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This article discusses the evolution of Benjamin-Bona-Mahony (BBM) wave packet’s envelope. The envelope equation is derived
by applying the asymptotic series up to the third order and choosing appropriate fast-to-slow variable transformations which
eliminate the resonance terms that occurred. It is obtained that the envelope evolves satisfying the Nonlinear Schrodinger (NLS)
equation.The evolution of NLS envelope is investigated through its exact solution, Soliton on Finite Background, which undergoes
modulational instability during its propagation. The resulting wave may experience phase singularity indicated by wave splitting
and merging and causing amplification on its amplitude. Some parameter values take part in triggering this phenomenon. The
amplitude amplification can be analyzed by employing Maximal Temporal Amplitude (MTA) which is a quantity measuring the
maximum wave elevation at each spatial position during the observation time. Wavenumber value affects the extreme position of
the wave but not the amplitude amplification. Meanwhile, modulational frequency value affects both terms. Comparison of the
evolution of the BBM wave packet to the previous results obtained from KdV equation gives interesting outputs regarding the
extreme position and the maximum wave peaking.

1. Introduction

This research is motivated by the need of generating extreme
waves (also called freak, rogue, or giant waves) in a typical
tank in a hydrodynamic laboratory. An extreme wave is
defined as a wave which has significant height more than
twice the height of measured wave train [1, 2]. There are
some physical mechanisms which cause the occurrence of the
extreme wave. In [3], it was explained that it can occur due
to wave-current interaction, geometrical or spatial focusing,
focusing due to dispersion, focusing due to modulational
instability, or soliton collision. An extreme wave can take
place in deep water, shallow water, and at coastal area. It
was reported that the wave appeared often at coastal area
and in shallow water [4]. The extreme wave is a major
threat to the ships and other marine structures because it
can cause severe damage and loss when they are hit by the
wave [5–11]. However, the occurrence of the extreme wave

is unpredictable. The generation of an extreme wave in the
laboratory is important to test the endurance of the ships or
marine structures before they are installed and operated in
the real environment. Many studies have been conducted to
investigate the behavior of the extreme wave analytically and
numerically [4, 12–28].

While ships and marine structures are typically built
and operate on the offshore, the occurrence of the extreme
wave in deep water is not as easily understood as the one
in shallow water and coastal area since the wave on the
surface of deep water may not be significantly affected by
the topography and current. This fact has given a rise to
the theory of modulational instability. The instability causes
growing modulation of the wave envelope. The phenomenon
happens as awave nonlinearity behavior.This nonlinear event
occurs when a wave is perturbed by other waves which
cause envelope modulations that evolve into steep waves
corresponding to nonlinear focusing of wave energy [3].
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Modulational instability may be an appropriate mechanism
to generate extreme waves in a wave tank. In a wave tank
which initially contains still water, signals are given to
the wavemakers generating waves to propagate downstream
along the tank. Owing to the nonlinearity effect, the waves
deform during their propagation (see [29–32]).

Extreme wave behavior due to modulational instability
has been fiercely studied involving various wave equations.
The evolution of Korteweg-deVries (KdV) equation’s solution
in wave packet form was investigated in [33]. In the study, the
KdV wave packet which is initially in the bichromatic signals
experiences instability deforming the wave and causing an
amplitude amplification. Bichromatic wave is formed from
a superposition of two monochromatic waves which have
same amplitudes and slightly different frequencies [27, 30].
This result was obtained by deriving the solution of the
KdV equation in the form of asymptotic series up to the
third order. KdV’s solution in higher order, up to the fifth
order, was conducted in [34] and the result suggests that the
higher the order is, the higher the amplitude amplification
is. However, these two waves’ maximum amplitudes are far
lower than the amplitude of a wave generated by HUBRIS
model although the extremepositions at which themaximum
peaking happens conform. HUBRISmodel is numerical wave
model which was developed based on the Laplace equation
(full water equation) [27]. Bichromatic signal deformation
was also investigated by employing Boussinesq equation in
[24].The resulting wave give matching amplitude to the wave
ofHUBRISmodel. Study onBenjamin-Bona-Mahony (BBM)
model’s wave packet with bichromatic signal is presented in
[35]. The results suggest that the waves experience instability
during its propagation. Moreover, if the frequencies in the
bichromatic signal are closer to each other then the amplitude
amplification tends to be higher; also higher initial amplitude
may cause higher amplification on the amplitude.

