ∈ 𝐵𝑅(0) such that

⟨𝑢∗ + 𝐶𝑥 − 𝑓∗, 𝑥 − V0⟩ > 0 (28)

for all 𝑥 ∈ 𝐷(𝑇) ∩ 𝜕𝐵𝑅(0) and 𝑢∗ ∈ 𝑇𝑥;
(c) 0 ∈ 𝑇(0) and 𝐵𝑅(0) is replaced by a nonempty, closed,

bounded, and convex subset 𝐾 of 𝑋 such that 0 ∈ ∘𝐾
and 𝜀𝐽 is replaced by 𝜀𝜕𝐼𝐾, and

(𝑇 + 𝐶 + 𝜀𝜕𝐼𝐾) (𝐷 (𝑇) ∩ 𝜕𝐾) ̸∋ 𝑓∗ (29)

for all 𝜀 > 0, where 𝜕𝐼𝐾 is the subdifferential of the
indicator function on 𝐾.

Proof. (a) The proof for the analogous result under the
boundary condition involving �̃� follows because the operator
�̃� : 𝑋 → 𝑋∗ inherits all the properties of 𝐽; i.e., �̃� is bounded,
continuous, monotone, and of type (𝑆+).

(b) The side condition in (b) is equivalent to (𝑇 + 𝐶 +𝜀𝜕𝐼𝑅)(𝐷(𝑇) ∩ 𝜕𝐵𝑅(0)) ̸∋ 𝑓∗ for all 𝜀 > 0 because of the
definition of 𝑓∗ −𝑢∗ −𝐶𝑥 ∉ 𝜕𝐼𝑅(𝑥) for all 𝑥 ∈ 𝐷(𝑇)∩𝜕𝐵𝑅(0),𝑢∗ ∈ 𝑇𝑥, and the fact that 𝜕𝐼𝑅(𝑥) = {𝜀𝐽𝑥 : 𝜀 ≥ 0} for all𝑥 ∈ 𝜕𝐵𝑅(0).This implies that the condition in (b) is equivalent
to the boundary condition inTheorem 3.

(c) Suppose (𝑇+𝐶+ 𝜀𝜕𝐼𝐾)(𝐷(𝑇) ∩ 𝜕𝐾) ̸∋ 𝑓∗ for all 𝜀 > 0.
The maximal monotonicity of 𝐴 = 𝑇 + 𝜕𝐼𝐾 follows because𝐷(𝑇)∩ ∘𝐾 ̸= 0. It is not difficult to see that boundary condition
on 𝑇 + 𝐶 + 𝜀𝜕𝐾 implies that there exists 𝑦0 ∈ 𝐾 such that

⟨𝑢∗ + 𝐶𝑥 − 𝑓∗, 𝑥 − 𝑦0⟩ > 0 (30)

for all 𝑥 ∈ 𝐷(𝑇) ∩ 𝜕 ∘𝐾 and 𝑢∗ ∈ 𝑇𝑥. The proof of (c) follows
based on the arguments of the proofs of (i) through (iii) of
Theorem 3 by using 𝐺 = ∘𝐾 instead of 𝐵𝑅(0). The details are
omitted here. To prove (iv) of Theorem 3 under (c), we shall
show that 𝐴 is resolvent compact. Let {𝑓∗𝑛 } be a sequence in𝑋∗ such that 𝑓∗𝑛 → 𝑓∗0 as 𝑛 → ∞ and 𝑥𝑛 = (𝐽 + 𝐴)−1(𝑓∗𝑛 )
for all 𝑛; i.e., 𝑥𝑛 ∈ 𝐷(𝐴) ∩ 𝐾 for all 𝑛. Let 𝑢∗𝑛 ∈ 𝑇𝑥𝑛 and
V∗𝑛 ∈ 𝜕𝐼𝐾(𝑥𝑛) such that

𝑢∗𝑛 + V∗𝑛 + 𝐽𝑥𝑛 = 𝑓∗𝑛 (31)

for all 𝑛. The boundedness of {𝑥𝑛} follows because 𝐾 is
bounded. Assume without loss of generality that 𝑥𝑛 ⇀ 𝑥0.
Since𝐾 is closed and convex (i.e., it is weakly closed), we have𝑥0 ∈ 𝐾. In addition, the condition 0 ∈ 𝑇(0) yields

