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We propose a fractional order model in this paper to describe the dynamics of human immunodeficiency virus (HIV) infection.
In the model, the infection transmission process is modeled by a specific functional response. First, we show that the model is
mathematically and biologically well posed. Second, the local and global stabilities of the equilibria are investigated. Finally, some
numerical simulations are presented in order to illustrate our theoretical results.

1. Introduction

Fractional order differential equations (FDEs) are a general-
ization of ordinary differential equations (ODEs) and they
have many applications in various fields such as mechanics,
image processing, viscoelasticity, bioengineering, finance,
psychology, and control theory [1–7]. In addition, it has been
deduced that the membranes of cells of biological organisms
have fractional order electrical conductance [8].

Modeling by FDEs has more advantages to describe
the dynamics of phenomena with memory which exists in
most biological systems, because fractional order derivatives
depend not only on local conditions but also on the past.
More precisely, calculating the time-fractional derivative of
a function 𝑓(𝑡) at some time 𝑡 = 𝑡1 requires all the previous
history, that is, all 𝑓(𝑡) from 𝑡 = 0 to 𝑡 = 𝑡1. In addition,
the region of stability of FDEs is larger than that of ODEs.
Moreover, some previous study compared between the results
of the fractional ordermodel, the results of the integermodel,
and the measured real data obtained from 10 patients during
primary HIV infection [9]. This study proved that the results
of the fractional order model give predictions to the plasma
virus load of the patients better than those of the integer
model.

From the above biological and mathematical reasons, we
propose a fractional order model to describe the dynamics of
HIV infection that is given by𝐷𝛼𝑇 (𝑡) = 𝜆 − 𝑑𝑇 − 𝛽𝑇𝑉1 + 𝛼1𝑇 + 𝛼2𝑉 + 𝛼3𝑇𝑉 + 𝜌𝐼,

𝐷𝛼𝐼 (𝑡) = 𝛽𝑇𝑉1 + 𝛼1𝑇 + 𝛼2𝑉 + 𝛼3𝑇𝑉 − (𝑎 + 𝜌) 𝐼,𝐷𝛼𝑉 (𝑡) = 𝑘𝐼 − 𝜇𝑉,
(1)

where 𝑇(𝑡), 𝐼(𝑡), and 𝑉(𝑡) represent the concentrations
of uninfected CD4+ T-cells, infected cells, and free virus
particles at time 𝑡, respectively. Uninfected cells are assumed
to be produced at a constant rate 𝜆, die at the rate 𝑑𝑇, and
become infected by a virus at the rate 𝛽𝑇𝑉/(1 + 𝛼1𝑇 +𝛼2𝑉 + 𝛼3𝑇𝑉), where 𝛼1, 𝛼2, 𝛼3 ≥ 0 are the saturation factors
measuring the psychological or inhibitory effect. Infected
cells die at the rate 𝑎𝐼 and return to the uninfected state by loss
of all covalently closed circular DNA (cccDNA) from their
nucleus at the rate 𝜌𝐼. Free virus particles are produced from
infected cells at the rate 𝑘𝐼 and cleared at the rate 𝜇𝑉.

The fractional order derivative used in system (1) is in the
sense of Caputo. We use this Caputo fractional derivative for
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two reasons: the first reason is that the fractional derivative
of a constant is zero and the second reason is that the initial
value problems depend on the integer order derivative only.
In addition, we choose 0 < 𝛼 ≤ 1 in order to have the same
initial conditions as ODE systems.

On the other hand, system (1) generalizes many special
cases existing in the literature. For example, when 𝛼1 = 𝛼2 =𝛼3 = 0, we get themodel of Arafa et al. [10]. Further, we obtain
the model of Liu et al. [11] when 𝛼3 = 0. It is very important
to note that when 𝛼 = 1, system (1) becomes a model with an
ordinary derivative which is the generalization of the ODE
models presented in [12–15].

The rest of the paper is organized as follows. In the
next section, we give some preliminary results. In Section 3,
equilibria and their local stability are investigated. In Sec-
tion 4, the global stability of the two equilibria is established.
Numerical simulations of our theoretical results are presented
in Section 5. Finally, the paper ends with conclusion in
Section 6.

2. Preliminary Results

We first recall the definitions of the fractional order integral,
Caputo fractional derivative, andMittag-Leffler function that
are given in [16].

Definition 1. The fractional integral of order 𝛼 > 0 of a
function 𝑓 : R+ → R is defined as follows:𝐼𝛼𝑓 (𝑡) = 1Γ (𝛼) ∫𝑡

0
(𝑡 − 𝑥)𝛼−1 𝑓 (𝑥) 𝑑𝑥, (2)

where Γ(⋅) is the Gamma function.

