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We show that an order𝑚 dimension 2 tensor is primitive if and only if its majorization matrix is primitive, and then we obtain the
characterization of order 𝑚 dimension 2 strongly primitive tensors and the bound of the strongly primitive degree. Furthermore,
we study the properties of strongly primitive tensors with 𝑛 ≥ 3 and propose some problems for further research.

1. Introduction

In recent years, the study of tensors and the spectra of
tensors (and hypergraphs) with their various applications has
attracted extensive attention and interest, since the work of L.
Qi ([1]) and L.H. Lim ([2]) in 2005.

As is in [1], an order 𝑚 dimension 𝑛 tensor A =(𝑎𝑖1𝑖2 ...𝑖𝑚 )1≤𝑖𝑗≤𝑛 (𝑗=1,...,𝑚) over the complex field C is a multidi-
mensional array with all entries𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑚 ∈ C (𝑖1, . . . , 𝑖𝑚 ∈ [𝑛] = {1, . . . , 𝑛}) . (1)

A tensor A = (𝑎𝑖1𝑖2 ...𝑖𝑚 ) is called a nonnegative tensor if
all of its entries 𝑎𝑖1𝑖2 ...𝑖𝑚 are nonnegative. Clearly, adjacency
tensors and signless Laplacian tensors are nonnegative.

In the theory of nonnegative matrices, the notion of
primitivity plays an important role in the convergence of the
Collatz method. For a nonnegative matrix 𝐴, the following
are equivalent [3]:(1) Let 𝜌(𝐴) be the spectral radius of 𝐴. Then 𝐴 is
irreducible and 𝜌(𝐴) is greater than any other eigenvalue in
modulus.(2)The only 𝐴-invariant nonempty subset of the bound-
ary of the positive cone is {0}.(3) There exists a natural number 𝑟 such that 𝐴𝑟 is
positive.

Matrices which satisfy any of the above conditions are
called primitive. The least such 𝑟 such that 𝐴𝑟 is positive is
called the primitive exponent (or simply, exponent) of 𝐴 and
is denoted by exp(𝐴).

In [4], K.C. Chang et al. defined the primitivity of
nonnegative tensors (as Definition 1), extended the theory of
nonnegative matrices to nonnegative tensors, and proved the
convergence of the NQZmethod which is an extension of the
Collatz method and can be used to find the largest eigenvalue
of any nonnegative irreducible tensor.

Definition 1 (see [4]). Let A be a nonnegative tensor with
order𝑚 and dimension 𝑛, 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 ∈ R𝑛 a vector,
and 𝑥[𝑟] = (𝑥𝑟1, 𝑥𝑟2, . . . , 𝑥𝑟𝑛)𝑇. Define the map 𝑇A from R𝑛 to
R𝑛 as 𝑇A(𝑥) = (A𝑥𝑚−1)[1/(𝑚−1)]. If there exists some positive
integer 𝑟 such that 𝑇𝑟A(𝑥) > 0 for all nonnegative nonzero
vectors 𝑥 ∈ R𝑛, then A is called primitive and the smallest
such integer 𝑟 is called the primitive degree of A, denoted by𝛾(A).

As in [1], let A = (𝑎𝑖1𝑖2...𝑖𝑚)1≤𝑖𝑗≤𝑛 (𝑗=1,...,𝑚) be an order𝑚 dimension 𝑛 tensor over the complex field C, 𝑥 = (𝑥1,. . . , 𝑥𝑛)𝑇 ∈ C𝑛, 𝑥[𝑟] = (𝑥𝑟1, 𝑥𝑟2, . . . , 𝑥𝑟𝑛), and A𝑥𝑚−1 be a vector∈ C𝑛 whose 𝑖th component is defined as follows:(A𝑥𝑚−1)
𝑖
= 𝑛∑
𝑖2,...,𝑖𝑚=1

𝑎𝑖𝑖2 ⋅⋅⋅𝑖𝑚𝑥𝑖2 ⋅ ⋅ ⋅ 𝑥𝑖𝑚 . (2)

Then a number 𝜆 ∈ C is called an eigenvalue of A if there
exists a nonzero vector 𝑥 ∈ C𝑛 such that

A𝑥𝑚−1 = 𝜆𝑥[𝑚−1]. (3)
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Recently, Shao [5] defined the general product of two n-
dimensional tensors as follows, and one of the applications
of the tensor product is that A𝑥𝑚−1 can be simply written as
A ⋅ 𝑥.
Definition 2 (see [5]). Let A (and B) be an order 𝑚 ≥ 2
(and 𝑘 ≥ 1), dimension 𝑛 tensor, respectively. Define the
general productA ⋅B (sometimes simplified asAB), to be the
following tensorD of order (𝑚−1)(𝑘−1)+1 and dimension 𝑛:𝑑𝑖𝛼1⋅⋅⋅𝛼𝑚−1 = 𝑛∑

𝑖2 ,...,𝑖𝑚=1

𝑎𝑖𝑖2⋅⋅⋅𝑖𝑚𝑏𝑖2𝛼1 ⋅ ⋅ ⋅ 𝑏𝑖𝑚𝛼𝑚−1(𝑖 ∈ [𝑛] , 𝛼1, . . . , 𝛼𝑚−1 ∈ [𝑛]𝑘−1) . (4)

The tensor product is a generalization of the usual matrix
product and satisfies a very useful property: the associative
law ([5], Theorem 1.1). By the associative law, we can define
A𝑘 as the product of 𝑘many tensors A.

With the general product, when 𝑘 = 1 and B = 𝑥 =(𝑥1, . . . , 𝑥𝑛)𝑇 ∈ C𝑛 is a vector of dimension 𝑛, thenA⋅B = A⋅𝑥
is still a vector of dimension 𝑛, and for any 𝑖 ∈ [𝑛], (A ⋅ B)𝑖 =(A ⋅𝑥)𝑖 = ∑𝑛𝑖2 ,...,𝑖𝑚=1 𝑎𝑖𝑖2 ...𝑖𝑚𝑥𝑖2 . . . 𝑥𝑖𝑚 = (A𝑥𝑚−1)𝑖, whereA𝑥𝑚−1
is defined in (2). Thus we have A𝑥𝑚−1 = A ⋅ 𝑥.

In order to study eigenvalue, Pearson defined “essentially
positive” tensors as Definition 3. By the general product of
tensors, Shao obtained Proposition 4 and Definition 5 which
is equivalent to Definition 3.

Definition 3 (see [6], Definition 3.1). A nonnegative tensor A
is called essentially positive, if, for any nonnegative nonzero
vector 𝑥 ∈ R𝑛,A ⋅ 𝑥 > 0 holds.
Proposition 4 (see [5], Proposition 4.1). Let A be an order 𝑚
and dimension 𝑛 nonnegative tensor. Then the following three
conditions are equivalent:

(1) For any 𝑖, 𝑗 ∈ [𝑛], 𝑎𝑖𝑗...𝑗 > 0 holds.
(2) For any 𝑗 ∈ [𝑛],A ⋅ 𝑒𝑗 > 0 holds (where 𝑒𝑗 is the 𝑗-th

column of the identity matrix 𝐼𝑛).
(3) For any nonnegative nonzero vector 𝑥 ∈ R𝑛,A ⋅ 𝑥 > 0

holds.

Definition 5 (see [5], Definition 4.1). A nonnegative tensor
A is called essentially positive, if it satisfies one of the three
conditions in Proposition 4.

Based on the above arguments and the zero patterns
defined by Shao in [5], Shao showed a characterization of
primitive tensors and defined the primitive degree as follows.

Proposition 6 (see [5], Theorem 4.1). A nonnegative tensor
A is primitive if and only if there exists some positive integer𝑟 such that A𝑟 is essentially positive. Furthermore, the smallest
such 𝑟 is the primitive degree ofA, 𝛾(A).

The concept of the majorization matrix of a tensor
introduced by Pearson is very useful.

Definition 7 (see [6], Definition 2.1). Themajorization matrix𝑀(A) of the tensor A is defined as (𝑀(A))𝑖𝑗 = 𝑎𝑖𝑗...𝑗 for 𝑖, 𝑗 ∈[𝑛].

By Definition 5, Proposition 6, and Definition 7, the fol-
lowing characterization of the primitive tensors was easily
obtained.

Proposition 8 (see [7], Remark 2.6). Let A be a nonnegative
tensorwith order𝑚 and dimension 𝑛.ThenA is primitive if and
only if there exists some positive integer 𝑟 such that𝑀(A𝑟) > 0.
Furthermore, the smallest such 𝑟 is the primitive degree of A,𝛾(A).

