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LetΩ be a smoothly bounded pseudoconvex domain inC3 and assume that 𝑇𝑟𝑒𝑔
Ω (𝑧0) < ∞where 𝑧0 ∈ 𝑏Ω, the boundary ofΩ.Then

we get optimal estimates of the Bergman kernel function along some “almost tangential curve”𝐶𝑏(𝑧0, 𝛿0) ⊂ Ω ∪ {𝑧0}.

1. Introduction

Let Ω be a bounded domain in C𝑛. A natural operator on Ω
is the orthogonal projection

𝑃 : 𝐿2 (Ω) 󳨀→ 𝐻 (Ω) ∩ 𝐿2 (Ω) , (1)

where𝐻(Ω) denotes the holomorphic functions onΩ. There
is a corresponding kernel function 𝐾Ω(𝑧, 𝑤), called the
Bergman kernel function on Ω. The nature of the singularity
of 𝐾Ω(𝑧, 𝑤) tells us much about the holomorphic function
theory of the domain in question and has been studied
extensively since Bergman’s original inquiries [1].

One of the methods for the estimates of the Bergman
kernel is to constructmaximal size of polydiscs inΩwherewe
have a plurisubharmonic functionwithmaximalHessian. For
strongly pseudoconvex domains in C𝑛, these polydiscs are of
size 𝛿 > 0 in normal direction and of size 𝛿1/2 in tangential
directions. For weakly pseudoconvex domains, the size of the
polydisc in tangential directions depends on the boundary
geometry of Ω near 𝑧0 ∈ 𝑏Ω, and hence we need complete
analysis of the boundary geometry near 𝑧0.

However these analyses and hence the optimal estimates
on the Bergman kernels are done only for special type of
pseudoconvex domains of finite type in C𝑛. These domains
are, for example, pseudoconvex domains of finite type in C2

[2–4], decoupled, convex, or uniformly extendable domains
of finite type in C𝑛 [5–7], or pseudoconvex domains in C𝑛

with (𝑛 − 2) positive eigenvalues [8, 9]. For the estimates for
weighted Bergman projections, one can also refer to [10–12].

Nevertheless, the optimal estimates for general pseudoconvex
domains of finite type in C𝑛, 𝑛 > 2, are not known, even for𝑛 = 3 case.

Assume that Ω is a smoothly bounded domain in C𝑛

with smooth defining function 𝑟 with smooth boundary, 𝑏Ω.
Regular finite 1-type at 𝑧0 ∈ 𝑏Ω, denoted by 𝑇𝑟𝑒𝑔

Ω (𝑧0), is the
maximum order of vanishing of 𝑟 ∘ 𝛾 for all one complex
dimensional regular curve 𝛾, 𝛾(0) = 𝑧0, and 𝛾󸀠(0) ̸= 0. Thus𝑇𝑟𝑒𝑔
Ω (𝑧0) satisfies

Δ 𝑛−1 (𝑧0) ≤ 𝑇𝑟𝑒𝑔
Ω (𝑧0) ≤ Δ 1 (𝑧0) , (2)

whereΔ 𝑞(𝑧0), 1 ≤ 𝑞 ≤ 𝑛−1, denotes finite 𝑞-type in the sense
of D’Angelo [13]. Note thatΔ 𝑛−1(𝑧0) = 𝑇𝐵𝐺(𝑧0)where𝑇𝐵𝐺(𝑧0)
is the type in the sense of Bloom-Graham.

Remark 1. Consider the domain Ω [13] in C3 defined by

𝑟 (𝑧) = Re 𝑧3 + 󵄨󵄨󵄨󵄨󵄨𝑧21 − 𝑧32 󵄨󵄨󵄨󵄨󵄨2 . (3)

Then 𝑇𝑟𝑒𝑔
Ω (0) = 6 and Δ 2(0) = 4 while Δ 1(0) = ∞ as the

complex analytic curve 𝛾(𝑡) = (𝑡3, 𝑡2, 0) lies in the boundary.
Note that 𝛾(𝑡) is not regular curve.

In the sequel, we let Ω be a smoothly bounded pseudo-
convex domain in C3, and assume that 𝑇𝑟𝑒𝑔

Ω (𝑧0) = 𝜂 < ∞
where 𝑧0 ∈ 𝑏Ω. Let 𝐶𝑏(𝑧0, 𝛿0) ⊂ Ω ∪ {𝑧0} be the “almost
tangential curve” connecting a point 𝑧𝛿0 ∈ Ω and 𝑧0 ∈ 𝑏Ω
as defined in (20). Note that dist(𝑧𝛿, 𝑏Ω) ≈ 𝛿 for each 𝑧𝛿 ∈
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𝐶𝑏(𝑧0, 𝛿0). Set 𝜏1 = 𝛿1/𝜂, 𝜏2 = 𝜏(𝑧𝛿, 𝛿) where 𝜏(𝑧𝛿, 𝛿) is
defined in (51).

Theorem 2. Let Ω be a smoothly bounded pseudoconvex
domain in C3 and assume that 𝑇𝑟𝑒𝑔

Ω (𝑧0) < ∞ where 𝑧0 ∈ 𝑏Ω.
Then 𝐾Ω(𝑧𝛿, 𝑧𝛿), the Bergman kernel function of Ω at 𝑧𝛿 ∈𝐶𝑏(𝑧0, 𝛿0), satisfies

𝐾Ω (𝑧𝛿, 𝑧𝛿) ≈ 𝛿−2𝜏−21 𝜏−22 . (4)

Theorem 3. Let Ω and 𝑧0 ∈ 𝑏Ω be as in Theorem 2. For each𝛼 = (𝛼1, 𝛼2, 𝛼3), there is a constant 𝐶𝛼 > 0, independent of𝛿 > 0, such that󵄨󵄨󵄨󵄨󵄨𝐷𝛼
𝑧𝐾Ω (𝑧, 𝑧𝛿)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶𝛼𝛿−2−𝛼3𝜏−2−𝛼11 𝜏−2−𝛼22 , (5)

for 𝑧 ∈ Ω and 𝑧𝛿 ∈ 𝐶𝑏(𝑧0, 𝛿0).
Remark 4. (1) In Theorems 2 and 3, we do not assume thatΔ 1(𝑧0) < ∞, but we assume only that 𝑇𝑟𝑒𝑔

Ω (𝑧0) < ∞
(see Remark 1). With this weaker condition, we get optimal
estimates for Bergman kernel function along special “almost
tangential” direction, 𝐶𝑏(𝑧0, 𝛿0), but not normal or arbitrary
direction.(2) In [14], Herbort gives an example of a domain Ω𝐻 ⊂
C3 where the Bergman kernel grows logarithmically when𝑧 ∈ Ω approaches to 𝑧0 ∈ 𝑏Ω in normal direction. Set

Ω𝐻

= {𝑧 ∈ C
3 | Re 𝑧3 + 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨6 + 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨2 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨6 < 0} , (6)

and for each small 𝛿 > 0, set 𝑧𝛿 = (0, 0, −𝛿). Thus 𝑧𝛿
approaches to 0 ∈ 𝑏Ω𝐻 in normal direction as 𝛿 󳨀→ 0. In this
case, Herbort shows that 𝐾Ω(𝑧𝛿, 𝑧𝛿) ≈ 𝛿−3(− log 𝛿)−1; that is,
the kernel grows logarithmically. For the same domain Ω𝐻

in (6), we note that 𝜂 = 𝑇𝑟𝑒𝑔
Ω (𝑧0) = 6 and hence 𝜏1 = 𝛿1/6,𝜏2 = 𝛿1/3 in (4). Set 𝐶𝑏(𝑧0, 𝛿0) fl {(𝛿1/6/2, 0, −𝛿) : 0 ≤ 𝛿 ≤𝛿0}. Then 𝑧𝛿 fl (𝛿1/6/2, 0, −𝛿) ∈ 𝐶𝑏(𝑧0, 𝛿0) approaches to0 ∈ 𝑏Ω in “almost tangential direction”. In the Appendix of

this paper, we will show that

𝐾Ω𝐻
(𝑧𝛿, 𝑧𝛿) ≈ 𝛿−2𝜏−21 𝜏−22 = 𝛿−3. (7)

In Section 2, we will construct special coordinates which
reflect the regular finite type condition, Δ 2(𝑧0) ≤ 𝑇𝑟𝑒𝑔

Ω (𝑧0) =𝜂 < ∞, and then show that 𝑟(𝑧) vanishes to order 𝜂 in 𝑧1-
direction. We then consider the slices ofΩ by fixing 𝑧1. Then
the domains become domains inC2 , and hencewe can handle
them. Also, the condition Δ 2(𝑧0) < ∞ acts like the conditionΔ 1(𝑧0) < ∞ on these slices.

For the estimates of 𝐾(𝑧,𝑤), Catlin [2, 15] constructed
plurisubharmonic functions withmaximal Hessian near each
thin 𝛿-strip of 𝑏Ω (Section 3 of [2]). In this paper, however, we
will construct these functions only on nonisotropic polydiscs𝑄𝑎𝛿(𝑧𝛿) ⊂⊂ Ω for each 𝑧𝛿 ∈ 𝐶𝑏(𝑧0, 𝛿0) (Proposition 23 ).
This avoids complicated technical parts in Section 3 of [2].
To get estimates of 𝐾Ω(𝑧, 𝑧𝛿), 𝑧 ∈ Ω, 𝑧𝛿 ∈ 𝐶𝑏(𝑧0, 𝛿0),

we consider dilated domains 𝐷𝛿 for each 𝛿 > 0. Then the
polydisc 𝑄𝑎𝛿(𝑧𝛿) ⊂⊂ Ω becomes 𝑃(0, 1) ⊂⊂ 𝐷𝛿, independent
of 𝛿 > 0, where 𝑃(0, 1) is a polydisc of radius one with center
at the origin. Therefore the uniform 1/2-subelliptic estimates
for 𝜕-equationhold on𝑃(0, 1), and the estimates for𝐾Ω(𝑧, 𝑧𝛿)
follow.

Remark 5. Let Ω be a smoothly bounded pseudoconvex
domain in C3, and assume that Δ 1(𝑧0) < ∞, where 𝑧0 ∈ 𝑏Ω.
Then the conditions of Theorems 2 and 3 are satisfied. Near
future, using the results ofTheorems 2 and 3, we hope we can
prove some function theories onΩ, for example, the existence
of peak function for Ω that peaks at 𝑧0 ∈ 𝑏Ω or necessary
conditions for the Hölder estimates for 𝜕-equation.
2. Special Coordinates

In the sequel, we letΩ be a smoothly bounded pseudoconvex
domain in C3 and assume that 𝑚 = Δ 2(𝑧0) ≤ 𝜂 = 𝑇𝑟𝑒𝑔

Ω (𝑧0) <∞, 𝑧0 ∈ 𝑏Ω. Note that𝑚 and 𝜂 are positive integers. Without
loss of generality, we may assume that 𝑧0 = 0. In the sequel,
we let 𝛼 = (𝛼1, 𝛼2, 𝛼3) and 𝛽 = (𝛽1, 𝛽2, 𝛽3) be multi-indices
and set 𝛼󸀠 = (𝛼1, 𝛼2) and 𝑧󸀠 = (𝑧1, 𝑧2), etc. In Theorem 3.1 in
[16], You constructed special coordinates which represent the
local geometry of 𝑏Ω near 𝑧0.
Theorem 6. Let Ω be a smoothly bounded pseudoconvex
domain in C3 with smooth defining function 𝑟 and assume𝑇𝑟𝑒𝑔
Ω (0) = 𝜂 < ∞, 0 ∈ 𝑏Ω. Then there is a holomorphic

coordinate system 𝑧 = (𝑧1, 𝑧2, 𝑧3) about 0 such that
(1) 𝑟 (𝑧) = Re 𝑧3 + 𝜂∑

|𝛼󸀠|+|𝛽󸀠|=𝑚

|𝛼󸀠|,|𝛽󸀠|>0

𝑎𝛼󸀠 ,𝛽󸀠𝑧𝛼󸀠𝑧𝛽󸀠

+ O (󵄨󵄨󵄨󵄨𝑧3󵄨󵄨󵄨󵄨 |𝑧| + 󵄨󵄨󵄨󵄨󵄨𝑧󸀠󵄨󵄨󵄨󵄨󵄨𝜂+1) ,
(2) |𝑟 (𝑡, 0, 0)| ≈ |𝑡|𝜂 ,

(8)

where

𝑎𝛼󸀠 ,𝛽󸀠 ̸= 0
with 𝛼2 + 𝛽2 = 𝑚 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛼2 > 0, 𝛽2 > 0. (9)

(Idea of the proof) by the standard holomorphic coordi-
nate changes, 𝑟(𝑤) has the Taylor series expansion as in (8).
Since 𝑇𝑟𝑒𝑔

Ω (0) = 𝜂, there is a regular curve which we may
assume that 𝛾(𝑡) = (𝑡, 𝛾2(𝑡),O(𝑡𝜂)) satisfying |𝑟(𝛾(𝑡))| ≈ |𝑡|𝜂
for all sufficiently small 𝑡 ∈ C. Set 𝑧 = (𝑤1, 𝑤2 + 𝛾2(𝑤1), 𝑤3).
Then, in 𝑧 coordinates, 𝑟(𝑧) has representation satisfying (8).
Also (9) follows from the condition that 𝑚 = Δ 2(0).
Remark 7. (1) The second condition in (8) and property (9)
say that 𝑟(𝑧) vanishes to order 𝜂 along 𝑧1 axis and order 𝑚
along 𝑧2 axis.

