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Let Q be a smoothly bounded pseudoconvex domain in C* and assume that Tp,? (z,) < co where z, € bQ, the boundary of Q2. Then
we get optimal estimates of the Bergman kernel function along some “almost tangential curve” C,(z,, ;) ¢ Q U {z,}.

1. Introduction

Let Q) be a bounded domain in C”. A natural operator on Q
is the orthogonal projection

P:L*(Q) — HQ)NL*(Q), 1)

where H(Q) denotes the holomorphic functions on Q. There
is a corresponding kernel function Kg(z,w), called the
Bergman kernel function on Q. The nature of the singularity
of K(z,w) tells us much about the holomorphic function
theory of the domain in question and has been studied
extensively since Bergman's original inquiries [1].

One of the methods for the estimates of the Bergman
kernel is to construct maximal size of polydiscs in Q2 where we
have a plurisubharmonic function with maximal Hessian. For
strongly pseudoconvex domains in C", these polydiscs are of
size 8 > 0 in normal direction and of size 8"/% in tangential
directions. For weakly pseudoconvex domains, the size of the
polydisc in tangential directions depends on the boundary
geometry of Q) near z;, € bQ), and hence we need complete
analysis of the boundary geometry near z,,.

However these analyses and hence the optimal estimates
on the Bergman kernels are done only for special type of
pseudoconvex domains of finite type in C". These domains
are, for example, pseudoconvex domains of finite type in C?
[2-4], decoupled, convex, or uniformly extendable domains
of finite type in C" [5-7], or pseudoconvex domains in C"
with (n — 2) positive eigenvalues [8, 9]. For the estimates for
weighted Bergman projections, one can also refer to [10-12].

Nevertheless, the optimal estimates for general pseudoconvex
domains of finite type in C", n > 2, are not known, even for
n = 3 case.

Assume that Q is a smoothly bounded domain in C"
with smooth defining function r with smooth boundary, bQ.
Regular finite I-type at z, € bQ), denoted by T;,?(z,), is the
maximum order of vanishing of r o y for all one complex
dimensional regular curve y, y(0) = z,, and y'(0) # 0. Thus
T;;g (z,) satisfies

A, (z) < Tgr)eg (z0) <A (2) (2)

where A (z;), 1 < g < n—1, denotes finite g-type in the sense
of D’Angelo [13]. Note that A ,,_, (z,) = Tps(z,) where Tg5(2,)
is the type in the sense of Bloom-Graham.

Remark 1. Consider the domain Q [13] in C* defined by

3)

r(z) = Rez; + 'zf —z§’|2
Then ng(O) = 6and A,(0) = 4 while A,(0) = oo as the
complex analytic curve y(t) = (#3,1%,0) lies in the boundary.
Note that y(¢) is not regular curve.

In the sequel, we let Q) be a smoothly bounded pseudo-
convex domain in C*, and assume that T;; I(zy) = N < 00
where z, € bQ. Let Cy(zy,6,) € Q U {z,} be the “almost
tangential curve” connecting a point z% € Q and z, € bQ
as defined in (20). Note that dist(z°,bQ) =~ & for each 2% €
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Cy(20,0y). Set 7, = 6V, 7, = 7(2°, 6) where 7(2°,8) is
defined in (51).

Theorem 2. Let Q) be a smoothly bounded pseudoconvex
domain in C* and assume that T4, (zy) < 00 where z, € bQ.

Then K (2°,2°), the Bergman kernel function of Q at z2° €
Cy(zy, Op), satisfies

Kq (za, 26) ~ 8_211_212_2. (4)

Theorem 3. Let Q) and z, € bQ) be as in Theorem 2. For each
a = (o, xy,a3), there is a constant C,, > 0, independent of
6 > 0, such that

[p2Ka (22°)] s oo M, ()

forz € Qand z° € Cy(zy,0,).

Remark 4. (1) In Theorems 2 and 3, we do not assume that
A,(z;) < o0, but we assume only that T;;g (zy) < o0
(see Remark 1). With this weaker condition, we get optimal
estimates for Bergman kernel function along special “almost
tangential” direction, C, (2, ), but not normal or arbitrary
direction.

(2) In [14], Herbort gives an example of a domain Qy; C
C? where the Bergman kernel grows logarithmically when
z € Q) approaches to z, € bQ) in normal direction. Set

Oy
={zeC’|Rezy + |2’ + |2 |2) + 22| < o},

and for each small 8 > 0, set z2° = (0,0,-8). Thus z°
approaches to 0 € bQ);; in normal direction as § — 0. In this
case, Herbort shows that KQ(Z(S, 26) = 8_3(— log 8)_1; that is,
the kernel grows logarithmically. For the same domain Q;
in (6), we note that # = T;fg(zo) = 6 and hence 1, = 8e,
7, = 8% in (4). Set Cy(z0, ;) = {(6°/2,0,-8) : 0 < & <
&y} Then 2% = (8Y°/2,0,-0) « Cy(zy,98,) approaches to
0 € bQ) in “almost tangential direction”. In the Appendix of
this paper, we will show that

Ko, (26,26) ~ 8_211_21'2_2 =67, (7)

In Section 2, we will construct special coordinates which
reflect the regular finite type condition, A,(z,) < Tg 9(zy) =
n < 00, and then show that r(z) vanishes to order # in z,-
direction. We then consider the slices of Q) by fixing z,. Then
the domains become domains in C?, and hence we can handle
them. Also, the condition A,(z,) < 0o acts like the condition
A, (z,) < co on these slices.

For the estimates of K(z,w), Catlin [2, 15] constructed
plurisubharmonic functions with maximal Hessian near each
thin §-strip of bQ) (Section 3 of [2]). In this paper, however, we
will construct these functions only on nonisotropic polydiscs
Qaa(za) cc Q for each 2° € Cy(z4,98,) (Proposition 23 ).
This avoids complicated technical parts in Section 3 of [2].
To get estimates of K(z,2°), z € Q, 2° € Cy(z0,0,)s
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we consider dilated domains Dg for each § > 0. Then the
polydisc Qaé(z‘s) cc Q becomes P(0,1) cc Dy, independent
of 8 > 0, where P(0, 1) is a polydisc of radius one with center
at the origin. Therefore the uniform 1/2-subelliptic estimates
for 5-equation hold on P(0, 1), and the estimates for K, (z, 2%)
follow.