On the primitive degree 𝛾(A), Shao proposed the follow-
ing conjecture for further research.

Conjecture 9 (see [5], Conjecture 1). When 𝑚 is fixed, then
there exists some polynomial 𝑓(𝑛) on 𝑛 such that 𝛾(A) ≤ 𝑓(𝑛)
for all nonnegative primitive tensors of order𝑚 and dimension𝑛.

In the case of 𝑚 = 2 (A is a matrix), the well-known
Wielandt upper bound tells us that we can take 𝑓(𝑛) = (𝑛 −1)2 + 1. Recently, the authors [7] confirmed Conjecture 9 by
proving Theorem 10.

Theorem 10 (see [7], Theorem 1.2). Let A be a nonnegative
primitive tensor with order 𝑚 and dimension 𝑛. Then its
primitive degree 𝛾(A) ≤ (𝑛 − 1)2 + 1, and the upper bound
is tight.

They also showed that there are no gaps in the tensor case
in [8], which implies that the result of the case𝑚 ≥ 3 is totally
different from the case𝑚 = 2 (A is a matrix). In [5], Shao also
proposed the concept of strongly primitive tensor for further
research.

Definition 11 (see [5], Definition 4.3). LetA be a nonnegative
tensor with order 𝑚 and dimension 𝑛. If there exists some
positive integer 𝑘 such thatA𝑘 > 0 is a positive tensor, thenA
is called strongly primitive, and the smallest such 𝑘 is called
the strongly primitive degree ofA.

Let A = (𝑎𝑖1𝑖2...𝑖𝑚) be a nonnegative tensor with order 𝑚
and dimension 𝑛. It is clear that if A is strongly primitive,
then A is primitive. For convenience, let 𝜂(A) be the strongly
primitive degree of A. Clearly, 𝛾(A) ≤ 𝜂(A). In fact, it is
obvious that, in the matrix case (𝑚 = 2), a nonnegative
matrix𝐴 is primitive if and only if𝐴 is strongly primitive, and𝛾(𝐴) = 𝜂(𝐴) = exp(𝐴). But in the case 𝑚 ≥ 3 Shao gave an
example to show that these two concepts are not equivalent.
In [8], the authors proposed the following question.

Question 12 ([8], Question 4.18). Can we define and study the
strongly primitive degree, the strongly primitive degree set,
the 𝑗-strongly primitive degree of strongly primitive tensors
and so on?

Based on Question 12, we study primitive tensors and
strongly primitive tensors in this paper, show that an order𝑚
dimension 2 tensor is primitive if and only if its majorization
matrix is primitive, and obtain the characterization of order𝑚 dimension 2 strongly primitive tensors and the bound
of the strongly primitive degree. Furthermore, we study the
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properties of strongly primitive tensors with 𝑛 ≥ 3 and
propose some problems for further research.

2. Preliminaries

In [8], the authors obtained the following Proposition 13 and
gave Example 15 by computing the strongly primitive degree.

Proposition 13 ([8], Proposition 4.16). Let A = (𝑎𝑖1𝑖2 ...𝑖𝑚 )
be a nonnegative strongly primitive tensor with order 𝑚 and
dimension 𝑛.Then for any 𝛼 ∈ [𝑛]𝑚−1, there exists some 𝑖 ∈ [𝑛]
such that 𝑎𝑖𝛼 > 0.

Let 𝑘(≥ 0), 𝑛(≥ 2), 𝑞(≥ 0), 𝑟(≥ 1) be integers and 𝑘 =(𝑛 − 1)𝑞 + 𝑟 with 1 ≤ 𝑟 ≤ 𝑛 − 1 when 𝑘 ≥ 1. In [7–9], the
authors defined some nonnegative tensors with order 𝑚 and
dimension 𝑛 as follows:

A𝑘 = (𝑎[𝑘]𝑖1𝑖2 ⋅⋅⋅𝑖𝑚)1≤𝑖𝑗≤𝑛 (𝑗=1,...,𝑚) , (5)

where one has the following:
(1)

𝑀(A𝑘) = 𝑀1 = ((((((
(

0 0 ⋅ ⋅ ⋅ 0 1 11 0 ⋅ ⋅ ⋅ 0 0 00 1 ⋅ ⋅ ⋅ 0 0 0... ... d
... ... ...0 0 ⋅ ⋅ ⋅ 1 0 00 0 ⋅ ⋅ ⋅ 0 1 0

))))))
)

. (6)

(2) 𝑎[0]𝑖𝑖2 ...𝑖𝑚 = 0, if 𝑖2 . . . 𝑖𝑚 ̸= 𝑖2 . . . 𝑖2 for any 𝑖 ∈ [𝑛].
(3) 𝑎[𝑘]𝑖𝛼 = 1, if 𝑖 ∈ [𝑛]\{𝑟−𝑞, 𝑟−𝑞+1, . . . , 𝑟, 𝑟+1} (mod 𝑛)

and 𝛼 = 𝑖2 . . . 𝑖𝑚 ∈ [𝑛]𝑚−1 with {𝑖2, . . . , 𝑖𝑚} = {𝑟 − 𝑞 −1, 𝑟} (mod 𝑛).
(4) 𝑎[𝑘]𝑖1𝑖2...𝑖𝑚 = 0, except for (1) and (3).
The authors showed the tensorsA𝑘 (𝑘 ≥ 0) are primitive,

the primitive degree 𝛾(A0) = (𝑛−1)2+1([7]) and 𝛾(A𝑘) = 𝑘+𝑛
([8], Theorem 3.3) for 1 ≤ 𝑘 ≤ 𝑛2 − 3𝑛 + 2.
Remark 14. It is clear that, for any A𝑘 (0 ≤ 𝑘 ≤ 𝑛2 − 3𝑛 + 2),
there exists some 𝛼 ∈ [𝑛]𝑚−1, for any 𝑖 ∈ [𝑛], 𝑎[𝑘]𝑖𝛼 = 0. Thus,
for each 0 ≤ 𝑘 ≤ 𝑛2 − 3𝑛 + 2, A𝑘 is not a strongly primitive
tensor by Proposition 13.

Example 15 ([8], Example 4.17). Let 𝑚 = 𝑛 = 3, and let A =(𝑎𝑖1𝑖2𝑖3) be a nonnegative tensor with order 𝑚 and dimension𝑛, where 𝑎111 = 𝑎222 = 𝑎333 = 𝑎233 = 𝑎311 = 0 and other𝑎𝑖1𝑖2𝑖3 = 1. Then 𝜂(A) = 4.
Remark 16. In fact, we can obtain 𝛾(A) = 𝜂(A) = 4 because
of 𝑎(3)233333333 = 0, where A3 = (𝑎(3)𝑖1𝑖2 ...𝑖9).

In the computation of Example 15, we note that the
following equation is useful and will be used repeatedly. It is
not difficult to obtain the equation by the general product of

two n-dimensional tensors which is defined in Definition 1.2
in [5].

LetA be a nonnegative primitive tensor with order𝑚 and
dimension 𝑛, 𝛼2, . . . , 𝛼𝑚 ∈ [𝑛](𝑚−1)𝑘−1 .Then we have(A𝑘)

𝑖𝛼2⋅⋅⋅𝛼𝑚= 𝑛∑
𝑖2 ,𝑖3,...,𝑖𝑚=1

𝑎𝑖𝑖2𝑖3⋅⋅⋅𝑖𝑚 (A𝑘−1)𝑖2𝛼2 ⋅ ⋅ ⋅ (A𝑘−1)𝑖𝑚𝛼𝑚 . (7)

Proposition 17 (see [7], Proposition 2.7). Let A be a nonneg-
ative primitive tensor with order𝑚 and dimension 𝑛 and𝑀(A)
be the majorization matrix of A. Then we have the following:

(1) For each 𝑗 ∈ [𝑛], there exists an integer 𝑖 ∈ [𝑛]\{𝑗} such
that (𝑀(A))𝑖𝑗 > 0.

(2) There exist some 𝑗 ∈ [𝑛] and integers 𝑢, V with 1 ≤ 𝑢 <
V ≤ 𝑛 such that (𝑀(A))𝑢𝑗 > 0 and (𝑀(A))V𝑗 > 0.