(2) There are much more terms (mixed with 𝑧1, 𝑧2 and
their conjugates), compared to the ℎ-extensible domain cases,
in the summation part of (8).
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In conjunction with multitype M(0) = (1,𝑚,𝑚3), we
need to consider the dominating terms (in size) among the
mixed terms in 𝑧1 and 𝑧2 variables in the summation part of
(8). Using the notations of Section 3.2 in [16], set

Γ = {(𝛼󸀠, 𝛽󸀠) ; 𝑎𝛼󸀠 ,𝛽󸀠 ̸= 0, 𝑚 ≤ 󵄨󵄨󵄨󵄨󵄨𝛼󸀠󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝛽󸀠󵄨󵄨󵄨󵄨󵄨
≤ 𝜂, and 󵄨󵄨󵄨󵄨󵄨𝛼󸀠󵄨󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨󵄨𝛽󸀠󵄨󵄨󵄨󵄨󵄨 > 0}

𝑆 = {(𝑝, 𝑞) ; 𝛼1 + 𝛽1 = 𝑝, 𝛼2 + 𝛽2

= 𝑞 for some (𝛼󸀠, 𝛽󸀠) ∈ Γ} ∪ {(𝜂, 0)} .
(10)

Then there are (𝑝], 𝑞]) ∈ 𝑆 for ] = 0, 1, . . . , 𝑁 and 𝜂], 𝜆] > 0
for ] = 1, . . . , 𝑁, such that

(1) (𝑝0, 𝑞0) = (𝜂, 0) , (𝑝𝑁, 𝑞𝑁) = (0,𝑚) , 𝜆𝑁

= 𝑚, 𝜂1 = 𝜂
(2) 𝑝0 > 𝑝1 > . . . > 𝑝𝑁 and

𝑞0 < 𝑞1 < . . . < 𝑞𝑁
(3) 𝜆1 < 𝜆2 < . . . < 𝜆𝑁 and

𝜂1 > 𝜂2 > . . . > 𝜂𝑁
(4) 𝑝]−1𝜂] + 𝑞]−1𝜆]

= 1 and

𝑝]𝜂] + 𝑞]𝜆]
= 1

(5) 𝑎𝛼󸀠 ,𝛽󸀠 = 0
if

𝛼1 + 𝛽1𝜂] + 𝛼2 + 𝛽2𝜆]
< 1 for each ] = 1, . . . , 𝑁.

(11)

Remark 8. (1) Here, 𝑝]’s and 𝑞]’s are the exponents of 𝑧1 and𝑧2, respectively, in the dominating terms in the summation
part of (8).

(2) If Δ 1(𝑧0) < ∞, then the expression in (8) will be
similar to that of C2 case in [2], and hence we need not
consider the above complicated pairs.

Set 𝑡0 = 𝜂. If 1 ≤ 𝑘 ≤ 𝑚, then 𝑞]−1 < 𝑘 ≤ 𝑞] for some
] = 1, . . . , 𝑁. In this case, set

𝑡𝑘 = 𝜂] (1 − 𝑘𝜆]
) , i.e., 𝑡𝑘𝜂] + 𝑘𝜆]

= 1. (12)

Then (𝑝]−1, 𝑞]−1), (𝑡𝑙, 𝑙), and (𝑝], 𝑞]) are colinear points in the
first quadrant of the plane, and 𝜆] (resp., 𝜂]) is the intercept
of 𝑞-axis (resp., 𝑝-axis) of this line. Let 𝐿] be the line segment
from (𝑝]−1, 𝑞]−1) to (𝑝], 𝑞]) for ] = 1, . . . , 𝑁, set 𝐿 = 𝐿1∪𝐿2 ∪. . . ∪ 𝐿𝑁, Γ𝐿 = {(𝛼󸀠, 𝛽󸀠) ∈ Γ; (𝛼1 + 𝛽1, 𝛼2 + 𝛽2) ∈ 𝐿}, and set

Λ = {(𝛼󸀠, 𝛽󸀠) ∈ Γ𝐿; 𝛼󸀠 + 𝛽󸀠 = (𝑝], 𝑞]) , 𝛼2 > 0, 𝛽2

> 0, ] = 1, . . . , 𝑁} . (13)

As in Corollary 3.8 and Remark 3.9 in [16], we can rewrite (8)
so that

𝑟 (𝑧)
= Re 𝑧3 + ∑

Γ𝐿−Λ

𝑎𝛼,𝛽𝑧󸀠𝛼𝑧󸀠𝛽

+ 𝑁∑
]=1

∑
𝛼2+𝛽2=𝑞]
𝛼2>0,𝛽2>0

𝑀]
𝛼2,𝛽2

(𝑧1) 𝑧𝛼22 𝑧𝛽2
2

+ O(󵄨󵄨󵄨󵄨𝑧3󵄨󵄨󵄨󵄨 |𝑧| + 𝑁∑
]=1

𝑞]∑
𝑙=𝑞]−1

󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨[𝑡𝑙]+1 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨𝑙 + 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨𝑚+1) ,

(14)

where𝑀]
𝛼2,𝛽2

(𝑧1) is a nontrivial homogeneous polynomial of
degree 𝑝] given by

𝑀]
𝛼2,𝛽2

(𝑧1) = ∑
𝛼1+𝛽1=𝑝]

𝑎𝛼1,𝛽1𝑧𝛼11 𝑧𝛽11 , (15)

and there are a small constant 𝑎0 > 0, and 𝑑 ∈ {𝑧1 ∈ C; |𝑧1| =1} such that

𝑀]
𝛼2,𝛽2

(𝑧1) ̸= 0 for 󵄨󵄨󵄨󵄨𝑧1 − 𝑑󵄨󵄨󵄨󵄨 < 𝑎0,
and 󵄨󵄨󵄨󵄨󵄨𝑀]

𝛼2,𝛽2
(𝑑𝛿1/𝜂)󵄨󵄨󵄨󵄨󵄨 ≈ 𝛿𝑝]/𝜂, (16)

for all 𝛼2 + 𝛽2 = 𝑞] with all ] = 1, . . . ,𝑁 − 1. Property
(16) means that there is (𝛼󸀠, 𝛽󸀠) with terms mixed in 𝑧2 and𝑧2 variables for |𝑧1 − 𝑑| < 𝑎0. Let |𝑑| = 1 be the constant
(direction) in (16) and we will fix 𝑑 in the rest of this paper.
In the sequel, we set 𝑧̂𝑙 equal to 𝑧𝑙 or 𝑧𝑙, 𝑙 = 1, 2, 3.
Remark 9. (a) {𝑡𝑘} defined in (12) is strictly decreasing on 𝑘.

(b) Each of the summationparts of (14) contains the terms
of the form 𝑧̂𝑡𝑘1 𝑧̂𝑘2 where (𝑡𝑘, 𝑘)’s are the pairs, defined in (12),
on the polyline 𝐿.

(c) Each term of the first summation part in (14) is pure
in 𝑧2 or 𝑧2 variables.

(d) Each term of the second summation part in (14) has
terms mixed in 𝑧2 and 𝑧2, and it corresponds to the pair of
integers (𝑝], 𝑞]), the vertices of the polyline 𝐿.
Lemma 10. Let 𝑑0(𝑧1) fl 𝑟(𝑧1, 0, 0) be the term containing
only 𝑧1 or 𝑧1 variables in the first sum of (14). Then

󵄨󵄨󵄨󵄨𝑑0 (𝑧1)󵄨󵄨󵄨󵄨 ≈ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝜂 . (17)

Proof. From (8) and (14), we see that |𝑟(𝑧1, 0, 0)| ≲ |𝑧1|𝜂. On
the other hand, since the regular 1-type at 0 ∈ 𝑏Ω is equal to𝜂 = 𝑇𝑟𝑒𝑔

Ω (0), there is 𝑐1 > 0 such that |𝑟(𝑧1, 0, 0)| ≥ 𝑐1|𝑧1|𝜂.
In the sequel, we let 𝑉 be a small neighborhood of𝑧0 = 0 ∈ 𝑏Ω where 𝑟(𝑧) has expression as in (14). Since(𝜕𝑟/𝜕𝑧3)(0) ̸= 0, we may assume that |(𝜕𝑟/𝜕𝑧3)(𝑧)| ≥ 𝑐0 for

all 𝑧 ∈ 𝑉 for a uniform constant 𝑐0 > 0 by shrinking 𝑉 if
necessary. For each fixed 𝛿 > 0 and for each 𝑧 = (𝑧1, 𝑧2, 𝑧3) ∈𝑉 satisfying |𝑧1 − 𝑑𝛿1/𝜂| < 𝛾𝛿1/𝜂, for a sufficiently small 𝛾 > 0
to be chosen, we set 𝜋(𝑧) = (𝑧1, 0, 𝑒𝛿) fl 𝑧̃ ∈ 𝑏Ω, where 𝜋(𝑧)
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is the composition of the projection onto 𝑧1𝑧3 plane and then
the projection onto 𝑏Ω along the Re 𝑧3 direction. Using the
Taylor series method in 𝑧3 variable about 𝑒𝛿, we see that

𝑟 (𝑧1, 0, 0) = 2Re [𝜕𝑟 (𝑧̃)𝜕𝑧3 (−𝑒𝛿)] + O (𝑒2𝛿) . (18)

Since |𝑒𝛿| ≪ 1 and 2Re(𝜕𝑟/𝜕𝑧3) = 1 + O(|𝑧|) ≥ 1/2 on 𝑉, it
follows from (17) that

󵄨󵄨󵄨󵄨𝑒𝛿󵄨󵄨󵄨󵄨 ≈ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝜂 , (19)

for 𝑧1 near 0.
Now for each small 𝛿 > 0, set 𝑧(𝛿) fl (𝑑𝛿1/𝜂, 0, 0) and set𝑧̃𝛿 = 𝜋(𝑧(𝛿)) = (𝑑𝛿1/𝜂, 0, 𝑒𝛿) ∈ 𝑏Ω. For a small constant 𝑏 > 0

to be chosen, set 𝑧𝛿 = (𝑑𝛿1/𝜂, 0, 𝑒𝛿 − 𝑏𝛿) ∈ Ω, and for a fixed
small 𝛿0 > 0 satisfying 𝑟(𝑧𝛿0) < 0, set

𝐶𝑏 (𝑧0, 𝛿0)
fl {𝑧𝛿: 𝑧𝛿 = (𝑑𝛿1/𝜂, 0, 𝑒𝛿 − 𝑏𝛿) , 0 ≤ 𝛿 ≤ 𝛿0}
⊂ Ω ∪ {𝑧0} ,

(20)

connecting 𝑧𝛿0 ∈ 𝑉 ∩ Ω and 𝑧0 = 0 ∈ 𝑏Ω.
Following the same arguments as in the proof of Proposi-

tion 1.2 in [2], for each fixed 𝑧̃ ∈ 𝑉, we can construct special
coordinates about 𝑧 so that, in terms of new coordinates, there
is no pure terms in 𝑧2 or 𝑧2 variables in the first summation
part of 𝑟(𝑧) in (14). We will fix 𝑧1 variable and consider the
coordinate changes only on 𝑧󸀠󸀠 = (𝑧2, 𝑧3) variables.
Proposition 11. For each fixed 𝑧̃ = (𝑧̃1, 𝑧̃2, 𝑧̃3) ∈ 𝑉, there is
a holomorphic coordinate system 𝑧󸀠󸀠 = Φ𝑧(𝜁󸀠󸀠) = (𝜁2, Φ3(𝜁󸀠󸀠))
such that in the new coordinates 𝜁󸀠󸀠 defined by

Φ𝑧 (𝜁󸀠󸀠) = (𝑧̃2 + 𝜁2, Φ3 (𝜁󸀠󸀠)) , (21)

where

Φ3 (𝜁󸀠󸀠) = 𝑧̃3 + ( 𝜕𝑟𝜕𝑧3 (𝑧̃))
−1 (𝜁32 − 𝑚∑

𝑙=1

𝑐𝑙 (𝑧̃) 𝜁𝑙2) , (22)

and where 𝑐𝑙(𝑧̃), 𝑙 = 2, 3, . . . , 𝑚, depends smoothly on 𝑧̃, the
function given by 𝜌(𝑧̃1, 𝜁󸀠󸀠) fl 𝑟(𝑧̃1, Φ𝑧(𝜁󸀠󸀠)) satisfies

𝜌 (𝑧̃1, 𝜁󸀠󸀠) = 𝑟 (𝑧̃) + Re 𝜁3 + 𝑚∑
𝑗+𝑘=2
𝑗,𝑘>0

𝑎𝑗,𝑘 (𝑧̃1) 𝜁𝑗2𝜁𝑘2
+ O (󵄨󵄨󵄨󵄨𝜁3󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝜁󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝜁2󵄨󵄨󵄨󵄨𝑚+1) .

(23)

Proof. For 𝑧̃ ∈ 𝑉, define
Φ1 (𝑤󸀠󸀠) = (𝑧̃2 + 𝑤2, 𝑧̃3

+ ( 𝜕𝑟𝜕𝑧3 (𝑧̃))
−1 (𝑤32 − 𝜕𝑟𝜕𝑧2 (𝑧̃) 𝑤2)) ,

(24)

where𝑤󸀠󸀠 = (𝑤2, 𝑤3). Then we have

𝜌2 (𝑧̃1, 𝑤󸀠󸀠) fl 𝑟 (𝑧̃1, Φ1 (𝑤󸀠󸀠))
= 𝑟 (𝑧̃) + Re𝑤3 + O (󵄨󵄨󵄨󵄨󵄨𝑤󸀠󸀠󵄨󵄨󵄨󵄨󵄨2) .