⟨V∗𝑛 , 𝑥𝑛⟩ = − ⟨𝑢∗𝑛 , 𝑥𝑛⟩ − 𝑥𝑛2 + 𝑓∗𝑛  𝑥𝑛
≤ 𝑓∗𝑛  𝑥𝑛 ≤ 𝑀

(32)

for all 𝑛, where 𝑀 is an upper bound for {‖𝑓∗𝑛 ‖‖𝑥𝑛‖}. Since𝐷( ∘𝜕𝐼𝐾) = ∘𝐾 ̸= 0, it follows that 𝜕𝐼𝐾 is strongly quasibounded,
which yields the boundedness of {V∗𝑛 }, i.e., {𝑢∗𝑛 } is bounded.
Assume without loss of generality that V∗𝑛 ⇀ V∗0 and 𝑢∗𝑛 ⇀ 𝑢∗0
as 𝑛 → ∞. By following the arguments used in the proof of
Theorem 3 and using the fact that 𝐽 is bounded of type (𝑆+),
we get 𝑥𝑛 → 𝑥0 as 𝑛 → ∞ and 𝑢∗0 + V∗0 + 𝐽𝑥0 = 𝑓∗0 ; i.e.,𝑥0 = (𝐽 + 𝐴)−1(𝑓∗0 ). Since this convergence holds for each
subsequence of {𝑥𝑛}, we conclude that (𝐽+𝐴)−1 is continuous.
Next we assume {𝑓∗𝑛 } is bounded. Then the compactness of
(𝐽 + 𝑇)−1 implies the existence of a subsequence, denoted by{𝑓∗𝑛 − V∗𝑛 }, such that

𝑥𝑛 = (𝐽 + 𝑇)−1 (𝑓∗𝑛 − V∗𝑛 ) = (𝐽 + 𝐴)−1 (𝑓∗𝑛 ) → 𝑦0 (33)

as 𝑛 → ∞.Thus the compactness of (𝐽 + 𝐴)−1 follows; i.e.,𝐽𝜆 is compact for all 𝜆 > 0. The remaining proof follows as in
the arguments of the proof ofTheorem 3.Thedetail is omitted
here.

Next we give the following surjectivity result.

Corollary 5. Let 𝑇 and 𝐶 be as given in Theorem 3. Assume
that 𝑇 + 𝐶 is coercive; i.e., there exists V0 ∈ 𝑋 such that

inf
𝑥∈𝐷(𝑇),𝑢∗∈𝑇𝑥

⟨𝑢∗ + 𝐶𝑥, 𝑥 − V0⟩‖𝑥‖ → ∞
𝑎𝑠 ‖𝑥‖ → ∞.

(34)

Then the following conclusions hold.

(i) 𝑅(𝑇 + 𝐶) = 𝑋∗ if 𝐶 is compact.
(ii) 𝑅(𝑇 + 𝐶) = 𝑋∗ if 𝑇 is expansive and 𝐶 is compact.
(iii) 𝑅(𝑇 + 𝐶) = 𝑋∗ if 𝐶 is completely continuous.
(iv) 𝑅(𝑇 + 𝐶) = 𝑋∗ if 𝑇 is of resolvent compact and 𝐶 is

bounded and continuous.
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Proof. Let �̃�𝑥 = 𝐽(𝑥 − V0) for 𝑥 ∈ 𝑋 and some 𝑢0 ∈ 𝐷(𝑇). It is
known that �̃� is bounded, monotone, continuous, and of type(𝑆+). Fix 𝑓∗ ∈ 𝑋∗. It is enough to show that the boundary
condition inTheorem 3 holds.The coercivity of𝑇+𝐶 implies

⟨𝑢∗ + 𝐶𝑥 − 𝑓∗, 𝑥 − V0⟩‖𝑥‖
≥ ⟨𝑢∗ + 𝐶𝑥, 𝑥 − V0⟩‖𝑥‖ − 𝑓∗ 𝑥 − V0

‖𝑥‖
≥ ⟨𝑢∗ + 𝐶𝑥, 𝑥 − V0⟩‖𝑥‖ − 𝑓∗ −

𝑓∗ V0‖𝑥‖

(35)

for all 𝑥 ∈ 𝐷(𝑇) \ {0} and 𝑢∗ ∈ 𝑇𝑥. The coercivity of 𝑇 + 𝐶
implies that the right side in (35) approaches to∞ as ‖𝑥‖ →∞; i.e., there exists 𝑅 = 𝑅(𝑓∗) > 0 such that

