
Research Article
Existence of Weak Solutions for Fractional Integrodifferential
Equations with Multipoint Boundary Conditions

Haide Gou and Baolin Li

College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China

Correspondence should be addressed to Baolin Li; ghdzxh@163.com

Received 5 September 2017; Revised 20 November 2017; Accepted 22 July 2018; Published 2 September 2018

Academic Editor: Yuji Liu

Copyright © 2018 Haide Gou and Baolin Li. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

By combining the techniques of fractional calculus with measure of weak noncompactness and fixed point theorem, we establish
the existence of weak solutions of multipoint boundary value problem for fractional integrodifferential equations.

1. Introduction

In recent years, fractional differential equations in Banach
spaces have been studied and a few papers consider fractional
differential equations in reflexive Banach spaces equipped
with the weak topology. As long as the Banach space is
reflexive, theweak compactness offers no problem since every
bounded subset is relatively weakly compact and therefore
the weak continuity suffices to prove nice existence results
for differential and integral equations [1, 2]. De Blasi [3]
introduced the concept of measure of weak noncompactness
and proved the analogue of Sadovskiis fixed point theorem
for the weak topology (see also [4]). As stressed in [5], in
many applications, it is always not possible to show the weak
continuity of the involved mappings, while the sequential
weak continuity offers no problem. This is mainly due to the
fact that Lebesgues dominated convergence theorem is valid
for sequences but not for nets. Recall that a mapping between
two Banach spaces is sequentially weakly continuous if it
maps weakly convergent sequences into weakly convergent
sequences.

The theory of boundary value problems for nonlinear
fractional differential equations is still in the initial stages
and many aspects of this theory need to be explored. There
are many papers dealing with multipoint boundary value
problems both on resonance case and on nonresonance case;
for more details see [6–11]. However, as far as we know, few

results can be found in the literature concerning multipoint
boundary value problems for fractional differential equations
in Banach spaces andweak topologies. Zhou et al. [12] discuss
the existence of solutions for nonlinear multipoint boundary
value problem of integrodifferential equations of fractional
order as follows:

𝑐𝐷𝛼0+𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , (𝐻𝑥) (𝑡) , (𝐾𝑥) (𝑡)) ,
𝑡 ∈ [0, 1] , 𝛼 ∈ (1, 2] ,

𝑎1𝑥 (0) − 𝑏1𝑥󸀠 (0) = 𝑑1𝑥 (𝜉1) ,
𝑎2𝑥 (1) + 𝑏2𝑥󸀠 (1) = 𝑑2𝑥 (𝜉2) ,

(1)

with respect to strong topology, where 𝑐𝐷𝛼0+ denotes the
fractional Caputo derivative and the operators given by

(𝐻𝑥) (𝑡) = ∫𝑡
0
𝑔 (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠,

(𝐾𝑥) (𝑡) = ∫𝑡
0
ℎ (𝑡, 𝑠) 𝑥 (𝑠) 𝑑𝑠.

(2)

Moreover, theory for boundary value problem of inte-
grodifferential equations of fractional order in Banach spaces
endowed with its weak topology has been few studied until
now. In [13], we discussed the existence theorem of weak
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solutions nonlinear fractional integrodifferential equations in
nonreflexive Banach spaces 𝐸:

𝑐𝐷𝛼0+𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , (𝑇𝑥) (𝑡) , (𝑆𝑥) (𝑡)) ,
𝑡 ∈ [0, 1] , 𝛼 ∈ (1, 2] ,

𝑎1𝑥 (0) − 𝑎2𝑥󸀠 (0) = 𝛾1,
𝑏1𝑥 (1) + 𝑏2𝑥󸀠 (1) = 𝛾2,

(3)

and obtain a new result by using the techniques of measure
of weak noncompactness andHenstock-Kurzweil-Pettis inte-
grals, where 𝑐𝐷𝛼0+ denotes the fractional Caputo derivative
and the operators given by

(𝑇𝑥) (𝑠) = ∫𝑠
0
𝑘1 (𝑠, 𝜏) 𝑔 (𝜏, 𝑥 (𝜏)) 𝑑𝜏,

(𝑆𝑥) (𝑠) = ∫1
0
𝑘2 (𝑠, 𝜏) ℎ (𝜏, 𝑥 (𝜏)) 𝑑𝜏.

(4)

Our analysis relies on the Krasnoselskii fixed point theorem
combined with the technique of measure of weak noncom-
pactness.

Motivated by the above works, in this paper, we use the
techniques of measure of weak noncompactness combine
with the fixed point theorem to discuss the existence theorem
of weak solutions for a class of nonlinear fractional integrod-
ifferential equations of the form

𝑐𝐷𝛼0+𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , (𝑇𝑥) (𝑡) , (𝑆𝑥) (𝑡)) ,
𝑡 ∈ [0, 1] , 𝛼 ∈ (1, 2] ,

𝑎1𝑥 (0) − 𝑏1𝑥󸀠 (0) = 𝑑1𝑥 (𝜉1) ,
𝑎2𝑥 (1) + 𝑏2𝑥󸀠 (1) = 𝑑2𝑥 (𝜉2) ,

(5)

where 𝑇 and 𝑆 are two operators defined by

(𝑇𝑢) (𝑡) = ∫𝑡
0
𝑘1 (𝑡, 𝑠) 𝑔 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

(𝑆𝑢) (𝑡) = ∫𝑎
0
𝑘2 (𝑡, 𝑠) ℎ (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

(6)

𝐸 is a nonreflexive Banach space, 𝑐𝐷𝛼0+ denotes the fractional
Caputo derivative, 𝑘1 ∈ 𝐶(𝐷, 𝑅+), 𝑘2 ∈ 𝐶(𝐷0, 𝑅+), 𝐷 ={(𝑡, 𝑠) ∈ 𝑅2 : 0 ≤ 𝑠 ≤ 𝑡 ≤ 1}, 𝐷0 = {(𝑡, 𝑠) ∈ 𝑅2 : 0 ≤𝑡, 𝑠 ≤ 1}, 𝑎1, 𝑏1, 𝑑1, 𝑎2, 𝑏2, 𝑑2 are real numbers, 0 < 𝜉1, 𝜉2 < 1,𝑓 : 𝐼 × 𝐸3 󳨀→ 𝐸, 𝑔, ℎ : 𝐼 × 𝐸 󳨀→ 𝐸 are given functions
satisfying some assumptions that will be specified later, the
integral is understood to be the Henstock-Kurzweil-Pettis,
and solutions to (5) will be sought in 𝐸 = 𝐶(𝐼, 𝐸𝜔).