(25)

Assume that (22) and (23) hold for 𝑙 ≥ 2. That is, we have
definedΦ𝑙−1 : C2 󳨀→ C2 so that 𝜌𝑙(𝑧̃1, 𝑤󸀠󸀠) fl 𝑟(𝑧̃1, Φ𝑙−1(𝑤󸀠󸀠))
can be written as

𝜌𝑙 (𝑧̃1, 𝑤󸀠󸀠) = Re𝑤3 + 𝑙−1∑
𝑗+𝑘=2
𝑗,𝑘>0

𝑎𝑙−1
𝑗,𝑘 (𝑧̃) 𝑤𝑗

2𝑤𝑘
2

+ O (󵄨󵄨󵄨󵄨𝑤3
󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑤󸀠󸀠󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑤2

󵄨󵄨󵄨󵄨𝑙) .
(26)

If we defineΦ𝑙 = Φ𝑙−1 ∘ 𝜙𝑙, where

𝜙𝑙 (𝜁󸀠󸀠) = (𝜁2, 𝜁3 − 2𝑙! 𝜕
𝑙𝜌𝑙𝜕𝑤𝑙

2

(𝑧̃1, 0, 0) 𝜁𝑙2) , (27)

then 𝜌𝑙+1(𝑧̃1, 𝜁󸀠󸀠) fl 𝑟(𝑧̃1, Φ𝑙(𝜁󸀠󸀠)) satisfies (26) for 𝑙 replaced
by 𝑙 + 1. If we proceed up to 𝑙 = 𝑚 and set Φ𝑧 = Φ𝑚 =Φ1 ∘ 𝜙2 ∘ ⋅ ⋅ ⋅ ∘ 𝜙𝑚, then by setting 𝜌 = 𝜌𝑚+1 = 𝑟(𝑧̃, Φ𝑧(⋅)),
we see that (22) and (23) hold.

In the sequel, we will use the coordinate changes in
Proposition 11 only at 𝑧̃ = (𝑧̃1, 0, 𝑧̃3) ∈ 𝑉, (in particular at𝑧̃𝛿 = (𝑑𝛿1/𝜂, 0, 𝑒𝛿) ∈ 𝑏Ω in Section 3). We want to study the
dependence of Φ𝑧 about 𝑧̃. For each 𝑧̃ = (𝑧̃1, 0, 𝑧̃3) ∈ 𝑉, set𝑐0(𝑧̃) fl (𝜕𝑟/𝜕𝑧3)(𝑧̃) = 1 + O(|𝑧̃|), and we note that

𝑐𝑙 (𝑧̃) = 1𝑙! 𝜕
𝑙𝜌𝑙𝜕𝑤𝑙

2

(𝑧̃1, 0, 0) , 𝑙 = 1, 2, . . . , 𝑚, (28)

where 𝜌𝑙 is defined in the inductive step of the proof of
Proposition 11. Set

𝑒0 (𝑧̃) = 12𝑐0 (𝑧̃)−1 ,
𝑒1 (𝑧̃) = −𝑐0 (𝑧̃)−1 𝜕𝑟𝜕𝑧2 (𝑧̃) and

𝑒𝑙 (𝑧̃) = −𝑐0 (𝑧̃)−1 𝑐𝑙 (𝑧̃) 𝑙 = 2, . . . , 𝑚,
(29)

and set 𝜌0 = 𝑟. Then 𝜌1(𝑧̃1, 𝜁󸀠󸀠) = 𝑟(𝑧̃1, 𝜁2, 𝑧̃3 + 𝑒0𝜁3) and
𝜌𝑖+1 = 𝜌𝑖 (𝑧̃1, 𝜁2, 𝜁3 + 𝑒𝑖 (𝑧̃) 𝜁𝑖2) , 𝑖 = 1, 2, . . . , 𝑚. (30)

To study the dependence of Φ𝑧 and hence dependence
of 𝑎𝑗,𝑘(𝑧̃1) about 𝑧̃1 in (23), we thus need to study the
dependence of 𝑒𝑙(𝑧̃) on 𝑧̃ variable. For a convenience, set𝑧̃ = (𝑧1, 0, 𝑧3), i.e., remove tilde’s, and assume that 𝑧̃ satisfies

󵄨󵄨󵄨󵄨󵄨𝑧1 − 𝑑𝛿1/𝜂󵄨󵄨󵄨󵄨󵄨 < 𝛾𝛿1/𝜂,
and 󵄨󵄨󵄨󵄨𝑧3󵄨󵄨󵄨󵄨 ≲ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝜂 , (31)
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for a sufficiently small 𝛾 > 0 to be chosen. In view of (19),
we see that 𝑧̃𝛿 = (𝑑𝛿1/𝜂, 0, 𝑒𝛿) satisfies (31). In following we
let 𝑧 be the given coordinates, and we let 𝜁 be the coordinates
obtained from holomorphic coordinates changes of 𝑧, as in𝑙-th step of coordinate changes in the proof of Proposition 11.
Also we let 𝐷𝑠

𝑘 (resp., 𝐷𝑠
𝑘), 𝑘 = 1, 2, 3, denote any partial

derivative operator of order 𝑠with respect to 𝑧𝑘 and 𝑧𝑘 (resp.,𝜁𝑘 and 𝜁𝑘) variables. According to the coordinate changes in
Proposition 11, we note that 𝐷1 = 𝐷1.

Proposition 12. Assume that 𝑧̃ = (𝑧1, 0, 𝑧3) ∈ 𝑉 satisfies (31).
Then for each 𝑖 = 0, 1, . . . , 𝑚 + 1, we have

󵄨󵄨󵄨󵄨󵄨𝐷𝑙1
1𝐷𝑘

2𝜌𝑖 (𝑧̃)󵄨󵄨󵄨󵄨󵄨 ≲ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑡𝑘−𝑙1 , 0 ≤ 𝑘 ≤ 𝑚, 0 ≤ 𝑙1 ≤ 𝜂, (32)

and for each 𝛼2, 𝛽2 > 0 with 𝛼2 + 𝛽2 = 𝑞], for some 𝑞] in (14),
we have󵄨󵄨󵄨󵄨󵄨𝐷𝑙1

1𝐷𝑞]
2 𝜌𝑖 (𝑧̃)󵄨󵄨󵄨󵄨󵄨 ≈ 󵄨󵄨󵄨󵄨󵄨𝐷𝑙1

1𝐷𝑞]
2 𝑟 (𝑧̃)󵄨󵄨󵄨󵄨󵄨 ≈ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑝]−𝑙1 ,

𝑙1 ≤ 𝑝], 2 ≤ 𝑖 ≤ 𝑚 + 1. (33)

Proof. We will prove by induction on 𝑖. From (14), (17), and
(31) one obtains

󵄨󵄨󵄨󵄨󵄨𝐷𝑙1
1𝐷𝑘

2𝑟 (𝑧̃)󵄨󵄨󵄨󵄨󵄨 ≲ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝜂−𝑙1 + 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑡𝑘−𝑙1 + 󵄨󵄨󵄨󵄨𝑧3󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨[𝑡𝑘]+1−𝑙1
≲ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑡𝑘−𝑙1 ,

(34)

and hence (32) follows for 𝑖 = 0. Since 𝜌1(𝑧1, 𝜁󸀠󸀠) =𝑟(𝑧1, 𝜁2, 𝑧3 + 𝑒0𝜁3), it follows, from (31) and chain rule, that

󵄨󵄨󵄨󵄨󵄨𝐷𝑙1
1𝐷𝑘

2𝜌1 (𝑧̃)󵄨󵄨󵄨󵄨󵄨 ≲ 󵄨󵄨󵄨󵄨󵄨𝐷𝑙1
1𝐷𝑘

2𝑟 (𝑧̃)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑧3󵄨󵄨󵄨󵄨 ≲ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑡𝑘−𝑙1 , (35)

because we are evaluating at 𝜁 = (𝑧1, 0, 0).This proves (32) for𝑖 = 1.
By induction, assume that (32) holds for 𝑖 = 0, 1, . . . , 𝑠. For

the 𝑒𝑖(𝑧̃) defined in (29), it follows, from (34) and induction
hypothesis, that

󵄨󵄨󵄨󵄨󵄨𝐷𝑙1
1 𝑒𝑖 (𝑧̃)󵄨󵄨󵄨󵄨󵄨 ≲

𝑙1∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝐷𝑗
1𝐷𝑖

2𝜌𝑖 (𝑧̃)󵄨󵄨󵄨󵄨󵄨 ≲
𝑙1∑

𝑗=0

󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑡𝑖−𝑗 ≲ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑡𝑖−𝑙1 , (36)

for 𝑖 = 1, . . . , 𝑠. Since we are evaluating at 𝜁2 = 0, it follows,
for 𝑠 ≥ 1, that
𝐷𝑙1

1𝐷𝑘
2𝜌𝑠+1 (𝑧̃) = 𝐷𝑙1

1𝐷𝑘
2𝜌𝑠 (𝑧̃) , if 𝑘 < 𝑠, and

= 𝐷𝑙1
1𝐷𝑘

2𝜌𝑠 (𝑧̃) + O( 𝑙1∑
𝑗=0

𝐷𝑗
1𝑒𝑠 (𝑧̃)) ,

if 𝑘 ≥ 𝑠.
(37)

By (30), (36), and (37) and by induction, (32) holds for 𝑖 = 𝑠+1
because 𝑡𝑘 ≤ 𝑡𝑠 if 𝑘 ≥ 𝑠.

Now we prove (33). Assume 𝛼2 + 𝛽2 = 𝑞] with 𝛼2 > 0,𝛽2 > 0 where (𝑝], 𝑞]) are the pairs corresponding to the
second summation part of (14). Note that the first summation

part of (14) will be annihilated by𝐷𝑞]
2 because it contains the

pure terms of 𝑧2 or 𝑧2 mixed with 𝑧̂𝑘1 . Thus it follows from
(14), (16), and (31) that

󵄨󵄨󵄨󵄨󵄨𝐷𝑙1
1𝐷𝑞]

2 𝑟 (𝑧̃)󵄨󵄨󵄨󵄨󵄨 ≈ 󵄨󵄨󵄨󵄨󵄨𝐷𝑙1
1𝑀]

𝛼2,𝛽2
(𝑧1)󵄨󵄨󵄨󵄨󵄨

+ O (󵄨󵄨󵄨󵄨𝑧3󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑝]+1−𝑙1) ≈ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑝]−𝑙1 . (38)

Since 𝜌1(𝑧1, 𝜁󸀠󸀠) = 𝑟(𝑧1, 𝜁2, 𝑧3 + 𝑒0𝜁3), it follows from (31) and
(38) that

󵄨󵄨󵄨󵄨󵄨𝐷𝑙1
1𝐷𝑞]

2 𝜌1 (𝑧̃)󵄨󵄨󵄨󵄨󵄨 ≈ 󵄨󵄨󵄨󵄨󵄨𝐷𝑙1
1𝐷𝑞]

2 𝑟 (𝑧̃)󵄨󵄨󵄨󵄨󵄨 + O (󵄨󵄨󵄨󵄨𝑧3󵄨󵄨󵄨󵄨) ≈ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑝]−𝑙1 . (39)

Similarly, since𝜌2(𝑧1, 𝜁󸀠󸀠) = 𝜌1(𝑧1, 𝜁2, 𝜁3+𝑒1𝜁2), it follows from
(36) that

󵄨󵄨󵄨󵄨󵄨𝐷𝑙1
1𝐷𝑞]

2 𝜌2 (𝑧̃)󵄨󵄨󵄨󵄨󵄨 ≈ 󵄨󵄨󵄨󵄨󵄨𝐷𝑙1
1𝐷𝑞]

2 𝜌1 (𝑧̃)󵄨󵄨󵄨󵄨󵄨 +
𝑙1∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨𝐷𝑗
1𝑒1󵄨󵄨󵄨󵄨󵄨

≈ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑝]−𝑙1 ,
(40)

because 𝑝] = 𝑡𝑞] < 𝑡1 for 𝑞] ≥ 2. This proves (33) for 𝑖 = 2.
By induction assume that (33) holds for 𝑖 = 2, . . . , 𝑠. If𝑘 = 𝑞] = 𝛼] + 𝛽] with 𝛼] > 0 and 𝛽] > 0, that is, if 𝐷𝑘

2

has mixed derivatives of 𝜕/𝜕𝜁2 and 𝜕/𝜕𝜁2, we note that (37)
becomes

𝐷𝑙1
1𝐷𝑘

2𝜌𝑠+1 (𝑧̃) = 𝐷𝑙1
1𝐷𝑘

2𝜌𝑠 (𝑧̃) , if 𝑘 ≤ 𝑠, and
= 𝐷𝑙1

1𝐷𝑘
2𝜌𝑠 (𝑧̃) + O( 𝑙1∑

𝑗=0

𝐷𝑗
1𝑒𝑠 (𝑧̃)) ,

if 𝑘 > 𝑠.
(41)

If 𝑘 = 𝑞] ≤ 𝑠, (33) follows from (41) and induction hypothesis
of (33). If 𝑞] > 𝑠, it follows, from (36), (41), and induction
hypothesis of (33), that

󵄨󵄨󵄨󵄨󵄨𝐷𝑙1
1𝐷𝑞]

2 𝜌𝑠+1 (𝑧̃)󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨𝐷𝑙1
1𝐷𝑞]

2 𝜌𝑠 (𝑧̃)󵄨󵄨󵄨󵄨󵄨
+ O( 𝑙1∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨𝐷𝑗
1𝑒𝑠 (𝑧̃)󵄨󵄨󵄨󵄨󵄨) ≈ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑝]−𝑙1 , (42)

because 𝑡𝑠 > 𝑝] = 𝑡𝑞] for 𝑞] > 𝑠. Therefore (33) is proved for𝑖 = 𝑠 + 1.
Recall the expression of 𝜌 = 𝜌𝑚+1 and coefficient

functions 𝑎𝑗,𝑘(𝑧̃1) in (23).