Let 𝛼 = 𝑗𝑗 . . . 𝑗 ∈ [𝑛]𝑚−1; then 𝑀(A)𝑖𝑗 = 𝑎𝑖𝛼. We can
see that Proposition 13 is the generalization of result (1) of
Proposition 17 from a primitive tensor to a strongly primitive
tensor. We note that Proposition 17 played an important role
in [7], and ifA is a nonnegative strongly primitive tensor, then
A must be a nonnegative primitive tensor; thus result (2) of
Proposition 17 also holds for nonnegative strongly primitive
tensors.

Proposition 18. Let A = (𝑎𝑖1𝑖2...𝑖𝑚) be a nonnegative strongly
primitive tensor with order 𝑚 and dimension 𝑛. Then there
exists at least one 𝑗 ∈ [𝑛] and integers 𝑢, V with 1 ≤ 𝑢 < V ≤ 𝑛
such that (𝑀(A))𝑢𝑗 > 0 and (𝑀(A))V𝑗 > 0.
Proposition 19. Let A = (𝑎𝑖1𝑖2 ...𝑖𝑚)1≤𝑖𝑗≤𝑛(𝑗=1,...,𝑚) be a nonneg-
ative tensor with order 𝑚 and dimension 𝑛 and A ̸= J. For
given 𝑖 ∈ [𝑛], if 𝑎𝑖𝛼 = 𝑎𝑗𝑖𝑖...𝑖 = 1 for any 𝛼 ∈ [𝑛]𝑚−1 and any𝑗 ∈ [𝑛]\{𝑖}, then A is strongly primitive with 𝜂(A) = 2.
Proof. By (7), for any 𝑘 ∈ [𝑛] and 𝛼2, . . . , 𝛼𝑚 ∈ [𝑛]𝑚−1, we
have(A2)𝑘𝛼2...𝛼𝑚 = ∑𝑛𝑘2,𝑘3,...,𝑘𝑚=1 𝑎𝑘𝑘2...𝑘𝑚𝑎𝑘2𝛼2 . . . 𝑎𝑘𝑚𝛼𝑚 ≥𝑎𝑘𝑖𝑖...𝑖𝑎𝑖𝛼2 . . . 𝑎𝑖𝛼𝑚 = 1, which implies A is strongly primitive
and 𝜂(A) = 2.
Remark 20. From Proposition 19, we can see the following:

(1) There exist at least 𝑛(2(𝑛−1)(𝑛𝑚−1−1) − 1) strongly primi-
tive tensors such that their strongly primitive degree is equal
to 2.

(2) We cannot improve the result of Proposition 13 any
more by the fact that there exists 𝑖 ∈ [𝑛] such that 𝑎𝑖𝛼 = 1 > 0
for any 𝛼 ∈ [𝑛]𝑚−1 and there is exactly one 𝑖 such that 𝑎𝑖𝛼 > 0
for any 𝛼 ̸= 𝑖𝑖 . . . 𝑖.

(3) Similarly, we cannot improve the result of
Proposition 18 any more by the fact that there is exactly
one 𝑖 ∈ [𝑛] such that (𝑀(A))𝑢𝑖 > 0 for any 𝑢 ∈ [𝑛] and
for any other 𝑗 ∈ [𝑛]\{𝑖}, there exists only 𝑖 ∈ [𝑛] such that(𝑀(A))𝑖𝑗 > 0.

(4) What is more, combining the above arguments, we
know whether a nonnegative tensor is a nonnegative strongly
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primitive tensor or not, and the values of the strongly
primitive degree of a nonnegative strongly primitive tensor
do not depend on the number of nonzero entries but the
positions of the nonzero entries.

Proposition 21. Let A = (𝑎𝑖1𝑖2...𝑖𝑚) be a nonnegative strongly
primitive tensor with order 𝑚 and dimension 𝑛. Then for any𝑖 ∈ [𝑛], there exists some 𝛼 ∈ [𝑛]𝑚−1 such that 𝑎𝑖𝛼 > 0.
Proof. Since A is strongly primitive, there exists some 𝑘 > 0
such that A𝑘 > 0 by Definition 1. Assume that there exists
some 𝑖 ∈ [𝑛] such that 𝑎𝑖𝛼 = 0 for any 𝛼 ∈ [𝑛]𝑚−1. Then by
(7), we have(A𝑘)

𝑖𝛼2⋅⋅⋅𝛼𝑚= 𝑛∑
𝑖2,𝑖3 ,...,𝑖𝑚=1

𝑎𝑖𝑖2𝑖3⋅⋅⋅𝑖𝑚 (A𝑘−1)𝑖2𝛼2 ⋅ ⋅ ⋅ (A𝑘−1)𝑖𝑚𝛼𝑚 = 0, (8)

which leads to a contraction.

Remark 22. Let A = (𝑎𝑖1𝑖2...𝑖𝑚 )1≤𝑖𝑗≤𝑛(𝑗=1,...,𝑚) be a nonnegative
tensor with order 𝑚 and dimension 𝑛. For given 𝑖 ∈ [𝑛], we
take 𝑎𝑖𝛼 = 𝑎𝑗𝑖𝑖...𝑖 = 1 for any 𝛼 ∈ [𝑛]𝑚−1 and any 𝑗 ∈ [𝑛]\{𝑖}
and any other entry 𝑎𝑖1𝑖2 ...𝑖𝑚 = 0. Then A is strongly primitive
with 𝜂(A) = 2 by Proposition 19. This implies that we cannot
improve the result of Proposition 21 anymore, and it indicates
the importance of the positions of the nonzero entries again.

Proposition 23. Let A be a nonnegative strongly primitive
tensor and 𝑘 = 𝜂(A). Then, for any integer 𝑡 > 𝑘 > 0, we
have A𝑡 > 0.
Proof. It is clear that A𝑘 > 0 by 𝑘 = 𝜂(A). We only need to
show A𝑘+1 > 0; say, for any 𝑖 ∈ [𝑛] and any 𝛼2, . . . , 𝛼𝑚 ∈[𝑛](𝑚−1)𝑘 , we show (A𝑘+1)𝑖𝛼2...𝛼𝑚 > 0.

By Proposition 21, there exists some 𝛼 = 𝑗2𝑗3 . . . 𝑗𝑚 ∈[𝑛]𝑚−1 such that 𝑎𝑖𝛼 = 𝑎𝑖𝑗2...𝑗𝑚 > 0. By A𝑘 > 0 we have(A𝑘)𝑗2𝛼2 > 0, . . . , (A𝑘)𝑗𝑚𝛼𝑚 > 0; then by (7), we have(A𝑘+1)
𝑖𝛼2 ⋅⋅⋅𝛼𝑚= 𝑛∑
𝑖2,𝑖3 ,...,𝑖𝑚=1

𝑎𝑖𝑖2𝑖3 ⋅⋅⋅𝑖𝑚 (A𝑘)𝑖2𝛼2 (A𝑘)𝑖3𝛼3 ⋅ ⋅ ⋅ (A𝑘)𝑖𝑚𝛼𝑚≥ 𝑎𝑖𝑗2𝑗3 ⋅⋅⋅𝑗𝑚 (A𝑘)𝑗2𝛼2 . . . (A𝑘)𝑗𝑚𝛼𝑚 > 0. (9)

Proposition 24. Let A be a nonnegative tensor with order 𝑚
and dimension 𝑛 and 𝑡 be a positive integer. Then A is strongly
primitive if and only if A𝑡 is strongly primitive.

Proof. Firstly, the sufficiency is obvious. Now we show the
necessity. Let 𝑘 = 𝜂(A). Then A𝑘 > 0 by A is strongly
primitive. Let 𝑠 be a positive integer such that 𝑠𝑡 ≥ 𝑘; then
A𝑠𝑡 > 0 by Proposition 23. Thus (A𝑡)𝑠 = A𝑠𝑡 > 0, which
implies A𝑡 is strongly primitive.

3. A Characterization of the
(Strongly) Primitive Tensor with
Order 𝑚 and Dimension 2

In this section, we study primitive tensors and strongly prim-
itive tensors in this paper, show that an order 𝑚 dimension
2 tensor is primitive if and only if its majorization matrix
is primitive, and obtain the characterization of order 𝑚
dimension 2 strongly primitive tensors and the bound of the
strongly primitive degree.

Lemma 25 (see [5], Corollary 4.1). Let A be a nonnegative
tensor with order 𝑚 and dimension 𝑛. If 𝑀(A) is primitive,
then A is also primitive and in this case we have 𝛾(A) ≤𝛾(𝑀(A)) ≤ (𝑛 − 1)2 + 1.
Theorem 26. Let A be a nonnegative tensor with order𝑚 and
dimension 𝑛 = 2. Then A is primitive if and only if 𝑀(A) is
primitive.