The problems of our research are different between this
paper and paper [13]. In paper [13], we studied two point
boundary value problem by using the corresponding Green’s
function and fixed point theorems; moreover, we get some
good results. In this paper, we use the techniques of mea-
sure of weak noncompactness and Henstock-Kurzweil-Pettis

integrals to discuss the existence theorem of weak solutions
for a class of the multipoint boundary value problem of
fractional integrodifferential equations equipped with the
weak topology. Our results generalized some classical results
and improve the assumptions conditions, so our results
improve the results in [13].

The paper is organized as follows: In Section 2 we recall
some basic known results. In Section 3 we discuss the
existence theorem of weak solutions for problem (5).

2. Preliminaries

Throughout this paper, we introduce notations, definitions,
and preliminary results which will be used.

Let 𝐼 = [0, 1] be the real interval, let 𝐸 be a real Banach
space with norm ‖ ⋅ ‖, its dual space 𝐸∗ also 𝐵(𝐸∗) denotes
the closed unit ball in 𝐸∗, and 𝐸𝑤 = (𝐸, 𝑤) = (𝐸, 𝜎(𝐸, 𝐸∗))
denotes the space 𝐸 with its weak topology. Denote by𝐶(𝐼, 𝐸𝜔) = (𝐶(𝐼, 𝐸), 𝜔) the space of all continuous functions
from 𝐼 to 𝐸 endowed with the weak topology and the usual
supremum norm ‖𝑥‖ = sup𝑡∈𝐼|𝑥(𝑡)|.

LetΩ𝐸 be the collection of all nonempty bounded subsets
of 𝐸, and letW𝐸 be the subset of Ω𝐸 consisting of all weakly
compact subsets of 𝐸. Let 𝐵𝑟 denote the closed ball in 𝐸
centered at 0 with radius 𝑟 > 0. The De Blasi [14] measure of
weak noncompactness is the map 𝛽 : Ω𝐸 󳨀→ [0,∞) defined
by

𝛽 (𝐴) = inf {𝑟 > 0 : there exists a set 𝑊
∈W𝐸 such that 𝐴 ⊆ 𝑊 + 𝐵𝑟} (7)

for all 𝐴 ∈ Ω𝐸. The fundamental tool in this paper is the
measure of weak noncompactness; for some properties of𝛽(𝐴) and more details see [3].

Now, for the convenience of the reader, we recall some
useful definitions of integrals.

Definition 1 (see [15]). A function 𝑢 : 𝐼 󳨀→ 𝐸 is said to be
Henstock-Kurzweil integrable on 𝐼 if there exists an 𝐽 ∈ 𝐸
such that, for every 𝜀 > 0, there exists 𝛿(𝜉) : 𝐼 󳨀→ R+ such
that, for every 𝛿-fine partition𝐷 = {(𝐼𝑖, 𝜉𝑖)}𝑛𝑖=1, we have󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛∑
𝑖=1

𝑢 (𝜉𝑖) 𝜇 (𝐼𝑖) − 𝐽
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 < 𝜀, (8)

and we denote the Henstock-Kurzweil integral 𝐽 by (HK)
∫𝑏
𝑎
𝑢(𝑠)𝑑𝑠.

Definition 2 (see [15]). A function 𝑓 : 𝐼 󳨀→ 𝐸 is said
to be Henstock-Kurzweil-Pettis integrable or simply HKP-
integrable on 𝐼, if there exists a function 𝑔 : 𝐼 󳨀→ 𝐸 with
the following properties:

(i) ∀𝑥∗ ∈ 𝐸∗, 𝑥∗𝑓 is Henstock-Kurzweil integrable on𝐼;
(ii) ∀𝑡 ∈ 𝐼, ∀𝑥∗ ∈ 𝐸∗, 𝑥∗𝑔(𝑡) = (HK) ∫𝑡

0
𝑥∗𝑓(𝑠)𝑑𝑠.

This function 𝑔 will be called a primitive of 𝑓 and be
denote by 𝑔(𝑡) = ∫𝑡

0
𝑓(𝑡)𝑑𝑡 the Henstock-Kurzweil-Pettis

integral of 𝑓 on the interval 𝐼.
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Definition 3 (see [16]). A family M of functions 𝑓 : 𝑆 󳨀→ 𝐸
is called HK-equi-integrable if each 𝑓 ∈M is HK-integrable
and for every 𝜀 > 0 there exists a gauge 𝛿 on 𝑆 such that, for
every 𝛿-fine HK-partition 𝜋 of 𝑆, we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ∑(𝐼,𝑠)∈𝜋𝑓 (𝑠) 𝜆𝑚 (𝐼) − (HK) ∫
𝑆

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 𝜀, (9)

for all 𝑓 ∈M.

Theorem 4 (see [16]). Let (𝑓𝑛) be a pointwise bounded
sequence of 𝐻𝐾𝑃 integrable functions 𝑓𝑛 : 𝑆 󳨀→ 𝐸 and let𝑓 : 𝑆 󳨀→ 𝐸 be a function. Assume that,

(i) for every 𝑥∗ ∈ 𝐸∗, 𝑥∗(𝑓𝑛(𝑡)) 󳨀→ 𝑥∗(𝑓(𝑡)) 𝑎.𝑒. 𝑜𝑛 𝑆,
(ii) for every sequence (𝑥∗𝑘 ) ⊂ 𝐵(𝐸∗), the sequence(𝑥∗𝑘 (𝑓𝑛))𝑘,𝑛 is 𝐻𝐾-equi-integrable, then 𝑓 is 𝐻𝐾𝑃-

integrable and for every 𝐼 ∈ I, and we have

lim
𝑛󳨀→∞

𝐹𝑛 (𝐼) = 𝐹 (𝐼) (10)

in the weak topology 𝜎(𝐸, 𝐸∗), where 𝐹 is the 𝐻𝐾𝑃-primitive
of 𝑓 and 𝑆 is a fixed compact nondegenerate interval in R𝑛.
Denote byI the family of all closed nondegenerate subintervals
of 𝑆.
Lemma 5 (see [17]). If 𝐵 ⊂ 𝐶(𝐼, 𝐸) is equicontinuous, 𝑢0 ∈𝐶(𝐼, 𝐸), then 𝑐𝑜{𝐵, 𝑢0} is also equicontinuous in 𝐶(𝐼, 𝐸).
Lemma 6 (see [17, 18]). Let 𝐸 be a Banach space, and let𝐵 ⊂ 𝐶(𝐼, 𝐸) be bounded and equicontinuous. Then 𝛽(𝐵(𝑡)) is
continuous on 𝐼, and 𝛽(𝐵) = max𝑡∈𝐼𝛽(𝐵(𝑡)).
Lemma 7 (see [14, 19]). Let 𝐸 be a Banach space and let 𝐵 ⊂𝐶(𝐼, 𝐸) be bounded and equicontinuous. Then the map 𝑡 󳨀→𝛽(𝐵(𝑡)) is continuous on 𝐼 and