Corollary 13. Assume that 𝑧̃ = (𝑧1, 0, 𝑧3) satisfies (31). Then

󵄨󵄨󵄨󵄨󵄨𝐷𝑙1
1 𝑎𝑗,𝑘 (𝑧1)󵄨󵄨󵄨󵄨󵄨 ≲ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑡𝑗+𝑘−𝑙1 , (43)

and if 𝑗 + 𝑘 = 𝑞] for some 𝑞] in (14), then

󵄨󵄨󵄨󵄨󵄨𝐷𝑙1
1 𝑎𝑗,𝑘 (𝑧1)󵄨󵄨󵄨󵄨󵄨 ≈ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑝]−𝑙1 . (44)
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Proof. From (23) we see that

𝐷𝑙1
1 𝑎𝑗,𝑘 (𝑧1) = 𝐷𝑙1

1𝐷𝑗+𝑘
2 𝜌 (𝜁) , (45)

where 𝜁 = (𝑧1, 0, 0) and 𝑗, 𝑘 > 0. Hence it follows from (32)
that 󵄨󵄨󵄨󵄨󵄨𝐷𝑙1

1 𝑎𝑗,𝑘 (𝑧1)󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨𝐷𝑙1
1𝐷𝑗+𝑘

2 𝜌 (𝜁)󵄨󵄨󵄨󵄨󵄨󵄨 ≲ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑡𝑗+𝑘−𝑙1 . (46)

Assume 𝑞] = 𝑗 + 𝑘 ≤ 𝑚 for some 𝑞]. Thus 𝑗, 𝑘 > 0 and it
follows from (23), (33), and (41) that󵄨󵄨󵄨󵄨󵄨𝐷𝑙1

1 𝑎𝑗,𝑘 (𝑧1)󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨𝐷𝑙1
1𝐷𝑞]

2 𝜌 (𝜁)󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨𝐷𝑙1
1𝐷𝑞]

2 𝜌𝑞] (𝜁)󵄨󵄨󵄨󵄨󵄨
≈ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑡𝑞]−𝑙1 = 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑝]−𝑙1 , (47)

because 𝑡𝑞] = 𝑝].

Remark 14. Suppose that 𝑞]−1 < 𝑙 ≤ 𝑞] and 𝑝] ≤ 𝑡𝑙 < 𝑝]−1.
Then (𝑝], 𝑞]), (𝑡𝑙, 𝑙), and (𝑝]−1, 𝑞]−1) are colinear points. From
the standard interpolation method, we have

𝑎𝑡𝑙𝑏𝑙 ≤ 𝑎𝑝]𝑏𝑞] + 𝑎𝑝]−1𝑏𝑞]−1 , (48)

for all sufficiently small 𝑎, 𝑏 ≥ 0. Assume that 𝑗, 𝑘 > 0 and𝑙 = 𝑗 + 𝑘 ̸= 𝑞] for any of ] = 1, 2, . . . , 𝑁. Therefore it follows
from (43) and (48) that󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑎𝑗,𝑘 (𝑧1) 𝜁𝑗2𝜁𝑘2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≲ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑡𝑗+𝑘 󵄨󵄨󵄨󵄨𝜁2󵄨󵄨󵄨󵄨𝑗+𝑘
≤ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑝] 󵄨󵄨󵄨󵄨𝜁2󵄨󵄨󵄨󵄨𝑞] + 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑝]−1 󵄨󵄨󵄨󵄨𝜁2󵄨󵄨󵄨󵄨𝑞]−1 .

(49)

Therefore the terms of the form 𝑎𝑗,𝑘(𝑧1)𝜁𝑗2𝜁𝑘2 , with 𝑗+𝑘 = 𝑞] for
some 𝑞], in the summation part in (23), are the major terms
which bounds the other summation terms from above.

In the sequel, we assume that 𝑧̃ = (𝑧1, 0, 𝑧3) satisfies (31).
As in Section 1 in [2], for each 𝑧̃ = (𝑧1, 0, 𝑧3), set
𝐴 𝑙 (𝑧̃) = 𝐴 𝑙 (𝑧1) = max {󵄨󵄨󵄨󵄨󵄨𝑎𝑗,𝑘 (𝑧1)󵄨󵄨󵄨󵄨󵄨 ; 𝑗 + 𝑘 = 𝑙} ,

𝑙 = 2, . . . , 𝑚. (50)

In view of Remark 14, we will consider 𝐴 𝑙(𝑧1) only for 𝑙 = 𝑞],0 ≤ ] ≤ 𝑁 − 1. From (9) and (44) we note that󵄨󵄨󵄨󵄨󵄨𝐴𝑞0
(𝑧1)󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨𝐴𝑚 (𝑧1)󵄨󵄨󵄨󵄨 ≈ 1, and

󵄨󵄨󵄨󵄨󵄨𝐴𝑞]
(𝑧1)󵄨󵄨󵄨󵄨󵄨 ≈ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑝] , 1 ≤ ] ≤ 𝑁 − 1, (51)

because 𝑞0 = 𝑚. For each sufficiently small 𝛿 > 0, set
𝜏 (𝑧̃, 𝛿) = 𝜏 (𝑧1, 𝛿)

= min{( 𝛿𝐴𝑞]
(𝑧1))

1/𝑞] ; 0 ≤ ] ≤ 𝑁 − 1} , (52)

and set
𝑇 (𝑧̃, 𝛿) = 𝑇 (𝑧1, 𝛿)

= min{𝑞]; ( 𝛿𝐴𝑞]
(𝑧1))

1/𝑞] = 𝜏 (𝑧1, 𝛿)} . (53)

From (51) and (52), we see that if 𝛿󸀠 < 𝛿, then
(𝛿󸀠

𝛿 )1/2 𝜏 (𝑧̃, 𝛿) ≤ 𝜏 (𝑧̃, 𝛿󸀠) ≤ (𝛿󸀠

𝛿 )1/𝑚 𝜏 (𝑧̃, 𝛿) . (54)

Lemma 15. For each 0 < 𝜖 ≤ 1, 𝑇(𝑧̃, 𝜖𝛿) ≤ 𝑇(𝑧̃, 𝛿).
Proof. Set 𝑞𝜖] = 𝑇(𝑧̃, 𝜖𝛿) and 𝑞] = 𝑇(𝑧̃, 𝛿). Then

𝜏 (𝑧̃, 𝜖𝛿) = ( 𝜖𝛿𝐴𝑞𝜖]
(𝑧̃))

1/𝑞𝜖] = 𝜖1/𝑞𝜖] ( 𝛿𝐴𝑞𝜖]
(𝑧̃))

1/𝑞𝜖]

≥ 𝜖1/𝑞𝜖]𝜏 (𝑧̃, 𝛿) = 𝜖1/𝑞𝜖] ( 𝛿𝐴𝑞]
(𝑧̃))

1/𝑞]

= 𝜖1/𝑞𝜖]−1/𝑞] ( 𝜖𝛿𝐴𝑞]
(𝑧̃))

1/𝑞]

≥ 𝜖1/𝑞𝜖]−1/𝑞]𝜏 (𝑧̃, 𝜖𝛿) .

(55)

Therefore 𝑞𝜖] ≤ 𝑞] because 0 < 𝜖 ≤ 1.
Proposition 16. Assume 𝑧̃ = (𝑧1, 0, 𝑧3) satisfies (31). Then

𝜏 (𝑧̃, 𝛿) ≈ 𝜏 (𝑧̃𝛿, 𝛿) , (56)

where 𝑧̃𝛿 = (𝑑𝛿1/𝜂, 0, 𝑒𝛿).
Proof. By (31), we note that |𝑧1| ≈ 𝛿1/𝜂. Assume that 𝑇(𝑧̃𝛿,𝛿) = 𝑞]. Then 𝐴𝑞]

(𝑧̃𝛿) ≈ 𝛿𝑝]/𝜂 by (51). Therefore it follows,
from (50) and (52), that

𝐴𝑞]
(𝑧̃) ≈ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑝] ≈ 𝛿𝑝]/𝜂 ≈ 𝐴𝑞]

(𝑧̃𝛿) , (57)

and hence it follows from (52) and (53) that

𝜏 (𝑧̃𝛿, 𝛿)𝑞] = 𝛿𝐴𝑞]
(𝑧̃𝛿) ≈ 𝛿𝐴𝑞]

(𝑧̃) ≥ 𝜏 (𝑧̃, 𝛿)𝑞] . (58)

Thus 𝜏(𝑧̃𝛿, 𝛿) ≳ 𝜏(𝑧̃, 𝛿) follows. Similarly, one can show that𝜏(𝑧̃𝛿, 𝛿) ≲ 𝜏(𝑧̃, 𝛿).
Let 0 < 𝜎 < 1 be a small constant to be determined (in

Remark 22). By Lemma 15, 𝑇(𝑧̃𝛿, 𝜎𝛿) ≤ 𝑇(𝑧̃𝛿, 𝛿) for each 0 <𝜎 < 1, independent of 𝛿 > 0. Therefore there is a smallest
integer 𝑠 = 𝑠(𝑧̃𝛿), 0 ≤ 𝑠 ≤ 𝑚 − 1, such that

𝑇 (𝑧̃𝛿, 𝜎𝑠+1𝛿) = 𝑇 (𝑧̃𝛿, 𝜎𝑠𝛿) fl 𝑡𝑠. (59)

Then 𝑡𝑠 = 𝑞](𝑠) for some 𝑞](𝑠) by (53). In following, for the
fixed integer 𝑠 = 𝑠(𝑧̃𝛿) in (59), set 𝛿𝑠 = 𝜎𝑠𝛿, 𝜏𝑠 fl 𝜏(𝑧̃𝛿, 𝛿𝑠), and𝜏1 = 𝛿1/𝜂 as usual. If we defineΦ𝑧(𝜁) = (𝜁1, 𝜁2, Φ3(𝜁󸀠󸀠)), whereΦ3(𝜁󸀠󸀠) is defined in (22), we may regard that Φ𝑧(𝜁) : C3 󳨀→
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C3 is a biholomorphism. For each 𝑧̃𝛿 = (𝑑𝛿1/𝜂, 0, 𝑒𝛿) ∈ 𝑏Ω,
set 𝜁𝛿 = (𝑑𝛿1/𝜂, 0, 0) = Φ−1

𝑧𝛿
(𝑧̃𝛿). For each small 𝛾 > 0, define

𝑅𝑠
𝛾𝛿 (𝜁𝛿)
fl {𝜁 󵄨󵄨󵄨󵄨󵄨𝜁1 − 𝑑𝛿1/𝜂󵄨󵄨󵄨󵄨󵄨 < 𝛾𝜏1, 󵄨󵄨󵄨󵄨𝜁2󵄨󵄨󵄨󵄨 < 𝛾𝜏𝑠, 󵄨󵄨󵄨󵄨𝜁3󵄨󵄨󵄨󵄨 < 𝛾𝛿𝑠} ,
and,

𝑄𝑠
𝛾𝛿 (𝑧̃𝛿) fl {Φ𝑧𝛿 (𝜁) ; 𝜁 ∈ 𝑅𝑠

𝛾𝛿 (𝜁𝛿)} ,
(60)

and set 𝑅0
𝛾𝛿(𝜁𝛿) = 𝑅𝛾𝛿(𝜁𝛿) and𝑄0

𝛾𝛿(𝑧̃𝛿) = 𝑄𝛾𝛿(𝑧̃𝛿)when 𝑠 = 0.
Proposition 17. The function 𝜌 = 𝑟 ∘ Φ𝑧𝛿 satisfies󵄨󵄨󵄨󵄨󵄨𝐷𝑙1

1 𝜌 (𝜁𝛿)󵄨󵄨󵄨󵄨󵄨 ≲ 𝛿𝜏−𝑙11 , and,
󵄨󵄨󵄨󵄨󵄨𝐷𝑙1

1𝐷𝑘
2𝜌 (𝜁𝛿)󵄨󵄨󵄨󵄨󵄨 ≲ 𝛿𝑠𝜏−𝑙11 𝜏−𝑘𝑠 , 1 ≤ 𝑘 ≤ 𝑚. (61)

Proof. Recall that 𝜌 = 𝜌𝑚+1, and |𝑧1| = 𝛿1/𝜂 in (32). When𝑘 = 0, it follows from (12) (𝑡0 = 𝜂) and (32) that
󵄨󵄨󵄨󵄨󵄨𝐷𝑙1𝜌 (𝜁𝛿)󵄨󵄨󵄨󵄨󵄨 ≲ (𝛿1/𝜂)𝜂−𝑙1 = 𝛿𝜏−𝑙11 . (62)

Assume 1 ≤ 𝑘 ≤ 𝑚. Then by (12), 𝑞]−1 < 𝑘 ≤ 𝑞] for some
], and hence it follows that 𝑝] ≤ 𝑡𝑘 ≤ 𝑝]−1. Therefore one
obtains, from (48)–(52), that󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑡𝑘 𝜏𝑘𝑠 ≲ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑝]−1 𝜏𝑞]−1𝑠 + 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑝] 𝜏𝑞]𝑠

≲ 𝐴𝑞]−1
𝜏𝑞]−1𝑠 + 𝐴𝑞]

𝜏𝑞]𝑠 ≲ 𝛿𝑠. (63)

From (32) and (63), it follows that󵄨󵄨󵄨󵄨󵄨𝐷𝑙1
1𝐷𝑘

2𝜌 (𝜁𝛿)󵄨󵄨󵄨󵄨󵄨 ≲ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑡𝑘−𝑙1 = (󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝑡𝑘 𝜏𝑘𝑠 ) 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨−𝑙1 𝜏−𝑘𝑠