Proof. Firstly, the sufficiency is obvious by Lemma 25. Now
weonly show the necessity. Clearly, all primitive (0,1)matrices
of order 2 are listed as follows:(1 11 0) ,

(0 11 1) ,
(1 11 1) .

(10)

Let A be primitive. Then 𝛾(A) ≤ 2 by Theorem 10 and𝑀(A2) > 0 by Proposition 8. Now we assume that 𝑀(A) is
not primitive; we will show A is also not primitive.

It is not difficult to find that(A2)
𝑖𝑗𝑗⋅⋅⋅𝑗

= 2∑
𝑖2 ,𝑖3,...,𝑖𝑚=1

𝑎𝑖𝑖2𝑖3 ⋅⋅⋅𝑖𝑚𝑎𝑖2𝑗𝑗⋅⋅⋅𝑗 ⋅ ⋅ ⋅ 𝑎𝑖𝑚𝑗𝑗⋅⋅⋅𝑗 (11)

= 𝑎𝑖22⋅⋅⋅2 (𝑎2𝑗𝑗⋅⋅⋅𝑗)𝑚−1+ 2∑
𝑖2 ,𝑖3,...,𝑖𝑚=1,𝑖2𝑖3⋅⋅⋅𝑖𝑚 ̸=22⋅⋅⋅2

𝑎𝑖𝑖2 ⋅⋅⋅𝑖𝑚𝑎𝑖2𝑗𝑗⋅⋅⋅𝑗 ⋅ ⋅ ⋅ 𝑎𝑖𝑚𝑗𝑗⋅⋅⋅𝑗 (12)

= 𝑎𝑖11⋅⋅⋅1 (𝑎1𝑗𝑗⋅⋅⋅𝑗)𝑚−1+ 2∑
𝑖2 ,𝑖3,...,𝑖𝑚=1,𝑖2𝑖3⋅⋅⋅𝑖𝑚 ̸=11⋅⋅⋅1

𝑎𝑖𝑖2 ⋅⋅⋅𝑖𝑚𝑎𝑖2𝑗𝑗⋅⋅⋅𝑗 ⋅ ⋅ ⋅ 𝑎𝑖𝑚𝑗𝑗⋅⋅⋅𝑗. (13)

In (12), we note that 𝑖2𝑖3 . . . 𝑖𝑚 ̸= 22 . . . 2, which implies
that there exists at least one entry, say, 𝑖𝑠 = 1, where 2 ≤ 𝑠 ≤ 𝑚;
then 𝑎1𝑗𝑗...𝑗 ∈ {𝑎𝑖2𝑗𝑗...𝑗, . . . , 𝑎𝑖𝑚𝑗𝑗...𝑗}.

Similarly, in (13), we note that 𝑖2𝑖3 . . . 𝑖𝑚 ̸= 11 . . . 1, which
implies that there exists at least one entry, say, 𝑖𝑠 = 2, where2 ≤ 𝑠 ≤ 𝑚; then 𝑎2𝑗𝑗...𝑗 ∈ {𝑎𝑖2𝑗𝑗...𝑗, . . . , 𝑎𝑖𝑚𝑗𝑗...𝑗}.
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Thus, by (12), (13), and the above arguments, we have𝑀(A2)
𝑖𝑗
= (A2)

𝑖𝑗𝑗⋅⋅⋅𝑗
= 𝑎𝑖22⋅⋅⋅2 (𝑎2𝑗𝑗⋅⋅⋅𝑗)𝑚−1 + 𝑎1𝑗𝑗⋅⋅⋅𝑗𝑃 (14)= 𝑎𝑖11⋅⋅⋅1 (𝑎1𝑗𝑗⋅⋅⋅𝑗)𝑚−1 + 𝑎2𝑗𝑗⋅⋅⋅𝑗𝑄. (15)

Since𝑀(A) is not primitive; by (10), we can complete the
proof by the following two cases.

Case 1.𝑀(A) = ( ∗ 0∗ ∗ ) 𝑜𝑟 ( ∗ ∗0 ∗ ).
Subcase 1.1.𝑀(A)12 = 0.

Then 𝑎12...2 = 0. By (14), we have𝑀(A2)12 = (A2)12...2 = 0,
which implies A2 is not essentially positive.

Subcase 1.2.𝑀(A)21 = 0.
Then 𝑎21...1 = 0. By (15), we have𝑀(A2)21 = (A2)21...1 = 0,

which implies A2 is not essentially positive.

Case 2.𝑀(A) = ( 0 11 0 ).
Then we have 𝑀(A)11 = 𝑀(A)22 = 0; that is, 𝑎11...1 =𝑎22...2 = 0; by (15) we have 𝑀(A2)12 = (A2)12...2 = 0, which

implies A2 is not essentially positive.
Based on the above two cases and Proposition 6, we

complete the proof of the necessity.

A nature question is whether the result of Theorem 26 is
true for 𝑛 ≥ 3 or not. The following Example 27 shows that
the necessity of Theorem 26 is false with 𝑛 ≥ 3.
Example 27. Let A = (𝑎𝑖1𝑖2 ...𝑖𝑚 ) be a nonnegative tensor of
order𝑚 and dimension 𝑛 ≥ 3, where𝑎𝑖1𝑖2⋅⋅⋅𝑖𝑚 = {{{0, if 𝑖1 = 1, 𝑖2 = 𝑖3 = ⋅ ⋅ ⋅ = 𝑖𝑚 ̸= 1;1, otherwise. (16)

Then A is (strongly) primitive, but𝑀(A) is not primitive.

Proof. By direct calculation and Definition 2, we know that
A2 is the tensor of order (𝑚 − 1)2 + 1 and dimension 𝑛, and
for any 1 ≤ 𝑖 ≤ 𝑛, we have(A2)

𝑖𝛼2𝛼3⋅⋅⋅𝛼𝑚
= 2∑
𝑖2 ,𝑖3,...,𝑖𝑚=1

𝑎𝑖𝑖2𝑖3⋅⋅⋅𝑖𝑚𝑎𝑖2𝛼2 ⋅ ⋅ ⋅ 𝑎𝑖𝑚𝛼𝑚
≥ {{{𝑎12⋅⋅⋅𝑚𝑎2𝛼2 ⋅ ⋅ ⋅ 𝑎𝑚𝛼𝑚 = 1, if 𝑖 = 1;𝑎𝑖𝑖⋅⋅⋅𝑖𝑎𝑖𝛼2 ⋅ ⋅ ⋅ 𝑎𝑖𝛼𝑚 = 1, otherwise. (17)

Obviously, A2 is positive; then A is strongly primitive with𝜂(A) = 2 and thus A is primitive with 𝛾(A) = 2.
On the other hand, by the definition of A, we have

𝑀(A) = (1 0 ⋅ ⋅ ⋅ 01 1 ⋅ ⋅ ⋅ 1...1 1 ⋅ ⋅ ⋅ 1). (18)

Since the associated digraph of 𝑀(A) is not strongly con-
nected, thus𝑀(A) is not primitive.

Next, we will study the strongly primitive degree of order𝑚 and dimension 2 tensors. Firstly, we discuss an example
with order 𝑚 = 5 and dimension 𝑛 = 2 tensor as
follows.

Definition 28 (see [10]). Let A be a tensor with order 𝑚 and
dimension 𝑛. The 𝑖-th slice of A, denoted by A[𝑖], is the
subtensor of A with order 𝑚 − 1 and dimension 𝑛 such that(A[𝑖])𝑖2...𝑖𝑚 = 𝑎𝑖𝑖2 ...𝑖𝑚 .
Example 29. Let A = (𝑎𝑖1𝑖2𝑖3𝑖4𝑖5)1≤𝑖𝑗≤2(𝑗=1,...,5) be a nonneg-
ative tensor with order 𝑚 = 5 and dimension 𝑛 = 2,
where 𝑎12122 = 𝑎21121 = 0 and other 𝑎𝑖1𝑖2𝑖3𝑖4𝑖5 = 1.
Then there exists at least one zero element in each slice of
A2.