𝛽 (𝐵) = sup
𝑡∈𝐼
𝛽 (𝐵 (𝑡)) = 𝛽 (𝐵 (𝐼)) , (11)

where 𝐵(𝑡) = {𝑏(𝑡) : 𝑏 ∈ 𝐵} and 𝐵(𝐼) = ⋃𝑡∈𝐼{𝑏(𝑡) : ℎ ∈ 𝐵}.
Lemma 8 (see [17]). Let 𝐵 ⊂ 𝐶(𝐼, 𝐸) be bounded and
equicontinuous. Then 𝛽(𝐵(𝑡)) is continuous on 𝐼 and

𝛽(∫
𝐼
𝐵 (𝑠) 𝑑𝑠) ≤ ∫

𝐼
𝛽 (𝐵 (𝑠)) 𝑑𝑠. (12)

We give the fixed point theorem, which play a key role in
the proof of our main results.

Lemma 9 (see [20]). Let 𝐸 be a Banach space and 𝛽 a regular
and set additive measure of weak noncompactness on 𝐸. Let𝐶 be a nonempty closed convex subset of 𝐸, 𝑥0 ∈ 𝐶, and𝑛0 a positive integer. Suppose 𝐹 : 𝐶 󳨀→ 𝐶 is 𝛽-convex
power condensing about 𝑥0 and 𝑛0. If 𝐹 is weakly sequentially
continuous and 𝐹(𝐶) is bounded, then 𝐹 has a fixed point in𝐶.

The following we recall the definition of the Caputo
derivative of fractional order.

Definition 10. Let 𝑥 : 𝐼 󳨀→ 𝐸 be a function. The fractional
HKP-integral of the function 𝑥 of order 𝛼 ∈ R+ is defined by

𝐼𝛼0+𝑥 (𝑡) fl ∫𝑡
0

(𝑡 − 𝑠)𝛼−1Γ (𝛼) 𝑥 (𝑠) 𝑑𝑠. (13)

In the above definition the sign “∫” denotes the HKP-
integral integral.

Definition 11. The Riemann-Liouville derivative of order 𝛼
with the lower limit zero for a function 𝑓 : [0,∞) 󳨀→ 𝑅
can be written as

𝐷𝛼0+𝑓 (𝑡) = 1Γ (𝑛 − 𝛼) 𝑑
𝑛

𝑑𝑡𝑛 ∫
𝑡

0

𝑓 (𝑠)
(𝑡 − 𝑠)𝛼+1−𝑛 𝑑𝑠,
𝑡 > 0, 𝑛 − 1 < 𝛼 < 𝑛.

(14)

Definition 12. The Caputo fractional derivative of order 𝛼 for
a function 𝑓 : [0,∞) 󳨀→ 𝐸 can be written as

𝑐𝐷𝛼0+𝑓 (𝑡) = 𝐷𝛼0+ [𝑓 (𝑡) −
𝑛−1∑
𝑘=0

𝑡𝑘𝑘!𝑓(𝑘) (0)] ,
𝑡 > 0, 𝑛 − 1 < 𝛼 < 𝑛,

(15)

where 𝑛 = [𝛼] + 1 and [𝛼] denotes the integer part of 𝛼.
3. Main Results

In this section, we present the existence of solutions to
problem (5) in the space 𝐶(𝐼, 𝐸𝜔).
Definition 13. A function 𝑥 ∈ 𝐶(𝐼, 𝐸𝑤) is said to be a
solution of problem (5) if x satisfies the equation 𝑐𝐷𝛼0+𝑥(𝑡) =𝑓(𝑡, 𝑥(𝑡), (𝑇𝑥)(𝑡), (𝑆𝑥)(𝑡)) on 𝐼 and satisfies the conditions𝑎1𝑥(0) − 𝑏1𝑥󸀠(0) = 𝑑1𝑥(𝜉1), 𝑎2𝑥(1) + 𝑏2𝑥󸀠(1) = 𝑑2𝑥(𝜉2).
Lemma 14 (see [21]). Let 𝛼 > 0. If one assumes 𝑢 ∈ 𝐶(0, 1) ∩𝐿(0, 1), then the differential equation

𝑐𝐷𝛼0+𝑢 (𝑡) = 0 (16)

has solution 𝑢(𝑡) = 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 + ⋅ ⋅ ⋅ + 𝑐𝑛𝑡𝑛−1, 𝑐𝑖 ∈ R, 𝑖 =0, 1, . . . , 𝑛, 𝑛 = [𝛼] + 1.
From the lemma above, we deduce the following state-

ment.

Lemma 15 (see [21]). Assume that 𝑢 ∈ 𝐶(0, 1) ∩ 𝐿(0, 1) with
a fractional derivative of order 𝛼 > 0 that belongs to 𝐶(0, 1) ∩𝐿(0, 1). Then

𝐼𝛼0+ (𝑐𝐷𝛼0+𝑢 (𝑡)) = 𝑢 (𝑡) + 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 + ⋅ ⋅ ⋅ + 𝑐𝑛𝑡𝑛−1 (17)

for some 𝑐𝑖 ∈ R, 𝑖 = 0, 1, . . . , 𝑛, 𝑛 = [𝛼] + 1.
The following we give the corresponding Greens function

for problem (5).
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Lemma 16. Let Δ ̸= 0, 𝜌 ∈ 𝐶(𝐼, 𝐸𝑤) and 𝛼 ∈ (1, 2], then the
unique solution of

𝑐𝐷𝛼0+𝑥 (𝑡) = 𝜌 (𝑡) , 𝑡 ∈ 𝐼,𝑎1𝑥 (0) − 𝑏1𝑥󸀠 (0) = 𝑑1𝑥 (𝜉1) ,
𝑎2𝑥 (1) + 𝑏2𝑥󸀠 (1) = 𝑑2𝑥 (𝜉2)