≲ 𝛿𝑠𝜏−𝑙11 𝜏−𝑘𝑠 . (64)

Using the 𝑧 coordinates defined in (14), set

𝐿3 = 𝜕𝜕𝑧3 and

𝐿𝑘 = 𝜕𝜕𝑧𝑘 − ( 𝜕𝑟𝜕𝑧3)
−1 𝜕𝑟𝜕𝑧𝑘

𝜕𝜕𝑧3 fl
𝜕𝜕𝑧𝑘 + 𝑏𝑘 (𝑧) 𝜕𝜕𝑧3 ,

𝑘 = 1, 2.
(65)

Then 𝐿𝑘, 𝑘 = 1, 2, are tangential holomorphic vector fields
and |𝐿3𝑟| ≥ 𝑐0 > 0 on 𝑉 ∩ Ω for a uniform constant 𝑐0 > 0.
For any 𝑗, 𝑘 with 𝑗, 𝑘 > 0, define

L𝑗,𝑘𝜕𝜕𝑟 (𝑧) = 𝐿2 . . . 𝐿2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑗−1)times

𝐿2 . . . 𝐿2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑘−1)times

𝜕𝜕𝑟 (𝐿2, 𝐿2) (𝑧) . (66)

In 𝜁-coordinates defined by 𝑧 = (𝑧1, Φ𝑧(𝜁󸀠󸀠)) fl Φ𝑧(𝜁), set𝐿󸀠
𝑘 = (𝑑Φ−1

𝑧 )𝐿𝑘, 𝑘 = 1, 2, 3 and set 𝑏̃𝑘(𝜁) = 𝑏𝑘(Φ𝑧(𝜁)), 𝑘 = 1, 2.
If we define

L
󸀠
𝑗,𝑘𝜕𝜕𝜌 (𝜁) = 𝐿󸀠

2 . . . 𝐿󸀠
2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝑗−1)times

𝐿󸀠

2 . . . 𝐿󸀠

2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(𝑘−1)times

𝜕𝜕𝜌 (𝐿󸀠
2, 𝐿󸀠

2) (𝜁) , (67)

then by functoriality,

L𝑗,𝑘𝜕𝜕𝑟 (𝑧) = L
󸀠
𝑗,𝑘𝜕𝜕𝜌 (𝜁) . (68)

Lemma 18. There is a small constant 𝑐2 > 0 such that
𝜕𝜕𝑟 (𝑧) (𝐿1, 𝐿1) ≥ 𝑐2𝛿𝜏−21 , 𝑧 ∈ 𝑄𝛾𝛿 (𝑧̃𝛿) , (69)

provided 𝛾 > 0 is sufficiently small.

Proof. Since the level sets of 𝜌 are pseudoconvex, it follows
from (61) that

𝜕𝜕𝜌 (𝜁) (𝐿󸀠
1, 𝐿󸀠

1) = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕2𝜌

𝜕𝜁1𝜕𝜁1 (𝜁) + O (𝑏̃1)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕2𝜌

𝜕𝜁1𝜕𝜁1 (𝜁)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 − 𝐶1𝛿𝜏−11 .

(70)

Recall that 𝑑0(𝑧1) = ∑𝛼1+𝛽1=𝜂
𝑎𝛼1 ,𝛽1𝑧𝛼11 𝑧𝛽1

1 is the term which
contains only 𝑧1 or 𝑧1 variables in the first summation part of
(14). Therefore it follows, from (17), (19), and (23), that󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕2𝜌
𝜕𝜁1𝜕𝜁1 (𝜁

𝛿)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕2𝑟 (𝑧̃𝛿)
𝜕𝑧1𝜕𝑧1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕2𝑑0 (𝑧1)𝜕𝑧1𝜕𝑧1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + O (󵄨󵄨󵄨󵄨𝑒𝛿󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝜂−1)
≈ 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨𝜂−2 = 𝛿𝜏−21 ,

(71)

because |𝑧1| = |𝑑𝛿1/𝜂| = 𝜏1 = 𝛿1/𝜂. If 𝜁 ∈ 𝑅𝛾𝛿(𝜁𝛿), it follows
from (61) and (71) and by using the Taylor series method that󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕2𝜌
𝜕𝜁1𝜕𝜁1 (𝜁)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕2𝜌
𝜕𝜁1𝜕𝜁1 (𝜁

𝛿)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 − 𝛾𝐶1𝛿𝜏−21 ≥ 2𝑐2𝛿𝜏−21 ,
𝜁 ∈ 𝑅𝛾𝛿 (𝜁𝛿) ,

(72)

provided 𝛾 > 0 is sufficiently small. Thus (69) follows from
(68), (70), and (72).

In the sequel, we let 𝑐2 and𝐶2 be the constants whichmay
different from time to time but depend only on the derivatives
of 𝑟 or 𝜌 up to order 𝜂. Recall that 𝑏̃𝑘(𝜁) = 𝑏𝑘(Φ𝑧(𝜁)), 𝑘 = 1, 2.
By using (61), and by using Taylor series method, one obtains
that 󵄨󵄨󵄨󵄨󵄨𝐷𝑙1

1𝐷𝑙2
2 𝑏̃𝑘 (𝜁)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶2𝛿𝑠𝜏−𝑙11 𝜏−𝑙2𝑠 𝜏−1𝑘 , 𝜁 ∈ 𝑅𝑠

𝛾𝛿 (𝜁𝛿) , (73)

provided 𝛾 > 0 is sufficiently small, where 𝜏1 = 𝜏1 and 𝜏2 = 𝜏𝑠.
Note that we can write

𝜕𝜕𝜌 (𝜁) (𝐿󸀠
2, 𝐿󸀠

2) = 𝜕2𝜌
𝜕𝜁2𝜕𝜁2 + 𝑅1, (74)

where 𝑅1 = O(𝑏̃2). By applying 𝐿󸀠
2 or 𝐿󸀠

2 successively to𝜕𝜕𝜌(𝜁)(𝐿󸀠
2, 𝐿󸀠

2), we obtain that

𝐷𝑙1
1𝐷𝑙2

2L
󸀠
𝑗,𝑘𝜕𝜕𝜌 (𝜁) = 𝐷𝑙1

1𝐷𝑙2
2

𝜕𝑗+𝑘𝜌
𝜕𝜁𝑗2𝜕𝜁𝑘2 + 𝐷𝑙1

1𝐷𝑙2
2𝑅𝑗+𝑘−1, (75)
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where, by (73) and by using inductionmethod,𝑅𝑗+𝑘−1 satisfies

󵄨󵄨󵄨󵄨󵄨𝐷𝑙1
1𝐷𝑙2

2𝑅𝑗+𝑘−1 (𝜁)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶2𝛿𝑠𝜏−𝑙11 𝜏−𝑙2−𝑗−𝑘+1𝑠 ,
𝜁 ∈ 𝑅𝑠

𝛾𝛿 (𝜁𝛿) . (76)

Combining the estimate in (61), (75), and (76), one obtains
that 󵄨󵄨󵄨󵄨󵄨L󸀠

𝑗,𝑘𝜕𝜕𝜌 (𝜁)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶2𝛿𝑠𝜏−𝑗−𝑘𝑠 , 𝜁 ∈ 𝑅𝑠
𝛾𝛿 (𝜁𝛿) . (77)

Assume that (59) holds.Thus 𝑡𝑠 = 𝑞](𝑠) for some 𝑞](𝑠), and
hence it follows from (53) that 𝐴𝑞](𝑠)

(𝑧1) = 𝛿𝑠𝜏−𝑞](𝑠)𝑠 . Therefore
it follows from (23) and (50) that there exist integers 𝑗, 𝑘 > 0
with 𝑗 + 𝑘 = 𝑡𝑠 = 𝑞](𝑠), such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝑗+𝑘𝜌
𝜕𝜁𝑗2𝜕𝜁𝑘2 (𝜁𝛿)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨𝑎𝑗,𝑘 (𝑧̃𝛿)󵄨󵄨󵄨󵄨󵄨 = 𝐴𝑞](𝑠)

(𝑧1) = 𝛿𝑠𝜏−𝑞](𝑠)𝑠

= 𝛿𝑠𝜏−𝑗−𝑘𝑠 .
(78)

For these 𝑗, 𝑘 > 0, it follows from (61), (75), (76), and (78)
and by using the Taylor series method that there are constants𝑐2, 𝐶2 > 0 such that
𝑐2𝛿𝑠𝜏−𝑗−𝑘𝑠 ≤ 󵄨󵄨󵄨󵄨󵄨L𝑗,𝑘𝜕𝜕𝑟 (𝑧)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶2𝛿𝑠𝜏−𝑗−𝑘𝑠 ,

𝑧 ∈ 𝑄𝑠
𝛾𝛿 (𝑧̃𝛿) , (79)

provided 𝛾 > 0 is sufficiently small.

Lemma 19. There is 𝐶2 > 0 such that
󵄨󵄨󵄨󵄨󵄨𝜕𝜕𝑟 (𝑧) (𝐿1, 𝐿2)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶2𝛾𝛿𝑠𝜏−11 𝜏−1𝑠 , 𝑧 ∈ 𝑄𝑠

𝛾𝛿 (𝑧̃𝛿) . (80)

Proof. By functoriality, we have

𝜕𝜕𝑟 (𝑧) (𝐿1, 𝐿2) = 𝜕𝜕𝜌 (𝜁) (𝐿󸀠
1, 𝐿󸀠

2)
= 𝜕2𝜌
𝜕𝜁1𝜕𝜁2 (𝜁) + O (𝑏̃1 (𝜁) + 𝑏̃2 (𝜁)) . (81)

From (23), we see that

𝐷1 ( 𝜕2𝜌
𝜕𝜁1𝜕𝜁2) (𝜁𝛿) = O (󵄨󵄨󵄨󵄨𝑒𝛿󵄨󵄨󵄨󵄨) = O (𝛿)

= 𝜕2𝜌
𝜕𝜁1𝜕𝜁2 (𝜁

𝛿) ,
(82)

and it follows from (61) that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐷2

𝜕2𝜌
𝜕𝜁1𝜕𝜁2 (𝜁

𝛿)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≲ 𝛿𝑠𝜏−11 𝜏−2𝑠 . (83)

Therefore (80) follows from (73), (81), and (83) and by using
Taylor series method.

Note that𝑇(𝑧̃𝛿 , 𝜎𝑠𝛿) fl 𝑡𝑠 = 𝑞](𝑠), for some 𝑞](𝑠), and hence
there exist 𝑗 > 0, 𝑘 > 0 with 𝑗 + 𝑘 = 𝑡𝑠. In view of (79), we
may assume that

󵄨󵄨󵄨󵄨󵄨𝐿2 (ReL𝑗−1,𝑘𝜕𝜕𝑟 (𝑧))󵄨󵄨󵄨󵄨󵄨 ≈ 𝛿𝑠𝜏−𝑡𝑠𝑠 , 𝑧 ∈ 𝑄𝑠
𝛾𝛿 (𝑧̃𝛿) , (84)

is valid (when 𝑗 = 1, we replaceL𝑗−1,𝑘 byL𝑗,𝑘−1). Set

𝐺 (𝑧) = ReL𝑗−1,𝑘𝜕𝜕𝑟 (𝑧) . (85)

By using the estimates (73)–(76), one obtains that

󵄨󵄨󵄨󵄨𝐿1𝐺󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝐷1

𝜕𝑡𝑠−1𝜌
𝜕𝜁𝑗−12 𝜕𝜁𝑘2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨𝐷1𝑅𝑗+𝑘−1

󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑏1𝐺󵄨󵄨󵄨󵄨
≤ 𝐶2𝛿𝑠𝜏−11 𝜏−𝑡𝑠+1𝑠 ,

(86)

and similarly,
󵄨󵄨󵄨󵄨󵄨𝜕𝜕𝐺 (𝐿𝑗, 𝐿𝑘) (𝑧)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶2𝛿𝑠𝜏−1𝑗 𝜏−1𝑘 𝜏−𝑡𝑠+1𝑠 , 𝑗, 𝑘 = 1, 2, (87)

for 𝑧 ∈ 𝑄𝑠
𝛾𝛿(𝑧̃𝛿), where 𝜏1 = 𝜏1 and 𝜏2 = 𝜏𝑠.

Lemma 20. Assume that (59) holds. Then

|𝐺 (𝑧)| ≤ 𝐶2𝜎1/𝑡𝑠𝛿𝑠𝜏−𝑡𝑠+1𝑠 , 𝑧 ∈ 𝑄𝑠
𝛾𝛿 (𝑧̃𝛿) . (88)

Proof. Suppose 𝑧 ∈ 𝑄𝑠
𝛾𝛿(𝑧̃𝛿). In view of (51)–(53), (56), and

(59), we see that

( 𝜎𝑠+1𝛿𝐴 𝑡𝑠−1
(𝑧))

1/(𝑡𝑠−1) ≥ 𝜏 (𝑧, 𝜎𝑠+1𝛿) = ( 𝜎𝑠+1𝛿𝐴 𝑡𝑠
(𝑧))

1/𝑡𝑠

= 𝜎1/𝑡𝑠𝜏 (𝑧, 𝜎𝑠𝛿) ≈ 𝜎1/𝑡𝑠𝜏𝑠,
(89)

and hence it follows that

𝐴 𝑡𝑠−1
(𝑧) ≲ 𝜎1/𝑡𝑠𝛿𝑠𝜏−𝑡𝑠+1𝑠 . (90)

This together with (73)–(78) implies the estimate (88).

