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In this paper, we study the existence and uniqueness of solutions for the following boundary value problem of nonlinear fractional
differential equation: (𝐶𝐷𝑞0+𝑢)(𝑡) = 𝑓(𝑡, 𝑢(𝑡)), 𝑡 ∈ (0, 1), 𝑢(0) = 𝑢󸀠󸀠(0) = 0, (𝐶𝐷𝜎10+𝑢)(1) = 𝜆(𝐼𝜎20+𝑢)(1), where 2 < 𝑞 < 3, 0 < 𝜎1 ≤ 1,𝜎2 > 0, and 𝜆 ̸= Γ(2 + 𝜎2)/Γ(2 − 𝜎1). The main tools used are nonlinear alternative of Leray-Schauder type and Banach contraction
principle.

1. Introduction

Fractional calculus has wide applications in many fields of
science and engineering, for example, fluid flow, biosciences,
rheology, electrical networks, chemical physics, control the-
ory of dynamical systems, and optics and signal processing
[1].

Recently, nonlinear fractional differential equations have
been discussed under the following boundary conditions
(BCs for short):

(1) Integer derivative BCs:

𝑢(0) = 𝑢(1) = 0,𝑢(0) + 𝑢󸀠(0) = 0, 𝑢(1) + 𝑢󸀠(1) = 0,𝑢(0) = 𝑢󸀠(1) = 𝑢󸀠󸀠(0) = 0,𝑢(0) = 0, 𝑢󸀠(0) + 𝑢󸀠󸀠(0) = 0, 𝑢󸀠(1) + 𝑢󸀠󸀠(1) = 0,𝑢(0) = 𝑢0, 𝑢󸀠(0) = 𝑢∗0 , 𝑢󸀠󸀠(𝑇) = 𝑢𝑇,𝑢(0) = 𝑢󸀠(1) = 𝑢󸀠󸀠(0) = ⋅ ⋅ ⋅ = 𝑢(𝑛−1)(0) = 0;
see papers [2–7], respectively.

(2) Integer derivative and integral BCs:

𝛼𝑢(0)−𝛽𝑢󸀠(0) = ∫1
0
𝑔(𝑠)𝑢(𝑠)𝑑𝑠, 𝛾𝑢(1)+𝛿𝑢󸀠(1) =

∫1
0
ℎ(𝑠)𝑢(𝑠)𝑑𝑠,

𝑢(0) = 𝑢󸀠(0) = 𝑢󸀠󸀠(0) = 0, 𝑢(1) = 𝜆 ∫𝜂
0
𝑢(𝑠)𝑑𝑠;

see papers [8, 9], respectively.

(3) Integer and fractional derivative BCs:

𝑢(0) = (𝐶𝐷𝜎10+𝑢)(1) = 0, 𝑢󸀠󸀠(0) = (𝐶𝐷𝜎20+𝑢)(1) =0,𝑢(0) = 𝑢󸀠󸀠(0) = 0, 𝑢󸀠(1) = (𝐶𝐷𝜎0+𝑢)(1),𝑢(0) = 𝑢󸀠(0) = 0, 𝑢󸀠(1) = (𝐶𝐷𝜎0+𝑢)(1),𝑢(0) = 0, (𝐷𝛽0+𝑢)(1) = ∑𝑚−2𝑖=1 𝜉𝑖(𝐷𝛽0+𝑢)(𝜂𝑖),𝑢(0) = 0, 𝑢(1)+(𝐷𝛽0+𝑢)(1) = 𝑘𝑢(𝜉)+ 𝑙(𝐷𝛽0+𝑢)(𝜂),𝑢(0) = 0, (𝐷𝛽0+𝑢)(1) = 𝑎(𝐷𝛽0+𝑢)(𝜉),𝑢(0) = 𝑢󸀠(0) = ⋅ ⋅ ⋅ = 𝑢(𝑛−2)(0) = 0, (𝐷𝛼0+𝑢)(1) =0;
see papers [10–16], respectively.

(4) Integer derivative and fractional integral BCs:

𝑢(0) = 𝛼𝐼𝑝0+𝑢(𝜂),𝑢(0) = 0, 𝑢󸀠(1) = 𝐼𝜎0+𝑢(1);
see papers [17, 18], respectively.