Proof. Let 𝛼1 = 2122, 𝛼2 = 1121, and denote 𝛽2 = 𝛽4 = 𝛽5 =𝛼1, 𝛽3 = 𝛼2. Then we have(𝐴2)
1𝛽2𝛽3𝛽4𝛽5 2∑
𝑖2 ,𝑖3,𝑖4 ,𝑖5=1

𝑎1𝑖2𝑖3𝑖4𝑖5𝑎𝑖2𝛽2𝑎𝑖3𝛽3𝑎𝑖4𝛽4𝑎𝑖5𝛽5
 2∑

𝑖3 ,𝑖4,𝑖5=1

𝑎11𝑖3𝑖4𝑖5𝑎1𝛽2𝑎𝑖3𝛽3𝑎𝑖4𝛽4𝑎𝑖5𝛽5
+ 2∑
𝑖3,𝑖4 ,𝑖5=1

𝑎12𝑖3𝑖4𝑖5𝑎2𝛽2𝑎𝑖3𝛽3𝑎𝑖4𝛽4𝑎𝑖5𝛽5
𝑎1𝛽2=0 2∑

𝑖3 ,𝑖4,𝑖5=1

𝑎12𝑖3𝑖4𝑖5𝑎2𝛽2𝑎𝑖3𝛽3𝑎𝑖4𝛽4𝑎𝑖5𝛽5
 2∑

𝑖4 ,𝑖5=1

𝑎121𝑖4𝑖5𝑎2𝛽2𝑎1𝛽3𝑎𝑖4𝛽4𝑎𝑖5𝛽5
+ 2∑
𝑖4 ,𝑖5=1

𝑎122𝑖4𝑖5𝑎2𝛽2𝑎2𝛽3𝑎𝑖4𝛽4𝑎𝑖5𝛽5
𝑎2𝛽3=0 2∑

𝑖4 ,𝑖5=1

𝑎121𝑖4𝑖5𝑎2𝛽2𝑎1𝛽3𝑎𝑖4𝛽4𝑎𝑖5𝛽5
 2∑

𝑖5=1

𝑎1211𝑖5𝑎2𝛽2𝑎1𝛽3𝑎1𝛽4𝑎𝑖5𝛽5
+ 2∑
𝑖5=1

𝑎1212𝑖5𝑎2𝛽2𝑎1𝛽3𝑎2𝛽4𝑎𝑖5𝛽5
𝑎1𝛽4=0 2∑

𝑖5=1

𝑎1212𝑖5𝑎2𝛽2𝑎1𝛽3𝑎2𝛽4𝑎𝑖5𝛽5 𝑎12121𝑎2𝛽2𝑎1𝛽3𝑎2𝛽4𝑎1𝛽5
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𝑎1𝛽5=0 𝑎12122𝑎2𝛽2𝑎1𝛽3𝑎2𝛽4𝑎2𝛽5 𝑎12122=0 0.

(19)
Similarly, we let 𝛾2 = 𝛾3 = 𝛾5 = 𝛼2 and 𝛾4 = 𝛼1, we can

show (A2)2𝛾2𝛾3𝛾4𝛾5 = 0, and we omit it.
Combining the above arguments, we know there exists at

least one zero element in each slice of A2 by (𝐴2)1𝛽2𝛽3𝛽4𝛽5 =(A2)2𝛾2𝛾3𝛾4𝛾5 = 0.
Similarly, the result of Example 29 can be generalized

to any nonnegative tensor with order 𝑚 and dimension𝑛 = 2.
Lemma 30. Let A = (𝑎𝑖1𝑖2 ...𝑖𝑚)1≤𝑖𝑗≤2(𝑗=1,...,𝑚) be a nonnegative
tensor with order 𝑚 and dimension 𝑛 = 2. If there exist 𝛼1 =𝑗2𝑗3 . . . 𝑗𝑚 ∈ [2]𝑚−1 and 𝛼2 = 𝑘2𝑘3 . . . 𝑘𝑚 ∈ [2]𝑚−1 such that𝑎1𝛼1 = 𝑎2𝛼2 = 0, for any 2 ≤ 𝑡 ≤ 𝑚, let 𝛽𝑡 = { 𝛼2, if 𝑗𝑡=1;𝛼1, if 𝑗𝑡=2, and𝛾𝑡 = { 𝛼2, if 𝑘𝑡=1;𝛼1, if 𝑘𝑡=2.

Then (A2)
1𝛽2⋅⋅⋅𝛽𝑚

= 0,(A2)
2𝛾2 ⋅⋅⋅𝛾𝑚

= 0. (20)

Proof. We first show (A2)1𝛽2...𝛽𝑚 = 0. For any 2 ≤ 𝑡 ≤ 𝑚,𝑗𝑡 ∈ {1, 2}, we denote 𝑗𝑡 ∈ {1, 2}\{𝑗𝑡}. Then we have 𝑎𝑗𝑡𝛽𝑡 = 0
by 𝑎1𝛼1 = 𝑎2𝛼2 = 0, and(A2)

1𝛽2 ⋅⋅⋅𝛽𝑚
 2∑

𝑖2 ,𝑖3,...,𝑖𝑚=1

𝑎1𝑖2𝑖3 ⋅⋅⋅𝑖𝑚𝑎𝑖2𝛽2 ⋅ ⋅ ⋅ 𝑎𝑖𝑚𝛽𝑚
 2∑

𝑖3,...,𝑖𝑚=1

𝑎11𝑖3 ⋅⋅⋅𝑖𝑚𝑎1𝛽2𝑎𝑖3𝛽3 ⋅ ⋅ ⋅ 𝑎𝑖𝑚𝛽𝑚
+ 2∑
𝑖3 ,...,𝑖𝑚=1

𝑎12𝑖3⋅⋅⋅𝑖𝑚𝑎2𝛽2𝑎𝑖3𝛽3 ⋅ ⋅ ⋅ 𝑎𝑖𝑚𝛽𝑚
𝑎𝑗2𝛽2
=0 2∑
𝑖3 ,...,𝑖𝑚=1

𝑎1𝑗2𝑖3 ⋅⋅⋅𝑖𝑚𝑎𝑗2𝛽𝑗2𝑎𝑖3𝛽3 ⋅ ⋅ ⋅ 𝑎𝑖𝑚𝛽𝑚
 2∑

𝑖4,...,𝑖𝑚=1

𝑎1𝑗21𝑖4 ⋅⋅⋅𝑖𝑚𝑎𝑗2𝛽𝑗2𝑎1𝛽3𝑎𝑖4𝛽4 ⋅ ⋅ ⋅ 𝑎𝑖𝑚𝛽𝑚
+ 2∑
𝑖4 ,...,𝑖𝑚=1

𝑎1𝑗22𝑖4 ⋅⋅⋅𝑖𝑚𝑎𝑗2𝛽𝑗2𝑎2𝛽3𝑎𝑖4𝛽4 ⋅ ⋅ ⋅ 𝑎𝑖𝑚𝛽𝑚
𝑎𝑗3𝛽3
=0 2∑
𝑖4 ,...,𝑖𝑚=1

𝑎1𝑗2𝑗3𝑖4⋅⋅⋅𝑖𝑚𝑎𝑗2𝛽𝑗2𝑎𝑗3𝛽𝑗3𝑎𝑖4𝛽4 ⋅ ⋅ ⋅ 𝑎𝑖𝑚𝛽𝑚 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2∑
𝑖𝑚=1

𝑎1𝑗2𝑗3⋅⋅⋅𝑗𝑚−1𝑖𝑚𝑎𝑗2𝛽𝑗2𝑎𝑗3𝛽𝑗3 ⋅ ⋅ ⋅ 𝑎𝑗𝑚−1𝛽𝑗𝑚−1𝑎𝑖𝑚𝛽𝑚

 𝑎1𝑗2 ⋅⋅⋅𝑗𝑚−11𝑎𝑗2𝛽𝑗2 ⋅ ⋅ ⋅ 𝑎𝑗𝑚−1𝛽𝑗𝑚−1𝑎1𝛽𝑚+ 𝑎1𝑗2 ⋅⋅⋅𝑗𝑚−12𝑎𝑗2𝛽𝑗2 ⋅ ⋅ ⋅ 𝑎𝑗𝑚−1𝛽𝑗𝑚−1𝑎2𝛽𝑚
𝑎𝑗𝑚𝛽𝑚=0 𝑎1𝑗2⋅⋅⋅𝑗𝑚𝑎𝑗2𝛽𝑗2 ⋅ ⋅ ⋅ 𝑎𝑗𝑚𝛽𝑗𝑚 𝑎1𝛼1=0 0.