(18)

is given by

𝑥 (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝜌 (𝑠) 𝑑𝑠, (19)

where the Green function 𝐺 is given by

𝐺 (𝑡, 𝑠)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

(𝑡 − 𝑠)𝛼−1Γ (𝛼) + 𝑑1 [𝑎2 (1 − 𝑡) + 𝑏2 + 𝑑2 (𝑡 − 𝜉2)] (𝜉1 − 𝑠)𝛼−1ΔΓ (𝛼) − 𝑎2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−1ΔΓ (𝛼) − 𝑏2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−2ΔΓ (𝛼 − 1) + 𝑑2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (𝜉2 − 𝑠)𝛼−1ΔΓ (𝛼) , 𝑠 ≤ 𝜉1, 𝑠 ≤ 𝑡;
𝑑1 [𝑎2 (1 − 𝑡) + 𝑏2 + 𝑑2 (𝑡 − 𝜉2)] (𝜉1 − 𝑠)𝛼−1ΔΓ (𝛼) − 𝑎2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−1ΔΓ (𝛼) − 𝑏2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−2ΔΓ (𝛼 − 1) + 𝑑2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (𝜉2 − 𝑠)𝛼−1ΔΓ (𝛼) , 𝑠 ≤ 𝜉1, 𝑡 ≤ 𝑠;
(𝑡 − 𝑠)𝛼−1Γ (𝛼) − 𝑎2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−1ΔΓ (𝛼) − 𝑏2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−2ΔΓ (𝛼 − 1) + 𝑑2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (𝜉2 − 𝑠)𝛼−1ΔΓ (𝛼) , 𝜉1 ≤ 𝑠 ≤ 𝜉2, 𝑠 ≤ 𝑡;
−𝑎2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−1ΔΓ (𝛼) − 𝑏2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−2ΔΓ (𝛼 − 1) + 𝑑2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (𝜉2 − 𝑠)𝛼−1ΔΓ (𝛼) , 𝜉1 ≤ 𝑠 ≤ 𝜉2, 𝑡 ≤ 𝑠;
(𝑡 − 𝑠)𝛼−1Γ (𝛼) − 𝑎2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−1ΔΓ (𝛼) − 𝑏2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−2ΔΓ (𝛼 − 1) , 𝜉2 ≤ 𝑠, 𝑠 ≤ 𝑡;
−𝑎2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−1ΔΓ (𝛼) − 𝑏2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)] (1 − 𝑠)𝛼−2ΔΓ (𝛼 − 1) , 𝜉2 ≤ 𝑠, 𝑡 ≤ 𝑠.

(20)

Proof. Based on the idea of paper [7], assuming that 𝑥(𝑡)
satisfies (18), by Lemma 15, we formally put

𝑥 (𝑡) = 𝐼𝛼0+𝜌 (𝑡) − 𝑐1 − 𝑐2𝑡
= 1Γ (𝛼) ∫

𝑡

0
(𝑡 − 𝑠)𝛼−1 𝜌 (𝑡) 𝑑𝑠 − 𝑐1 − 𝑐2𝑡 (21)

for some constants 𝑐1, 𝑐2 ∈ R.
On the other hand, by the relations𝐷𝛼0+𝐼𝛼0+𝑥(𝑡) = 𝑥(𝑡) and𝐼𝛼0+𝐼𝛽0+𝑥(𝑡) = 𝐼𝛼+𝛽0+ 𝑥(𝑡), for 𝛼, 𝛽 > 0, 𝑥 ∈ 𝐶(𝐼, 𝐸𝑤), we get

𝑥󸀠 (𝑡) = 1Γ (𝛼 − 1) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−2 𝜌 (𝑠) 𝑑𝑠 − 𝑐2. (22)

By the boundary conditions of (18), we have

(𝑑1 − 𝑎1) 𝑐1 + (𝑏1 + 𝑑1𝜉1) 𝑐2
= 𝑑1𝐼𝛼0+𝜌 (𝜉1) + 𝑏1𝐼𝛼−10+ 𝜌 (0) − 𝑎1𝐼𝛼0+𝜌 (0) ,

(𝑑2 − 𝑎2) 𝑐1 + (−𝑎2 − 𝑏2 + 𝑑2𝜉2) 𝑐2
= 𝑑2𝐼𝛼0+𝜌 (𝜉2) − 𝑏2𝐼𝛼−10+ 𝜌 (1) − 𝑎2𝐼𝛼0+𝜌 (1) ,

(23)

By the proof of paper [12], we get

𝑐1 = −𝑑1 (𝑎2 + 𝑏2 − 𝑑2𝜉2)ΔΓ (𝛼) ∫𝜉1
0
(𝜉1 − 𝑠)𝛼−1 𝜌 (𝑠) 𝑑𝑠

+ (𝑏1 + 𝑑1𝜉1)Δ [𝑎2 ∫1
0

(1 − 𝑠)𝛼−1Γ (𝛼) 𝜌 (𝑠) 𝑑𝑠

+ 𝑏2 ∫1
0

(1 − 𝑠)𝛼−2Γ (𝛼 − 1) 𝜌 (𝑠) 𝑑𝑠

− 𝑑2 ∫𝜉2
0

(𝜉2 − 𝑠)𝛼−1Γ (𝛼) 𝜌 (𝑠) 𝑑𝑠] ,

𝑐2 = 𝑑1 (𝑎2 − 𝑑2)ΔΓ (𝛼) ∫𝜉1
0
(𝜉1 − 𝑠)𝛼−1 𝜌 (𝑠) 𝑑𝑠

+ (𝑎1 − 𝑑1)Δ [𝑎2 ∫1
0

(1 − 𝑠)𝛼−1Γ (𝛼) 𝜌 (𝑠) 𝑑𝑠
+ 𝑏2 ∫1
0

(1 − 𝑠)𝛼−2Γ (𝛼 − 1) 𝜌 (𝑠) 𝑑𝑠
− 𝑑2 ∫𝜉2

0

(𝜉2 − 𝑠)𝛼−1Γ (𝛼) 𝜌 (𝑠) 𝑑𝑠] ,
(24)

whereΔ = [(𝑏1+𝑑1𝜉1)(𝑎2−𝑑2)+(𝑎2+𝑏2−𝑑2𝜉2)(𝑎1−𝑑1)] ̸= 0.
Substituting the values of 𝑐1 and 𝑐2 in (21), we get

𝑥 (𝑡) = 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 𝜌 (𝑠) 𝑑𝑠

+ 𝑑1 [𝑎2 (1 − 𝑡) + 𝑏2 + 𝑑2 (𝑡 − 𝜉2)]ΔΓ (𝛼)
⋅ ∫𝜉1
0
(𝜉1 − 𝑠)𝛼−1 𝜌 (𝑠) 𝑑𝑠

− 𝑎2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)]ΔΓ (𝛼)
⋅ ∫1
0
(1 − 𝑠)𝛼−1 𝜌 (𝑠) 𝑑𝑠

− 𝑏2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)]ΔΓ (𝛼 − 1)
⋅ ∫1
0
(1 − 𝑠)𝛼−2 𝜌 (𝑠) 𝑑𝑠

+ 𝑑2 [(𝑏1 + 𝑑1𝜉1) + 𝑡 (𝑎1 − 𝑑1)]ΔΓ (𝛼)
⋅ ∫𝜉2
0
(𝜉2 − 𝑠)𝛼−1 𝜌 (𝑠) 𝑑𝑠 = ∫1

0
𝐺 (𝑡, 𝑠) 𝜌 (𝑠) 𝑑𝑠.