Besides, there are some other BCs involved in fractional
differential equations, such as nonlinear BCs; refer to [19, 20].

Motivated greatly by the above-mentioned works, in this
paper, we study the following boundary value problem (BVP
for short) of nonlinear fractional differential equation with
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fractional integral BCs as well as integer and fractional
derivative

(𝐶𝐷𝑞0+𝑢) (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ (0, 1) ,
𝑢 (0) = 𝑢󸀠󸀠 (0) = 0,

(𝐶𝐷𝜎10+𝑢) (1) = 𝜆 (𝐼𝜎20+𝑢) (1) ,
(1)

where 𝐶𝐷𝑞0+ and 𝐶𝐷𝜎10+ denote the standard Caputo fractional
derivatives and 𝐼𝜎20+ denotes the standard Riemann-Liouville
fractional integral. Throughout this paper, we always assume
that 2 < 𝑞 < 3, 0 < 𝜎1 ≤ 1, 𝜎2 > 0, 𝜆 ̸= Γ(2 + 𝜎2)/Γ(2 − 𝜎1),
and 𝑓 : [0, 1] ×R → R is continuous.

In order to prove our main results, the following well-
known fixed point theorems are needed.

Theorem 1 (nonlinear alternative of Leray-Schauder type
[21]). Let 𝐵 be a Banach space with 𝐸 ⊆ 𝐵 closed and convex.
Assume Ω is a relatively open subset of 𝐸 with 𝜃 ∈ Ω and𝑇:Ω → 𝐸 is a continuous and compact map. Then either

(a) 𝑇 has a fixed point in Ω or

(b) there exists 𝑢 ∈ 𝜕Ω and 𝜂 ∈ (0, 1) such that 𝑢 = 𝜂𝑇𝑢.
Theorem2 (Banach contraction principle [22]). Let (𝑋, 𝑑) be
a complete metric space and 𝑇: 𝑋 → 𝑋 be contractive. Then 𝑇
has a unique fixed point in𝑋.

2. Preliminaries

In this section, we always assume that N = {1, 2, 3, . . .},𝛼, 𝛽 > 0, and [𝛼] denotes the integer part of 𝛼. Now,
for the convenience of the reader, we give the definitions
of the Riemann-Liouville fractional integrals and fractional
derivatives and the Caputo fractional derivatives on a finite
interval of the real line, which may be found in [1].

Definition 3. TheRiemann-Liouville fractional integrals 𝐼𝛼0+𝑢
and 𝐼𝛼1−𝑢 of order 𝛼 on [0, 1] are defined by

(𝐼𝛼0+𝑢) (𝑡) fl 1Γ (𝛼) ∫
𝑡

0

𝑢 (𝑠) 𝑑𝑠
(𝑡 − 𝑠)1−𝛼 ,

(𝐼𝛼1−𝑢) (𝑡) fl 1Γ (𝛼) ∫
1

𝑡

𝑢 (𝑠) 𝑑𝑠
(𝑠 − 𝑡)1−𝛼 ,

(2)

respectively.

Definition 4. The Riemann-Liouville fractional derivatives𝐷𝛼0+𝑢 and𝐷𝛼1−𝑢 of order 𝛼 on [0, 1] are defined by

(𝐷𝛼0+𝑢) (𝑡) fl ( 𝑑𝑑𝑡)
𝑛 (𝐼𝑛−𝛼0+ 𝑢) (𝑡)

= 1Γ (𝑛 − 𝛼) ( 𝑑𝑑𝑡)
𝑛 ∫𝑡
0

𝑢 (𝑠) 𝑑𝑠
(𝑡 − 𝑠)𝛼−𝑛+1 ,

(𝐷𝛼1−𝑢) (𝑡) fl (− 𝑑𝑑𝑡)
𝑛 (𝐼𝑛−𝛼1− 𝑢) (𝑡)

= 1Γ (𝑛 − 𝛼) (− 𝑑𝑑𝑡)
𝑛 ∫1
𝑡

𝑢 (𝑠) 𝑑𝑠
(𝑠 − 𝑡)𝛼−𝑛+1 ,

(3)

respectively, where 𝑛 = [𝛼] + 1.
Definition 5. Let 𝐷𝛼0+[𝑢(𝑠)](𝑡) ≡ (𝐷𝛼0+𝑢)(𝑡) and 𝐷𝛼1−[𝑢(𝑠)](𝑡)≡ (𝐷𝛼1−𝑢)(𝑡) be the Riemann-Liouville fractional derivatives
of order𝛼.Then theCaputo fractional derivatives 𝐶𝐷𝛼0+𝑢 and
𝐶𝐷𝛼1−𝑢 of order 𝛼 on [0, 1] are defined by