(21)

Similarly, for any 2 ≤ 𝑡 ≤ 𝑚, 𝑘𝑡 ∈ {1, 2}, we denote𝑘𝑡 ∈ {1, 2}\{𝑘𝑡}. Then we have 𝑎𝑘𝑡𝛾𝑡 = 0 and we can show(A2)2𝛾2 ...𝛾𝑚 = 0 by
(A2)
2𝛾2 ⋅⋅⋅𝛾𝑚

= 2∑
𝑖2 ,𝑖3,...,𝑖𝑚=1

𝑎2𝑖2 𝑖3⋅⋅⋅𝑖𝑚𝑎𝑖2𝛾2 ⋅ ⋅ ⋅ 𝑎𝑖𝑚𝛾𝑚 (22)

and similar process of the above arguments. Thus we com-
plete the proof of (20).

Theorem 31. Let A = (𝑎𝑖1𝑖2 ...𝑖𝑚 )1≤𝑖𝑗≤2(𝑗=1,...,𝑚) be a nonnegative
tensor with order 𝑚 and dimension 𝑛 = 2. If there exist 𝛼1 =𝑗2𝑗3 . . . 𝑗𝑚 ∈ [2]𝑚−1 and 𝛼2 = 𝑘2𝑘3 . . . 𝑘𝑚 ∈ [2]𝑚−1 such that𝑎1𝛼1 = 𝑎2𝛼2 = 0, then A is not strongly primitive.

Proof. Nowwe show that there exists at least one zero element
in each slice of A𝑟 by induction on 𝑟(≥ 2).

Firstly, by Lemma 30, we know there exists at least one
zero element in each slice of A2. Now we assume that there
exists at least one zero element in each slice ofA𝑟−1; say, there
exist 𝛿1, 𝛿2 ∈ [2](𝑚−1)𝑟−1 such that (A𝑟−1)1𝛿1 = (A𝑟−1)2𝛿2 = 0.
For any 2 ≤ 𝑡 ≤ 𝑚, let 𝛽𝑡 = { 𝛿2 if 𝑗𝑡=1𝛿1 if 𝑗𝑡=2

and 𝛾𝑡 = { 𝛿2 if 𝑘𝑡=1
𝛿1 if 𝑘𝑡=2.

Then by (7) and the similar proof of Lemma 30, we have(A𝑟)1𝛽2 ⋅⋅⋅𝛽𝑚= 𝑛∑
𝑖2,𝑖3 ,...,𝑖𝑚=1

𝑎1𝑖2𝑖3 ⋅⋅⋅𝑖𝑚 (A𝑟−1)𝑖2𝛽2 ⋅ ⋅ ⋅ (A𝑟−1)𝑖𝑚𝛽𝑚 = 0, (23)

and(A𝑟)2𝛾2 ⋅⋅⋅𝛾𝑚= 𝑛∑
𝑖2 ,𝑖3,...,𝑖𝑚=1

𝑎2𝑖2𝑖3 ⋅⋅⋅𝑖𝑚 (A𝑟−1)𝑖2𝛾2 ⋅ ⋅ ⋅ (A𝑟−1)𝑖𝑚𝛾𝑚 = 0. (24)

By (23) and (24), we obtain that there exists at least one
zero element in each slice of A𝑟, and thus we complete the
proof.

Nowwe give the characterization of the strongly primitive
tensor with order𝑚 and dimension 2.

Theorem 32. Let A = (𝑎𝑖1𝑖2 ...𝑖𝑚 )1≤𝑖𝑗≤2(𝑗=1,...,𝑚) be a nonnegative
tensor with order𝑚 and dimension 𝑛 = 2. Then

(1) A is strongly primitive if and only if one of the following
holds:

(a) A = J;
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(b) A ̸= J and 𝑎1𝑖2 ...𝑖𝑚 = 𝑎211...1 = 1(1 ≤ 𝑖𝑗 ≤ 2, 𝑗 =2, . . . , 𝑚);
(c) A ̸= J and 𝑎2𝑖2 ...𝑖𝑚 = 𝑎122...2 = 1(1 ≤ 𝑖𝑗 ≤ 2, 𝑗 =2, . . . , 𝑚);
(2) if A is strongly primitive, then 𝜂(A) ≤ 2.

Proof. Firstly, we show that (1) is sufficient. It is easy to see that
A = J is strongly primitive with 𝜂(J) = 1, and ifA satisfies (b)
or (c),A is strongly primitive with 𝜂(A) = 2 by Proposition 19
immediately.

Now we show the necessity of (1); that is, if A does not
satisfy the conditions of (a), (b), or (c), then we will show
that A is not strongly primitive. We complete the proof by
the following three cases.

Case 1. 𝑎1𝛼 = 1 for any 𝛼 ∈ [2]𝑚−1 and 𝑎211...1 = 0.
It is not difficult to find that 𝑀(A) = ( 1 10 ∗ ). Then A

is not primitive by Theorem 26, and thus A is not strongly
primitive.

Case 2. 𝑎2𝛼 = 1 for any 𝛼 ∈ [2]𝑚−1 and 𝑎122...2 = 0.
Similarly, we can find that 𝑀(A) = ( ∗ 01 1 ). Then A is

not primitive by Theorem 26, and thus A is not strongly
primitive.

Case 3. There is at least one zero element in each slice of
A.

Then there exist 𝛼1 = 𝑗2𝑗3 . . . 𝑗𝑚 ∈ [2]𝑚−1 and 𝛼2 =𝑘2𝑘3 . . . 𝑘𝑚 ∈ [2]𝑚−1 such that 𝑎1𝛼1 = 𝑎2𝛼2 = 0. Thus A is
not strongly primitive byTheorem 31.

(2) If A is strongly primitive, by Definition 11 and the
proof of (1), we obtain 𝜂(A) ≤ 2 immediately.

Remark 33. By Theorem 32, we can see that the strongly
primitive degree 𝜂(A) of an nonnegative tensor with order𝑚 and dimension 𝑛 = 2 is irrelevant to its order𝑚.

4. Some Properties and Problems of
Order 𝑚 Dimension 𝑛( ≥ 3) Strongly
Primitive Tensors

In this section, we will study some properties of the strongly
primitive tensors with order 𝑚 and dimension 𝑛 ≥ 3 and
propose some questions for further research.

Proposition 34. Let A = (𝑎𝑖1𝑖2 ...𝑖𝑚 )1≤𝑖𝑗≤𝑛(𝑗=1,...,𝑚) be a non-
negative tensor with order 𝑚 and dimension 𝑛. Let 𝑠 ∈ [𝑛],2 ≤ 𝑡 ≤ 𝑚, 𝑗(𝑠)𝑡 ∈ [𝑛], and 𝛼𝑠 = 𝑗(𝑠)2 𝑗(𝑠)3 . . . 𝑗(𝑠)𝑚 . If 𝑎𝑖𝛼𝑠 = 0 for
any 𝑖 ∈ [𝑛] and any 𝑠 ∈ [𝑛]\{𝑖}, then there exist 𝛾1, 𝛾2, . . . , 𝛾𝑛 ∈[𝑛](𝑚−1)2 such that (A2)𝑖𝛾𝑘 = 0 for any 𝑖 ∈ [𝑛] and any 𝑘 ∈[𝑛]\{𝑖}.
Proof. For each 𝑖 ∈ [𝑛], let 𝛽(𝑘)𝑡 = 𝛼𝑗(𝑘)𝑡 ∈ [𝑛]𝑚−1 for any 𝑘 ∈ [𝑛]
and 2 ≤ 𝑡 ≤ 𝑚; then 𝑎

𝑗(𝑘)𝑡 𝛽
(𝑘)
𝑡

= 0 for any 𝑗(𝑘)𝑡 ∈ [𝑛]\{𝑗(𝑘)𝑡 }
by 𝑎𝑖𝛼𝑠 = 0 for any 𝑖 ∈ [𝑛] and any 𝑠 ∈ [𝑛]\{𝑖}. Let 𝛾𝑘 =

𝛽(𝑘)2 𝛽(𝑘)3 . . . 𝛽(𝑘)𝑚 ∈ [𝑛](𝑚−1)2 for any 𝑘 ∈ [𝑛]. Now we show(A2)𝑖𝛾𝑘 = 0 for any 𝑘 ∈ [𝑛]\{𝑖}.(A2)
𝑖𝛾𝑘