Definition 2. The Caputo fractional derivative of order 𝛼 > 0
of a continuous function 𝑓 : R+ → R is given by𝐷𝛼𝑓 (𝑡) = 𝐼𝑛−𝛼𝐷𝑛𝑓 (𝑡) , (3)

where𝐷 = 𝑑/𝑑𝑡 and 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ N.
In particular, when 0 < 𝛼 ≤ 1, we have𝐷𝛼𝑓 (𝑡) = 1Γ (1 − 𝛼) ∫𝑡

0

𝑓󸀠 (𝑥)(𝑡 − 𝑥)𝛼 𝑑𝑥. (4)

Definition 3. Let 𝛼 > 0. The function 𝐸𝛼, defined by𝐸𝛼 (𝑧) = ∞∑
𝑗=0

𝑧𝑗Γ (𝛼𝑗 + 1) , (5)

is called the Mittag-Leffler function of parameter 𝛼.
Let 𝑓 : R𝑛 → R𝑛 with 𝑛 ≥ 1. Consider the fractional

order system 𝐷𝛼𝑥 (𝑡) = 𝑓 (𝑥) ,𝑥 (𝑡0) = 𝑥0, (6)

with 0 < 𝛼 ≤ 1, 𝑡0 ∈ R, and 𝑥0 ∈ R𝑛. For the global existence
of solution of system (6), we need the following lemma.

Lemma 4. Assume that 𝑓 satisfies the following conditions:

(i) 𝑓(𝑥) and (𝜕𝑓/𝜕𝑥)(𝑥) are continuous for all 𝑥 ∈ R𝑛.
(ii) ‖𝑓(𝑥)‖ ≤ 𝜔 + 𝜆‖𝑥‖ for all 𝑥 ∈ R𝑛, where 𝜔 and 𝜆 are

two positive constants.

Then, system (6) has a unique solution on [𝑡0, +∞).
The proof of this lemma follows immediately from [17].

For biological reasons, we assume that the initial conditions
of system (1) satisfy 𝑇 (0) = 𝜙1 (0) ≥ 0,𝐼 (0) = 𝜙2 (0) ≥ 0,𝑉 (0) = 𝜙3 (0) ≥ 0. (7)

In order to establish the nonnegativity of solutionswith initial
conditions (7), we need also the following lemmas.

Lemma5 (see [18]). Suppose that𝑔(𝑡) ∈ 𝐶[𝑎, 𝑏] and𝐷𝛼𝑔(𝑡) ∈𝐶[𝑎, 𝑏] for 0 < 𝛼 ≤ 1; then, one has𝑔 (𝑡) = 𝑔 (𝑎) + 1Γ (𝛼)𝐷𝛼𝑔 (𝜉) (𝑡 − 𝑎)𝛼 ,𝑎 < 𝜉 < 𝑡, ∀𝑡 ∈ (𝑎, 𝑏] . (8)

Lemma 6 (see [18]). Suppose that 𝑔(𝑡) ∈ 𝐶[𝑎, 𝑏] and𝐷𝛼𝑔(𝑡) ∈ 𝐶[𝑎, 𝑏] for 0 < 𝛼 ≤ 1. If𝐷𝛼𝑔(𝑡) ≥ 0 ∀𝑡 ∈ [𝑎, 𝑏], then𝑔(𝑡) is nondecreasing for each 𝑡 ∈ [𝑎, 𝑏]. If 𝐷𝛼𝑔(𝑡) ≤ 0 ∀𝑡 ∈[𝑎, 𝑏], then 𝑔(𝑡) is nonincreasing for each 𝑡 ∈ [𝑎, 𝑏].
Theorem 7. For any initial conditions satisfying (7), system
(1) has a unique solution on [0, +∞). Moreover, this solution
remains nonnegative and bounded for all 𝑡 ≥ 0. In addition,
one has

(i) 𝑁(𝑡) ≤ 𝑁(0) + 𝜆/𝛿,
(ii) 𝑉(𝑡) ≤ 𝑉(0) + (𝑘/𝜇)‖𝐼‖∞,

where𝑁(𝑡) = 𝑇(𝑡) + 𝐼(𝑡) and 𝛿 = min{𝑎, 𝑑}.
Proof. It is easy to see that the vector function of system (1)
satisfies the first condition of Lemma 4. It remains to prove
the second condition. Let

𝑋 (𝑡) = (𝑇 (𝑡)𝐼 (𝑡)𝑉 (𝑡)) ,
𝜁 = (𝜆00) . (9)