Remark 5. Let QO be a smoothly bounded pseudoconvex
domain in C°, and assume that A | (z,) < co, where z, € bQ.
Then the conditions of Theorems 2 and 3 are satisfied. Near
future, using the results of Theorems 2 and 3, we hope we can
prove some function theories on Q, for example, the existence
of peak function for Q) that peaks at z, € bQ or necessary

conditions for the Holder estimates for 0-equation.

2. Special Coordinates

In the sequel, we let Q) be a smoothly bounded pseudoconvex
domain in C* and assume that m = A,(z,) < 1 = T %(z,) <
00, Z, € bQ. Note that m and 7 are positive integers. Without
loss of generality, we may assume that z, = 0. In the sequel,
we let @ = (o, 03) and = (f3;, 55, B3) be multi-indices
and set a = («, ) and z' = (2, 2,), etc. In Theorem 3.1 in
[16], You constructed special coordinates which represent the
local geometry of bQ) near z,.

Theorem 6. Let QO be a smoothly bounded pseudoconvex
domain in C* with smooth defining function r and assume
Ty%(0) = n < 00, 0 € bQ. Then there is a holomorphic
coordinate system z = (z;, z,, z3) about 0 such that

7] ! !
(1) r(z) =Rezy+ Y aypz*7’
|o [ +]B'|=m
lo'LLIB'[>0
(8)
+1
+ @(|z3| |z| + |z'|’1 )
) Ir(t,0,0)| = |¢|",
where
a‘x,’ﬁ, +0
9)

with o, + 3, = m for some «, >0, 3, > 0.

(Idea of the proof) by the standard holomorphic coordi-
nate changes, r(w) has the Taylor series expansion as in (8).
Since T, %(0) = #, there is a regular curve which we may
assume that y(¢) = (¢,9,(t), O(t")) satisfying |r(y(¢))| = [¢|
for all sufficiently small t € C. Set z = (w;, w, + y,(w,), w;).
Then, in z coordinates, r(z) has representation satisfying (8).
Also (9) follows from the condition that m = A,(0).

Remark 7. (1) The second condition in (8) and property (9)
say that r(z) vanishes to order # along z; axis and order m
along z, axis.

(2) There are much more terms (mixed with z;, z, and
their conjugates), compared to the h-extensible domain cases,
in the summation part of (8).
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In conjunction with multitype .#(0) = (1,m,m;), we
need to consider the dominating terms (in size) among the
mixed terms in z; and z, variables in the summation part of
(8). Using the notations of Section 3.2 in [16], set

= {(e ) e 40, m< e +[9]

<, and |(x'|,'/3'| > 0}
(10)
S= {(P»CI);“l tBi=p tp

= q for some ((X,,ﬁ,) € I‘} u{(,0)}.

Then there are (p,,q,) € Sforv=0,1,...,Nand#,A, >0
forv=1,...,N, such that

(1) (Po>q0) = (1:0), (pn»an) = (0,m), Ay
=m, 1 =1
(2) po>p1>...> py and
Qo <q <-.-<qn

(3) A, <A, <...<Ayand

N >Ny >...>HN

(11)
A= R [ R
A
Py 9
2,
M " A,
(5) a“/’l;/ =0

if M + M <1foreachv=1,...,N.
Ty A

Remark 8. (1) Here, p,’s and g,’s are the exponents of z; and
z,, respectively, in the dominating terms in the summation
part of (8).

(2) If A (zy) < 00, then the expression in (8) will be
similar to that of C? case in [2], and hence we need not
consider the above complicated pairs.

Setty, = n.If1 < k < m, thenq,_; < k < g, for some
v =1,...,N.In this case, set

k t k
tk:nv<1_A_)’ ie., 17_k+)t_:1‘ (12)

Then (p,_;,9,-1), (t;,1), and (p,, g,) are colinear points in the
first quadrant of the plane, and A, (resp., 7,) is the intercept
of g-axis (resp., p-axis) of this line. Let L, be the line segment
from (p,_;,4,-1) to (p,,q,) forv=1,...,N,setL=L, UL, U
UL T =1{@,B) €T (e + B,y + B,) € L}, and set

A= {(“”/3’) €Ty o +ﬁ, =(Pya))s % >0, B,

>0, v=1,...,N}.

(13)

As in Corollary 3.8 and Remark 3.9 in [16], we can rewrite (8)
so that

r(2)

lao—=!
=Rez; + Z Ay pZ 2 p
A

N
Yy Mg (2) 2 (14)
=1 a,+B,=q,

a,>0,3,>0

N qy
+ 0 <|z3| 2+ Y e e + |zz|’"*‘>,

v=1 l:qvfl

where M} 5,(21) is a nontrivial homogeneous polynomial of
degree p, given by

Mg (2)= Y aupa2 (15)
a+p1=p,

and there are a small constant g, > 0, and d € {z, € C;|z| =
1} such that

M:’/‘z’ﬁz (z1) #0 for |z, —d| < ay
y ) (16)
and .M‘xz’ﬁz (d8 'l)| ~ 0P ’/,

forall «y + B, = g, with all v = 1,...,N — 1. Property
(16) means that there is (o, [)") with terms mixed in z, and
z, variables for |z; — d| < a,. Let |[d| = 1 be the constant
(direction) in (16) and we will fix d in the rest of this paper.
In the sequel, we set Z; equal to z; or z;, [ = 1,2, 3.

Remark 9. (a) {t;} defined in (12) is strictly decreasing on k.

(b) Each of the summation parts of (14) contains the terms
of the form Ei" 2’2‘ where (t, k)’s are the pairs, defined in (12),
on the polyline L.

(c) Each term of the first summation part in (14) is pure
in z, or z, variables.

(d) Each term of the second summation part in (14) has
terms mixed in z, and Z,, and it corresponds to the pair of
integers (p,, q,), the vertices of the polyline L.

Lemma 10. Let dy(z,) = r(z,,0,0) be the term containing
only z, or z, variables in the first sum of (14). Then

ldo (20)] = |a]"- 17)

Proof. From (8) and (14), we see that |r(z;,0,0)| < |z|". On
the other hand, since the regular I-type at 0 € bQ) is equal to
n= T;fg(o), thereis¢, > 0such that |r(z;,0,0)| > ¢lz|". O

In the sequel, we let V be a small neighborhood of
zy = 0 € bQ where r(z) has expression as in (14). Since
(0r/0z5)(0) # 0, we may assume that [(0r/0z;)(z)| > ¢, for
all z € V for a uniform constant ¢, > 0 by shrinking V' if
necessary. For each fixed § > 0 and for each z = (z;,2,,2;) €
V satisfying |z, — d&'/| < y8'/", for a sufficiently small y > 0
to be chosen, we set 71(z) = (z;,0,e5) = Z € bQ), where 7(z)



is the composition of the projection onto z, z; plane and then
the projection onto b() along the Re z; direction. Using the
Taylor series method in z; variable about eg, we see that

3 or (2)
r(z,,0,0) = 2Re[ .