Modulational instability also occurs when a monochro-
matic signal is perturbed by a pair of side bands of smaller
amplitudes and slightly different frequencies. These waves
form trichromatic wave also known as Benjamin-Feir type
wave. Nonlinear evolution of wave packet with trichromatic
signal based on KdV equation was studied in [18]. Inves-
tigating the wave packet evolution can also be carried out
through the envelope evolution. In many studies, it has been
derived that the envelope of the KdV wave packet is in the
NLS equation form [36–40]. One of NLS’ exact solutions,
Soliton on Finite Background (SFB), shows an instability
during its propagation. SFB itself is a best approximation to
the Benjamin-Feir type wave. KdV wave packet with its NLS
envelope has been applied to study the occurrence of extreme
waves in many areas, not only in the fluid dynamic but also
in the fields of plasma physics, quantum electronic, and optics
[41–45]. BBM wave packet envelope had been also analyzed
in [46]. The study found that envelope evolves satisfying the
NLS equation.

BBM equation was firstly proposed as a revision of classic
KdV equation which has dispersion relation contradicting
to its physical wave behavior [47]. The classic KdV equation
only works for small values of wavenumber. When the
wavenumber values are large, the phase velocity of the KdV

waves becomes negative, which indicates that the waves
change their direction of propagation.This behavior is against
the original assumption of forward-travelling waves. BBM
equation yields more reasonable dispersion relation for any
value of wavenumber. A family of KdV equation with exact
dispersion relation was derived in [48]. The exact dispersion
relation describes positive phase velocity for any value of wave
number and this finding has corrected the shortcoming of
the classic KdV. This exact KdV equation has been applied
in some studies of extreme wave generation. BBM and KdV
equations are originally derived from the same equation
which is Laplace equation. These equations both describe
shallow water wave propagation and yield soliton solution.
However, the two equations in all likelihood illustrate waves
with distinct characteristics.

In this study, we are interested in observing the evolution
of BBM wave packet in the extreme wave context. The waves
will be investigated through its envelope which is in NLS
equation form. The SFB solution will be applied to analyze
the instability which may trigger an extreme wave. The
amplitude amplification will be measured through the waves’
Maximal Temporal Amplitude (MTA), a quantity measuring
the highest elevation at every spatial position in the domain
during the observation time. It is also interesting to compare
the results to the KdV equation waves which have been
actively studied especially in extreme wave area.

In the next section, we will briefly review the BBM
wave packet envelope which is adopted from the study
in [46]. Also we will derive the elevation equation based
on the wave packet and the obtained envelope equation.
Section 3 contains explanation of two quantities which
importantly describe the resulting wave characteristics,
AmplitudeAmplification Factor (AAF) andMaximal Tempo-
ral Amplitude (MTA). The resulting waves will be presented
in Section 4 which is divided into two parts; the first part
explains the modulational instability and phase singularity
phenomenon and the second part presents the result compar-
ison from BBM and KdV wave packet evolution. This paper
is closed by presenting conclusions in Section 5.

2. Envelope Equation of BBM Wave Packet

We consider propagating waves developed from regularized
long wave equation, Benjamin-Bona-Mahony equation [47];

𝜂𝑡 + 𝜂𝑥 + 𝜂𝜂𝑥 − 𝜂𝑥𝑥𝑡 = 0, (1)

where 𝜂 is wave elevation, 𝑥 is spatial variable and 𝑡 is
time variable. The linear form of BBM equation (1) which
describes dispersive effect to the equation yields dispersion
relation stating the relation between the wavenumber 𝑘 and
frequency 𝜔; the dispersion relation reads 𝜔 = 𝑘/(1 + 𝑘2).
The BBM equation presented in (1) is in the nondimensional
form with the scaling factors for the variables as well as the
corresponding frequency and wavenumber are given as 𝜂 =3𝜂/2ℎ, 𝑥 = 𝑥√6/ℎ, 𝑡 = 𝑡̃√6𝑔/ℎ, 𝜔 = 𝜔̃√6ℎ/𝑔/6/6, 𝑘 =𝑘̃ℎ√6/6, where 𝜂, 𝑥, 𝑡̃, 𝜔̃, 𝑘̃ represent the laboratory/physical
variables and ℎ and 𝑔 are water depth and gravitational
acceleration, respectively.
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The deformation of the wave packet can be investigated
through its envelope. An ansatz depicting the solution of (1)
as a wave packet is taken,