To this end, we discuss four cases:

(i) If 𝛼1 ̸= 0, then system (1) can be written as follows:𝐷𝛼𝑋 (𝑡) = 𝜁 + 𝐴1𝑋 + 𝛼1𝑇1 + 𝛼1𝑇 + 𝛼2𝑉 + 𝛼3𝑇𝑉𝐴2𝑋, (10)
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where

𝐴1 = (−𝑑 𝜌 00 − (𝑎 + 𝜌) 00 𝑘 −𝜇) ,
𝐴2 = (0 0 − 𝛽𝛼10 0 𝛽𝛼10 0 0 ). (11)

Moreover, we have󵄩󵄩󵄩󵄩𝐷𝛼𝑋 (𝑡)󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝜁󵄩󵄩󵄩󵄩 + (󵄩󵄩󵄩󵄩𝐴1󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐴2󵄩󵄩󵄩󵄩) ‖𝑋‖ . (12)

(ii) If 𝛼2 ̸= 0, we have𝐷𝛼𝑋 (𝑡) = 𝜁 + 𝐴1𝑋 + 𝛼2𝑇1 + 𝛼1𝑇 + 𝛼2𝑉 + 𝛼3𝑇𝑉𝐴3𝑋, (13)

where

𝐴3 = (0 0 − 𝛽𝛼20 0 𝛽𝛼20 0 0 ). (14)

Then,󵄩󵄩󵄩󵄩𝐷𝛼𝑋 (𝑡)󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝜁󵄩󵄩󵄩󵄩 + (󵄩󵄩󵄩󵄩𝐴1󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐴3󵄩󵄩󵄩󵄩) ‖𝑋‖ . (15)

(iii) If 𝛼3 ̸= 0, we have𝐷𝛼𝑋 (𝑡) = 𝜁 + 𝐴1𝑋 + 𝛼3𝑇𝑉1 + 𝛼1𝑇 + 𝛼2𝑉 + 𝛼3𝑇𝑉𝐴4, (16)

where

𝐴4 = (− 𝛽𝛼3𝛽𝛼30 ). (17)

Then,󵄩󵄩󵄩󵄩𝐷𝛼𝑋 (𝑡)󵄩󵄩󵄩󵄩 ≤ (󵄩󵄩󵄩󵄩𝜁󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐴4󵄩󵄩󵄩󵄩) + 󵄩󵄩󵄩󵄩𝐴1󵄩󵄩󵄩󵄩 ‖𝑋‖ . (18)

(iv) If 𝛼1 = 𝛼2 = 𝛼3 = 0, we have𝐷𝛼𝑋 (𝑡) = 𝜁 + 𝐴1𝑋 + 𝑉𝐴5𝑋, (19)

where

𝐴5 = (−𝛽 0 0𝛽 0 00 0 0) . (20)

Then,󵄩󵄩󵄩󵄩𝐷𝛼𝑋 (𝑡)󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝜁󵄩󵄩󵄩󵄩 + (‖𝑉‖ 󵄩󵄩󵄩󵄩𝐴5󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝐴1󵄩󵄩󵄩󵄩) ‖𝑋‖ . (21)

Thus, the second condition of Lemma 4 is satisfied. Then,
system (1) has a unique solution on [0, +∞). Next, we show
that this solution is nonnegative. From (1), we have𝐷𝛼𝑇 (𝑡)󵄨󵄨󵄨󵄨𝑇=0 = 𝜆 + 𝜌𝐼 ≥ 0,𝐷𝛼𝐼 (𝑡)󵄨󵄨󵄨󵄨𝐼=0 = 𝛽𝑇𝑉1 + 𝛼1𝑇 + 𝛼2𝑉 + 𝛼3𝑇𝑉 ≥ 0,𝐷𝛼𝑉 (𝑡)󵄨󵄨󵄨󵄨𝑉=0 = 𝑘𝐼 ≥ 0. (22)

According to Lemmas 5 and 6, we deduce that the solution of
(1) is nonnegative.