(25)

This completes the proof.
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Let 𝐷𝑟 = {𝑧 ∈ 𝐶(𝐼, 𝐸𝑤), ‖𝑧‖ ≤ 𝑟}, 𝐵𝑉(𝐼,R) denote the
space of real bounded variation functions with its classical
norm ‖ ⋅ ‖𝐵𝑉.

Problem (5) will be studied under the following assump-
tions:

(1) For each weakly continuous function 𝑥 : 𝐼 󳨀→ 𝐸,
the functions 𝑘1(𝑡, ⋅)𝑔(⋅, 𝑥(⋅)), 𝑘2(𝑡, ⋅)ℎ(⋅, 𝑥(⋅)),𝑓(⋅, 𝑥(⋅), 𝑇(𝑥)(⋅), 𝑆(𝑥)(⋅)) are HKP-integrable, 𝑓 : 𝐼 ×𝐸3 󳨀→ 𝐸, 𝑔, ℎ : 𝐼 × 𝐸 󳨀→ 𝐸 are weakly-weakly
continuous function, and ∫𝑡

0
𝑔(𝑠, 𝑥(𝑠))𝑑𝑠, ∫1

0
ℎ(𝑠,𝑥(𝑠))𝑑𝑠 are bounded.

(2)

(i) For any 𝑟 > 0, there exist a HK-integrable
function 𝑚 : 𝐼 󳨀→ R+ and nondecreasing con-
tinuous functions 𝜓1 : [0, +∞) 󳨀→ (0,∞), 𝜓2 :[0, +∞) 󳨀→ [0, +∞), 𝜓3 : [0, +∞) 󳨀→[0, +∞), 𝜓2, 𝜓3 satisfying 𝜓2(𝜆𝑥) ≤ 𝜆𝜓2(𝑥),𝜓3(𝜆𝑥) ≤ 𝜆𝜓3(𝑥) for 𝜆 > 0 such that

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥, 𝑦, 𝑧)󵄩󵄩󵄩󵄩
≤ 𝑚 (𝑠) [𝜓1 (‖𝑥‖) + 𝜓2 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) + 𝜓3 (|𝑧|)] ,

𝜓2 (󵄨󵄨󵄨󵄨𝑔 (𝑠, 𝑥)󵄨󵄨󵄨󵄨) ≤ 𝜓2 (|𝑥|) ,
𝜓3 (|ℎ (𝑠, 𝑥)|) ≤ 𝜓3 (|𝑥|)

(26)

for all 𝑠 ∈ 𝐼, (𝑥, 𝑦, 𝑧) ∈ 𝐷𝑟 × 𝐷𝑟 × 𝐷𝑟 with
∫1
0
𝑀(𝑠) 𝑑𝑠 < ∫∞

0

𝑑𝑟
∑3𝑖=1 𝜓𝑖 (𝑠) . (27)

(ii) For each bounded set 𝑋,𝑌, 𝑍 ⊂ 𝐷𝑟, and each
for each closed interval 𝐽 ⊂ 𝐼, 𝑡 ∈ 𝐼, there exists
positive constant 𝑙 ≥ 0 such that

𝛽(𝑘1 (𝐽, 𝐽) 𝑔 (𝐽, 𝑌) ≤ 𝑘∗1𝛽 (𝑌 (𝐽)) ,
𝛽(𝑘2 (𝐽, 𝐽) ℎ (𝐽, 𝑍) ≤ 𝑘∗2𝛽 (𝑍 (𝐽))
𝛽 (𝑓 (𝑡, 𝑋, 𝑌, 𝑍)) ≤ 𝑙max {𝛽 (𝑋) , 𝛽 (𝑌) , 𝛽 (𝑍)} ,

(28)

where 𝑀(𝑠) = 𝐺∗𝑚(𝑠)max{1, 𝑎𝑘∗1 , 𝑎𝑘∗2 }, 𝑘∗1 =
sup𝑡∈𝐼‖𝑘1(𝑡, ⋅)‖𝐵𝑉, 𝑘∗2 = sup𝑡∈𝐼‖𝑘2(𝑡, ⋅)‖𝐵𝑉.

(3) For each 𝑡 ∈ 𝐼, 𝐺(𝑡, .), 𝑘𝑖(𝑡, ⋅) ∈ 𝐵𝑉(𝐼,R), 𝑖 = 1, 2
are continuous; i.e., the maps 𝑡 󳨃󳨀→ 𝐺(𝑡, .) and 𝑡 󳨃󳨀→𝑘𝑖(𝑡, .) are ‖.‖𝐵𝑉-continuous.

(4) The family {𝑥∗𝑓(⋅, 𝑥(⋅), 𝑇(𝑥)(⋅), 𝑆(𝑥)(⋅)) : 𝑥∗ ∈𝐸∗, ‖𝑥∗‖ ≤ 1} is uniformly HK-integrable over 𝐼 for
every 𝑥 ∈ 𝐷𝑟.

Remark 17. From assumption (3) and the expression of
function 𝐺(𝑡, 𝑠), it is obvious that it is bounded and let 𝐺∗ =
sup𝑡∈𝐼‖𝐺(𝑡, ⋅)‖𝐵𝑉.

Now, we present the existence theorem for problem (5).

Theorem 18. Assume that conditions (5)-(20). Then problem
(5) has a solution 𝑥 ∈ 𝐶(𝐼, 𝐸𝑤).
Proof. Let 𝑚 = max{sup𝑡∈𝐼‖𝑘𝑖(𝑡, ⋅)‖𝐵𝑉, 𝑖 = 1, 2} and 𝑘0 =
max{sup𝑡∈𝐼| ∫𝑡0 𝑔(𝑠, 𝑥(𝑠))𝑑𝑠|, sup𝑡∈𝐼| ∫10 ℎ(𝑠, 𝑥(𝑠))𝑑𝑠|}. Let 0 <𝑘0 < min(𝑟0, 𝑟0/𝑚), for 𝑥 ∈ 𝐷𝑟0 and 𝑥∗ ∈ 𝐸∗ such that‖𝑥‖∗ ≤ 1; we have
󵄨󵄨󵄨󵄨𝑥∗ (𝑇𝑥 (𝑠))󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(HK) ∫𝑡

0
𝑥∗ (𝑘1 (𝑡, 𝑠) 𝑔 (𝑠, 𝑥 (𝑠))) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 󵄩󵄩󵄩󵄩𝑥∗󵄩󵄩󵄩󵄩 sup
𝑡∈𝐼