𝜂 (𝑥, 𝑡) = 𝐴 (𝜉, 𝜏) 𝑒𝑖(𝜔𝑡−𝑘𝑥) + c.c., (2)

where 𝐴(𝜉, 𝜏) represents the envelope equation of the waves,𝜉 and 𝜏 represent spatial and time variables, respectively, and
c.c. denotes the complex conjugate. Envelope waves tend to
move in slower velocity than the carrier waves. Therefore,𝜉 and 𝜏 are called slow variables transformed from the fast
variables 𝑥 and 𝑡 by the following relations,

𝜉 = 𝜀 (𝑥 − 𝑝𝑡) ,
𝜏 = 𝜀2𝑡,
𝑝 = 1 + 2𝑘𝜔1 + 𝑘2 ,

(3)

where 𝜀 is a small real number. Through these fast-to-
slow variables transformation and applying the asymptotic
expansion method, envelope equation 𝐴(𝜉, 𝜏) is derived and
it is found that it evolves satisfying the so-called Nonlinear
Schrodinger (NLS) equation

𝐴𝜉 + 𝑖𝛽𝐴𝜏𝜏 + 𝑖𝛾 |𝐴|2 𝐴 = 0, (4)
where

𝛽 = − 1𝑝3 (2𝜔𝑝 + 𝜔2𝑘 ) ,
𝛾 = 𝜔𝑝 ( 2𝑝 − 1 − 𝑘8𝑘2𝜔 + 2𝜔 − 2𝑘) .

(5)

Equation (4) is called spatial-NLS because it describes the
change of wave envelope on every spatial position. The
derivation of NLS equation from BBM equation can be
thoroughly studied in [46].

NLS equation has many solutions. The second important
solution is Soliton on Finite Background (SFB).This solution
explains an interaction between a soliton and its background
which have different frequencies along its propagation on the
spatial domain [41]. SFB can also be represented as nonlinear
interaction between a monochromatic signal perturbed by a
pair of modulation waves having small frequency difference
from the monochromatic’s one [40, 41]. The interaction
triggers growing instability with a certain rate. The SFB reads
[41, 49]

𝐴 (𝜉, 𝜏) = 𝐴SFB (𝜉, 𝜏) 𝑟0𝑒−𝑖𝛾𝑟20𝜉, (6)

where

𝐴SFB (𝜉, 𝜏) = 𝑢 (𝜉, 𝜏) + 𝑖V (𝜉, 𝜏)
cosh (𝜎 (]) 𝜉) − √1 − (]̂2/2) cos (]𝜏)

𝑢 (𝜉, 𝜏) = (]̂2 − 1) cosh (𝜎 (]) 𝜉)
+ √1 − ]̂22 cos (]𝜏)

V (𝜉, 𝜏) = −]̂√2 − ]̂2 sinh (𝜎 (]) 𝜉)

(7)

and 𝜎(]) = ]√2𝑟20𝛽𝛾 − 𝛽2]2, ]̂ = ]/(𝑟0√𝛾/𝛽); ] is
modulation frequency. SFB reaches its maximum amplitude
at (0, 2𝑛𝜋/]), 𝑛 ∈ Z (see [50]). The frequency ] causes an
amplitude amplification if the value in the interval 0 < ] <𝑟0√2𝛾/𝛽 (see [49]). It is convenient to rewrite the interval as0 < ]̂ < √2.

Let 𝐴(𝜉, 𝜏) describes the slowly varying envelope and
satisfies the NLS equation (4); then the physical wave profile
given by the surface elevation (2) can bewritten in real valued
function

𝜂 (𝑥, 𝑡)
= 2𝑟0√𝑢 (𝜉, 𝜏)2 + V (𝜉, 𝜏)2
cosh (𝜎 (]) 𝜉) − √1 − (]̂2/2) cos (]𝜏) cos (Φ (𝑥, 𝑡)) , (8)

where Φ(𝑥, 𝑡) = 𝜔𝑡 − 𝑘𝑥 − 𝛾𝑟20𝜉 + arctan(V(𝜉, 𝜏)/𝑢(𝜉, 𝜏)) and𝜉 and 𝜏 are defined as stated in the transformation (3).