⟨𝑢∗ + 𝐶𝑥 − 𝑓∗, 𝑥 − V0⟩ > 0 (36)

for all 𝑥 ∈ 𝐷(𝑇) ∩ 𝜕𝐵𝑅(0) and 𝑢∗ ∈ 𝑇𝑥. Thus we have

⟨𝑢∗ + 𝐶𝑥 + 𝜀�̃�𝑥 − 𝑓∗, 𝑥 − V0⟩
= ⟨𝑢∗ + 𝐶𝑥 − 𝑓∗, 𝑥 − V0⟩ + 𝜀 ⟨𝐽 (𝑥 − V0) , 𝑥 − V0⟩
> 𝜀 𝑥 − V0

2
(37)

for all 𝑥 ∈ 𝐷(𝑇) ∩ 𝜕𝐵𝑅(0) and 𝑢∗ ∈ 𝑇𝑥; i.e., we get
(𝑇 + 𝐶 + 𝜀�̃�) (𝐷 (𝑇) ∩ 𝜕𝐵𝑅 (0)) ̸∋ 𝑓∗ (38)

for all 𝜀 > 0. Consequently, the conclusions (i) through (iv)
follows based on the conclusion of Theorem 3.

It is worth noticing that Theorem 3 is new in the sense
that the conclusion required only the boundary condition(𝑇+𝐶+ 𝜀𝐽)(𝐷(𝑇) ∩ 𝜕𝐵𝑅(0)) ̸∋ 𝑓∗ for all 𝜀 > 0. For analogous
results under such boundary condition, the reader is referred
to Figueiredo [12] (for single multivalued pseudomonotone
operator 𝑆) and Asfaw and Kartsatos [9, Theorem 11 and
Theorem 13] (for pseudomonotone perturbations of maximal
monotone operator).

Next we prove the following result.

Theorem6. Let𝑇 : 𝑋 ⊇ 𝐷(𝑇) → 2𝑋∗ bemaximalmonotone
and 𝐶 : 𝐷(𝐶) → 𝑋∗ be such that𝐷(𝑇) ⊆ 𝐷(𝐶). Assume that𝑑 ≥ 0, 𝜇 ≥ 0, and 𝑄 > 0 such that

⟨𝑢∗ + 𝐶𝑥, 𝑥⟩ ≥ −𝑑 ‖𝑥‖2 − 𝜇 (39)

for all 𝑥 ∈ 𝐷(𝑇) with ‖𝑥‖ ≥ 𝑄, and
lim

𝑥∈𝐷(𝑇), ‖𝑥‖→∞

|𝑇𝑥 + 𝐶𝑥|
‖𝑥‖2 > 0. (40)

Then the following hold.

(i) 𝑅(𝑇 + 𝐶) = 𝑋∗ if 𝐶 is compact.
(ii) 𝑇 + 𝐶 is surjective if 𝐶 is completely continuous and

𝐷(𝑇) ⊆ 𝐷(𝐶)

(iii) 𝑇 + 𝐶 is surjective if 𝑇 is expansive and 𝐶 is compact;
(iv) 𝑇 + 𝐶 is surjective if 𝑇 is of compact resolvent and 𝐶 is

bounded and continuous.

Proof. Fix 𝜀 > 0 and 𝑓∗ ∈ 𝑋∗. Let �̃� : 𝑋 → 𝑋∗ be
defined by �̃�𝑥 = ‖𝑥‖𝐽𝑥, 𝑥 ∈ 𝑋. It is well-known that �̃� is
bounded, continuous, maximal monotone, and of type (𝑆+).
Then applying (39) gives

⟨𝑢∗ + 𝐶𝑥 + 𝜀�̃�𝑥, 𝑥⟩ ≥ ‖𝑥‖3 𝜓𝜀 (‖𝑥‖) (41)

for all 𝑥 ∈ 𝐷(𝑇) \ {0} and 𝑢∗ ∈ 𝑇𝑥, where
𝜓𝜀 (𝑡) = 𝜀 − 𝑑𝑡−1 − 𝜇𝑡−3 − 𝑓∗ 𝑡−2, 𝑡 > 0. (42)

As a result, we get

⟨𝑢∗ + 𝐶𝑥 + 𝜀�̃�𝑥, 𝑥⟩
‖𝑥‖ → ∞ (43)

as ‖𝑥‖ → ∞. The operator 𝐴𝜀 = 𝑇 + 𝜀�̃� is maximal
monotone. By using the operators𝐴𝜀 and𝐶 inCorollary 5, we
conclude that (𝑇 + 𝐶 + 𝜀�̃�)(𝐷(𝑇) ∩ 𝐵𝑟𝜀(0)) ∋ 𝑓∗. Then there
exist 𝑥𝑛 ∈ 𝐷(𝑇) ∩ 𝐵𝑟𝜀(0) and 𝑢∗𝑛 ∈ 𝑇𝑥𝑛 such that