 (A2)
𝑖𝛽(𝑘)2 𝛽

(𝑘)
3 ⋅⋅⋅𝛽
(𝑘)
𝑚 𝑛∑

𝑖2,𝑖3 ,...,𝑖𝑚=1

𝑎𝑖𝑖2𝑖3 ⋅⋅⋅𝑖𝑚𝑎𝑖2𝛽(𝑘)2 ⋅ ⋅ ⋅ 𝑎𝑖𝑚𝛽(𝑘)𝑚
 𝑛∑

𝑖3 ,...,𝑖𝑚=1

𝑎𝑖1𝑖3 ⋅⋅⋅𝑖𝑚𝑎1𝛽(𝑘)2 𝑎𝑖3𝛽(𝑘)3 ⋅ ⋅ ⋅ 𝑎𝑖𝑚𝛽(𝑘)𝑚 + ⋅ ⋅ ⋅
+ 𝑛∑
𝑖3 ,...,𝑖𝑚=1

𝑎𝑖𝑛𝑖3⋅⋅⋅𝑖𝑚𝑎𝑛𝛽(𝑘)2 𝑎𝑖3𝛽(𝑘)3 ⋅ ⋅ ⋅ 𝑎𝑖𝑚𝛽(𝑘)𝑚
𝑎
𝑗
(𝑘)
2
𝛽
(𝑘)
2

=0 𝑛∑
𝑖3 ,...,𝑖𝑚=1

𝑎𝑖𝑗(𝑘)2 𝑖3 ⋅⋅⋅𝑖𝑚𝑎𝑗(𝑘)2 𝛽(𝑘)2 𝑎𝑖3𝛽(𝑘)3 ⋅ ⋅ ⋅ 𝑎𝑖𝑚𝛽(𝑘)𝑚
 𝑛∑

𝑖4,...,𝑖𝑚=1

𝑎𝑖𝑗(𝑘)2 1𝑖4 ⋅⋅⋅𝑖𝑚𝑎𝑗(𝑘)2 𝛽(𝑘)2 𝑎1𝛽(𝑘)3 𝑎𝑖4𝛽(𝑘)4
⋅ ⋅ ⋅ 𝑎𝑖𝑚𝛽(𝑘)𝑚 + ⋅ ⋅ ⋅ + 𝑛∑

𝑖4,...,𝑖𝑚=1

𝑎𝑖𝑗(𝑘)2 𝑛𝑖4⋅⋅⋅𝑖𝑚𝑎𝑗(𝑘)2 𝛽(𝑘)2 𝑎𝑛𝛽(𝑘)3 𝑎𝑖4𝛽(𝑘)4⋅ ⋅ ⋅ 𝑎𝑖𝑚𝛽(𝑘)𝑚
𝑎
𝑗
(𝑘)
3
𝛽
(𝑘)
3

=0 𝑛∑
𝑖4 ,...,𝑖𝑚=1

𝑎𝑖𝑗(𝑘)2 𝑗(𝑘)3 𝑖4 ⋅⋅⋅𝑖𝑚𝑎𝑗(𝑘)2 𝛽(𝑘)2 𝑎𝑗(𝑘)3 𝛽(𝑘)3 𝑎𝑖4𝛽(𝑘)4⋅ ⋅ ⋅ 𝑎𝑖𝑚𝛽(𝑘)𝑚  ⋅ ⋅ ⋅ 𝑛∑
𝑖𝑚=1

𝑎𝑖𝑗(𝑘)2 𝑗(𝑘)3 ⋅⋅⋅𝑗(𝑘)𝑚−1𝑖𝑚𝑎𝑗(𝑘)2 𝛽(𝑘)2 𝑎𝑗(𝑘)3 𝛽(𝑘)3⋅ ⋅ ⋅ 𝑎𝑗(𝑘)𝑚−1𝛽(𝑘)𝑚−1𝑎𝑖𝑚𝛽(𝑘)𝑚 𝑎𝑖𝑗(𝑘)2 𝑗(𝑘)3 ⋅⋅⋅𝑗(𝑘)𝑚−11𝑎𝑗(𝑘)2 𝛽(𝑘)2 𝑎𝑗(𝑘)3 𝛽(𝑘)3⋅ ⋅ ⋅ 𝑎𝑗(𝑘)𝑚−1𝛽(𝑘)𝑚−1𝑎1𝛽(𝑘)𝑚 + ⋅ ⋅ ⋅ + 𝑎𝑖𝑗(𝑘)2 𝑗(𝑘)3 ⋅⋅⋅𝑗(𝑘)𝑚−1𝑛𝑎𝑗(𝑘)2 𝛽(𝑘)2 𝑎𝑗(𝑘)3 𝛽(𝑘)3⋅ ⋅ ⋅ 𝑎𝑗(𝑘)𝑚−1𝛽(𝑘)𝑚−1𝑎𝑛𝛽(𝑘)𝑚
𝑎
𝑗
(𝑘)
𝑚 𝛽
(𝑘)
𝑚

=0 𝑎𝑖𝑗(𝑘)2 𝑗(𝑘)3 ⋅⋅⋅𝑗(𝑘)𝑚−1𝑗(𝑘)𝑚 𝑎𝑗(𝑘)2 𝛽(𝑘)2 𝑎𝑗(𝑘)3 𝛽(𝑘)3⋅ ⋅ ⋅ 𝑎𝑗(𝑘)𝑚−1𝛽(𝑘)𝑚−1𝑎𝑗(𝑘)𝑚 𝛽(𝑘)𝑚  𝑎𝑖𝛼𝑘𝑎𝑗(𝑘)2 𝛽(𝑘)2 𝑎𝑗(𝑘)3 𝛽(𝑘)3⋅ ⋅ ⋅ 𝑎𝑗(𝑘)𝑚−1𝛽(𝑘)𝑚−1𝑎𝑗(𝑘)𝑚 𝛽(𝑘)𝑚 𝑎𝑖𝛼𝑘=0 0.

(25)

We note that 𝑘 ∈ [𝑛]\{𝑖}which means there are 𝑛 − 1 zero
elements in 𝑖-th slice of A2; thus we complete the proof by𝑖 ∈ [𝑛].

We note that Proposition 34 is the generalization
of Lemma 30; now we will obtain the generalization of
Theorem 31.
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Theorem 35. Let A = (𝑎𝑖1𝑖2 ...𝑖𝑚 )1≤𝑖𝑗≤𝑛(𝑗=1,...,𝑚) be a nonnegative
tensor with order 𝑚 and dimension 𝑛. Let 𝑠 ∈ [𝑛], 2 ≤ 𝑡 ≤ 𝑚,𝑗(𝑠)𝑡 ∈ [𝑛], and 𝛼𝑠 = 𝑗(𝑠)2 𝑗(𝑠)3 . . . 𝑗(𝑠)𝑚 . If 𝑎𝑖𝛼𝑠 = 0 for any 𝑖 ∈ [𝑛]
and any 𝑠 ∈ [𝑛]\{𝑖}, then A is not strongly primitive.

Proof. Now we show that there exist 𝜀1, 𝜀2, . . . , 𝜀𝑛 ∈ [𝑛](𝑚−1)𝑟
such that (A𝑟)𝑖𝜀𝑘 = 0 for any 𝑖 ∈ [𝑛] and any 𝑘 ∈ [𝑛]\{𝑖} by
induction on 𝑟(≥ 2); say, there exist at least 𝑛−1 zero elements
in each slice ofA𝑟 and thus A is not strongly primitive.

Firstly, by Proposition 34, we know there exist 𝛾1, 𝛾2,. . . , 𝛾𝑛 ∈ [𝑛](𝑚−1)2 such that (A2)𝑖𝛾𝑘 = 0 for any 𝑖 ∈ [𝑛] and any𝑘 ∈ [𝑛]\{𝑖}; say, there exist at least 𝑛 − 1 zero elements in each
slice of A2. Now we assume that there exist 𝛿1, 𝛿2, . . . , 𝛿𝑛 ∈[𝑛](𝑚−1)𝑟−1 such that (A𝑟−1)𝑖𝛿𝑘 = 0 for any 𝑖 ∈ [𝑛] and any𝑘 ∈ [𝑛]\{𝑖}; say, there exist at least 𝑛 − 1 zero elements in each
slice of A𝑟−1.

Let 𝜂(𝑠)𝑡 = 𝛿𝑗(𝑠)𝑡 for any 𝑠 ∈ [𝑛] and 2 ≤ 𝑡 ≤ 𝑚; then(A𝑟−1)
𝑗(𝑠)𝑡 𝜂
(𝑠)
𝑡

= 0 for any 𝑗(𝑠)𝑡 ∈ [𝑛]\{𝑗(𝑠)𝑡 } by (A𝑟−1)𝑖𝛿𝑘 = 0 for
any 𝑖 ∈ [𝑛] and any 𝑘 ∈ [𝑛]\{𝑖}. Let 𝜀𝑘 = 𝜂(𝑘)2 𝜂(𝑘)3 . . . 𝜂(𝑘)𝑚 ∈[𝑛](𝑚−1)𝑟 for any 𝑘 ∈ [𝑛]. Now we show (A𝑟)𝑖𝜀𝑘 = 0 for any𝑖 ∈ [𝑛] and any 𝑘 ∈ [𝑛]\{𝑖}.