(𝐶𝐷𝛼0+𝑢) (𝑡) fl (𝐷𝛼0+ [𝑢 (𝑠) − 𝑛−1∑
𝑘=0

𝑢(𝑘) (0)𝑘! 𝑠𝑘]) (𝑡) ,
(𝐶𝐷𝛼1−𝑢) (𝑡)

fl (𝐷𝛼1− [𝑢 (𝑠) − 𝑛−1∑
𝑘=0

𝑢(𝑘) (1)𝑘! (1 − 𝑠)𝑘]) (𝑡) ,
(4)

respectively, where

𝑛 = {{{
[𝛼] + 1, 𝛼 ∉ N,
𝛼, 𝛼 ∈ N. (5)

Lemma 6 (see [23]). If 𝛼 + 𝛽 > 1, then the equation(𝐼𝛼0+𝐼𝛽0+𝑢)(𝑡) = (𝐼𝛼+𝛽0+ 𝑢)(𝑡), 𝑡 ∈ [0, 1], is satisfied for 𝑢 ∈ 𝐿1[0,1].
Lemma 7 (see [23]). Let 𝛽 > 𝛼. Then the equation(𝐶𝐷𝛼0+𝐼𝛽0+𝑢)(𝑡) = (𝐼𝛽−𝛼0+ 𝑢)(𝑡), 𝑡 ∈ [0, 1], is satisfied for 𝑢 ∈𝐶[0, 1].
Lemma 8 (see [1]). Let 𝑛 be given by (5). Then the following
relations hold:

(1) For 𝑘 ∈ {0, 1, 2, . . . , 𝑛 − 1}, 𝐶𝐷𝛼0+𝑡𝑘 = 0.
(2) If 𝛽 > 𝑛, then 𝐶𝐷𝛼0+𝑡𝛽−1 = (Γ(𝛽)/Γ(𝛽 − 𝛼))𝑡𝛽−𝛼−1.

Lemma 9 (see [1]). Let 𝑛 be given by (5) and 𝑢 ∈ 𝐶𝑛[0, 1].
Then

(𝐼𝛼0+𝐶𝐷𝛼0+𝑢) (𝑡) = 𝑢 (𝑡) + 𝑐0 + 𝑐1𝑡 + 𝑐2𝑡2 + ⋅ ⋅ ⋅
+ 𝑐𝑛−1𝑡𝑛−1,

(6)

where 𝑐𝑖 ∈ R, 𝑖 = 0, 1, . . . , 𝑛 − 1.
For any 𝑥 ∈ 𝐿1[0, 1], we define

‖𝑥‖𝐿1 = ∫1
0
|𝑥 (𝑡)| 𝑑𝑡. (7)

Lemma 10. Let 𝑢 ∈ 𝐿1[0, 1] be nonnegative. Then (𝐼𝛼+10+ 𝑢)(𝑡)≤ ‖𝐼𝛼0+𝑢‖𝐿1 , 𝑡 ∈ [0, 1].
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Proof. For any 𝑡 ∈ [0, 1], we have
(𝐼𝛼+10+ 𝑢) (𝑡) = 1Γ (𝛼 + 1) ∫

𝑡

0

𝑢 (𝑠)(𝑡 − 𝑠)−𝛼 𝑑𝑠
= 1𝛼Γ (𝛼) ∫

𝑡

0
𝑢 (𝑠) (𝑡 − 𝑠)𝛼 𝑑𝑠

= 1Γ (𝛼) ∫
𝑡

0
𝑢 (𝑠) ∫𝑡

𝑠
(𝑟 − 𝑠)𝛼−1 𝑑𝑟 𝑑𝑠

= 1Γ (𝛼) ∫
𝑡

0
∫𝑟
0

𝑢 (𝑠)
(𝑟 − 𝑠)1−𝛼 𝑑𝑠 𝑑𝑟

≤ ∫1
0

1Γ (𝛼) ∫
𝑟

0

𝑢 (𝑠)
(𝑟 − 𝑠)1−𝛼 𝑑𝑠 𝑑𝑟

= ∫1
0
(𝐼𝛼0+𝑢) (𝑟) 𝑑𝑟 = 󵄩󵄩󵄩󵄩𝐼𝛼0+𝑢󵄩󵄩󵄩󵄩𝐿1 .