𝑢∗𝑛 + 𝐶𝑥𝑛 + 𝜀�̃�𝑥𝑛 → 𝑓∗ (44)

as 𝑛 → ∞. The compactness of 𝐶 implies that 𝐶𝑥𝑛 → 𝑎∗0
(for some subsequence {𝑥𝑛}).By applying themaximality of𝑇
together with Lemma 2 and following the arguments used in
the proof ofTheorem 3 we arrive at 𝑓∗ ∈ (𝑇+𝐶+ 𝜀�̃�)(𝐷(𝑇)∩
𝐵𝑟𝜀(0)).The surjectivity of𝑇+𝐶+𝜀�̃� follows because𝑓∗ ∈ 𝑋∗
is arbitrary. Next we give the proof of (i). Since𝑅(𝑇+𝐶+𝜀�̃�) =𝑋∗ for all 𝜀 > 0, for each 𝜀𝑛 ↓ 0+, there exist 𝑥𝑛 ∈ 𝐷(𝑇) and𝑢∗𝑛 ∈ 𝑇𝑥𝑛 such that

𝑢∗𝑛 + 𝐶𝑥𝑛 + 𝜀𝑛 𝑥𝑛 𝐽𝑥𝑛 = 𝑓∗ (45)

for all 𝑛; i.e., (39) gives
𝜀𝑛 𝑥𝑛3 = 𝜀𝑛 ⟨𝑥𝑛 𝐽𝑥𝑛, 𝑥𝑛⟩ = − ⟨𝑢∗𝑛 + 𝐶𝑥𝑛 − 𝑓∗, 𝑥𝑛⟩

≤ 𝑑 𝑥𝑛2 + 𝜇 + 𝑓∗ 𝑥𝑛
(46)

for all 𝑛.We shall show that {𝑥𝑛} is bounded. Suppose not, i.e.,
there exists a subsequence, denoted again by {𝑥𝑛}, such that‖𝑥𝑛‖ → ∞ as 𝑛 → ∞. Dividing (46) by ‖𝑥𝑛‖ for all large 𝑛
implies

𝜀𝑛 𝑥𝑛2 ≤ 𝑑 𝑥𝑛 + 𝜇𝑥𝑛 +
𝑓∗ (47)

for all large 𝑛; i.e., (45) implies

𝑢∗𝑛 + 𝐶𝑥𝑛 ≤ 𝜀𝑛 𝑥𝑛2 + 𝑓∗
≤ 𝑑 𝑥𝑛 + 𝜇𝑥𝑛 + 2

𝑓∗ (48)
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for all large 𝑛; i.e., we get
𝑢∗𝑛 + 𝐶𝑥𝑛𝑥𝑛2 → 0 𝑎𝑠 𝑛 → ∞. (49)

However, this is a contradiction to (40). As a result the
sequence {𝑥𝑛} is bounded. Letting 𝑛 → ∞ in (45) gives
𝑓∗ ∈ 𝑅(𝑇 + 𝐶). The proofs of (ii), (iii), and (iv) follow based
on the arguments used in the proof of (i) andTheorem 3.The
details are omitted here.

In [13], Kartsatos proved that 𝑅(𝑇 + 𝐶) = 𝑋∗ if 𝐶 is
compact and 𝑇 is maximal monotone with 𝐷(𝐶) = 𝐷(𝑇)
provided that there exists 𝛽 : [0,∞) → [0,∞) such that𝛽(𝑡) → 0 as 𝑡 → ∞ and 𝑄 > 0 such that

⟨𝑢∗ + 𝐶𝑥, 𝑥⟩ ≥ −𝛽 (‖𝑥‖) ‖𝑥‖2 (50)

for all 𝑥 ∈ 𝐷(𝑇), 𝑢∗ ∈ 𝑇𝑥, and ‖𝑥‖ ≥ 𝑄 and

lim inf
𝑥∈𝐷(𝑇), ‖𝑥‖→∞

|𝑇𝑥 + 𝐶𝑥|
‖𝑥‖ > 0. (51)

It is worth mentioning here that (50) implies that for each𝑑 > 0 there exists 𝑄 > 0 such that 𝛽(‖𝑥‖) < 𝑑 for all ‖𝑥‖ ≥ 𝑄;
i.e., (50) implies (39) and (40) implies (51). On the other hand,
Theorem 6 due to Kartsatos [13] holds if 𝐷(𝑇) ⊆ 𝐷(𝐶) is
used instead of𝐷(𝐶) = 𝐷(𝑇). The proof follows based on the
proof of (i) of Theorem 6 by using 𝐽 instead of �̃�. However, it
is worth noticing that condition (39) is natural in applications
than that of (50).