(—65)] +0(e3).  (18)

Since |eg| < 1 and 2Re(0r/0z;) = 1+ O(|z]) = 1/20on 'V, it
follows from (17) that

leal = [z1" (19)

for z; near 0.

Now for each small 8 > 0, set z(8) := (d8"",0,0) and set
7 = (z(8)) = (d@l/”,O, e5) € bQ. For a small constant b > 0
to be chosen, set 2% = (dél/”, 0,es — bd) € Q, and for a fixed
small 8, > 0 satisfying 7(z>) < 0, set

Cy (20, 8o)
= {2% 2% = (d0"",0,e,-b5), 08 <8,}  (20)
c QU {z},

connecting z% € V N Qand z, = 0 € bQ.

Following the same arguments as in the proof of Proposi-
tion 1.2 in [2], for each fixed Z € V, we can construct special
coordinates about Z so that, in terms of new coordinates, there
is no pure terms in z, or z, variables in the first summation
part of 7(z) in (14). We will fix z, variable and consider the
coordinate changes only on z" = (z,, z;) variables.

Proposition 11. For each fixed Z = (Z,,%,,2;) € V, there is
a holomorphic coordinate system z" = ®({"") = ({,, ®;(("))
such that in the new coordinates {"' defined by

0 (¢") = (2, + 0 05 (3")), 1)

where

" C < _
o, (") =7, (a—%()) (g—l_zlq(zm;), (22)

and where (Z), | = 2,3,...,m, depends smoothly on Z, the
function given by p(Z,,{") = r(Z,, ®;({")) satisfies

m N j_k
Z ajk (21) eI

j+k=2
g (23)

w0 (1G] + 16"

Proof. For Z € V, define

p(El,C”) =7r(Z)+Rel; +

1 " ~ P
O] (w ): <22+w2,z3

(F0) (3-Zow)
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"
where w" = (w,, w;). Then we have

o) =r (70 (0")

=r(Z) + Rew; + @(|w”'2).

P2 (51’
(25)

Assume that (22) and (23) hold for [ > 2. That is, we have
defined @' : C> — C?so that iz, w') =1z, o (w')
can be written as

P (El, ) Rew; + Z a]k (2) wzwlzC
k=2
7,k>0 (26)
+0 (|ws | + s )
If we define ®' = @' o </>l, where

I(s\ _ 2 o' o9p
¢ (") = (cz,cs o
then p,,,(Z,,{") = rZ,, @'(¢")) satisfies (26) for I replaced
by I + 1. If we proceed up to I = m and set ®; = O™ =
' o ¢ o .-+ 0 ¢, then by setting p = p,.,; = 7(Z D5(-)),
we see that (22) and (23) hold. O

(Z,,0,0) Cz) (27)

In the sequel, we will use the coordinate changes in
Proposition 11 only at Z = (Z,,0,Z;) € V, (in particular at
7 = (d61/", 0,e5) € bQ in Section 3). We want to study the
dependence of ®; about Z. For each Z = (Z,,0,%;) € V, set
¢(2) = (0r/0z;)(Z) = 1 + O(|Z]), and we note that

z()_llaz(~1)00) =12 m o (28)

where p; is defined in the inductive step of the proof of
Proposition 11. Set

e () = %co @7,
e (2) = ¢ (@) aa—; (3) and (29)
@) =-@"'qg@ I=2,...,m,

and set p, = 7. Then p,(Z,,{") = 7(Z,, (5, Z; + ey5) and

pi1 =P (2,00 G+ (B G), i=12,...,m.  (30)

To study the dependence of ®; and hence dependence
of aj,k(Zl) about z, in (23), we thus need to study the
dependence of ¢/(Z) on Z variable. For a convenience, set
Z = (2,0, z3), i.e., remove tilde’s, and assume that Z satisfies

|z, - do"") < ps',
(31)
and |z;] < |z,
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for a sufficiently small y > 0 to be chosen. In view of (19),
we see that 2° = (dé6'/",0, es) satisfies (31). In following we
let z be the given coordinates, and we let { be the coordinates
obtained from holomorphic coordinates changes of z, as in
I-th step of coordinate changes in the proof of Proposition 11.
Also we let Dy (resp., 5i), k = 1,2,3, denote any partial
derivative operator of order s with respect to z;, and z. (resp.,
{; and ;) variables. According to the coordinate changes in
Proposition 11, we note that D, = D,.

Proposition 12. Assume that Z = (z,,0,z;) € V satisfies (31).
Then for eachi =0,1,...,m+ 1, we have

|D1115§Pi (5)| s |letk_l1 , 0<ks<m 0<l<n, (32
and for each «,, B, > 0 with «, + f3, = q,, for some q,, in (14),

we have

h

|D1 DY p; (5)| ~ 'Dllngvr(g)' ~ |z, i

(33)
L <p,2<i<m+]1.

Proof. We will prove by induction on i. From (14), (17), and
(31) one obtains
1, k= -1 -1 1-1
DI D5 @)] < |27 + |20 [*7 + s + | oo
34

< |letk_ll ,

and hence (32) follows for i = 0. Since pl(zl,C”) =
(2,05, 25 + €4(3), it follows, from (31) and chain rule, that

D! Dspy 2)] < [DyDsr @) + |23 < |20, (39)

because we are evaluating at Z = (2,0, 0). This proves (32) for
i=1.

By induction, assume that (32) holds fori = 0, 1,..., s. For
the e;(Z) defined in (29), it follows, from (34) and induction
hypothesis, that

! I .
|Dllle" (E)' S Zl‘, 'D{D;Pi (5)| < Z |Zl|ti_] < |,zl|t"_l1 , (36)
j=0 j=0

fori = 1,...,s. Since we are evaluating at {, = 0, it follows,
for s > 1, that

leﬁ’z‘pﬁl (z) = leﬁ’z‘ps (z), ifk<s, and

L
- D'Dkp (2)+ 0 (Z Dle, (z)> , (37)
j=0

if k> s.

By (30), (36), and (37) and by induction, (32) holds fori = s+1
because t, <t ifk >s.