(8)

3. Main Results

In the remainder of this paper, for any nonnegative function𝑔 ∈ 𝐿1[0, 1], we denote
𝑀𝑔 = 󵄩󵄩󵄩󵄩󵄩𝐼𝑞−10+ 𝑔󵄩󵄩󵄩󵄩󵄩𝐿1

+ Γ (2 + 𝜎2) Γ (2 − 𝜎1)󵄨󵄨󵄨󵄨𝜆Γ (2 − 𝜎1) − Γ (2 + 𝜎2)󵄨󵄨󵄨󵄨 [|𝜆| (𝐼
𝑞+𝜎2
0+ 𝑔) (1)

+ (𝐼𝑞−𝜎10+ 𝑔) (1)]
(9)

and for any 𝑦 ∈ 𝐶[0, 1], we use the norm󵄩󵄩󵄩󵄩𝑦󵄩󵄩󵄩󵄩∞ = max
𝑡∈[0,1]

󵄨󵄨󵄨󵄨𝑦 (𝑡)󵄨󵄨󵄨󵄨 . (10)

Lemma 11. Let 𝑦 ∈ 𝐶[0, 1] be a given function. Then the BVP

(𝐶𝐷𝑞0+𝑢) (𝑡) = 𝑦 (𝑡) , 𝑡 ∈ (0, 1) ,
𝑢 (0) = 𝑢󸀠󸀠 (0) = 0,

(𝐶𝐷𝜎10+𝑢) (1) = 𝜆 (𝐼𝜎20+𝑢) (1)
(11)

has a unique solution

𝑢 (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] , (12)

where

𝐺 (𝑡, 𝑠) = − Γ (2 + 𝜎2) Γ (2 − 𝜎1)𝜆Γ (2 − 𝜎1) − Γ (2 + 𝜎2)
⋅ 𝑡 [𝜆 (1 − 𝑠)𝑞+𝜎2−1Γ (𝑞 + 𝜎2) − (1 − 𝑠)𝑞−𝜎1−1Γ (𝑞 − 𝜎1) ]

+ {{{{{
(𝑡 − 𝑠)𝑞−1Γ (𝑞) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,
0, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(13)

Proof. It follows from the equation in (11) and Lemma 9 that

𝑢 (𝑡) = (𝐼𝑞0+𝑦) (𝑡) − 𝑐0 − 𝑐1𝑡 − 𝑐2𝑡2, 𝑡 ∈ [0, 1] . (14)

So,

𝑢󸀠 (𝑡) = (𝐼𝑞−10+ 𝑦) (𝑡) − 𝑐1 − 2𝑐2𝑡, 𝑡 ∈ [0, 1] , (15)

𝑢󸀠󸀠 (𝑡) = (𝐼𝑞−20+ 𝑦) (𝑡) − 2𝑐2, 𝑡 ∈ [0, 1] . (16)

In view of (14), (16), and the BCs 𝑢(0) = 𝑢󸀠󸀠(0) = 0, we get
𝑐0 = 𝑐2 = 0, (17)

and so,

𝑢 (𝑡) = (𝐼𝑞0+𝑦) (𝑡) − 𝑐1𝑡, 𝑡 ∈ [0, 1] . (18)

Then, by using Lemmas 6, 7, and 8, we may obtain

(𝐶𝐷𝜎10+𝑢) (𝑡) = (𝐼𝑞−𝜎10+ 𝑦) (𝑡) − 𝑐1 Γ (2)Γ (2 − 𝜎1) 𝑡
1−𝜎1 ,
𝑡 ∈ [0, 1] ,

(𝐼𝜎20+𝑢) (𝑡) = (𝐼𝑞+𝜎20+ 𝑦) (𝑡) − 𝑐1 Γ (2)Γ (2 + 𝜎2) 𝑡
1+𝜎2 ,
𝑡 ∈ [0, 1] ,

(19)

which together with the BC (𝐶𝐷𝜎10+𝑢)(1) = 𝜆(𝐼𝜎20+𝑢)(1) implies
that

𝑐1 = Γ (2 + 𝜎2) Γ (2 − 𝜎1)𝜆Γ (2 − 𝜎1) − Γ (2 + 𝜎2) [𝜆 (𝐼𝑞+𝜎20+ 𝑦) (1)
− (𝐼𝑞−𝜎10+ 𝑦) (1)] .