3. Applications

In this section, we demonstrate the applicability of the
result to prove existence of solution for variational inequality
problems.

Example 7. Let Ω be a nonempty, bounded, and open subset
of R𝑛 with 𝑛 ≥ 1 and Γ = 𝜕Ω is of smooth boundary. Let𝑋 = 𝐿2(Ω) and𝐾 be a nonempty, closed, and convex subset of𝑋 with nonempty interior. Let 𝑗 : R → (−∞,∞] be proper,
convex, and lower semicontinuous function, 𝑝 ∈ [2,∞) and
𝜆 > 0. Let Φ𝜆𝑝 : 𝑋 → (−∞,∞] be defined by

Φ𝜆𝑝 (𝑢) = 1
𝑝
𝑛∑
𝑖=1

∫
Ω


𝜕𝑢
𝜕𝑥𝑖


𝑝 𝑑𝑥 + 𝜆

𝑝 ∫Ω |𝑢|
𝑝 𝑑𝑥

+ ∫
Γ
𝑗 (𝑢) 𝑑𝜎

(52)

if 𝑢 ∈ 𝑊1,𝑝(Ω) and 𝑗(𝑢) ∈ 𝐿1(Γ), and Φ𝜆𝑝(𝑢) = ∞ otherwise.
It is known that 𝜕Φ𝜆𝑝 : 𝑋 ⊇ 𝐷(𝜕Φ𝜆𝑝) → 2𝑋 is given by

𝜕Φ𝜆𝑝 (𝑢) = −Δ𝜆𝑝𝑢 (53)

for each 𝑢 ∈ 𝐷(𝜕Φ𝜆𝑝), where
Δ𝜆𝑝𝑢 =

𝑛∑
𝑖=1

𝜕
𝜕𝑥𝑖 (


𝜕𝑢
𝜕𝑥𝑖


𝑝−2 𝜕𝑢

𝜕𝑥𝑖) − 𝜆𝑢 |𝑢|𝑝−2 , (54)

domain of 𝜕Φ𝜆𝑝 given by

𝐷(𝜕Φ𝜆𝑝) = {𝑢 ∈ 𝑊1,𝑝 (Ω) : Δ𝑝𝜆𝑢 ∈ 𝐿2 (Ω) , − 𝜕𝑢
𝜕V𝑝 (𝑥)

∈ 𝜕𝑗 (𝑢 (𝑥)) 𝑎.𝑒. 𝑥 ∈ Γ}
(55)

and

𝜕𝑢
𝜕V𝑝 =

𝑛∑
𝑖=1


𝜕𝑢
𝜕𝑥𝑖


𝑝−2 𝜕𝑢

𝜕𝑥𝑖 cos (𝑛, 𝑒𝑖) , (56)

where 𝑛 is the outward normal on Γ and {𝑒1, 𝑒2, . . . , 𝑒𝑛} is the
canonical base in R𝑛. Assume, further, that

( 𝐶1 ) 𝑔 : Ω×R → R be Carathéodory function; i.e., 𝑥 →𝑔(𝑥, 𝑠) is measurable for almost all 𝑠 ∈ R and 𝑠 →𝑔(𝑥, 𝑠) is continuous for almost all 𝑥 ∈ Ω;
( 𝐶2 ) there exist 𝑑 ≥ 0 and ℎ ∈ 𝐿2(𝑄) such that

𝑔 (𝑥, 𝑠) ≤ ℎ (𝑥) + 𝑑 |𝑠| (57)

for all (𝑥, 𝑠) ∈ Ω ×R.
Let 𝐶 : 𝑋 → 𝑋 be defined by 𝐶𝑢(.) = 𝑓(., 𝑢(.)) for 𝑢 ∈ 𝑋. In
the following theorem, we prove the solvability of variational
inequality problem VIP(𝐶,Φ𝜆𝑝, 𝐾, 𝑓∗); i.e., we find 𝑢 ∈ 𝐾 ∩
𝐷(Φ𝜆𝑝) such that

⟨𝐶𝑢 − 𝑓∗, V − 𝑢⟩ ≥ Φ𝜆𝑝 (𝑢) − Φ𝜆𝑝 (V) (58)

for all 𝑥 ∈ K.