Now we prove (33). Assume «, + 3, = g, with a, > 0,
B, > 0 where (p,,q,) are the pairs corresponding to the
second summation part of (14). Note that the first summation

part of (14) will be annihilated by DZV because it contains the

pure terms of z, or z, mixed with 2’1‘ . Thus it follows from
(14), (16), and (31) that

DI Dgr ()| = |D111M;2,ﬁ2 (z))|
(38)

+0(Jz3] + 2, ph

pv+1—ll)

~ |z,

Since p;(2;,("") = 1z, (5, 25 + €y(3), it follows from (31) and
(38) that

Dt DY p, 2)] = [DIDEr @) + 0 (|2s]) = |07 (39)

Similarly, since p, (z,,{") = p,(z,, {5, {3 +e, ), it follows from
(36) that

1, '
DD p, @)] = DYDY 1 (2)] + X |Die|
=0 40)

Pv_ll

>

= |z1

because p, = t, <t for g, > 2. This proves (33) fori = 2.
By induction assume that (33) holds for i = 2,...,s. If
k=gq, =a,+p,witha, > 0and 8, > 0, that is, ifPDVIZ<

has mixed derivatives of 0/0(, and a/aZZ, we note that (37)
becomes

Dlllﬁgps+1 (z) = leﬁ];ps (z), ifk<s, and
Lo
= D'Dip, (2)+ 0 (Z Dle, (2)) , (41)
=
if k>s.
Ifk = q, < s, (33) follows from (41) and induction hypothesis

of (33). If g, > s, it follows, from (36), (41), and induction
hypothesis of (33), that

’Dlllﬁgvpsﬂ (E)' = |D1115¢21VPS (2)|
I, ‘
+0 (Z |Die, (z)|> ~ |2,
=0

because ¢, > p, = t, for g, > s. Therefore (33) is proved for
i=s+1. O

Pv_ll

>

Recall the expression of p =
functions aj,k(El) in (23).

Pms1 and coefficient

Corollary 13. Assume that Z = (z,,0, z5) satisfies (31). Then

fmh (43)

I
|D11aj,k (Zl)' s |Zl

and if j + k = q, for some q,, in (14), then

ph . (44)

]
'Dllaj,k (zl)| = |zl



Proof. From (23) we see that

Diay (z) = DD p (7). (45)

where Z = (2,,0,0) and j,k > 0. Hence it follows from (32)

that
IDYaj (2))] = |D1115£+kp (f)' <. (46)

Assume g, = j+ k < m for some g,. Thus j,k > 0 and it
follows from (23), (33), and (41) that

|leaj,k (z1)] = |D1115§v/’ )= 'leﬁgyl’qv @]

(47)
t,,-1

- -
ay 1=lzl py—h

>

=~ |z

because t, = p O

Remark 14. Suppose that g, ; <l < g,and p, < t; < p, ;.
Then (p,,q,), (t;,1), and (p,_;,q,_;) are colinear points. From
the standard interpolation method, we have

a'v < aPrb® + gbriph (48)

for all sufficiently small a,b > 0. Assume that j,k > 0 and
I=j+k+gq,forany of v = 1,2,..., N. Therefore it follows
from (43) and (48) that

—k )
%k (z1) Cézz .

(2 |j+k

G

<z

(49)

< |Z1 Py v + |Z1 Py |(2 Qy-1 .

i—k
Therefore the terms of the form a; . (2, )¢, with j+k = g, for
some ¢, in the summation part in (23), are the major terms
which bounds the other summation terms from above.

In the sequel, we assume that Z = (z;, 0, z5) satisfies (31).
As in Section 1 in [2], for each Z = (23,0, z3), set

Aj@) = Ay (z)) = max{la (2))]3j + k =1},
(50)
I=2,....m.

In view of Remark 14, we will consider A;(z,) only for [ = gq,,
0 < v < N - 1. From (9) and (44) we note that

|Aqo (zl)| =|A,,(z;)| = 1, and

'Aqv (Zl)| = lzl
because g, = m. For each sufficiently small § > 0, set

7(Z,0) = 1(2,,90)

s 1/g, (52)
=min<{( ) ;OS‘VSN—I},
Aqv (Zl)
and set

T(Z,8) = T (z,,0)

s \Ve (53)
= min {qy;<Aqv (21)) =T(Z1,8)}.

(51)
P 1<v<N-1,
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From (51) and (52), we see that if 8’ < 8, then
8’ 1/2 6’ 1/m
<§) 1(z0) <7(%0") < (3) 1(z0). (54

Lemma15. Foreach0<e <1, T(Z,e6) < T(Z,0).

Proof. Set g, = T(Z,€d) and q, = T(Z, §). Then

1/4; 1/q,
T(z,ea):(Ae5~ ) :el/qv<L~)
@ 7@

> /7 (z,8) = €/ (

5 1/q,
A, (@) ) (55)

1/q,
- Ma-1/a €d
A, (@)

> Vo Vr (3 ¢5).

Therefore ¢ < g, because 0 < € < 1. O
Proposition 16. Assume Z = (z,,0, z;) satisfies (31). Then

1(2,0) =~ 1(2°,9), (56)

50 _ 1/n

where Z° = (d§™'", 0, eg).
Proof. By (31), we note that |z;| = 8!/, Assume that T'(Z°,
8) = q,. Then Aqy(Z‘S) ~ §P1 by (51). Therefore it follows,

from (50) and (52), that

A, @) =]z

Prxobli=~ A, (2°), (57)

and hence it follows from (52) and (53) that

~ y ) 1) ~
T(Za’é)q ) 4, (2% ) A, (2) 2T @O (58)

Thus 1(56,5) > 7(Z, 6) follows. Similarly, one can show that
7(2°,0) < 1(Z, 6). O

Let 0 < 0 < 1 be a small constant to be determined (in
Remark 22). By Lemma 15, T(Z‘s, 06) < T(Z‘s, 8) for each 0 <
0 < 1, independent of § > 0. Therefore there is a smallest
integer s = s(2°), 0 < s < m — 1, such that

T(2°,68) =T (2°,0%) = t.. (59)

Then t; = g, for some g, by (53). In following, for the
fixed integer s = S(Ea) in (59), setd, = 0°8, 7, = T(E‘S, d,),and
T = 8/ as usual. If we define D2(0) = ({1, P5(("")), where
(133((") is defined in (22), we may regard that ®3({) : c—
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C is a biholomorphism. For each 2° = (d8'/",0,e;5) € bQ),
set C‘S = (dél/”,o, 0) = CD;;(E‘S). For each small y > 0, define

Ry (2°)
= {¢]6, = d8"] <yr 0ol < yro [l < v}
and,

Qs (2°) = {@20 (03¢ e Ry (7))}

and set R%({°) = R5({°) and Q)5(2°) = Q,5(2°) when s = 0.