󵄩󵄩󵄩󵄩𝑘1 (𝑡, ⋅)󵄩󵄩󵄩󵄩𝐵𝑉∫1
0

󵄩󵄩󵄩󵄩𝑔 (𝑠, 𝑥 (𝑠))󵄩󵄩󵄩󵄩 𝑑𝑠
≤ 𝑚 ⋅ 𝑘0 ≤ 𝑟0,

(29)

and also

sup {󵄨󵄨󵄨󵄨𝑥∗𝑇𝑥󵄨󵄨󵄨󵄨 : 𝑥 ∈ 𝐸∗, 󵄩󵄩󵄩󵄩𝑥∗󵄩󵄩󵄩󵄩 ≤ 1} ≤ 𝑟0. (30)

So 𝑇𝑥 ∈ 𝐷𝑟0 . Similarly, we prove 𝑆𝑥 ∈ 𝐷𝑟0 .
Defining the set

𝑄 fl {𝑥 ∈ 𝐷𝑟0 : ‖𝑥 (⋅)‖ ≤ 𝑟0, ‖𝑥 (𝑡) − 𝑥 (𝑠)‖
≤ 𝑟0𝐺∗ 󵄩󵄩󵄩󵄩𝐺 (𝑡2, ⋅) − 𝐺 (𝑡1, ⋅)󵄩󵄩󵄩󵄩𝐵𝑉 , 𝑡1, 𝑡2 ∈ 𝐼} ,

(31)

it is clear that the convex closed and equicontinuous subset𝑄 ⊂ 𝐷𝑟0 ⊂ 𝐶(𝐼, 𝐸𝑤), where
𝑏 (𝑡) = 𝐼−1 (∫𝑡

0
𝑀(𝑠) 𝑑𝑠) and

𝐼 (𝑧) = ∫𝑧
0

𝑑𝑠
∑3𝑖=1 𝜓𝑖 (𝑠) .

(32)

Clearly,

𝑏󸀠 (𝑡) = 𝑀 (𝑡)( 3∑
𝑖=1

𝜓𝑖 (𝑏 (𝑡))) , and
𝑏 (0) = 0

(33)

for all 𝑡 ∈ 𝐼. Also notice that 𝑄 is a closed, convex,
bounded, and equicontinuous subset of 𝐶(𝐼, 𝐸𝑤). We define
the operator 𝐹 : 𝐶(𝐼, 𝐸𝑤) 󳨀→ 𝐶(𝐼, 𝐸𝑤) by
𝐹𝑥 (𝑡) = ∫1

0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝑇𝑥) (𝑠) , (𝑆𝑥) (𝑠)) 𝑑𝑠,

𝑡 ∈ 𝐼,
(34)

where 𝐺(⋅, ⋅) is Green’s function defined by (20). Clearly the
fixed points of the operator 𝐹 are solutions of problem (5).
Since for 𝑡 ∈ 𝐼 the function 𝑠 󳨃󳨀→ 𝐺(𝑡, 𝑠) is of bounded
variation, then by the proof of Theorem 3.1 in [13] and
assumption (4), the function 𝐺(𝑡, ⋅)𝑓(⋅, 𝑥(⋅), 𝑇(𝑥)(⋅), 𝑆(𝑥)(⋅))
is HKP-integrable on 𝐼 and thus the operator 𝐹makes sense.
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Wewill show that𝐹 satisfies the assumptions of Lemma 8;
the proof will be given in three steps.

Step 1.We shall show that the operator 𝐹maps into itself. To
see this, let 𝑥 ∈ 𝑄, 𝑡 ∈ 𝐼.Without loss of generality, assume
that 𝐹𝑥(𝑡) ̸= 0. By Hahn-Banach theorem, there exists 𝑥∗ ∈𝐸∗ with ‖𝑥∗‖ = 1 and ‖𝐹𝑥(𝑡)‖ = |𝑥∗(𝐹𝑥(𝑡))|.Thus

‖𝐹𝑥 (𝑡)‖ = 󵄨󵄨󵄨󵄨𝑥∗ (𝐹𝑥 (𝑡))󵄨󵄨󵄨󵄨
≤ 𝑥∗ (∫1

0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝑇𝑥) (𝑠) , (𝑆𝑥) (𝑠)) 𝑑𝑠)

≤ sup
𝑡∈𝐼
‖𝐺 (𝑡, ⋅)‖𝐵𝑉∫1

0
𝑚(𝑠)

⋅ [𝜓1 (𝑏 (𝑠)) + 𝑎𝑘∗1𝜓2 (𝑏 (𝑠)) + 𝑎𝑘∗2𝜓3 (𝑏 (𝑠))] 𝑑𝑠
≤ ∫1
0
𝑏󸀠 (𝑠) 𝑑𝑠 ≤ 𝐼−1 (∫1

0
𝑀(𝑠) 𝑑𝑠) = 𝑟0.

(35)

Then ‖𝐹𝑥‖ = sup𝑡∈𝐼|𝐹𝑥(𝑡)| ≤ 𝑟0.Hence 𝐹 : 𝑄 󳨀→ 𝑄.
Let 0 < 𝑡1 < 𝑡2 ≤ 1, without loss of generality; assume that𝐹𝑥(𝑡2) − 𝐹𝑥(𝑡1) ̸= 0. By Hahn-Banach theorem, there exists𝑥∗ ∈ 𝐸∗ with ‖𝑥∗‖ = 1 and
󵄩󵄩󵄩󵄩𝐹𝑥 (𝑡2) − 𝐹𝑥 (𝑡1)󵄩󵄩󵄩󵄩 = 𝑥∗ (𝐹𝑥 (𝑡2) − 𝐹𝑥 (𝑡1))
≤ ∫1
0

󵄨󵄨󵄨󵄨𝐺 (𝑡2, 𝑠) − 𝐺 (𝑡1, 𝑠)󵄨󵄨󵄨󵄨
⋅ 󵄨󵄨󵄨󵄨𝑥∗ (𝑓 (𝑠, 𝑥 (𝑠) , (𝑇𝑥) (𝑠) , (𝑆𝑥) (𝑠)))󵄨󵄨󵄨󵄨 𝑑𝑠
≤ 󵄩󵄩󵄩󵄩𝐺 (𝑡2, ⋅) − 𝐺 (𝑡1, ⋅)󵄩󵄩󵄩󵄩𝐵𝑉∫1

0
𝑚(𝑠)