Theorem8. Let𝑓 ∈ 𝑋 andΦ𝜆𝑝 be as in (52). Suppose (𝐶1) and(𝐶2) are satisfied. If 𝑑 < 2−1𝜆 for𝑝 = 2 or 𝜆 > 0 for𝑝 ∈ (2,∞),
then the problem VIP(𝐶,Φ𝜆𝑝, 𝐾, 𝑓∗) is solvable.
Proof. Let 𝐴 = 𝜕Φ𝜆𝑝 be the subdifferential of Φ𝜆𝑝 in the sense
of convex analysis. It is well-known that 𝐴 is an 𝑚-accretive
operator (equivalently, 𝐴 is maximal monotone) with com-
pact resolvents (cf. Proposition 2.2.2 and Proposition 2.2.3
[14]). By applying conditions (𝐶1) and (𝐶2), it follows that𝐶 is bounded and continuous. Let 𝜕𝐼𝐾 : 𝐾 → 2𝑋 be
the subdifferential of the indicator function on 𝐾. The 𝑚-
accretivity (maximal monotonicity) of 𝑇 = 𝐴 + 𝜕𝐼𝐾 follows
because of the condition 𝐷(𝐴) ∩ ∘𝐾 ̸= 0. In addition, it is
not difficult to see that 𝑇 is of resolvent compact𝑚-accretive
operator. Next we show that 𝑇 + 𝐶 satisfies the boundary
condition in Theorem 3. Let 𝑓∗ ∈ 𝑋 be the functional
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generated by 𝑓. Choose 𝜇0 ∈ 𝐷(Φ𝜆𝑝). By applying the
definition of 𝐴 and conditions (𝐶1) and (𝐶2), we arrive at

⟨𝑔∗ + 𝐶𝑢, 𝑢 − 𝜇0⟩ ≥ Φ𝜆𝑝 (𝑢) − Φ𝜆𝑝 (𝜇0)
+ ⟨𝐶𝑢, 𝑢 − 𝜇0⟩

≥ 𝜆
𝑝 ‖𝑢‖𝑝 − Φ𝜆𝑝 (𝜇0) − ‖𝐶𝑢‖ ‖𝑢‖
− ‖𝐶𝑢‖ 𝜇0

≥ 𝜆
𝑝 ‖𝑢‖𝑝 − Φ𝜆𝑝 (𝜇0)
− (‖ℎ‖ + 𝑑 ‖𝑢‖) ‖𝑢‖
− (‖ℎ‖ + 𝑑 ‖𝑢‖) 𝜇0

(59)

for all 𝑢 ∈ 𝐷(𝐴) and 𝑔∗ ∈ 𝐴𝑢. As a result, we obtain the
estimate

⟨𝑔∗ + 𝐶𝑢, 𝑢 − 𝜇0⟩‖𝑢‖ ≥ 𝜆
𝑝 ‖𝑢‖𝑝−1 − ‖𝑢‖−1Φ𝜆𝑝 (𝜇0)
− (‖ℎ‖ + 𝑑 ‖𝑢‖)
− (‖ℎ‖ + 𝑑 ‖𝑢‖) 𝜇0‖𝑢‖

(60)

for 𝑢 ∈ 𝐷(𝐴) \ {0} and 𝑔∗ ∈ 𝐴𝑢. Since 𝜆 < 2−1𝑑 (if 𝑝 = 2) or𝜆 > 0 (if 𝑝 ∈ (2,∞)), the right side of (60) approaches to∞
as ‖𝑢‖ → ∞ and

inf
𝑢∈𝐷(𝐴), 𝑔∗∈𝐴𝑢

⟨𝑔∗ + 𝐶𝑢, 𝑢 − 𝜇0⟩‖𝑢‖ → ∞ (61)

as ‖𝑢‖ → ∞; i.e., the coercivity condition on 𝐴 + 𝐶
is satisfied. Thus for each 𝑓∗ ∈ 𝑋 we conclude that the
inclusion problem𝐴𝑢+𝐶𝑢 ∋ 𝑓∗ is solvable; i.e., the problem
VIP(𝐶, Φ𝜆𝑝, 𝐾, 𝑓∗) is solvable. This completes the proof.

Next we present the following example.