3. Amplitude Amplification and Maximal
Temporal Amplitude

The instability which happens to the SFB wave causes a
growing amplitude during its propagation. Let Λ be the
maximum amplitude at an extreme position (𝑥, 𝑡) = (0, 0);
hence

Λ = 𝜂 (0, 0)
= 2𝑟0√𝑢 (0, 0)2 + V (0, 0)2
cosh (0) − √1 − (]̂2/2) cos (0) cos (Φ (0, 0)) . (9)

Since V(0, 0) = 0 and Φ(0, 0) = 0, it is obtained that

Λ = 2𝑟0(1 + 2√1 − ]̂22 ) . (10)

In (10), Λ is a decreasing function with respect to ]̂ and
proportional to the initial amplitude 𝑟0 at a far distance before
the extreme position 𝑥 = 0. Through this relation a certain
value for the maximum amplitude can be achieved by setting
an appropriate value to parameter 𝑟0.

Amplitude Amplification Factor (AAF) can be employed
to measure the magnitude of the amplitude peaking. AAF is
defined as the ratio of the maximum amplitude at the extreme
position to the amplitude of the monochromatic wave at the
far distance before it [33, 34, 40]. Therefore, we can state the
AAF as

AAF = Λ2𝑟0 = 1 + 2√1 − V̂22 . (11)

Equation (11) explains that AAF → 1 when ]̂ → √2, mean-
ing that the amplitude does not experience amplification.
However, when ]̂ → 0, the FAA → 3; the amplitude of
initially monochromatic wave will increase as much as three
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Figure 1: Graph of the value of dispersive coefficient 𝛽 (a) and nonlinear coefficient 𝛾 (b) with respect to wave number 𝑘 from NLS equation
(4).

times at the extreme position. This value also represents the
maximum amplification the wave can achieve for any given
initial amplitude 𝑟0.

During the propagation, the wave elevation will change
at every position. To investigate how the wave deforms along
its propagation along the spatial domain, we apply a quantity
called Maximal Temporal Amplitude (MTA).MTAmeasures
the maximum elevation of the wave signal at every position
[24, 40, 50]. MTA is defined as

MTA (𝑥) = max
𝑡

𝜂 (𝑥, 𝑡) . (12)

MTA is invariant to time. This function can be applied to
determine the amplitude amplification globally by comparing
themaximumMTAwith theMTAat the initial position of the
wave.

4. Results and Discussion

4.1. Modulational Instability and Phase Singularity. Wave
peaking occurs due to focusing phenomenon when waves
experience modulational instability which is also known
as Benjamin-Feir Instability [49]. For the NLS equation
case, focusing can happen depending on the value of the
coefficients of the dispersive and the nonlinear terms. If the
values of both 𝛽 and 𝛾 are of the same sign then both terms
give balance effect resulting in the formation of solitary wave
envelope [37]. Figure 1 depicts the graphs of 𝛽 and 𝛾 with
respect to the wavenumber 𝑘. For positive real valued 𝑘,
the dispersive coefficient 𝛽 is a negative function while the
nonlinear coefficient 𝛾 is positive on 0 < 𝑘 < 1 and negative
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Figure 2: Graph of instability growth rate.

on 𝑘 > 1.Therefore, we can choose a value for 𝑘 in the interval𝑘 > 1 which triggers the focusing phenomenon.
We investigate the wave propagation at water depth ℎ =5m and gravitational acceleration 𝑔 = 9.8m/s2. Choosing𝑘 = 1.8751 (𝑘̃ = 0.9186 rad/m) gives 𝜔 = 0.4152 (𝜔̃ =1.4238 rad/s) through the dispersion relation, 𝛽 = −3.0964