Finally, we prove that the solution is bounded. By adding
the first two equations of system (1), we get𝐷𝛼𝑁(𝑡) ≤ 𝜆 − 𝛿𝑁 (𝑡) . (23)

Hence,𝑁(𝑡) ≤ 𝑁 (0) 𝐸𝛼 (−𝛿𝑡𝛼) + 𝜆𝛿 [1 − 𝐸𝛼 (−𝛿𝑡𝛼)] . (24)

Since 0 ≤ 𝐸𝛼(−𝛿𝑡𝛼) ≤ 1, we have𝑁(𝑡) ≤ 𝑁 (0) + 𝜆𝛿 . (25)

The third equation of system (1) implies that𝑉 (𝑡) = 𝑉 (0) 𝐸𝛼 (−𝜇𝑡𝛼)+ 𝑘∫𝑡
0
𝐼 (𝑠) 𝛼 (𝑡 − 𝑠)𝛼−1 𝑑𝐸𝛼𝑑𝑠 (−𝜇 (𝑡 − 𝑠)𝛼) 𝑑𝑠. (26)

Then,𝑉 (𝑡) ≤ 𝑉 (0) 𝐸𝛼 (−𝜇𝑡𝛼) + 𝑘 ‖𝐼‖∞𝜇 (1 − 𝐸𝛼 (−𝜇𝑡𝛼)) . (27)

Consequently, 𝑉 (𝑡) ≤ 𝑉 (0) + 𝑘 ‖𝐼‖∞𝜇 . (28)

This completes the proof.

3. Equilibria and Their Local Stability

It is easy to see that system (1) always has a disease-free
equilibrium 𝐸0(𝜆/𝑑, 0, 0). Therefore, the basic reproduction
number of our system (1) is given by𝑅0 = 𝑘𝛽𝜆𝜇 (𝑎 + 𝜌) (𝑑 + 𝜆𝛼1) . (29)

Biologically, this basic reproduction number represents the
average number of secondary infections produced by one
infected cell during the period of infection when all cells are
uninfected. Further, it is not hard to get the following result.
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Theorem 8. (i) If 𝑅0 ≤ 1, system (1) has a unique disease-
free equilibrium of the form 𝐸0(𝑇0, 0, 0), where 𝑇0 = 𝜆/𝑑.
(ii) If 𝑅0 > 1, the disease-free equilibrium is still present and
system (1) has a unique chronic infection equilibrium of the
form 𝐸1(𝑇1, (𝜆 − 𝑑𝑇1)/𝑎, 𝑘(𝜆 − 𝑑𝑇1)/𝑎𝜇), where 𝑇1 = 2(𝑎 +𝜌)(𝑎𝜇+𝛼2𝜆𝑘)/(𝑎𝑘𝛽+ (𝑎+𝜌)(𝛼2𝑑𝑘−𝛼1𝑎𝜇−𝛼3𝑘𝜆)+√𝛿)with𝛿 = (𝑎𝑘𝛽 + (𝑎 + 𝜌) (𝛼2𝑑𝑘 − 𝛼1𝑎𝜇 − 𝛼3𝑘𝜆))2+ 4𝛼3𝑘𝑑 (𝑎 + 𝜌)2 (𝑎𝜇 + 𝛼2𝜆𝑘) . (30)

Next, we investigate the local stability of equilibria. Let𝐸𝑒(𝑇, 𝐼, 𝑉) be an arbitrary equilibrium of system (1). Then,
the characteristic equation at 𝐸𝑒 is given by󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝑑 − 𝑉 𝜕𝑓𝜕𝑇 − 𝜉 𝜌 −𝑉 𝜕𝑓𝜕𝑉 − 𝑓 (𝑇, 𝑉)𝑉 𝜕𝑓𝜕𝑇 − (𝑎 + 𝜌) − 𝜉 𝑉 𝜕𝑓𝜕𝑉 + 𝑓 (𝑇, 𝑉)0 𝑘 −𝜇 − 𝜉
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨= 0,

(31)

where 𝑓 (𝑇, 𝑉) = 𝛽𝑇1 + 𝛼1𝑇 + 𝛼2𝑉 + 𝛼3𝑇𝑉. (32)

We recall that the equilibrium 𝐸𝑒 is locally asymptotically
stable if all roots 𝜉𝑖 of (31) satisfy the following condition [19]:󵄨󵄨󵄨󵄨arg (𝜉𝑖)󵄨󵄨󵄨󵄨 > 𝛼𝜋2 . (33)

Theorem 9. (i) If 𝑅0 < 1, then 𝐸0 is locally asymptotically
stable. (ii) If 𝑅0 > 1, then 𝐸0 is unstable.
Proof. Evaluating (31) at 𝐸0, we have(𝑑 + 𝜉) [𝜉2 + (𝑎 + 𝜌 + 𝜇) 𝜉 + 𝜇 (𝑎 + 𝜌) (1 − 𝑅0)] = 0. (34)

Obviously, the roots of (34) are𝜉1 = −𝑑,𝜉2
= − (𝑎 + 𝜌 + 𝜇) − √(𝑎 + 𝜌 + 𝜇)2 − 4𝜇 (𝑎 + 𝜌) (1 − 𝑅0)2 ,𝜉3
= − (𝑎 + 𝜌 + 𝜇) + √(𝑎 + 𝜌 + 𝜇)2 − 4𝑢 (𝑎 + 𝜌) (1 − 𝑅0)2 .