Example 9. LetΩ be a nonempty, bounded, and open subset
ofR𝑁 with smooth boundary and𝑁 ≥ 1, 𝑇 > 0,𝑄 = (0, 𝑇) ×Ω, 𝐻 = 𝐿2(0, 𝑇;𝐻10 (Ω)), 𝑋 = 𝐿2(𝑄), and 𝑉 = 𝐻10 (Ω). Let𝜆 > 0 and 𝐴 : 𝑋 ⊇ 𝐷(𝐴) → 𝑋 be defined by

𝐴𝑢 = 𝜕𝑢
𝜕𝑡 − 𝜆Δ𝑢 (62)

for 𝑢 ∈ 𝐷(𝐴), where
𝐷(𝐴) = {𝑢 ∈ 𝐿2 (0, 𝑇;𝐻2 (Ω) ∩ 𝐻10 (Ω)) : 𝜕𝑢𝜕𝑡

∈ 𝐿2 (𝑄) , 𝑢 (𝑥, 0) = 𝑢 (𝑥, 𝑇)} .
(63)

Let ⟨, ⟩ denote the inner product in𝑋; i.e., for 𝑔∗ ∈ 𝑋 and 𝑢 ∈𝐻; we have ⟨𝑔∗, 𝑢⟩ = ⟨𝑔∗, 𝑢⟩(𝑋,𝑋) with 𝑋∗ identified with 𝑋.

The norm of 𝑢 ∈ 𝐻 is the normed induced from𝑋. It is well-
known that 𝐴 is maximal monotone, surjective,𝑁(𝐴) = {0},
and

⟨𝐴𝑢, 𝑢⟩ ≥ 𝑐0 ‖𝑢‖2𝐻 (64)

for all 𝑢 ∈ 𝐷(𝐴). Since 𝐻10 (Ω) is compactly embedded in
𝐿2(𝑄), it follows that 𝐴−1 : 𝐻 → 𝐻 is a compact operator;
i.e., for each 𝜀 > 0 the resolvent (𝐴 + 𝜀𝐼)−1 : 𝐻 → 𝐻 is
compact. Assume, further, that

( 𝐶3 ) 𝑔 : 𝑄 × R → R is Carathéodory function; i.e.,(𝑥, 𝑡) → 𝑔(𝑥, 𝑡, 𝑠) is measurable for almost all 𝑠 ∈ R,
and 𝑠 → 𝑔(𝑥, 𝑡, 𝑠) is continuous for almost all (𝑥, 𝑡) ∈𝑄;

( 𝐶4 ) there exist 𝑐 ≥ 0 and 𝑘 ∈ 𝐿2(𝑄) such that
𝑔 (𝑥, 𝑡, 𝑠) ≤ 𝑐 |𝑠| + 𝑘 (𝑥, 𝑡) (65)

for all (𝑥, 𝑡, 𝑠) ∈ 𝑄 ×R;
( 𝐶5 ) Φ : 𝑋 → (−∞,∞] is a proper, convex, and lower

semicontinuous function;
( 𝐶6 ) there exists a nonnegative constant 𝛼 such that𝐷(Φ) ⊆ 𝑀, where

𝑀 = {𝑢 ∈ 𝑋 : ∫
𝑄
𝑔 (𝑥, 𝑡, 𝑢) 𝑢𝑑𝜇 ≥ −𝛼 ‖𝑢‖} . (66)

We notice here that the set 𝑀 defined in (𝐶6) is nonempty
if 𝑠 → 𝑔(𝑥, 𝑡, 𝑠) is nondecreasing for almost all (𝑥, 𝑡) ∈ 𝑄
such that 𝑔(𝑥, 𝑡, 0) = 0 for all (𝑥, 𝑡) ∈ 𝑄. Actually, condition(𝐶4) implies that the unit ball in 𝑋 is contained in 𝑀 with𝛼 = 𝑐 + ‖𝑘‖𝐿2(𝑄). In Theorem 10 below, we prove existence
of solution(s) for variational inequality problem denoted by
VIP(𝐴 + 𝐶,Φ,𝐾, 𝑓∗), i.e., finding 𝑢 ∈ 𝐷(𝐴) ∩𝐷(𝜙) ∩ 𝐾 such
that

⟨𝐴𝑢 − 𝑓∗, V − 𝑢⟩ + ∫
𝑄
𝑔 (𝑥, 𝑡, 𝑢) (V − 𝑢) 𝑑𝜇

≥ Φ (𝑢) − Φ (V)
(67)

for all V ∈ 𝐾, where 𝐾 is a nonempty, closed, and convex
subset of𝑋 with

∘𝐾 ̸= 0.
Theorem 10. Let 𝐴 : 𝑋 ⊇ 𝐷(𝐴) → 𝑋 be as given in (62)
and 𝑓 ∈ 𝐿2(𝑄). Assume, further, that