In the sequel, we write

𝐿 = 𝑎1𝐿1 + 𝑎2𝐿2 + 𝑎3𝐿3. (91)

Lemma 21. There is a positive number 𝜎 > 0, independent of𝑧̃𝛿 and 𝛿, such that if 𝑧 ∈ 𝑄𝑠
𝛾𝛿(𝑧̃𝛿) and if (59) holds, then there

are constants 𝑐2 > 0 and𝐶2 > 0, independent of 𝑧̃, 𝛿 and 𝜎 > 0,
such that

𝜕𝜕𝐺2 (𝐿, 𝐿) (𝑧) ≥ 𝑐2𝛿2
𝑠𝜏−2𝑡𝑠𝑠

󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨2
− 𝐶2𝛿2

𝑠𝜏−21 𝜏−2𝑡𝑠+2𝑠
󵄨󵄨󵄨󵄨𝑎1󵄨󵄨󵄨󵄨2 − 𝐶2

󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨2 .
(92)

Proof. Suppose 𝑧 ∈ 𝑄𝑠
𝛾𝛿(𝑧̃𝛿). From (87) and (88), we note that

󵄨󵄨󵄨󵄨󵄨𝐺 (𝑧) 𝜕𝜕𝐺 (𝑧) (𝐿𝑗, 𝐿𝑘)󵄨󵄨󵄨󵄨󵄨 ≲ 𝜎1/𝑡𝑠𝛿2
𝑠𝜏−2𝑡𝑠+2𝑠 𝜏−1𝑗 𝜏−1𝑘 , (93)
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for 𝑗, 𝑘 = 1, 2 where 𝜏1 = 𝜏1 and 𝜏2 = 𝜏𝑠. Using (84)–(88) and
(93) and by using small (large) constant method, one obtains
that

𝜕𝜕𝐺 (𝑧)2 (𝐿, 𝐿) = 2 |𝐿𝐺 (𝑧)|2 + 2𝐺 (𝑧) 𝜕𝜕𝐺 (𝐿, 𝐿) (𝑧)
≥ 2𝑐2𝛿2

𝑠𝜏−2𝑡𝑠𝑠
󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨2

+ 4Re( ∑
1≤𝑗<𝑘≤3

(𝐿𝑗𝐺) (𝐿𝑘𝐺)𝑎𝑗𝑎𝑘)
+ 2 ∑

1≤𝑗≤𝑘≤3

𝐺 (𝑧) 𝜕𝜕𝐺 (𝑧) (𝐿𝑗, 𝐿𝑘) 𝑎𝑗𝑎𝑘

≥ 𝑐2𝛿2
𝑠𝜏−2𝑡𝑠𝑠

󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨2 − 𝐶2𝛿2
𝑠 𝜏−21 𝜏−2𝑡𝑠+2𝑠

󵄨󵄨󵄨󵄨𝑎1󵄨󵄨󵄨󵄨2 − 𝐶2
󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨2 ,

(94)

for some 𝑐2 > 0 and 𝐶2 > 0 provided 𝜎 > 0 is sufficiently
small.

Remark 22. Fromnow on, we fix constants 𝑐2 > 0 and𝐶2 > 0,
which depend only on the derivatives of 𝑟 or 𝜌 of order up
to 𝜂 on 𝑉, satisfying (69), (73), (80), and (86)–(92), and set𝐶2 = 𝑐−12 for a convenience. Now we choose and fix 𝛾 > 0 and
then fix 𝜎 > 0 so that

40𝐶2
2𝛾1/2 ≤ 1, and

420𝐶4
2𝛾−7/2𝜎2/𝑚 ≤ 116 .

(95)

3. Estimates on the Bergman Kernels

Recall that 𝑧̃𝛿 = 𝜋(𝑧(𝛿)) = (𝑑𝛿1/𝜂, 0, 𝑒𝛿) ∈ 𝑏Ω where 𝑧(𝛿) =(𝑑𝛿1/𝜂, 0, −𝛿) and where 𝜋 is the projection defined before
(19). Also note that Φ𝑧𝛿(𝜁𝛿) = 𝑧̃𝛿 where 𝜁𝛿 = (𝑑𝛿1/𝜂, 0, 0) and
whereΦ𝑧𝛿 is the holomorphic coordinate function defined in
Proposition 11 about 𝑧̃ = 𝑧̃𝛿. Also recall 𝐶𝑏(𝑧0, 𝛿0) defined in
(20). In this section we estimate the Bergman kernel function𝐾Ω(𝑧, 𝑧𝛿), for 𝑧 ∈ Ω and 𝑧𝛿 ∈ 𝐶𝑏(𝑧0, 𝛿0).

To get optimal estimates of the Bergman kernel, we need
to construct a plurisubharmonic functionwhich hasmaximal
Hessian near each thin neighborhood of 𝑏Ω as in [2, 15].
It contains complicated estimates depending on the type
conditions of each boundary points. In this paper, however,
we will construct such functions only at 𝑧̃𝛿 ∈ 𝑏Ω. This will
make the estimates much simpler than those in [2, 15] but still
contain many complicated estimates.

Note that 𝜎 > 0 and 𝛾 > 0 are fixed in Remark 22 and
hence the type 𝑡𝑠 and the integer 𝑠 defined in (59) depend only
on 𝑧̃𝛿 ∈ 𝑏Ω. Recall that 𝛿𝑠 = 𝜎𝑠𝛿, 𝜏1 = 𝛿1/𝜂, 𝜏2 = 𝜏(𝑧̃𝛿, 𝛿), and𝜏𝑠 = 𝜏(𝑧̃𝛿, 𝛿𝑠). From (54) we have

𝜎𝑠/2𝜏2 ≤ 𝜏𝑠 ≤ 𝜎𝑠/𝑚𝜏2. (96)

Let us write 𝐿 = 𝑎1𝐿1 + 𝑎2𝐿2 + 𝑎3𝐿3.

Proposition 23. There exist a smooth plurisubharmonic func-
tion 𝑔𝑧𝛿 onΩ that satisfies the following:

(i) |𝑔𝑧𝛿 (𝑧)| ≤ 1, for 𝑧 ∈ Ω, and𝑔𝑧𝛿 is supported in𝑄𝑠
𝛾𝛿(𝑧̃𝛿)∩Ω.

(ii) There exist a small constant 𝑏 > 0 such that if 𝑧 ∈𝑄2𝑏𝛿(𝑧̃𝛿) ∩ Ω, then

𝜕𝜕𝑔𝑧𝛿 (𝐿, 𝐿) (𝑧) ≈ 𝜏−21
󵄨󵄨󵄨󵄨𝑎1󵄨󵄨󵄨󵄨2 + 𝜏−22

󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨2 + 𝛿−2 󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨2 . (97)

(iii) IfΦ𝑧𝛿(𝜁) = (𝑧1, 𝑧2, Φ3(𝜁)) where Φ3 is defined in (22),
then 󵄨󵄨󵄨󵄨󵄨𝐷𝛼 (𝑔𝑧𝛿 ∘ Φ (𝜁))󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶𝛼𝜏−𝛼11 𝜏−𝛼22 𝛿−𝛼3 . (98)

holds for all 𝜁 ∈ 𝑅𝑠
𝛾𝛿(𝜁𝛿) where 𝐷𝛼 = 𝐷𝛼1

1 𝐷𝛼2
2 𝐷𝛼3

3 .

Proof. For each fixed 𝑧̃𝛿, we note that the integers 𝑠 = 𝑠(𝑧̃𝛿)
and 𝑡𝑠, defined in (59), will be fixed. Set 𝜏1 = 𝜏1 and 𝜏2 = 𝜏𝑠.
Note that 𝛾−2𝜎−4𝑠𝜏2𝑖 ≤ 1 provided 𝛿 > 0 is sufficiently small.
Since 𝛿𝑠 = 𝜎𝑠𝛿, it follows from (80) that󵄨󵄨󵄨󵄨󵄨𝜕𝜕𝑟 (𝑧) (𝐿1, 𝐿2) 𝑎1𝑎2

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶2𝛾𝛿 (𝜏−21

󵄨󵄨󵄨󵄨𝑎1󵄨󵄨󵄨󵄨2 + 𝜎2𝑠𝜏−2𝑠
󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨2) , and󵄨󵄨󵄨󵄨󵄨𝜕𝜕𝑟 (𝑧) (𝐿 𝑖, 𝐿3) 𝑎𝑖𝑎3

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶2𝛾𝜎2𝑠𝛿𝜏−2𝑖

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨2 + 𝐶2𝛾−1𝜎−2𝑠𝛿−1𝜏2𝑖 󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨2
≤ 𝐶2𝛾𝜎2𝑠 (𝛿𝜏−2𝑖

󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨2 + 𝛿−1 󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨2) , 𝑖 = 1, 2,

(99)

for 𝑧 ∈ 𝑄𝑠
𝛾𝛿(𝑧̃𝛿). From now on, we fix 𝜆 = 420𝐶2

2𝛾−9/2 and set𝜆𝑠 = 𝜎−2𝑠𝜆.
We may assume that the level sets of 𝑟 are pseudoconvex

on𝑉 and |𝐿3𝑟|2 ≥ 𝑐20 > 0 on𝑉∩Ω, wherewemay assume that𝑐20 ≥ 4𝑐2. Also 4𝐶2𝛾1/2 ≤ 𝑐2/10 by (95). Therefore it follows
from (69) and (99) that

𝜆𝑠𝛿−1𝜕𝜕𝑟 (𝐿, 𝐿) + (𝜆𝑠𝛿−1)2 |𝐿𝑟|2
= 𝜆𝑠𝛿−1

3∑
𝑘=1

𝜕𝜕𝑟 (𝐿𝑘, 𝐿𝑘) 󵄨󵄨󵄨󵄨𝑎𝑘󵄨󵄨󵄨󵄨2 + 2𝜆𝑠𝛿−1

⋅ Re ∑
1≤𝑗<𝑘≤3

𝜕𝜕𝑟 (𝐿𝑗, 𝐿𝑘) 𝑎𝑗𝑎𝑘 + 𝜆2
𝑠𝛿−2 󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨2 󵄨󵄨󵄨󵄨𝐿3𝑟󵄨󵄨󵄨󵄨2

≥ 𝜆𝑠𝛿−1 [4𝑐25 𝛿𝜏−21
󵄨󵄨󵄨󵄨𝑎1󵄨󵄨󵄨󵄨2

+ (𝜕𝜕𝑟 (𝑧) (𝐿2, 𝐿2) − 𝑐210𝛾1/2𝜎2𝑠𝛿𝜏−2𝑠 ) 󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨2]
+ 3𝑐2𝜆2

𝑠𝛿−2 󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨2 ,

(100)

for 𝑧 ∈ 𝑄𝑠
𝛾𝛿(𝑧̃𝛿).

Let 𝜓(𝜁) be defined by

𝜓 (𝜁) = 𝜒 (𝜏−21

󵄨󵄨󵄨󵄨󵄨𝜁1 − 𝑑𝛿1/𝜂󵄨󵄨󵄨󵄨󵄨2 + 𝜏−2𝑠
󵄨󵄨󵄨󵄨𝜁2󵄨󵄨󵄨󵄨2 + 𝛿−2

𝑠
󵄨󵄨󵄨󵄨𝜁3󵄨󵄨󵄨󵄨2) , (101)

where 𝜒 is a smooth function such that 𝜒(𝑡) = 1 for 𝑡 < 𝛾2/9
and 𝜒(𝑡) = 0 for 𝑡 ≥ 𝛾2, satisfying |𝐷𝑘𝜒| ≤ 𝐶𝑘𝛾−2𝑘. SetΨ(𝑧) =
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𝜓((Φ𝑧𝛿)−1(𝑧)). Note that Φ−1
𝑧𝛿
(𝑧) has similar expression as in

(22).Thus it follows, from (22), (29), (30), and chain rule, that

󵄨󵄨󵄨󵄨𝐷𝛼Ψ (𝑧)󵄨󵄨󵄨󵄨 ≤ 𝐶|𝛼|𝛾−2|𝛼|𝜏−𝛼11 𝜏−𝛼2𝑠 𝛿−𝛼3
𝑠 𝑧 ∈ 𝑄𝑠

𝛾𝛿 (𝑧̃𝛿) . (102)

Here 𝛼 = (𝛼1, 𝛼2, 𝛼3) and |𝛼| = 𝛼1 + 𝛼2 + 𝛼3. Since 𝐶2 = 𝑐−12 ,
one obtains󵄨󵄨󵄨󵄨󵄨𝜕𝜕Ψ (𝑧) (𝐿, 𝐿)󵄨󵄨󵄨󵄨󵄨

≤ 𝐶2𝛾−4 (𝜏−21
󵄨󵄨󵄨󵄨𝑎1󵄨󵄨󵄨󵄨2 + 𝜏−2𝑠

󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨2 + 𝛿−2
𝑠

󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨2) ,
𝜆𝑠𝛿−1 󵄨󵄨󵄨󵄨𝐿 𝑖Ψ (𝑧)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨

≤ 10𝐶2𝛾−4𝜏−2𝑖
󵄨󵄨󵄨󵄨𝑎𝑖󵄨󵄨󵄨󵄨2 + 𝑐210𝜆2

𝑠𝛿−2 󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨2 , 𝑖 = 1, 2,
(103)

where 𝜏1 = 𝜏1 and 𝜏2 = 𝜏𝑠.
Suppose that 𝑧 satisfies Ψ(𝑧) ≥ 1/4. Using the fact that𝐿𝑘𝑟 = 0, 𝑘 = 1, 2, and the fact that 84𝐶2𝛾−9/2 = (𝑐2/5)𝜆 ≤(𝑐2/5)𝜆𝑠, it follows from (100)–(103) that

𝜕𝜕 (Ψ𝑒𝜆𝑠𝛿−1𝑟) (𝐿, 𝐿) = 𝑒𝜆𝑠𝛿−1𝑟 [𝜕𝜕Ψ (𝐿, 𝐿)
+ 2𝜆𝑠𝛿−1

3∑
𝑖=1

Re ((𝐿 𝑖Ψ) (𝐿3𝑟)) 𝑎𝑖𝑎3]
+ 𝑒𝜆𝑠𝛿−1𝑟 [𝜆𝑠𝛿−1Ψ𝜕𝜕𝑟 (𝐿, 𝐿) + 𝜆2

𝑠𝛿−2Ψ |𝐿𝑟|2] ≥ 14
⋅ 𝑒𝜆𝑠𝛿−1𝑟 [3𝑐25 𝜆𝑠𝜏−21

󵄨󵄨󵄨󵄨𝑎1󵄨󵄨󵄨󵄨2 + 𝑐2𝜆2
𝑠𝛿−2 󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨2] + 14

⋅ 𝑒𝜆𝑠𝛿−1𝑟 [𝜆𝑠𝛿−1𝜕𝜕𝑟 (𝑧) (𝐿2, 𝐿2) − 2𝑐25 𝛾1/2𝜆𝜏−2𝑠 ]
⋅ 󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨2 .