(60)

Proposition 17. The function p = r o Oy satisfies

[Dip(8°)] < om,", and, o
|D1115§p (56)| <ot 1<k<m,

Proof. Recall that p = p,,.;, and |z| = 8 in (32). When
k =0, it follows from (12) (¢, = #) and (32) that

[ ()] = (841)™ = 6r,". (62)

Assume 1 < k < m. Then by (12), q,_; < k < g, for some
v, and hence it follows that p, < t; < p, ;. Therefore one
obtains, from (48)-(52), that

lzl|tk k - |Z1 Py er + by T;zy
(63)
SA, T+ A Th <0,
From (32) and (63), it follows that
L=k (70 t te k -1 —k
|D1D2P(C )| Slzllk (lzllk )lzll
(64)
< 531;1115_".
([
Using the z coordinates defined in (14), set
0
L3 = 8_23 and
0 or\"or o 0 a (65)
L,=— - — +b —
k 0z (823 ) azk 823 azk th(z )
k=1,2.

Then Ly, k = 1,2, are tangential holomorphic vector fields
and |L;r| = ¢, > 0 on V N Q for a uniform constant ¢, > 0.
For any j, k with j,k > 0, define

F400r(2) = Ly... Ly L. 1,00r (L, L) (2). (66)
(] 1)times (k 1)times
In {-coordinates defined by z = (z,, ®;({"")) = ®;({), set

L = (AL k
If we define

Z80p @) =Ly 1L Lo (1LT) Q) (g

(j—1)times (k—1)times

=1,2,3 and set b({) = b(P:(0)), k = 1,2.

then by functoriality,
Z ;001 (z) = y;kaép ©). (68)

Lemma 18. There is a small constant ¢, > 0 such that
00r (2) (Ll,fl) > 981’1—2, Z €Qys (56) , (69)

provided y > 0 is sufficiently small.

Proof. Since the level sets of p are pseudoconve, it follows
from (61) that

9p () (LI, = 1 aé’z”_ ©+0(br)
1961 (70)
.| 2 Q)| -Cor; "
0¢,0¢,
Recall that dy(2;) = Y 14,y e, z] zlf ' is the term which

contains only z, or z, variables in the first summation part of
(14). Therefore it follows, from (17), (19), and (23), that

2p | |3 (2)
1%8% O =
1961 171
o%d . (71)
- [Tz o el ¢ k)

=~ lZ1|r] 2 = 8T_2,

because |z, | = |dét/) = T = SN IfC € Ry6(26)> it follows
from (61) and (71) and by using the Taylor series method that

p Ip (3 =~ o -2 -2
— ()| = — ()| -yC,01,* 2 2,07, %,
9(,0¢, 9¢,08, 1 1 (72)
C € Ryﬁ (26) >
provided y > 0 is sufficiently small. Thus (69) follows from
(68), (70), and (72). O

In the sequel, we let ¢, and C, be the constants which may
different from time to time but depend only on the derivatives
of r or p up to order #. Recall that Ek(() =b(D:()), k=1,2.
By using (61), and by using Taylor series method, one obtains
that

[DIDSB )] < G ", Lery (@), (73)

provided y > 0is sufficiently small, where 7, = 7, and 7, = 7.
Note that we can write

_ RPN
30p () (L 1,) = L+ R, (74)

04,0,

where R, = 0O(b,). By applying L', or f; successively to
Bép(( )(L'z, I ,), we obtain that

a +k
llDlzg aap (C) D DZZ Pk + DllD 2R1+k_1) (75)
ajoc,



where, by (73) and by using induction method, R, ._; satisfies

DI D3R4y (O < Coo,7 72,
i (76)
(e R;S (C )

Combining the estimate in (61), (75), and (76), one obtains
that

|Z1400p ()] < C8.777%, (eRG (D). (77)

Assume that (59) holds. Thus ¢; = g, for some g,,), and

hence it follows from (53) that A e (z)) = 8,7; 7. Therefore
it follows from (23) and (50) that there exist integers j, k > 0

with j +k =t = q,(,), such that
oitk ) -
( |a]k )' = Aqvm (Zl) = 831'5 b
BCZBCZ (78)

= Ssr_j_k.
For these j,k > 0, it follows from (61), (75), (76), and (78)

and by using the Taylor series method that there are constants
¢, C, > 0 such that

od,1, " < |2, d0r (2)] < C,8,777F,

(79)
2eQ (),
provided y > 0 is sufficiently small.
Lemma 19. There is C, > 0 such that
|aér (2) (Ll,fz)' <Cyd't, ze Q;(; (26). (80)
Proof. By functoriality, we have
3r (2) (L,,T,) = 99p (©) (L', T,)

2 (81
0 (b b
% (2 Q+0 (B Q) +b(0).

From (23), we see that

D, (Lp_) (2) =0 (les]) = 0.5)

9¢,0¢
106 2 82)
0 -
9P @),
0¢,00,
and it follows from (61) that
~ Pp 3 -1_-2
D, — (%) < é,1;1,°. (83)
aclacz( =0

Therefore (80) follows from (73), (81), and (83) and by usmg
Taylor series method.
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Note that T(2°, 0°8) = t, = dy(s)> for some g,), and hence
there exist j > 0, k > 0 with j + k = t,. In view of (79), we
may assume that

L, (Re Z,.,400r (2)| = 0,7, z€Q}5(2°), (84)
is valid (when j = 1, we replace &;_, , by & ;). Set
G(z) =ReZ;_,,00r (2). (85)

By using the estimates (73)-(76), one obtains that

IL,G| < + |DiRj | + 2G|
E)C (86)
<GC0,1, TS_tSH,
and similarly,

|00G (L, L) (2)] < G877 %, jk=1,2, (87)

forz € Q;(;('z“‘s), where 7, = 1y and 7, = 1,.