∘𝐾 ∩ ∘𝐷(Φ) ̸= 0 and
conditions (𝐶3) through (𝐶6) are satisfied. Then the problem
VIP(A + 𝐶,Φ,𝐾, 𝑓∗) is solvable.
Proof. Let 𝑓 ∈ 𝐿2(𝑄), 𝐴 be as given in (62), and 𝐶 : 𝑋 → 𝑋
be defined by

⟨𝐶𝑢, V⟩ = ∫
𝑄
𝑔 (𝑥, 𝑡, 𝑢) 𝑢𝑑𝜇, 𝑢 ∈ 𝑋. (68)

The operator 𝐴 is linear maximal monotone, surjective, one
to one, and densely defined.The density of𝐷(𝐴) in𝑋 implies
𝐷(𝐴) ∩ 𝐷( ∘𝜕𝐼𝐾) ∩ ∘𝐷(Φ) ̸= 0. As a result, we conclude that
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𝑇 = 𝜕𝐼𝐾 + 𝜕𝜙 + 𝐴 is maximal monotone (cf. Rockafellar
[15]). The arguments used in the proof of (c) of Corollary 4
imply that 𝑇 is resolvent compact. In addition, the continuity
of𝐶 follows based on the conditions (𝐶3) and (𝐶4).The proof
follows if we prove the coercivity of𝑇+𝐶. Let us denote again
the restriction of 𝐶 on𝑀 by 𝐶. The definition on𝑀 = 𝐷(𝐶)
as given in (𝐶6) implies that ⟨𝐶𝑢, 𝑢⟩ ≥ −𝛼‖𝑢‖ for all 𝑢 ∈ 𝑀.
The conditions on Φ imply that there exist ℎ∗ ∈ 𝑋∗ and𝛽 ∈ R such that Φ(𝑢) ≥ ⟨ℎ∗, 𝑢⟩ − 𝛽 ≥ −‖ℎ∗‖‖𝑢‖ − 𝛽 for
all 𝑢 ∈ 𝑋. Choose𝑤0 ∈ 𝐷(𝐴)∩𝐷(Φ). Themonotonicity of𝐴
and definition of 𝜕Φ(𝑤0) imply

⟨𝑇𝑢 + 𝐶𝑢, 𝑢 − 𝑤0⟩ = ⟨𝐴𝑢 − 𝐴𝑤0, 𝑢 − 𝑤0⟩
+ ⟨𝐴𝑤0, 𝑢 − 𝑤0⟩ + Φ (𝑢)
− Φ (𝑤0) + ⟨𝐶𝑢, 𝑢 − 𝑤0⟩

≥ 𝑐0 𝑢 − 𝑤02𝐻 − 𝐴𝑤0 𝑢 − 𝑤0
− ℎ∗ ‖𝑢‖ − 𝛽 − Φ (𝑤0)
+ ⟨𝐶𝑢, 𝑢⟩ − ⟨𝐶𝑢, 𝑤0⟩

≥ 𝑐0 𝑢 − 𝑤02𝐻 − 𝐴𝑤0 𝑢 − 𝑤0
− ℎ∗ ‖𝑢‖ − 𝛽 − Φ (𝑤0)
− 𝛼 ‖𝑢‖ − ‖𝐶𝑢‖ 𝑤0

≥ 𝑐0 𝑢 − 𝑤02 − 𝐴𝑤0 𝑢 − 𝑤0
− ℎ∗ ‖𝑢‖ − 𝛽 − Φ (𝑤0)
− 𝛼 ‖𝑢‖ − (𝑑 ‖𝑢‖ + ‖𝑘‖) 𝑤0

(69)

for all 𝑢 ∈ 𝐷(𝑇) ∩ 𝐷(Φ). We notice that 𝐷(𝑇) ⊆ 𝑀 because𝐷(Φ) ⊆ 𝑀. In addition, the right side of the above inequality
approaches∞ as ‖𝑢‖ → ∞; i.e., we get

⟨𝑇𝑢 + 𝐶𝑢, 𝑢 − 𝑤0⟩‖𝑢‖ → ∞ 𝑎𝑠 ‖𝑢‖ → ∞; (70)

that is,𝑇+𝐶 is coercive. Consequently, we conclude that𝑇+𝐶
is surjective. Thus for each 𝑓 ∈ 𝐿2(𝑄), the problem in (67)
admits at least oneweak solution.Theproof is completed.

The reader can find plenty of resolvent compact maximal
monotone operators in the paper due to Brèzis andNirenberg
[16] and in the books due to Vrabie [14], Barbu [1, 17],
Showalter [18], and the references therein.
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