(35)

It is clear that 𝜉1 and 𝜉2 are negative. However, 𝜉3 is negative
if 𝑅0 < 1 and it is positive if 𝑅0 > 1. Therefore, 𝐸0 is locally
asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1.

Now, we focus on the local stability of the chronic infec-
tion equilibrium𝐸1. It follows from (31) that the characteristic
equation at 𝐸1 is given by𝑃 (𝜉) fl 𝜉3 + 𝑎1𝜉2 + 𝑎2𝜉 + 𝑎3 = 0, (36)

where𝑎1 = 𝜇 + 𝑑 + 𝑎 + 𝜌 + 𝛽𝑉1 (1 + 𝛼2𝑉1)(1 + 𝛼1𝑇1 + 𝛼2𝑉1 + 𝛼3𝑇1𝑉1)2 ,𝑎2 = 𝑑 (𝜇 + 𝑎 + 𝜌)+ 𝛽𝑉1 [(𝑎 + 𝜇) (1 + 𝛼2𝑉1) + 𝑘𝑇1 (𝛼2 + 𝛼3𝑇1)](1 + 𝛼1𝑇1 + 𝛼2𝑉1 + 𝛼3𝑇1𝑉1)2 ,
𝑎3 = 𝛽𝑉1 [𝑎𝜇 (1 + 𝛼2𝑉1) + 𝑘𝑑𝑇1 (𝛼2 + 𝛼3𝑇1)](1 + 𝛼1𝑇1 + 𝛼2𝑉1 + 𝛼3𝑇1𝑉1)2 .

(37)

It is obvious that 𝑎1 > 0, 𝑎2 > 0, and 𝑎3 > 0. Further, we have𝑎1𝑎2 − 𝑎3 = 𝑎(𝑑 (𝜇 + 𝑎 + 𝜌)
+ 𝛽𝑉1 [𝑎 (1 + 𝛼2𝑉1) + 𝑘𝑇1 (𝛼2 + 𝛼3𝑇1)](1 + 𝛼1𝑇1 + 𝛼2𝑉1 + 𝛼3𝑇1𝑉1)2 )
+ 𝑑(𝑑 (𝜇 + 𝑎 + 𝜌)
+ (𝑎 + 𝜇) 𝛽𝑉1 (1 + 𝛼2𝑉1)(1 + 𝛼1𝑇1 + 𝛼2𝑉1 + 𝛼3𝑇1𝑉1)2) + (𝜇 + 𝜌
+ 𝛽𝑉1 (1 + 𝛼2𝑉1)(1 + 𝛼1𝑇1 + 𝛼2𝑉1 + 𝛼3𝑇1𝑉1)2)ℎ2 > 0.

(38)

So, Routh–Hurwitz conditions are satisfied. Let𝐷(𝑃) denote
the discriminant of the polynomial 𝑃 given by (36); then,𝐷 (𝑃) = 18𝑎1𝑎2𝑎3 + (𝑎1𝑎2)2 − 4𝑎3𝑎31 − 4𝑎32 − 27𝑎23 . (39)

Using the results in [19], we easily obtain the following result.

Theorem 10. Assume that 𝑅0 > 1.
(i) If 𝐷(𝑃) > 0, then 𝐸1 is locally asymptotically stable for

all 𝛼 ∈ (0, 1].
(ii) If 𝐷(𝑃) < 0 and 𝛼 < 2/3, then 𝐸1 is locally

asymptotically stable.

4. Global Stability

In this section, we study the global stability of the disease-free
equilibrium 𝐸0 and the chronic infection equilibrium 𝐸1.
Theorem 11. If 𝑅0 ≤ 1, then the disease-free equilibrium 𝐸0 is
globally asymptotically stable.



International Journal of Differential Equations 5

Proof. Define Lyapunov functional 𝐿0(𝑡) as follows:𝐿0 (𝑡) = 𝑇01 + 𝛼1𝑇0Φ( 𝑇𝑇0)+ 𝜌2 (1 + 𝛼1𝑇0) (𝑎 + 𝑑) 𝑇0 (𝑇 − 𝑇0 + 𝐼)2
+ 𝑎 + 𝜌𝑘 𝑉,