⋅ [𝜓1 (𝑏 (𝑠)) + 𝑎𝑘∗1𝜓2 (|𝑏 (𝑠) ) + 𝑎𝑘∗2𝜓3 (𝑏 (𝑠))] 𝑑𝑠

≤ 1𝐺∗ 󵄩󵄩󵄩󵄩𝐺 (𝑡2, ⋅) − 𝐺 (𝑡1, ⋅)󵄩󵄩󵄩󵄩𝐵𝑉∫
1

0
𝑏󸀠 (𝑠) 𝑑𝑠

≤ 1𝐺∗ 󵄩󵄩󵄩󵄩𝐺 (𝑡2, ⋅) − 𝐺 (𝑡1, ⋅)󵄩󵄩󵄩󵄩𝐵𝑉 𝐼−1 (∫
1

0
𝑀(𝑠) 𝑑𝑠)

= 𝑟0𝐺∗ 󵄩󵄩󵄩󵄩𝐺 (𝑡2, ⋅) − 𝐺 (𝑡1, ⋅)󵄩󵄩󵄩󵄩𝐵𝑉 ,
(36)

and this estimation shows that 𝐹maps 𝑄 into itself.

Step 2.Wewill show that the operator𝐹 is weakly sequentially
continuous. In order to be simple, we denote 𝑇𝑥(𝑡) =
𝜙(𝑥)(𝑡) = ∫1

0
𝑘1(𝑡, 𝑠)𝑔(𝑠, 𝑥(𝑠))𝑑𝑠, 𝑆𝑥(𝑡) = 𝜑(𝑥)(𝑡) = ∫10 𝑘2(𝑡,𝑠)ℎ(𝑠, 𝑥(𝑠))𝑑𝑠. To see this, by Lemma 9 of [22], a sequence𝑥𝑛(⋅) weakly convergent to 𝑥(⋅) ∈ 𝑄 if and only if 𝑥𝑛(⋅) tends

weakly to 𝑥(𝑡) for each 𝑡 ∈ 𝐼. From Dinculeanu ([23, p. 380])(𝐶(𝐼, 𝐸))∗ = 𝑀(𝐼, 𝐸∗), 𝑀(𝐼, 𝐸∗) is the set of all bounded
regular vector measures from 𝐼 to 𝐸∗ which are of bounded
variation). Let 𝑥∗ ∈ 𝐸∗, 𝑡 ∈ 𝐼. Put 𝑃𝑡 = 𝑥∗𝛿𝑡, where 𝛿𝑡
is the Dirac measure concentrated at the point 𝑡. Then 𝑃𝑡 ∈𝑀(𝐼, 𝐸∗). Since 𝑥𝑛 converges weakly to 𝑥 ∈ 𝑄, then we have

lim
𝑛󳨀→∞

⟨𝑝𝑡, 𝑥𝑛 − 𝑥⟩ = 0 (37)

which means that

lim
𝑛󳨀→∞

⟨𝑥∗, 𝑥𝑛 − 𝑥⟩ = 0. (38)

Thus, for each 𝑡 ∈ 𝐼, 𝑥𝑛(𝑡) converges weakly to 𝑥(𝑡) ∈ 𝐸. Since𝑔(𝑠, ⋅), ℎ(𝑠, ⋅) are weakly-weakly sequentially continuous, then𝑔(𝑠, 𝑥𝑛(𝑠)) and ℎ(𝑠, 𝑥𝑛(𝑠)) converge weakly to 𝑔(𝑠, 𝑥(𝑠)) andℎ(𝑠, 𝑥(𝑠)), respectively.Hence, and byTheorem4 and assump-
tions (1), we have

lim
𝑛󳨀→∞

∫1
0
(∫𝑡
0
(𝑘1 (𝑡, 𝑠) 𝑔 (𝑠, 𝑥𝑛 (𝑠)) − 𝑘1 (𝑡, 𝑠) 𝑔 (𝑠, 𝑥 (𝑠))) 𝑑𝑠) 𝑑𝑚 (𝑠) = 0, ∀𝑚 ∈ 𝑀(𝐼, 𝐸∗) . (39)

This relation is equivalent to

lim
𝑛󳨀→∞

(𝑚, 𝜙 (𝑥𝑛) − 𝜙 (𝑥))
= lim
𝑛󳨀→∞

∫1
0
(𝜙 (𝑥𝑛) (𝑡) − 𝜙 (𝑥) (𝑡)) 𝑑𝑚 (𝑡) = 0,

∀𝑚 ∈ 𝑀(𝐼, 𝐸∗) .
(40)

Similarly, we have

lim
𝑛󳨀→∞

∫1
0
(∫1
0
(𝑘2 (𝑡, 𝑠) ℎ (𝑠, 𝑥𝑛 (𝑠)) − 𝑘2 (𝑡, 𝑠) ℎ (𝑠, 𝑥 (𝑠))) 𝑑𝑠) 𝑑𝑚 (𝑠) = 0, ∀𝑚 ∈ 𝑀(𝐼, 𝐸∗) . (41)

This relation is equivalent to
lim
𝑛󳨀→∞

(𝑚, 𝜑 (𝑥𝑛) − 𝜑 (𝑥))
= lim
𝑛󳨀→∞

∫1
0
(𝜑 (𝑥𝑛) (𝑡) − 𝜑 (𝑥) (𝑡)) 𝑑𝑚 (𝑡) = 0,

∀𝑚 ∈ 𝑀(𝐼, 𝐸∗) .
(42)

Therefore, the operators 𝑇, 𝑆 are weakly sequentially contin-
uous in 𝑄.
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Moreover, because 𝑓 is weakly-weakly sequentially con-
tinuous, we have that 𝑓(𝑠, 𝑥𝑛(𝑠), (𝑇𝑥𝑛)(𝑠), (𝑆𝑥𝑛)(𝑠)) converges
weakly to 𝑓(𝑠, 𝑥(𝑠), (𝑇𝑥)(𝑠), (𝑆𝑥)(𝑠)) in 𝐸. By assumption (4),
for every weakly convergent (𝑥𝑛)𝑛 ⊂ 𝐷𝑟0 , the set

{𝑥∗𝑓 (⋅, 𝑥𝑛 (⋅) , 𝑇 (𝑥𝑛) (⋅) , 𝑆 (𝑥𝑛) (⋅)) : 𝑛 ∈ 𝑁, 𝑥∗
∈ 𝐵 (𝐸∗)} (43)

is HK-equi-integrable. Since for 𝑡 ∈ 𝐼 the function 𝑠 󳨃󳨀→𝐺(𝑡, 𝑠) is of bounded variation, and by the proof of Theorem
3.1 in [13], the function 𝐺(𝑡, ⋅)𝑓(⋅, 𝑥𝑛(⋅), (𝑇𝑥𝑛)(⋅), (𝑆𝑥𝑛)(⋅)) is
HKP-integrable on 𝐼 for every 𝑛 ≥ 1, and by Theorem 4, we
have that ∫1