By (7) and similar proof of Proposition 34, we have(A𝑟)𝑖𝜀𝑘 = (A𝑟)𝑖𝜂(𝑘)2 𝜂(𝑘)3 ⋅⋅⋅𝜂(𝑘)𝑚= 𝑛∑
𝑖2 ,𝑖3,...,𝑖𝑚=1

𝑎𝑖𝑖2𝑖3⋅⋅⋅𝑖𝑚 (A𝑟−1)𝑖2𝜂(𝑘)2 ⋅ ⋅ ⋅ (A𝑟−1)
𝑖𝑚𝜂
(𝑘)
𝑚= 0, (26)

and then we complete the proof.

Proposition 36. Let A = (𝑎𝑖1𝑖2⋅⋅⋅𝑖𝑚)1≤𝑖𝑗≤𝑛(𝑗=1,⋅⋅⋅ ,𝑚) be a non-
negative tensor with order 𝑚 and dimension 𝑛, and 𝑀(A) be
the majorization matrix of A. If there exist 𝑖, 𝑗 ∈ [𝑛], such
that (𝑀(A))𝑖𝑗 > 0, (𝑀(A))𝑢𝑗 = 0 for any 𝑢 ∈ [𝑛]\{𝑖} and(𝑀(A))𝑗𝑖 > 0, (𝑀(A))V𝑖 = 0 for any V ∈ [𝑛]\{𝑗}, then A is not
primitive, and thus A is not strongly primitive.

Proof. Firstly, we show the following assertion:
If 𝑘 is odd, then (𝑀(A𝑘))𝑖𝑗 > 0, (𝑀(A𝑘))𝑗𝑖 > 0,(𝑀(A𝑘))𝑢𝑗 = 0 for any 𝑢 ∈ [𝑛]\{𝑖}, (𝑀(A𝑘))V𝑖 = 0 for any

V ∈ [𝑛]\{𝑗}.
If 𝑘 is even, then (𝑀(A𝑘))𝑖𝑖 > 0, (𝑀(A𝑘))𝑗𝑗 > 0,(𝑀(A𝑘))𝑢𝑖 = 0 for any 𝑢 ∈ [𝑛]\{𝑖}, (𝑀(A𝑘))V𝑗 = 0 for any

V ∈ [𝑛]\{𝑗}.
When 𝑘 = 1, the above result holds which is obvious.

When 𝑘 = 2, by Definition 7 and (7), we have(𝑀(A2))
𝑖𝑖
= (A2)

𝑖𝑖⋅⋅⋅𝑖= 𝑛∑
𝑖2 ,𝑖3,...,𝑖𝑚=1

𝑎𝑖𝑖2𝑖3⋅⋅⋅𝑖𝑚𝑎𝑖2𝑖⋅⋅⋅𝑖 ⋅ ⋅ ⋅ 𝑎𝑖𝑚𝑖⋅⋅⋅𝑖= 𝑎𝑖𝑗⋅⋅⋅𝑗 (𝑎𝑗𝑖⋅⋅⋅𝑖)𝑚−1= (𝑀(A))𝑖𝑗 ((𝑀 (A))𝑗𝑖)𝑚−1 > 0,
(27)

and for any 𝑢 ∈ [𝑛]\{𝑖}, we have(𝑀(A2))
𝑢𝑖
= (A2)

𝑢𝑖⋅⋅⋅𝑖= 𝑛∑
𝑖2 ,𝑖3,...,𝑖𝑚=1

𝑎𝑢𝑖2𝑖3⋅⋅⋅𝑖𝑚𝑎𝑖2𝑖⋅⋅⋅𝑖 ⋅ ⋅ ⋅ 𝑎𝑖𝑚𝑖⋅⋅⋅𝑖= 𝑎𝑢𝑗⋅⋅⋅𝑗 (𝑎𝑗𝑖⋅⋅⋅𝑖)𝑚−1= (𝑀 (A))𝑢𝑗 ((𝑀 (A))𝑗𝑖)𝑚−1 = 0.
(28)

Similarly, we can show (𝑀(A2))𝑗𝑗 > 0 and (𝑀(A2))V𝑗 = 0
for any V ∈ [𝑛]\{𝑗}.

Now we assume that, for any 𝑘, the above assertion holds.
Then, for 𝑘 + 1, we consider the following two cases.
Case 1. 𝑘 is odd.

Then, by (7), we have(𝑀(A𝑘+1))
𝑖𝑖
= (A𝑘+1)

𝑖𝑖⋅⋅⋅𝑖= 𝑛∑
𝑖2 ,𝑖3,...,𝑖𝑚=1

𝑎𝑖𝑖2𝑖3 ⋅⋅⋅𝑖𝑚 (A𝑘)𝑖2𝑖⋅⋅⋅𝑖 ⋅ ⋅ ⋅ (A𝑘)𝑖𝑚𝑖⋅⋅⋅𝑖= 𝑎𝑖𝑗⋅⋅⋅𝑗 ((A𝑘)𝑗𝑖⋅⋅⋅𝑖)𝑚−1= (𝑀 (A))𝑖𝑗 ((𝑀(A𝑘))
𝑗𝑖
)𝑚−1 > 0,

(29)

and, for any 𝑢 ∈ [𝑛]\{𝑖}, we have(𝑀(A𝑘+1))
𝑢𝑖
= (A𝑘+1)

𝑢𝑖⋅⋅⋅𝑖= 𝑛∑
𝑖2 ,𝑖3,...,𝑖𝑚=1

𝑎𝑢𝑖2𝑖3⋅⋅⋅𝑖𝑚 (A𝑘)𝑖2𝑖⋅⋅⋅𝑖 ⋅ ⋅ ⋅ (A𝑘)𝑖𝑚𝑖⋅⋅⋅𝑖= 𝑎𝑢𝑗⋅⋅⋅𝑗 ((A𝑘)𝑗𝑖⋅⋅⋅𝑖)𝑚−1= (𝑀 (A))𝑢𝑗 ((𝑀(A𝑘))
𝑗𝑖
)𝑚−1 = 0.

(30)

Similarly, we can show (𝑀(A𝑘+1))𝑗𝑗 > 0 and(𝑀(A𝑘+1))V𝑗 = 0 for any V ∈ [𝑛]\{𝑗}.
Case 2. 𝑘 is even.

By (7) and similar proof of Case 1, we can show(𝑀(A𝑘+1))𝑖𝑗 > 0, (𝑀(A𝑘+1))𝑗𝑖 > 0, (𝑀(A𝑘+1))𝑢𝑗 = 0 for any𝑢 ∈ [𝑛]\{𝑖}, and (𝑀(A𝑘+1))V𝑖 = 0 for any V ∈ [𝑛]\{𝑗}.
By Proposition 8 and the above assertion, we know A is

not primitive, and thus A is not strongly primitive.

Let A = (𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑚 )1≤𝑖𝑗≤𝑛(𝑗=1,⋅⋅⋅ ,𝑚) be a nonnegative strongly
primitive tensor with order 𝑚 and dimension 𝑛. When 𝑛 =2, we know 𝜂(A) ≤ 2 by Theorem 32. When 𝑛 ≥ 3, we do
not know the value or bound of 𝜂(A). Even 𝑛 = 3, we do
not find out all strongly primitive tensors. Thus we think it
is not easy to obtain the value or bound of 𝜂(A). Based on
the computation of the case 𝑛 = 3, we propose the following
problem for further research.
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Question 37. Let 𝑛 ≥ 3, A = (𝑎𝑖1𝑖2 ⋅⋅⋅𝑖𝑚 )1≤𝑖𝑗≤𝑛(𝑗=1,⋅⋅⋅ ,𝑚) be
a nonnegative strongly primitive tensor with order 𝑚 and
dimension 𝑛. Then 𝜂(A) < (𝑛 − 1)2 + 1.

In [7, 9], the authors gave some algebraic characteri-
zations of a nonnegative primitive tensor, and in [11] the
authors showed that a nonnegative tensor is primitive if and
only if the greatest common divisor of all the cycles in the
associated directed hypergraph is equal to 1. It is natural for
us to consider the following.

Question 38. Study the algebraic or graphic characterization
of a nonnegative strongly primitive tensor.

We are sure the above two questions are interesting and
not easy.
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