(40)

whereΦ(𝑥) = 𝑥 − 1 − ln(𝑥), 𝑥 > 0. Calculating the derivative
of 𝐿0(𝑡) along solutions of system (1) and using the results in
[20], we get𝐷𝛼𝐿0 (𝑡) ≤ 11 + 𝛼1𝑇0 (1 − 𝑇0𝑇 )𝐷𝛼𝑇 + 𝐷𝛼𝐼⋅ 𝜌(1 + 𝛼1𝑇0) (𝑎 + 𝑑) 𝑇0 (𝑇 − 𝑇0 + 𝐼)

⋅ (𝐷𝛼𝑇 + 𝐷𝛼𝐼) + 𝑎 + 𝜌𝑘 𝐷𝛼𝑉.
(41)

Using 𝜆 = 𝑑𝑇0, we obtain𝐷𝛼𝐿0 (𝑡)≤ − 𝑑 (𝑇 − 𝑇0)2(1 + 𝛼1𝑇0) 𝑇 − 11 + 𝛼1𝑇0 (1 − 𝑇0𝑇 )𝑓 (𝑇, 𝑉)𝑉
+ 𝜌1 + 𝛼1𝑇0 (1 − 𝑇0𝑇 ) 𝐼 + 𝑓 (𝑇, 𝑉)𝑉
− 𝑑𝜌 (𝑇 − 𝑇0)2(𝑎 + 𝑑) 𝑇0 (1 + 𝛼1𝑇0)− 𝑎𝜌𝐼2(𝑎 + 𝑑) 𝑇0 (1 + 𝛼1𝑇0)+ 𝜌𝑇0 (1 + 𝛼1𝑇0)𝐼 (𝑇0 − 𝑇) − (𝑎 + 𝜌) 𝜇𝑘 𝑉,𝐷𝛼𝐿0 (𝑡)≤ −( 1𝑇 + 𝜌(𝑎 + 𝑑) 𝑇0) 𝑑 (𝑇 − 𝑇0)21 + 𝛼1𝑇0− 𝜌𝐼 (𝑇 − 𝑇0)2𝑇𝑇0 (1 + 𝛼1𝑇0) − 𝑎𝜌𝐼2(𝑎 + 𝑑) 𝑇0 (1 + 𝛼1𝑇0)+ (𝑎 + 𝜌) 𝜇𝑘 (𝑅0 − 1)𝑉
− 𝛽𝑇0 (𝛼2 + 𝛼3𝑇)(1 + 𝛼1𝑇0) (1 + 𝛼1𝑇 + 𝛼2𝑉 + 𝛼3𝑇𝑉)𝑉2.

(42)

Hence, if 𝑅0 ≤ 1, then 𝐷𝛼𝐿0(𝑡) ≤ 0. Furthermore, it is clear
that the largest invariant set of {(𝑇, 𝐼, 𝑉) ∈ 𝐷 : 𝐷𝛼𝐿0(𝑡) = 0} is
the singleton {𝐸0}.Therefore, by LaSalle’s invariance principle
[21], 𝐸0 is globally asymptotically stable.

Theorem 12. The chronic infection equilibrium 𝐸1 is globally
asymptotically stable if 𝑅0 > 1 and𝑅0 ≤ 1 + 𝑑 (𝑎 + 𝜌) (𝜆𝛼2𝑘 + 𝑎𝜇) + 𝜌𝜆2𝛼3𝑘𝜌𝜇 (𝑎 + 𝜌) (𝑑 + 𝜆𝛼1) . (43)

Proof. Define Lyapunov functional 𝐿1(𝑡) as follows:𝐿1 (𝑡) = 1 + 𝛼2𝑉11 + 𝛼1𝑇1 + 𝛼2𝑉1 + 𝛼3𝑇1𝑉1𝑇1Φ( 𝑇𝑇1)+ 𝐼1Φ( 𝐼𝐼1) + 𝑎 + 𝜌𝑘 𝑉1Φ( 𝑉𝑉1)+ 𝜌 (1 + 𝛼2𝑉1)2𝑇1 (𝑎 + 𝑑) (1 + 𝛼1𝑇1 + 𝛼2𝑉1 + 𝛼3𝑇1𝑉1) (𝑇− 𝑇1 + 𝐼 − 𝐼1)2 .
(44)

Then, we have𝐷𝛼𝐿1 (𝑡) ≤ 1 + 𝛼2𝑉11 + 𝛼1𝑇1 + 𝛼2𝑉1 + 𝛼3𝑇1𝑉1 (1 − 𝑇1𝑇 )
⋅ 𝐷𝛼𝑇 + (1 − 𝐼1𝐼 )𝐷𝛼𝐼
⋅ 𝜌 (1 + 𝛼2𝑉1)𝑇1 (𝑎 + 𝑑) (1 + 𝛼1𝑇1 + 𝛼2𝑉1 + 𝛼3𝑇1𝑉1) (𝑇 − 𝑇1+ 𝐼 − 𝐼1) (𝐷𝛼𝑇 + 𝐷𝛼𝐼) + 𝑎 + 𝜌𝑘 (1 − 𝑉1𝑉 )𝐷𝛼𝑉.