and 𝛾 = −3.5380. By setting 𝑟0 = 0, 06 (𝑟0 = 0, 2m), we
obtain the graph of the instability growth rate 𝜎 over the
value of ]̂ as illustrated in Figure 2. It can be observed that
the instability occurs only in the interval 0 < ]̂ < √2
and the highest instability happens when ]̂ = 1. Figure 3
exhibits the wave profile 𝜂(𝑥, 𝑡) for ]̂ = 1. It can be
observed that amplitude amplification occurs at a certain
period during the propagation. Moreover, the figure also
exhibits phase singularity phenomenon which is indicated by
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Figure 3: (a) Wave train profile and (b) wave contour of 𝜂SFB(𝑥, 𝑡) for ]̂ = 1.
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Figure 4: (a) Wave train profile and (b) wave contour of 𝜂SFB(𝑥, 𝑡) for ]̂ = 1.3.
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Figure 5: (a) Curve of envelope |𝐴SFB(𝑥, 𝑡)| at 𝑥 = 0 for ]̂ = 1. (b) Curve of envelope |𝐴SFB(𝑥, 𝑡)| at 𝑥 = 0 for ]̂ = 1.3.

wave dislocation when the waves split into two waves and
merge into onewave near (before and after) thewave peaking.
Phase singularity is a phenomenon which takes place when
the real values of the amplitude |𝐴SFB| vanish [40, 50]. This
can be observed in Figure 5(a) in which the envelope curve
intercepts the 𝑥 axis at some points. Wave dislocation is also
known as optical vortices in the optical wave, line of darkness
in the light wave, and thread of silence in the sound wave [51].

Thewave dislocation also occurs when setting ]̂ = 0.7, but
it does not when ]̂ = 1.3, or when ]̂ = 1.4. Figure 4 displays
the wave train and contour when ]̂ = 1.3. This indicates that
not all values of ]̂ in the interval (0,√2) trigger the phase
singularity; there is a value in (0,√2) which is a threshold

of the event to occur. We call this value as critical point and
it had been determined that ]̂crit = √3/2 as presented in
[40, 49]. Hence, the phase singularity occurs when the value
of ]̂ is chosen in the interval (0,√3/2). Figure 5(a) illustrates
the phase singularity when ]̂ = 1 as the curve of the envelope
at the extreme position 𝑥 = 0 intercepts the horizontal
axis, |𝐴SFB(0, 𝜏)| ≥ 0. Meanwhile, Figure 5(b) displays the
envelope curve when ]̂ = 1.3; the curve is definitely positive.

Spatial SFB is symmetrical to the time variable 𝑡 and in
a soliton form symmetrical to line 𝑥 = 0. Figure 6 displays
the wave signals at some spatial points and the symmetrical
behavior. At a far distance before the extreme position, the
SFB signal is monochromatic waves with amplitude 2𝑟0 and
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Figure 6: Wave signal 𝜂SFB(𝑥, 𝑡) (blue) and envelope |𝐴SFB| (red) at some spatial position for (𝑟0; 𝑘̃; ]̂) = (0.2; 0.9186; 1).

frequency 𝜔. The instability is taking place at position 𝑥 =−500m and the waves start to deform. It gets obvious as
the waves propagate reaching position 𝑥 = −250m. The
instability is indicated by the growing modulation envelope.
The amplitude keeps increasing as it reaches 𝑥 = −100m,𝑥 = −50m, and 𝑥 = −30m until it reaches the maximum
peaking at 𝑥 = 0. It can be observed that new modulations
emerge between the high envelope and it becomes more
obvious at 𝑥 = 0. Furthermore, the phase singularity can be
remarkedwhen𝑥 = 0; the peak or the trough are on the 𝑡 axis.
Thereafter, the amplitude starts to decrease symmetrically.

Figure 7 exhibits the amplitude spectra of the SFB signal
from the Figure 6. At 𝑥 = −500m, the wave which is initially
a monochromatic signal with frequency 𝜔 = 1.4238 rad/s is
being perturbed by a new pair of modulation (side bands)
with frequency difference 0.2199 rad/s. In this state, the form-
ing wave is trichromatic wave. Furthermore, the perturbing
wave amplitude is increasing andnewother side bands appear
as the waves propagate along the 𝑥 axis until it reaches the
maximum position 𝑥 = 0 and the nearest side bands surpass
the monochromatic signal amplitude. This phenomenon
explains themodulational instability which occurs during the
wave propagation.Moreover, the occurrence of the newmod-
ulations near the initially monochromatic signal suggests a
self-focusing phenomenon which is energy transfer among
the surrounding waves.