(104)

We note that the negative part in (104) contains 𝛾1/2𝜆 instead
of 𝛾1/2𝜆𝑠.

Let ℎ be a smooth convex function such that ℎ(𝑡) = 0
for 𝑡 ≤ 1/2 and ℎ(𝑡) > 0 for 𝑡 > 1/2 and ℎ(9/8) ≤ 1. Set𝐺𝑧𝛿(𝑧) = Ψ(𝑧)𝑒𝜆𝑠𝛿−1𝑟(𝑧) and set 𝑔𝑧𝛿 (𝑧) = ℎ(𝐺𝑧𝛿(𝑧)). Suppose𝑇(𝑧̃𝛿, 𝛿) = 2.Then 𝑠 = 0, and hence (79) holds for 𝛿𝑠 = 𝛿with𝑗 = 𝑘 = 1; that is,
𝑐2𝛿𝜏−22 ≤ 𝜕𝜕𝑟 (𝑧) (𝐿2, 𝐿2) ≤ 𝐶2𝛿𝜏−22 , 𝑧 ∈ 𝑄𝛾𝛿 (𝑧̃𝛿) . (105)

For those 𝑧 with Ψ(𝑧) ≥ 1/4, it follows from (104) (with 𝜆𝑠 =𝜆) and (105) that

𝜕𝜕𝐺𝑧𝛿 (𝑧)
≥ 3𝑐2𝜆20 𝑒𝜆𝛿−1𝑟 [𝜏−21

󵄨󵄨󵄨󵄨𝑎1󵄨󵄨󵄨󵄨2 + 𝜏−22
󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨2 + 𝛿−2 󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨2] . (106)

If Ψ(𝑧) ≤ 1/4, then 𝐺𝑧𝛿(𝑧) ≤ 1/4 and hence 𝑔𝑧𝛿 (𝑧) = 0.
Hence 𝑔𝑧𝛿 is a smooth plurisubharmonic function supported
on 𝑄𝛾𝛿(𝑧̃𝛿), and |𝑔𝑧𝛿 | ≤ 1.

Now assume 𝑇(𝑧̃𝛿, 𝛿) > 2 and assume that (59) holds.
Then (79) holds for some positive integers 𝑗, 𝑘 with 𝑗+𝑘 = 𝑡𝑠.
Let 𝐺(𝑧) be the function defined in (85). From (88) and (95),
we see that

𝜆𝛾1/2𝛿−2
𝑠 𝜏2𝑡𝑠−2𝑠 𝐺 (𝑧)2 ≤ 𝜆𝛾1/2𝐶2

2𝜎2/𝑡𝑠

≤ 420𝐶4
2𝛾−7/2𝜎2/𝑚 ≤ 116 ,

(107)

𝑧 ∈ 𝑄𝑠
𝛾𝛿(𝑧̃𝛿), because 𝜆 = 420𝐶2

2𝛾−4 and 𝑡𝑠 ≤ 𝑚. Set

𝑔𝑧𝛿 (𝑧)
= ℎ (Ψ (𝑧) 𝑒𝜆𝑠𝛿−1𝑟(𝑧) + 𝜙 (𝜆𝛾1/2𝛿−2

𝑠 𝜏2𝑡𝑠−2𝑠 𝐺 (𝑧)2)) , (108)

where 𝜙(𝑡) is a smooth function that satisfies 𝜙(𝑡) = 𝑡, for𝑡 ≤ 1/16, 𝜙(𝑡) = 0 for 𝑡 ≥ 1, and 𝜙(𝑡) ≤ 1/8 for all 𝑡. Thus𝑔𝑧𝛿 ∈ 𝐶∞
0 (𝑄𝑠

𝛾𝛿(𝑧̃𝛿)) and |𝑔𝑧𝛿 | ≤ 1 because ℎ(9/8) ≤ 1. By
(107) we note that 𝜙(𝑧) = 𝑧 on 𝑄𝑠

𝛾𝛿(𝑧̃𝛿), and we also note that
𝑔𝑧𝛿 = 0 if Ψ(𝑧)𝑒𝜆𝑠𝛿−1𝑟(𝑧) ≤ 3/8, in particular, 𝑔𝑧𝛿 = 0 outside𝑄𝑠

𝛾𝛿(𝑧̃𝛿). From (92), we obtain that

𝜆𝛾1/2𝛿−2
𝑠 𝜏2𝑡𝑠−2𝑠 𝜕𝜕𝐺 (𝑧)2 (𝐿, 𝐿)

≥ 𝛾1/2 (𝑐2𝜆𝜏−2𝑠
󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨2 − 𝐶2𝜆𝜏−21

󵄨󵄨󵄨󵄨𝑎1󵄨󵄨󵄨󵄨2 − 𝐶2𝜆𝛿−2
𝑠

󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨2)
≥ 𝑐2𝛾1/2𝜆𝜏−2𝑠

󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨2 − 𝑐240𝜆𝜏−21
󵄨󵄨󵄨󵄨𝑎1󵄨󵄨󵄨󵄨2 − 𝑐240𝜆𝛿−2

𝑠
󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨2 ,

(109)

for 𝑧 ∈ 𝑄𝑠
𝛾𝛿(𝑧̃𝛿), because 𝛾1/2𝐶2 ≤ 𝑐2/40.

Assuming that Ψ(𝑧)𝑒𝜆𝑠𝛿−1𝑟(𝑧) ≥ 3/8, we note that the neg-
ative coefficient part of |𝑎2|2 of the Hessian of Ψ(𝑧)𝑒𝜆𝑠𝛿−1𝑟(𝑧)
in (104) is controlled by the first term in the third line of
(109), and the error terms of the coefficients of |𝑎1|2 and |𝑎3|2
in the third line of (109) are controlled by the corresponding
coefficients of the Hessian of Ψ(𝑧)𝑒𝜆𝑠𝛿−1𝑟(𝑧) in (104). In either𝑇(𝑧̃𝛿, 𝛿) = 2 or 𝑇(𝑧̃𝛿, 𝛿) > 2 cases, it follows from (104), (106),
and (109) that

𝜕𝜕𝑔𝑧𝛿 (𝐿, 𝐿) ≥ 𝑐232𝑒𝜆𝑠𝛿−1𝑟(𝑧) (𝜆𝑠𝜏−21
󵄨󵄨󵄨󵄨𝑎1󵄨󵄨󵄨󵄨2

+ 𝛾1/2𝜆𝜏−2𝑠
󵄨󵄨󵄨󵄨𝑎2󵄨󵄨󵄨󵄨2 + 𝜆−2

𝑠 𝛿−2 󵄨󵄨󵄨󵄨𝑎3󵄨󵄨󵄨󵄨2) ,
(110)

for 𝑧 ∈ 𝑄𝑠
𝛾𝛿(𝑧̃𝛿).

Note that parameters, 𝑐2, 𝐶2, 𝛾, 𝜎, and 𝜆, are fixed in
Remark 22, independent of 𝛿 > 0.Therefore the upper bound
of𝑔𝑧𝛿 follows from (84)–(88), (96), (99), (102), and (103).Note
that 𝑒𝜆𝑠𝛿−1𝑟(𝑧) > 𝑒−1/4 > 3/4, if 𝑟(𝑧) > −𝛿/4𝜆𝑠 = −𝛿𝜎2𝑠/4𝜆, and
this property holds on 𝑄2𝑏𝛿(𝑧̃𝛿) if we take 𝑏 > 0 sufficiently
small; say, 0 < 2𝑏 < 𝜎2𝑚/𝜆2. Also note thatΨ = 1 on𝑄2𝑏𝛿(𝑧̃𝛿).
This fact togetherwith (96) and (110) proves properties (i) and
(ii). Property (iii) follows from (22), (30), (32), and (96).

For each 𝑧𝛿 = (𝑑𝛿1/𝜂, 0, 𝑒𝛿 − 𝑏𝛿) ∈ 𝐶𝑏(𝑧0, 𝛿0), set 𝜁𝛿 flΦ−1
𝑧𝛿
(𝑧𝛿) = (𝑑𝛿1/𝜂, 0, −𝑏𝛿).
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Proposition 24. There is a small constant 𝑎 > 0 such that𝑅2𝑎𝛿(𝜁𝛿) ⊂⊂ Ω for all sufficiently small 𝛿 > 0.
Proof. From (22)–(29), we obtain that

𝜌 (𝜁𝛿) = 𝑟 (𝑧𝛿) = −𝑏𝛿 + O (𝛿1+1/𝜂) < −𝑏𝛿2 , (111)

for all sufficiently small 𝛿 > 0. Assume 𝜁 ∈ 𝑅2𝑎𝛿(𝜁𝛿) and write
𝜌 (𝜁) = [𝜌 (𝜁) − 𝜌 (𝑑𝛿1/𝜂, 𝜁2, 𝜁3)]

+ [𝜌 (𝑑𝛿1/𝜂, 𝜁2, 𝜁3) − 𝜌 (𝜁𝛿)] + 𝜌 (𝜁𝛿)
fl 𝐸1 + 𝐸2 + 𝜌 (𝜁𝛿) .

(112)

From (61), and by using Taylor series method, one obtains
that
󵄨󵄨󵄨󵄨𝐸1

󵄨󵄨󵄨󵄨 ≤ 𝑎 max
|𝜁1−𝑑𝛿

1/𝜂|<2𝑎𝛿1/𝜂

󵄨󵄨󵄨󵄨󵄨𝐷1𝜌 (𝜁1, 𝜁2, 𝜁3)󵄨󵄨󵄨󵄨󵄨 𝛿1/𝜂 ≤ 2𝑎𝐶2𝛿, (113)

for a uniform constant 𝐶2 > 0. Similarly, we obtain |𝐸2| ≤4𝑎𝐶2𝛿. Combining these estimates and (111) and if we set 𝑎 =𝑏/24𝐶2, then we obtain that

𝜌 (𝜁) < 6𝑎𝐶2𝛿 − 𝑏𝛿2 = −𝑏𝛿4 , 𝜁 ∈ 𝑅𝑎𝛿 (𝜁𝛿) . (114)

Remark 25. (1) Set 𝑔𝛿(𝜁) fl 𝑔𝑧𝛿 ∘ Φ𝑧𝛿(𝜁). Then, by functori-
ality, Proposition 23 holds, where 𝑔𝑧𝛿 is replaced by 𝑔𝛿, and𝑄𝛾𝛿(𝑧̃𝛿) is replaced by 𝑅𝛾𝛿(𝜁𝛿).

For each fixed 𝛿 > 0, and for each fixed 𝑧̃𝛿 = (𝑑𝛿1/𝜂,0, 𝑒𝛿) ∈ 𝑏Ω, set Ω𝑧𝛿 = Φ−1
𝑧𝛿
(Ω). Note that |det(𝐽CΦ−1

𝑧𝛿
(𝑧))| =2|(𝜕𝑟/𝜕𝑧3)(𝑧̃𝛿)| ≥ 2𝑐0 > 0 on 𝑉. Thus it follows, from

transformation formula, that

𝐾Ω (𝑧, 𝑧𝛿) = 4 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝜕𝑟𝜕𝑧3 (𝑧̃𝛿)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝐾Ω

𝑧̃𝛿
(𝜁, 𝜁𝛿) . (115)

In view of Propositions 23 and 24, there is a smooth plurisub-
harmonic weight function 𝑔𝑧𝛿 which has maximal Hessian
on 𝑄𝑎𝛿(𝑧𝛿) ⊂⊂ Ω. We also note that 𝜏(𝑧̃𝛿, 𝛿) ≈ 𝜏(𝑧𝛿, 𝛿) by
(56). If we use these properties and (115), we get the following
estimates for the Bergman kernel function𝐾Ω(𝑧𝛿, 𝑧𝛿) at 𝑧𝛿 ∈𝐶𝑏(𝑧0, 𝛿0) as in Theorem 6.1 in [2]:

𝐾Ω (𝑧𝛿, 𝑧𝛿) ≈ 𝛿−2𝛿−2/𝜂𝜏 (𝑧𝛿, 𝛿)−2 ,
𝑧𝛿 ∈ 𝐶𝑏 (𝑧0, 𝛿0) .