(45)

Using 𝜆 = 𝑑𝑇1+𝑎𝐼1,𝑓(𝑇1, 𝑉1)𝑉1 = (𝑎+𝜌)𝐼1, 𝜇/𝑘 = 𝐼1/𝑉1,
and 1 − 𝑓(𝑇1, 𝑉1)/𝑓(𝑇, 𝑉1) = ((1 + 𝛼2𝑉1)/(1 + 𝛼1𝑇1 + 𝛼2𝑉1 +𝛼3𝑇1𝑉1))(1 − 𝑇1/𝑇), we get𝐷𝛼𝐿1 (𝑡) ≤ 𝑑(1 − 𝑓 (𝑇1, 𝑉1)𝑓 (𝑇, 𝑉1) ) (𝑇1 − 𝑇) + (𝑎 + 𝜌)

⋅ 𝐼1 (4 − 𝑓 (𝑇1, 𝑉1)𝑓 (𝑇, 𝑉1) − 𝐼1𝐼 𝑉𝑉1 𝑓 (𝑇, 𝑉)𝑓 (𝑇1, 𝑉1) − 𝐼𝐼1 𝑉1𝑉− 𝑓 (𝑇, 𝑉1)𝑓 (𝑇, 𝑉) ) + (𝑎 + 𝜌) 𝐼1 (−1 − 𝑉𝑉1 + 𝑓 (𝑇, 𝑉1)𝑓 (𝑇, 𝑉)+ 𝑉𝑉1 𝑓 (𝑇, 𝑉)𝑓 (𝑇, 𝑉1))− 𝑑𝜌 (1 + 𝛼2𝑉1)𝑇1 (𝑎 + 𝑑) (1 + 𝛼1𝑇1 + 𝛼2𝑉1 + 𝛼3𝑇1𝑉1) (𝑇− 𝑇1)2− 𝑎𝜌 (1 + 𝛼2𝑉1)𝑇1 (𝑎 + 𝑑) (1 + 𝛼1𝑇1 + 𝛼2𝑉1 + 𝛼3𝑇1𝑉1) (𝐼 − 𝐼1)2
− 𝜌 (1 + 𝛼2𝑉1)𝑇𝑇1 (1 + 𝛼1𝑇1 + 𝛼2𝑉1 + 𝛼3𝑇1𝑉1) (𝑇 − 𝑇1)2 (𝐼− 𝐼1) .

(46)
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Figure 1: Stability of the disease-free equilibrium 𝐸0.
Thus,𝐷𝛼𝐿1 (𝑡)≤ − (1 + 𝛼2𝑉1) (𝑇 − 𝑇1)2𝑇𝑇1 (1 + 𝛼1𝑇1 + 𝛼2𝑉1 + 𝛼3𝑇1𝑉1) ((𝑑𝑇1 − 𝜌𝐼1)+ 𝑑𝜌𝑇𝑑 + 𝑎 + 𝜌𝐼) − (𝑎 + 𝜌) 𝐼1

⋅ (1 + 𝛼1𝑇) (𝛼2 + 𝛼3𝑇) (𝑉 − 𝑉1)2𝑉1 (1 + 𝛼1𝑇 + 𝛼2𝑉 + 𝛼3𝑇𝑉) (1 + 𝛼1𝑇 + 𝛼2𝑉1 + 𝛼3𝑇𝑉1)− (𝑎 + 𝜌) 𝐼1 (Φ(𝑓 (𝑇1, 𝑉1)𝑓 (𝑇, 𝑉1) ) + Φ(𝐼1𝐼 𝑉𝑉1 𝑓 (𝑇, 𝑉)𝑓 (𝑇1, 𝑉1))+ Φ( 𝐼𝐼1 𝑉1𝑉 ) + Φ(𝑓 (𝑇,𝑉1)𝑓 (𝑇, 𝑉) ))
− 𝑎𝜌 (1 + 𝛼2𝑉1)𝑇1 (𝑎 + 𝑑) (1 + 𝛼1𝑇1 + 𝛼2𝑉1 + 𝛼3𝑇1𝑉1) (𝐼 − 𝐼1)2 .