Figure 8 displays the MTA and spatial evolution of (8).
The graphs have been shifted such that the wave’s maximum
peaking occurs on the positive 𝑥 axis and the initially
monochromatic wave appears at𝑥 = 0. In terms of generating
wave in a hydrodynamic laboratory, this shifted spatial value

is more relatable. In the figure, it can be observed that
the wave propagates toward the positive 𝑥 direction and
reaches the maximum peaking at 𝑥 = 777.6m. Far before
the extreme position, the wave is being modulated and
its amplitude keeps increasing in significant manner. This
result is clearly displayed by the MTA which is increasingly
monotone until it reaches 𝑥 = 777.6m.Thewave is initially at
amplitude 0.4mand reaches its maximum value at amplitude0, 9657m, meaning that it is 2.4142 times higher than the
initial amplitude. After reaching the maximum peaking, the
amplitude starts decreasing and forming symmetrical value
to the extreme position axis.

Different values of wavenumber affect the extreme posi-
tion but may not affect the maximum peaking. These results
are exhibited in Figure 9(a). If the wavenumber is higher
then the extreme position is farther. This output happens
for chosen wavenumbers 𝑘̃ = 0.6 rad/m, 𝑘̃ = 0.7 rad/m
and 𝑘̃ = 0.9186 rad/m with respective extreme position𝑥 = 290.6 m, 𝑥 = 500.5m, and 𝑥 = 777.6m. However,
when the wavenumber is set to higher value 𝑘̃ = 3 rad/m,
the extreme position becomes closer at 𝑥 = 564.6m to
the 𝑥 = 0 compared to the one with wavenumber 𝑘̃ =0.9186 rad/m. These findings may lead to some hypotheses
regarding the extreme position; however further study needs
to be conducted.

The change in the value of ]̂ may affect the maximum
peaking. Figure 9(b) exhibits the MTAs for some values of ]̂.
The maximum MTAs for ]̂ = 0.2, ]̂ = 0.5, ]̂ = 0.7 and ]̂ = 1
are, respectively, 1.1913m, 1.1482m, 1.0949m, and 0.9656m.
The smaller the value of ]̂ is, the higher themaximumpeaking
will be. This output resonates the relation between ]̂ an AAF
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Figure 7: Amplitude spectra of wave signal 𝜂SFB(𝑥, 𝑡) at some spatial positions for (𝑟0; 𝑘̃; ]̂) = (0.2; 0.9186; 1).
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Figure 8: Elevation 𝜂SFB(𝑥, 𝑡) (green), envelope |𝐴SFB| (blue), and
MTA (red) of the BBM wave packet for (𝑟0; 𝑘̃; ]̂) = (0.2; 0.9186; 1).

stated in (11). Hence the AAF can be computed analytically,
which are 2.9799, 2.8708, 2.7378, and 2.4142 for ]̂ = 0.2,
]̂ = 0.5, ]̂ = 0.7, and ]̂ = 1, respectively. Moreover, besides
affecting the AAF, the value of ]̂ also affects the extreme
position. It can be observed from Figure 9(b) that as the AAF
is getting higher, the extreme position may become farther
from the origin.

4.2. Comparison of BBM and KdV Wave Packet Evolution.
Previous researches on wave envelope evolution had been

conducted by employing the Korteweg-de Vries (KdV) equa-
tion. Some equations in KdV equation family had been
proposed and the dynamic in its propagation as a wave packet
had been also studied [40–45, 49, 50]. In [37], NLS equation
was derived from the classic KdV equation introduced by
Korteweg and De Vries in 1895 and it was obtained that
the NLS equation is of the defocusing type at which the
dispersive and nonlinear terms are always in different signs.
Hence, the both terms act towiden the envelope and envelope
solitary waves are unlikely to occur. However, NLS equation
derived from the exact KdV equation which was proposed by
Van Groesen in 1998 [48] may yield focusing solution. The
NLS envelope of the KdV wave packet can be observed in
[33, 40, 49]. There is a critical wavenumber for which the
dispersive and nonlinear terms of the NLS equation are in the
same sign, which is 𝑘 > 0.23. Hence, choosing the value of 𝑘
in the interval 𝑘 > 0.23 gives focusing typeNLS. For the KdV-
NLS equation, the modulation frequency ]̂which triggers the
instability lies in the interval 0 < ]̂ < √2 and the critical
modulation frequency for which the phase singularity may
occur is ]̂crit = √3/2.ThemaximumAAF approaches 3 as the
]̂ approaches 0.The characteristics of the exact KdV-NLS and
the BBM-NLS that we analyze in this study are pretty much
similar. Therefore, here we are concerned with comparing
both results. The evolution of the wave profile, envelope, and
MTA of the exact KdV wave packet is presented in Figure 10.