Lemma 20. Assume that (59) holds. Then

- =8

|G ()| < Czal/tSSSTS o ze Q;(s (z ) (88)

Proof. Suppose z € Q;a(i‘s). In view of (51)-(53), (56), and
(59), we see that

s+1 1/(t-1) s+1 1/t
( o0 ) 21(2,05”6):(0 8)
Ats—l (Z) Ats (Z) (89)

1/t 1/t
= 0'%1(2,0°6) = 0'/7,

and hence it follows that
A, () s oot (90)
This together with (73)-(78) implies the estimate (88). O
In the sequel, we write
L=aL,+alL,+aL,. (91)

Lemma 21. There is a positive number o > 0, independent of
2° and 8, such that if z € Q}5(2°) and if (59) holds, then there

are constants ¢, > 0 and C, > 0, independent of Z, § and o > 0,
such that

939G’ (L,L) (2) 2 027,
(92)
62 —2 2t+2| 1| —C2 |a3|

Proof. Suppose z € Q;(;(Ea). From (87) and (88), we note that

|G (2)00G (2) (L ;,I,)| < o'/“827, P27 15, (93)

J
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for j,k = 1,2 where 7, = 7, and 7, = 7,. Using (84)-(88) and
(93) and by using small (large) constant method, one obtains
that

909G (2)* (L, L) = 2|LG (2)|* + 2G (2) 99G (L, L) (2)

2
“Ja|
+4Re ( > (L;6)(LG) ajak> (94)
1<j<k<3

+2 Y G(2)00G(2) (L, L; ) ajay

1<j<k<3

> ZQésZTS_Zt

2 —2 —2t +2

2 0.7, ||’ - C,0 lar]* - C, Jas|*,

for some ¢, > 0 and C, > 0 provided o > 0 is sufficiently
small. O

Remark 22. From now on, we fix constants ¢, > 0and C, > 0,
which depend only on the derivatives of r or p of order up
to n on V, satisfying (69), (73), (80), and (86)-(92), and set
C, = ¢, for a convenience. Now we choose and fix y > 0 and
then fix o > 0 so that

40C§y1/2 <1, and

| (95)

_E.

420Cy7?0*m <

3. Estimates on the Bergman Kernels

Recall that 2° = 71(2(8)) = (d8'/",0,e5) € bQ where z(8) =
(dd'",0,-8) and where 7 is the projection defined before
(19). Also note that @y (2% = Z° where Z° = (d8'",0,0) and
where @5 is the holomorphic coordmate function defined in
Proposition 11 about Z = Z°. Also recall C, (z,, 8,) defined in
(20). In this section we estimate the Bergman kernel function
Kq(z,2°), for z € Q and 2° € Cy (2, ).

To get optimal estimates of the Bergman kernel, we need
to construct a plurisubharmonic function which has maximal
Hessian near each thin neighborhood of bQ as in [2, 15].
It contains complicated estimates depending on the type
conditions of each boundary points. In this paper, however,
we will construct such functions only at 2° € bQ. This will
make the estimates much simpler than those in [2, 15] but still
contain many complicated estimates.

Note that ¢ > 0 and y > 0 are fixed in Remark 22 and
hence the type ¢, and the integer s defined in (59) depend only
onz° € bQ. Recall that 8, = 0°8, 7, = 6", 7, = 7(2°, ), and
T, = 1(25, 8,). From (54) we have

0/212<T <o’ . (96)

Letus write L=a,L, +a,L, + a;L;.

Proposition 23. There exist a smooth plurisubharmonic func-
tion gz on Q) that satisfies the following:

(i)1gz(2)| < 1, forz € Q, and gz is supported in Q;S(Z‘s)ﬂ
Q.

(ii) There exist a small constant b > 0 such that if z €
Qus(Z°) N Q, then

009 (L,f) (2) = 17" |a1|2 +17,° lazlz +87? |a3|2 . 97)

(i) If ©2:(() =
then

(21, 25, ©5(0)) where @ is defined in (22),

D" (g2 © @ ()] < Cpry 7,267 (98)
holds for all { € R;a(f‘s) where D% = 5‘;‘5;25?3.

Proof. For each fixed Z°, we note that the integers s = s(2°)
and ¢, deﬁned in (59), will be fixed. Set 7} = 7; and 7, = 7,.

Note that y >0 *% < 1 provided § > 0 is sufficiently small.
Since 8, = ¢°6, it follows from (80) that

|00r (2) (L, L,) ay |
< Cyd (1;? |a|” + 0% |a2|2), and

|00r (2) (Li» L) a3 (99)
< Cyo™87 % |a + Cyy o 2877 |as |
< Cyyo™ (872 |af* + 87 |as["), =12,

forz € Q;B(E‘s). From now on, we fix A = 420C§y_9/2 and set
A,=0 %A

We may assume that the level sets of r are pseudoconvex
onVand |Lyr|* = ¢ > 00onVNQ, where we may assume that

& > 4c,. Also 4C,p"* < ¢,/10 by (95). Therefore it follows
from (69) and (99) that

28790 (LT) + (1,87 |Lrf?
3
=107 Y 90r (L L) @] +21,67
k=1

Y 90r (L L) ad + 2207 fas|* [Lsrf”

1<j<k<3 (100)

> 107! [ 2 S0 oy

+ (851’ (2) (L L,) - %y1/2025615_2> |a2|2]
+36,028 7% |as|

forz € Q;(;('z“‘s).
Let y({) be defined by
v @ = x (52 - o™ + 2 0P + 82 ). (1o

where y is a smooth function such that x(t) = 1 for t < y*/9
and x(t) =0 fort > yz, satisfying IDkxl < Cky_Zk. Set ¥(z) =
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1//(((13—2-5)_1(2)). Note that (D.Z_.,;l(z) has similar expression as in
(22). Thus it follows, from (22), (29), (30), and chain rule, that
ID*W (2)] < Cpy ;%2287 z € Qs (2°). (o2

Here a = (&), oy, 3) and || = «; + &, + 5. Since C,, = cz_l,
one obtains

|0o¥ (2) (L,Z)|

< CzY_4 (71_2 |a1|2 + Ts_2 lazlz + 5;2 |“3|2)’
. (103)
AS LY (2)] |y |as|

—4--2

<10C,y T, |a| ;2257 |as

2
oS sl

, 1=1,2,
where 7) =7, and 7, = 7.
Suppose that z satisfies ¥(z) >

Lir = 0,k = 1,2, and the fact that 84(?2)/_9/2
(,/5)A, it follows from (100)-(103) that

1/4. Using the fact that
= (&/5A <

00 (\Pe)‘s“’”) (LI) =€ [aﬁ\y (L.I)

+2187 i Re ((L;¥) (Lyr)) a@]

i=1

+ [N 07W0dr (L) + A27WILr] =~ (104

AN

3
[ 22) T ] + A0 as|

MO [Asé_laﬁr (z) (Lz,fz) - 2?%))1/2)“_5—2]

-|a2|2.