(47)

It is clear that Φ(𝑥) ≥ 0. Consequently, 𝐷𝛼𝐿1(𝑡) ≤ 0 if𝑑𝑇1 ≥ 𝜌𝐼1. In addition, it is easy to see that this condition
is equivalent to (43). Further, the largest invariant set of{(𝑇, 𝐼, 𝑉) ∈ 𝐷 : 𝐷𝛼𝐿1(𝑡) = 0} is the singleton {𝐸1}. By

LaSalle’s invariance principle, 𝐸1 is globally asymptotically
stable.

It is important to see that

lim
𝜌→0

𝑑 (𝑎 + 𝜌) (𝜆𝛼2𝑘 + 𝑎𝜇) + 𝜌𝜆2𝛼3𝑘𝜌𝜇 (𝑎 + 𝜌) (𝑑 + 𝜆𝛼1) = +∞. (48)

According toTheorem 12, we obtain the following result.

Corollary 13. The chronic infection equilibrium 𝐸1 is globally
asymptotically stable when 𝑅0 > 1 and 𝜌 is sufficiently small.

5. Numerical Simulations

In this section, we give some numerical simulations in order
to illustrate our theoretical results. We discretize system (1)
by using fractional Euler’s method presented in [22]. Firstly,
we take the parameter values as shown in Table 1.

By calculation, we have 𝑅0 = 0.9283 < 1. Then,
system (1) has a disease-free equilibrium 𝐸0(719.4245, 0, 0).
By Theorem 11, the solution of (1) converges to 𝐸0 (see
Figure 1). Consequently, the virus is cleared and the infection
dies out.



International Journal of Differential Equations 7

450

400

250

350

300

200

150

100

U
ni

nf
ec

te
d 

ce
lls

0 20 40 60 80 100 120 140 160 180 200

Time (days)

In
fe

ct
ed

 ce
lls

0 20 40 60 80 100 120 140 160 180 200

Time (days)

40

30

20

10

0

 = 0.9

 = 0.8

 = 1

 = 0.9

 = 0.8

 = 1

Fr
ee

 v
iru

s

8000

4000

6000

2000

0
0 20 40 60 80 100 120 140 160 180 200

Time (days)

 = 0.9

 = 0.8

 = 1

Figure 2: Stability of the chronic infection equilibrium 𝐸1.
Table 1: Parameter values of system (1).

Parameters Values𝜆 10𝑑 0.0139𝛽 0.00024𝜌 0.01𝑎 0.5𝑘 600𝑢 3𝛼1 0.1𝛼2 0.01𝛼3 0.00001

Now, we choose 𝛽 = 0.001 and we keep the other
parameter values. In this case, 𝑅0 = 3.8678 and

1 + 𝑑 (𝑎 + 𝜌) (𝜆𝛼2𝑘 + 𝑎𝜇) + 𝜌𝜆2𝛼3𝑘𝜌𝜇 (𝑎 + 𝜌) (𝑑 + 𝜆𝛼1) = 415.885. (49)

Hence, condition (43) is satisfied. Therefore, the chronic
infection equilibrium 𝐸1(130.1613, 16.3815, 3276.3) is glob-
ally asymptotically stable. Figure 2 demonstrates this result.

6. Conclusion

In this paper, we have proposed a fractional order model
of HIV infection with specific functional response and cure
rate. This functional response covers the most functional
responses used by several authors such as the saturated inci-
dence rate, the Beddington-DeAngelis functional response,
and the Crowley-Martin functional response.We have shown
that the proposed model has a bounded and nonnegative
solution as desired in any population dynamics. By using
stability analysis of fractional order system, we have proved
that if the basic reproduction number 𝑅0 ≤ 1, the disease-
free equilibrium𝐸0 is globally asymptotically stable for all𝛼 ∈(0, 1], which means that the virus is cleared and the infection
dies out. However, when 𝑅0 > 1, the disease-free equilibrium𝐸0 becomes unstable and there exists another biological
equilibrium, namely, chronic infection equilibrium 𝐸1, that
is globally asymptotically stable provided that condition (43)
is satisfied. In this case, the HIV virus persists in the host
and the infection becomes chronic. Furthermore, we have
remarked that if the cure rate 𝜌 is equal to zero or is
sufficiently small, condition (43) is satisfied and the global
stability of 𝐸1 is only characterized by 𝑅0 > 1.

According to the above theoretical analysis, we deduce
that the global dynamics of the model are fully determined
by the basic reproduction number 𝑅0. In addition, we see
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that the fractional order parameter 𝛼 has no effect on the
global dynamics of our model, but it can affect the time for
arriving at both steady states (see Figures 1 and 2). Moreover,
the fractional order model and main results presented by Liu
et al. in [11] are generalized and improved.
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