The difference between the BBM-NLS and KdV-NLS is
sited on the coefficients of the dispersive (𝛽) and nonlinear
(𝛾) terms. Therefore, the coefficients’ values may affect the
resulting wave and its evolution for an assigned wavenumber
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Figure 9: (a) BBM’s MTAs for some values of wavenumbers: 𝑘̃ = 0.6 (magenta), 𝑘̃ = 0.7 (black), 𝑘̃ = 0.9186 (red), and 𝑘̃ = 3 (blue) with(𝑟0; ]̂) = (0.2; 1). (b) BBM’s MTAs for some values of modulation frequencies ]̂ = 1 (magenta), ]̂ = 0.7 (black), ]̂ = 0.5 (red), and ]̂ = 0.2
(blue) with (𝑟0; 𝑘̃) = (0.2; 0.6).
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Figure 10: Elevation 𝜂SFB(𝑥, 𝑡) (green), envelope |𝐴SFB| (blue), and MTA (red) of the KdV wave packet for (𝑟0; 𝑘̃; ]̂) = (0.2; 0.9186; 1).

𝑘. Besides the wave profile appears to be different in terms
of density of the carrier waves as we compare wave profile
in Figure 8 to the one in Figure 10, the extreme positions
are also significantly dissimilar. Figure 11 exhibits the MTA
of KdV and BBM wave packet propagation for same chosen
values (𝑟0; 𝑘̃; ]̂) = (0.2; 0.9186; 1). From Figure 11, it can be
observed that the BBMwaves need farther distance to achieve
its extreme position where the maximum peaking takes place
compared to the KdV waves although the magnitudes of the
maximum peaking are the same. The extreme position of
BBM waves is at 𝑥 = 777.6m while that of the KdV waves
is at 𝑥 = 140m. Moreover, the KdV’s MTA appears to be
steeper than the BBM’s MTA. These results may indicate
that BBM wave packet deforms in slower manner while KdV
wave packet tends to deform in faster way. However, when
a smaller value for 𝑘̃ is given, the extreme position of the
BBM waves is closer to the origin than the KdV waves as
exhibited in Figure 12. BBM waves’ extreme position is at𝑥 = 290.6m whereas KdV waves’ extreme position is at 𝑥 =427m.

5. Conclusion

The dynamic of BBM wave packet propagation can be
observed through the evolution of its envelope. It has been
derived that the envelope evolves satisfying theNLS equation.
We have shown that the NLS equation is of focusing type for
wavenumber 𝑘 value lying in the interval 𝑘 > 1. Through one
NLS’ exact solution, Soliton on Finite Background, modula-
tional instability may happen to the waves during the propa-
gation which lead to amplitude amplification. The instability
may occur when the value of modulation frequency ]̂ is one
in the interval (0,√2). However, phase singularity which is a
phenomenon indicating the occurrence of extreme wavemay
take place if ]̂ is a value in interval (0,√3/2). The maximum
amplitude amplification factor (AAF) approaches 3 as the ]̂
approaches 0. Furthermore, the extreme position at which
the maximum peaking occurs can be observed through the
waves’ MTA. The extreme position may vary depending on
the value of the wavenumber 𝑘 while the maximum peaking
is retained. However, further study is needed to analyze how
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Figure 11: BBM’s MTA (red) and KdV’s MTA (blue) for (𝑟0; 𝑘̃; ]̂) =(0.2; 0.9186; 1).

0.4

0.5

0.6

0.7

0.8

0.9

1

M
TA

100 200 300 400 500 600 7000
x

Figure 12: BBM’s MTA (red) and KdV’s MTA (blue) for (𝑟0; 𝑘̃; ]̂) =(0.2; 0.6; 1).

thewavenumbermay affect the extremeposition.Modulation
frequency ]̂ also affects the extreme position as well as the
value of maximum peaking which has been proven through
the AAF equation. We have also observed that BBM-NLS is
similar to the KdV-NLS. Nevertheless, both equations give
different extreme positions even though the magnitudes of
the maximum peaking are the same.
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