We note that the negative part in (104) contains y'/>) instead
of p'21..

Let h be a smooth convex function such that h(t) =
fort < 1/2 and h(t) > O fort > 1/2 and h(9/8) < 1. Set

Gy (z) = ‘I’(z)elsdilr(z) and set gz (z) = h(Gz(z)). Suppose
T(Z°,8) = 2. Then s = 0, and hence (79) holds for 8, = 6 with
j=k=1;thatis,

607, < 00r (2) (L, L,) < C,01,°, z€Q,s(2°). (105)

For those z with ¥(z) > 1/4, it follows from (104) (with A, =
A) and (105) that

090G (2)
(106)
1 |a1|2 + 12_2 |a2|2 +0872 |a3|2] .

S 3Q)‘em*1r [T—z
0

If ¥(z) < 1/4, then Gzs(z) < 1/4 and hence gz (z) = 0.
Hence g3 is a smooth plurisubharmonic function supported

on QVS(Z‘S), and |gzs| < 1.
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Now assume T(26,6) > 2 and assume that (59) holds.
Then (79) holds for some positive integers j, k with j+k =¢.
Let G(z) be the function defined in (85). From (88) and (95),
we see that

Ayl/z(:)\ 2 2t ZG(Z) <Ayl/2C2 2/t

107
< 420C}y gt < L 1o
- =6
zeQ@ 5(2 ), because A = 420C2y and f; < m. Set
9z (2)
(108)

=h(¥ (@) @+ ¢ (16712 7G (2))),

where ¢(t) is a smooth function that satisfies ¢(t) = t, for
t < 1/16,¢(t) = 0fort > 1, and ¢(t) < 1/8 for all t. Thus

€ cg"(Q;&(z‘S)) and |gs| < 1 because h(9/8) < 1. By
(107) we note that ¢(z) = z on Q;(;(Ea), and we also note that

gz = O if \P(z)eAsailr(z) < 3/8, in particular, gz = 0 outside
Q;(;(Z‘S). From (92), we obtain that

Ayl/zés_zrft‘_zaﬁG (2)? (L, f)

1/2(02’\7 |azl _Cz/\Tl_2|‘11| Cz/\5;2|a3|2) (109)

> (‘2)/1/2)&1'5_2 |a2|2 _ %)ﬂ_l—z |a1|2 _ %Aé\s—z |a3|2 ’

forz € Q;(;(Ea), because yl/ZCZ < ¢, /40.

87'r(z)

Assuming that \P(z)eAS > 3/8, we note that the neg-
ative coefficient part of |a,|* of the Hessian of Y(z)erd 7@
in (104) is controlled by the first term in the third line of
(109), and the error terms of the coeflicients of |a, |2 and |a3|2
in the third line of (109) are controlled by the corresponding
coeflicients of the Hessian of ‘I’(z)elséilr(z) in (104). In either
T(Z‘s, 8)=2or T(Z‘s, 8) > 2 cases, it follows from (104), (106),
and (109) that

009, (L, f) > %e’\‘&ilr(z) ()LSTI_Z |a1|2

ey af 0767 (asf),

(110)

for z € Q)5(2°).

Note that parameters, ¢,, C,, ¥, 0, and A, are fixed in
Remark 22, independent of § > 0. Therefore the upper bound
of gz follows from (84)-(88), (96), (99), (102), and (103). Note
thate?d 1@ 5 o714 3/4,ifr(z) > —-6/4A, = -80* /4, and
this property holds on Qy,5(2°) if we take b > 0 sufficiently
small; say, 0 < 2b < o?™ A%, Also note that ¥ = 1 on sza('z“a).

This fact together with (96) and (110) proves properties (i) and
(ii). Property (iii) follows from (22), (30), (32), and (96). O

For each 2% = (d6'",0, es — bd) € Cylzy,6,), set 0=

D) (2°) = (d8"/",0,-b).
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Proposition 24. There is a small constant a > 0 such that
R,,5(¢%) cc Q for all sufficiently small 8 > 0.

Proof. From (22)-(29), we obtain that

p(0°)=r(2")=-bs+0(8"") < —?, (1)

for all sufficiently small 8 > 0. Assume { € R,,5(¢°) and write
P =[p@Q-p(d8,5,0)]
+[p (@06 5) = p (E)] +p (&) (12)

::E1+E2+p(58).

From (61), and by using Taylor series method, one obtains
that

|E;|<a  max
17, ~d61 /| <2a8'/1

'D1P (21’C2>C3). 8" < 2aC,0, (113)

for a uniform constant C, > 0. Similarly, we obtain |E,| <
4aC,6. Combining these estimates and (111) and if we seta =
b/24C,, then we obtain that

bd bd
= (R (&°). a4

O

p(() < 6aCy0 -

Remark 25. (1) Set gs({) = gz o ©z({). Then, by functori-
ality, Proposition 23 holds, where g;s is replaced by g5, and

Qy(;(i‘s) is replaced by Ry(;(f 6).

For each fixed & > 0, and for each fixed 7 = (dél/ n
0,e5) € bQ, set Oz = O (Q). Note that |det(Jo D (2))] =
2|(ar/8z3)(25)| > 2¢y > 0 on V. Thus it follows, from
transformation formula, that
or s\

- (2°)| Ko, (6:¢°). @3

8\ _
KQ(Z,Z )—4 -

In view of Propositions 23 and 24, there is a smooth plurisub-
harmonic weight function gz which has maximal Hessian
on Qaé(za) cc Q. We also note that 1(26,6) = T(Za, d) by
(56). If we use these properties and (115), we get the following

estimates for the Bergman kernel function K (z°, 2°) at 2° €
Cy(zy,9,) as in Theorem 6.1 in [2]:

Kq (zﬁ,za) ~ 8267y (za, 8)_2 , we)
116
2’ €C,(29,8,)-

This proves Theorem 2.

Now we want to get derivative estimates of K(z, 26) for
zeQand 2’ € Cy(zy,0,)- In view of (115), we will estimate
Kq, (0% where z = @3(0) and 2° = @5 (L%). We will
follow the methods in [3, 9] which use dilated coordinates.