(116)

This proves Theorem 2.
Now we want to get derivative estimates of 𝐾(𝑧, 𝑧𝛿) for𝑧 ∈ Ω and 𝑧𝛿 ∈ 𝐶𝑏(𝑧0, 𝛿0). In view of (115), we will estimate𝐾Ω
𝑧̃𝛿
(𝜁, 𝜁𝛿) where 𝑧 = Φ𝑧𝛿(𝜁) and 𝑧𝛿 = Φ𝑧𝛿 (𝜁𝛿). We will

follow the methods in [3, 9] which use dilated coordinates.

For each fixed 𝛿 > 0, we recall that 𝜏1 = 𝛿1/𝜂, 𝜏2 = 𝜏(𝑧𝛿, 𝛿)
and 𝜏3 = 𝛿. Define a dilation map 𝐷𝛿 given by

𝐷𝛿 (𝜁) = (𝜁1 − 𝑑𝛿1/𝜂

𝑎𝜏1 , 𝜁2𝑎𝜏2 ,
𝜁3 + 𝑏𝛿𝑎𝜏3 ) fl (𝑤1, 𝑤2, 𝑤3)

= 𝑤,
(117)

set

𝜌𝛿 (𝑤) fl 𝛿−1 (𝜌 ∘ 𝐷−1
𝛿 (𝑤)) ,

Ω𝛿 = {𝑤 ∈ C
3; 𝜌𝛿 (𝑤) < 0} , (118)

and set

𝜆𝛿 (𝑤) fl 𝑔𝛿 ∘ 𝐷−1
𝛿 (𝑤) , (119)

where 𝑔𝛿(𝜁) fl 𝑔𝑧𝛿 ∘ Φ𝑧𝛿(𝜁) and where 𝑔𝑧𝛿 is defined in
Proposition 23 .

Set

𝐿𝛿
3 = 𝜕𝜕𝑤3

,
𝐿𝛿

𝑘 = 𝜕𝜕𝑤𝑘

− ( 𝜕𝜌𝛿𝜕𝑤3

)−1 𝜕𝜌𝛿𝜕𝑤𝑘

𝜕𝜕𝑤3

,
𝑘 = 1, 2,

(120)

and write 𝐿𝛿 = 𝑏1𝐿𝛿
1 + 𝑏2𝐿𝛿

2 + 𝑏3𝐿𝛿
3. The properties of 𝜆𝛿(𝑤),

which follow fromPropositions 23 and 24 and Remark 25, are
summarized in the following proposition.

Proposition 26. For each 𝛿 > 0 there is 𝜆𝛿(𝑤), defined onΩ𝛿,
such that

(1) 𝜆𝛿(𝑤) is smooth plurisubharmonic inΩ𝛿, and |𝜆𝛿| ≤ 1;
(2) supp𝜆𝛿(𝑤) ⊂ 𝑃(0, 𝐶), for some 𝐶 = 2𝑎−1𝛾 > 1;
(3) 𝜕𝜕𝜆𝛿(𝐿𝛿, 𝐿𝛿)(𝑤) ≈ |𝑏1|2 + |𝑏2|2 + |𝑏3|2 if 𝑤 ∈ 𝑃(0, 1);
(4) |𝐷𝛼

𝑤𝜆𝛿(𝑤)| ≤ 𝐶𝛼.

Theweight function with the properties in Proposition 26
is the key ingredient for the derivative estimates of the
Bergman kernel function off the diagonal. Set 𝑃 = 𝑃(0, 𝐶)
and let 𝑁𝛿 be the Neumann operator on Ω𝛿. Then we have
the following 𝐿2 estimates of𝑁𝛿 (Proposition 3.14 in [3]).

Proposition 27. Let ℎ ∈ 𝐿2 be a (0, 1) form and supp ℎ ⊂ 𝑃.
Then there is 𝐶 > 0, independent of 𝛿 > 0, so that

∫
Ω𝛿∩𝑃

󵄨󵄨󵄨󵄨𝑁𝛿ℎ󵄨󵄨󵄨󵄨2 ≤ 𝐶 ‖ℎ‖2 . (121)

Note that 𝐷𝛿(𝜁𝛿) = 0. Set
𝑃 (0, 𝑟) fl {𝑤 = (𝑤1, 𝑤2, 𝑤3) : 󵄨󵄨󵄨󵄨𝑤𝑘

󵄨󵄨󵄨󵄨 ≤ 𝑟, 𝑘 = 1, 2, 3} . (122)

From (117) and Proposition 24, we note that

𝐷𝛿 (𝑅𝑎𝛿 (𝜁𝛿)) = 𝑃 (0, 1) ⊂⊂ 𝑃 (0, 2) ⊂⊂ Ω𝛿, (123)
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independent of 𝛿 > 0. Let 𝜉1, 𝜉2 ∈ 𝐶∞
0 (𝑃(0, 1)) with 𝜉1 = 1 in

a neighborhood of 0 and 𝜉2 = 1 on supp 𝜉1. From (123), we
see that supp 𝜉2 ⊂ 𝑃(0, 1) ⊂⊂ 𝑃(0, 2) ⊂⊂ Ω𝛿, independent of𝛿 > 0. Therefore we have the following elliptic estimates:
󵄩󵄩󵄩󵄩𝜉1𝑓󵄩󵄩󵄩󵄩2𝑠+2 ≤ 𝐶𝑠 (󵄩󵄩󵄩󵄩𝜉2◻𝛿𝑓󵄩󵄩󵄩󵄩2𝑠 + 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩2) ,

𝑠 ≥ 0, 𝑓 ∈ Dom (𝜕) ∩Dom (𝜕∗) , (124)

where ◻𝛿 is the complex Laplacian onΩ𝛿.

Remark 28. The estimates in (124) are on the polydisc𝑃(0, 1) ⊂⊂ 𝑃(0, 2) ⊂⊂ Ω𝛿, strictly inside of Ω𝛿, independent
of 𝛿 > 0. Therefore we gain two derivatives in (124) and it is
stable; that is,𝐶𝑠 is independent of 𝛿 > 0. Alsowe note that we
do not require thatΔ 1(𝑧0) < ∞. Since𝑃(0, 2) ⊂⊂ 𝑃 = 𝑃(0, 𝐶)
where 𝐶 = 2𝑎−1𝛾 > 2, we can also apply the estimate (121) on𝑃(0, 2).

Let 𝜙 ∈ 𝐶∞
0 (𝑃(0, 1)), ∫𝜙 = 1, and 𝜙 be polyradial. In

terms of 𝑤-coordinates in (117), we have the following well
known representation of Bergman kernel function onΩ𝛿.

𝐾Ω𝛿
(𝑤, 0) = 𝜙 (𝑤) − 𝜕∗𝑁𝛿𝜕𝜙 (𝑤) . (125)

Let 𝜒 ∈ 𝐶∞(Ω𝛿) with 𝜒 = 1 outside 𝑃(0, 1) and 𝜒 = 0 on
supp𝜙. Combining (121)–(125), we can prove the following
lemma as in the proof of Theorem 4.2 in [3].

Lemma 29. For each 𝑠 ≥ 0 there is 𝐶𝑠 > 0 such that󵄩󵄩󵄩󵄩󵄩𝜒𝑁𝛿𝜕𝜙󵄩󵄩󵄩󵄩󵄩𝑠 ≤ 𝐶𝑠. (126)

Now, if we use the estimate (126) with 𝑠 = |𝛼| + 3, we can
proveTheorem 3 as in the proof of Theorem 4.2 in [3].

Appendix

We recall Herbort’s example Ω𝐻 in (6). Therefore 𝜂 = 6 =Δ 1(0) and hence 𝜏1 = 𝛿1/6, 𝜏2 = 𝛿1/3, and 𝜏3 = 𝛿 in our
notations. For each fixed 𝛿 > 0, set 𝑧𝛿 = (𝛿1/6/2, 0, −𝛿). Then𝑧𝛿 ∈ Ω𝐻 and approaches to 0 ∈ 𝑏Ω𝐻 in “almost tangential
direction” as the points do along 𝐶𝑏(𝑧0, 𝛿0). In this case, we
will show that

𝐾Ω𝐻
(𝑧𝛿, 𝑧𝛿) ≈ 𝛿−3 = 𝛿−2𝜏−21 𝜏−22 , (A.1)

which is exactly same result as Theorem 2.

Proof of (A.1). Set

𝑃𝛿 (𝑧𝛿) fl {𝑧 : 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧1 −
𝛿1/6

2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 <

𝛿1/6

10 , 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨
< 𝛿1/3

10 , 󵄨󵄨󵄨󵄨𝑧3 + 𝛿󵄨󵄨󵄨󵄨 < 𝛿10} .
(A.2)

Then the polydisc 𝑃𝛿(𝑧𝛿) about 𝑧𝛿 is contained in Ω𝐻.
Therefore the upper bound 𝐾Ω𝐻

(𝑧𝛿, 𝑧𝛿) ≲ 𝛿−3 follows. Let
us show lower bounds.

Let Δ 3 be the unit polydisc in C3. Since the localization
lemma is valid forΩ𝐻, we will estimate 𝐾Ω𝐻∩Δ 3

(𝑧𝛿, 𝑧𝛿). Set
𝑃1 (𝑧1, 𝑧2) = 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨6 + 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨2 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨6 , and
𝑃2 (𝑧1, 𝑧2) = 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨6 + 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨2 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨2 , (A.3)

and set

𝐺1 = {Re 𝑧3 + 𝑃1 (𝑧1, 𝑧2) < 0} , and
𝐺2 = {Re 𝑧3 + 𝑃2 (𝑧1, 𝑧2) < 0} . (A.4)

ThenΩ𝐻 = 𝐺1 ⊂ 𝐺2 and 𝑧𝛿 ∈ 𝐺1∩𝐺2. Set𝑓𝛿 = 8𝛿11/6𝑧1/(𝑧3−𝛿)2. Then 𝑓𝛿(𝑧𝛿) = 1. Note that
󵄩󵄩󵄩󵄩𝑓𝛿

󵄩󵄩󵄩󵄩2𝐿2(𝐺1∩Δ 3) ≤ 󵄩󵄩󵄩󵄩𝑓𝛿
󵄩󵄩󵄩󵄩2𝐿2(𝐺2∩Δ 3)

= 16𝛿11/3 ∫
|𝑧1|,|𝑧2|<1

󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨2
⋅ [∫

Re 𝑧3<−𝑃2

󵄨󵄨󵄨󵄨𝑧3 − 𝛿󵄨󵄨󵄨󵄨−4 𝑑𝑉2 (𝑧3)] 𝑑𝑉4

≲ 𝛿11/3 ∫
|𝑧1|,|𝑧2|<1

󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨2 (𝛿 + 𝑃2)−2 𝑑𝑉4 fl (∗) ,

(A.5)

wherewe have used∫
R
(𝑑𝑠/(1+𝑠2)2) = 𝑐1 < ∞. Set 𝑧1 = 𝛿1/6𝑧󸀠1

and 𝑧2 = 𝛿1/3𝑧󸀠2. Then

(∗) ≲ 𝛿3 ∫
|𝑧󸀠2|<𝛿

−1/3
∫
|𝑧󸀠1|<𝛿

−1/6

󵄨󵄨󵄨󵄨󵄨𝑧󸀠1󵄨󵄨󵄨󵄨󵄨2 (1
+ 𝑃2 (𝑧󸀠1, 𝑧󸀠2))−2 𝑑𝑉4 (𝑧󸀠1, 𝑧󸀠2)
≲ 𝛿3 ∫𝛿−1/3

0
∫𝛿−1/6

0
𝑟31𝑟2 (1 + 𝑟21𝑟22

+ 𝑟61)−2 𝑑𝑟1𝑑𝑟2 fl (∗∗)

(A.6)

wherewe have used the polar coordinates: 𝑧󸀠𝑘 = 𝑟𝑘𝜎𝑖𝜃, 𝑘 = 1, 2
in the second line.

Set 𝑟41 = 𝑥 and 𝑟22 = 𝑦. Then

(∗∗) ≲ 𝛿3 ∫𝛿−2/3

0
∫𝛿−2/3

0
(1 + 𝑥1/2𝑦 + 𝑥3/2)−2 𝑑𝑦𝑑𝑥

= 𝛿7/3 ∫𝛿−2/3

0

𝑑𝑥(1 + 𝑥3/2) (1 + 𝛿−2/3𝑥1/2 + 𝑥3/2)
fl 𝛿7/3𝐼 (𝛿) .

(A.7)

Write 𝐼(𝛿) = ∫1

0
+∫𝛿−2/3

1
fl 𝐼1(𝛿) + 𝐼2(𝛿). Set 𝛿−2/3𝑥1/2 = 𝑥󸀠.

Then

𝐼1 (𝛿) ≲ ∫𝛿−2/3

0

𝛿4/3𝑥󸀠𝑑𝑥󸀠

1 + 𝑥󸀠
≤ 𝛿4/3 ∫𝛿−2/3

0
𝑑𝑥󸀠 = 𝛿2/3. (A.8)
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Also,

𝐼2 (𝛿) ≲ ∫𝛿−2/3

1

𝑑𝑥𝑥3/2 (𝑥3/2 + 𝛿−2/3𝑥1/2)
≤ 𝛿2/3 ∫𝛿−2/3

1
𝑥−2𝑑𝑥 ≤ 𝛿2/3.

(A.9)

Combining (A.5)–(A.9), we obtain that ‖𝑓𝛿‖2𝐿2(Ω𝐻) ≲ 𝛿3.
Therefore𝐾Ω𝐻

(𝑧𝛿, 𝑧𝛿) ≳ 𝛿−3.

Remark 30. Set 𝑓(𝑧) = exp(𝑧3/(1 − 𝑧3)). Then 𝑓 is a peak
function that peaks at 0 ∈ 𝑏Ω𝐻 for the domain Ω𝐻.
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