0
𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑥𝑛(𝑠), (𝑇𝑥𝑛)(𝑠), (𝑆𝑥𝑛)(𝑠))𝑑𝑠 converges

weakly to ∫1
0
𝐺(𝑡, 𝑠)𝑓(𝑠, 𝑥(𝑠), (𝑇𝑥)(𝑠), (𝑆𝑥)(𝑠))𝑑𝑠 in 𝐸 which

means that

lim
𝑛󳨀→∞

∫1
0
(∫1
0
(𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝑥𝑛 (𝑠) , (𝑇𝑥𝑛) (𝑠) , (𝑆𝑥𝑛) (𝑠)) − 𝑓 (𝑠, 𝑥 (𝑠) , (𝑇𝑥) (𝑠) , (𝑆𝑥) (𝑠))] 𝑑𝑠) 𝑑𝑚 (𝑠) = 0, (44)

for all𝑚 ∈ 𝑀(𝐼, 𝐸∗).This relation is equivalent to

lim
𝑛󳨀→∞

(𝑚, 𝐹 (𝑥𝑛) − 𝐹 (𝑥))
= lim
𝑛󳨀→∞

∫1
0
(𝐹 (𝑥𝑛) (𝑡) − 𝐹 (𝑥) (𝑡)) 𝑑𝑚 (𝑡) = 0,

∀𝑚 ∈ 𝑀(𝐼, 𝐸∗) .
(45)

Therefore 𝐹 is weakly-weakly sequentially continuous.
Step 3. We show that there is an integer 𝑛0 such that the
operator 𝐹 is 𝛽-power-convex condensing about 0 and 𝑛0. To
see this, notice that, for each bounded set𝐻 ⊆ 𝑄 and for each𝑡 ∈ 𝐼,
𝛽 (𝐹(1,0) (𝐻) (𝑡)) = 𝛽 (𝐹 (𝐻) (𝑡)) = 𝛽({∫𝑡

0
𝐺 (𝑡, 𝑠)

⋅ 𝑓 (𝑠, 𝑥 (𝑠) , (𝑇𝑥) (𝑠) , (𝑆𝑥) (𝑠)) 𝑑𝑠 : 𝑥 ∈ 𝐻})
≤ 𝛽 (𝐺∗𝑡𝑐𝑜 {𝑓 (𝑠, 𝑥 (𝑠) , (𝑇𝑥) (𝑠) , (𝑆𝑥) (𝑠)) : 𝑥 ∈ 𝐻,
𝑠 ∈ 𝐼}) = 𝐺∗𝑡𝛽 (𝑐𝑜 {𝑓 (𝑠, 𝑥 (𝑠) , (𝑇𝑥) (𝑠) , (𝑆𝑥) (𝑠)) : 𝑥
∈ 𝐻, 𝑠 ∈ 𝐼}) ≤ 𝐺∗𝑡𝛽 (𝑓 (𝐼 × 𝐻 (𝐼) × 𝑇 (𝐻) (𝐼)
× 𝑆 (𝐻) (𝐼))) ≤ 𝐺∗𝑡 ⋅max {1, 𝑘∗1 , 𝑘∗2 } ⋅ 𝑙𝛽 (𝐻 (𝐼)) .

(46)

Let 𝜏 = 𝐺∗ ⋅max{1, 𝑘∗1 , 𝑘∗2 } ⋅ 𝑙 > 0. Lemma 7 implies (since𝐻
is equicontinuous) that

𝛽 (𝐹(1,0) (𝐻) (𝑡)) ≤ 𝑡𝜏𝛽 (𝐻) . (47)

Since 𝐹(1,0)(𝐻) is equicontinuous, it follows from Lemma 5
that 𝐹(2,0)(𝐻) is equicontinuous. Using (47), we get
𝛽 (𝐹(2,0) (𝐻) (𝑡)) = 𝛽({∫𝑡

0
𝐺 (𝑡, 𝑠)

⋅ 𝑓 (𝑠, 𝑥 (𝑠) , (𝑇𝑥) (𝑠) , (𝑆𝑥) (𝑠)) 𝑑𝑠 : 𝑥
∈ 𝑐𝑜 (𝐹(1,0) (𝐻) ∪ {0})}) ≤ 𝛽({∫𝑡

0
𝐺 (𝑡, 𝑠)

⋅ 𝑓 (𝑠, 𝑥 (𝑠) , (𝑇𝑥) (𝑠) , (𝑆𝑥) (𝑠)) 𝑑𝑠 : 𝑥 ∈ 𝑉}) ,

(48)

where 𝑉 = 𝑐𝑜(𝐹(1,0)(𝐻) ∪ {0}); it is clear that 𝑉 is equi-
continuous set. By Lemma 8, we get

𝛽 (𝑉 (𝑠)) = 𝛽 (𝐹(1,0) (𝐻) (𝑠)) ≤ 𝑠𝜏𝛽 (𝐻) , (49)

and therefore,

∫𝑡
0
𝛽 (𝑉 (𝑠)) 𝑑𝑠 ≤ 𝑠𝜏𝑡22 𝛽 (𝐻) . (50)

Thus,

𝛽 (𝐹(2,0) (𝐻) (𝑡)) ≤ (𝜏𝑡)22 𝛽 (𝐻) . (51)

By induction, we get

𝛽 (𝐹(𝑛,0) (𝐻) (𝑡)) ≤ (𝜏𝑡)𝑛𝑛! 𝛽 (𝐻) . (52)

And by Lemma 7, we have

𝛽 (𝐹(𝑛,0) (𝐻)) ≤ (𝜏𝑇)𝑛𝑛! 𝛽 (𝐻) . (53)

Since lim𝑛󳨀→∞((𝜏𝑡)𝑛/𝑛!) = 0, then there exist an 𝑛0 with(𝜏𝑡)𝑛0/𝑛0! < 1, and we have

𝛽 (𝐹(𝑛0 ,0) (𝐻)) ≤ 𝛽 (𝐻) . (54)

Consequently, 𝐹 is 𝛽-power-convex condensing about 0 and𝑛0, by Lemma 8, then problem (5) has a solution 𝑥 ∈ 𝐶(𝐼,𝐸𝑤).
4. Conclusions

In this paper, we use the techniques of measure of weak
noncompactness and Henstock-Kurzweil-Pettis integrals to
discuss the existence theorem of weak solutions for a class
of the multipoint boundary value problem of fractional inte-
grodifferential equations equipped with the weak topology.
Our results generalized some classical results.
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