11

For each fixed 8 > 0, we recall that 7, = 6"/, 7, = 7(2°,6)
and 7, = 8. Define a dilation map Dy given by

(G -dd G G +bs
Ds (@)= < ar, a_Tz, at, ) = (ww05) 117)
=w,
set
ps(w) =87 (po D5’ (w)),
(118)
Qs = {w € C3;p5(w) < 0},
and set
As (w) = s o D3 (w), (119)

where g5({) = gz o ®3({) and where gz is defined in
Proposition 23 .

Set
0
L=—,
> Ow,
Lazi_<%>‘l%i (120)
kT ow, ow, ow, dw;’

k=12,

and write L° = b, L‘i + sz(; + b3L‘;. The properties of A5(w),
which follow from Propositions 23 and 24 and Remark 25, are
summarized in the following proposition.

Proposition 26. For eachd > 0 there is A5(w), defined on Qs,
such that
(D) As(w) is smooth plurisubharmonic in Qg, and |Ag| < 1;
(2) supp As(w) ¢ P(0, 5),for some C = 2a_1y > 1;
(3) 85)L5(L6,f6)(w) = b, + b, + |bs)? if w € P(0,1);
(4) ID{As(w)| < C,.

The weight function with the properties in Proposition 26
is the key ingredient for the derivative estimates of the

Bergman kernel function off the diagonal. Set P = P(0,C)
and let N5 be the Neumann operator on Q5. Then we have
the following L? estimates of N, s (Proposition 3.14 in [3]).

Proposition 27. Let h € L* be a (0,1) form and supph C P.
Then there is C > 0, independent of § > 0, so that

L NP = CP. (121)
S5

Note that D5(C5) = 0. Set
P(0,7) = {w = (w,wy,ws) : |we| <7, k=1,2,3}. (122)
From (117) and Proposition 24, we note that

Ds (Rys (¢°)) = P(0,1) cc P(0,2) cc Q5 (123)
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independent of § > 0. Let &, &, € C;°(P(0, 1)) with &, = 1in
a neighborhood of 0 and &, = 1 on supp&;. From (123), we
see that supp &, ¢ P(0,1) cc P(0,2) cc Qg, independent of
6 > 0. Therefore we have the following elliptic estimates:

612 < € (I&ms 12+ 1T7).
_ . (124)
s>0, fe Dom(a)ﬂDom(a ),
where O is the complex Laplacian on Q.

Remark 28. The estimates in (124) are on the polydisc
P(0,1) cc P(0,2) cc Qy, strictly inside of g, independent
of § > 0. Therefore we gain two derivatives in (124) and it is
stable; that is, C, is independent of § > 0. Also we note that we
do not require that A, (z,) < co. Since P(0,2) cc P = P(0, C)
where C = 2a™'y > 2, we can also apply the estimate (121) on
P(0,2).

Let ¢ € C°(P(0,1)), [¢ = 1, and ¢ be polyradial. In
terms of w-coordinates in (117), we have the following well
known representation of Bergman kernel function on Q;.

Kq, (w,0) = ¢ (w) — 0, N50¢ (w). (125)

Let y € C®(Qg) with y = 1 outside P(0,1) and ¥ = 0 on
supp ¢. Combining (121)-(125), we can prove the following
lemma as in the proof of Theorem 4.2 in [3].

Lemma 29. For each s > 0 there is C; > 0 such that

I XN55¢“S <C,.

Now, if we use the estimate (126) with s = |«| + 3, we can
prove Theorem 3 as in the proof of Theorem 4.2 in [3].

(126)

Appendix

We recall Herbort’s example Q; in (6). Therefore = 6 =
A,(0) and hence 7, = 6%, 7, = 6%, and 7, = & in our
notations. For each fixed 8 > 0, set z° = (51/6/2, 0,-0). Then
2° € Qy and approaches to 0 € b€, in “almost tangential
direction” as the points do along C,(z,, d,). In this case, we
will show that

Kq, (26,26) =87 =811, (A1)
which is exactly same result as Theorem 2.
Proof of (A.I). Set
1/6 1/6
s 0 )
P = : - < —,
(&) = fosfe - 5] < 25 T
(A2)

1/3
< 8— |25 + 6| < i}
10 10
Then the polydisc P5(z°) about z° is contained in €.

Therefore the upper bound KQH(ZB, 2°) < 872 follows. Let
us show lower bounds.
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Let A, be the unit polydisc in C*. Since the localization
lemma is valid for Q;, we will estimate Ko, (2%,2°). Set

P (z,2,) = lzl|6 + |21|2 |22|2 + |ZZ|6’ and
] , , (A.3)
Py (z),2,) = |21| * |Zl| |Zz| >

and set
G, ={Rez; + P, (z,,z,) < 0}, and

(A4)
G, = {Rez; + P, (z,,2,) < 0}.

Then Qy; = G, € G,and z° € G,NG,. Set f5 = 88'/°z, /(z, -
8)%. Then f5(2°) = 1. Note that

2 2
||f5||L2(G1mA3) < ||f5“L2(G2mA3)

- 16611/3J EAG

EAREAIS
(A.5)
: UR . |Z3 _5| 4dV2 (z3) |dV,

SSHBJ lzllz (5+P) 7 dV, = (x),

|z1,lz,1<1

where we have used IR(ds/(1+52)2) =¢ < 00.Setz; = 61/621
and z, = 81/3z;. Then

zi|2(1

+P, (zi,zé))_z dv, (z;,z;)

(=8|

PAR RS J|z§|<51/6

(A.6)

53 56

553[
0

+ rls)_z drdr, = (sx)

3 22
T (1 + 175

where we have used the polar coordinates: z;, = 1o k=1,2
in the second line.
Setr} = xandr; = y. Then

523 523 ~
(**)$83J (1+x1/2y+x3/2) 2clyclx
0
_ 87/3 o dx (A7)
o (L+x32) (1482312 + x32)
=08""1(5).

-2/3
Write 1) = [ + [0 = L,(8) + L,(5). Set %'/ = .
Then

6—2/3 3 572/3
8 dx! < &3 J dx' =8, (AB)
0

!

11(6)sj

0 1+x
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Also,
6*2/3

L) < j dx

. 312 (x3/2 N 8‘2/3x1/2)

—2/3
-2 2/3
x 2dx < 8°.

(A9)

< &3
1

Combining (A.5)-(A.9), we obtain that ||f5”12~2(QH) < &
Therefore Kq, (2%,2%) =672 O

Remark 30. Set f(z) = exp(z;/(1 — z5)). Then f is a peak
function that peaks at 0 € bQ; for the domain Q.
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