(20)

Therefore, the BVP (11) has a unique solution

𝑢 (𝑡) = (𝐼𝑞0+𝑦) (𝑡)
− Γ (2 + 𝜎2) Γ (2 − 𝜎1)𝜆Γ (2 − 𝜎1) − Γ (2 + 𝜎2) [𝜆 (𝐼𝑞+𝜎20+ 𝑦) (1)
− (𝐼𝑞−𝜎10+ 𝑦) (1)] 𝑡 = ∫𝑡

0
{− Γ (2 + 𝜎2) Γ (2 − 𝜎1)𝜆Γ (2 − 𝜎1) − Γ (2 + 𝜎2)

⋅ 𝑡 [𝜆 (1 − 𝑠)𝑞+𝜎2−1Γ (𝑞 + 𝜎2) − (1 − 𝑠)𝑞−𝜎1−1Γ (𝑞 − 𝜎1) ] + (𝑡 − 𝑠)𝑞−1Γ (𝑞) }
⋅ 𝑦 (𝑠) 𝑑𝑠 + ∫1

𝑡
{− Γ (2 + 𝜎2) Γ (2 − 𝜎1)𝜆Γ (2 − 𝜎1) − Γ (2 + 𝜎2)

⋅ 𝑡 [𝜆 (1 − 𝑠)𝑞+𝜎2−1Γ (𝑞 + 𝜎2) − (1 − 𝑠)𝑞−𝜎1−1Γ (𝑞 − 𝜎1) ]}𝑦 (𝑠) 𝑑s
= ∫1
0
𝐺 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 1] .

(21)
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Lemma 12. Let 𝑔 ∈ 𝐿1[0, 1] be nonnegative. Then

∫1
0
|𝐺 (𝑡, 𝑠)| 𝑔 (𝑠) 𝑑𝑠 ≤ 𝑀𝑔, 𝑡 ∈ [0, 1] . (22)

Proof. In view of Lemma 10, we have

∫1
0
|𝐺 (𝑡, 𝑠)| 𝑔 (𝑠) 𝑑𝑠 = ∫𝑡

0
|𝐺 (𝑡, 𝑠)| 𝑔 (𝑠) 𝑑𝑠

+ ∫1
𝑡
|𝐺 (𝑡, 𝑠)| 𝑔 (𝑠) 𝑑𝑠

≤ ∫𝑡
0
{ Γ (2 + 𝜎2) Γ (2 − 𝜎1)󵄨󵄨󵄨󵄨𝜆Γ (2 − 𝜎1) − Γ (2 + 𝜎2)󵄨󵄨󵄨󵄨

⋅ 𝑡 [ |𝜆| (1 − 𝑠)𝑞+𝜎2−1Γ (𝑞 + 𝜎2) + (1 − 𝑠)𝑞−𝜎1−1Γ (𝑞 − 𝜎1) ]
+ (𝑡 − 𝑠)𝑞−1Γ (𝑞) } 𝑔 (𝑠) 𝑑𝑠
+ ∫1
𝑡
{ Γ (2 + 𝜎2) Γ (2 − 𝜎1)󵄨󵄨󵄨󵄨𝜆Γ (2 − 𝜎1) − Γ (2 + 𝜎2)󵄨󵄨󵄨󵄨

⋅ 𝑡 [ |𝜆| (1 − 𝑠)𝑞+𝜎2−1Γ (𝑞 + 𝜎2) + (1 − 𝑠)𝑞−𝜎1−1Γ (𝑞 − 𝜎1) ]}𝑔 (𝑠) 𝑑𝑠
= 1Γ (𝑞) ∫𝑡

0

𝑔 (𝑠)
(𝑡 − 𝑠)1−𝑞 𝑑𝑠

+ Γ (2 + 𝜎2) Γ (2 − 𝜎1)󵄨󵄨󵄨󵄨𝜆Γ (2 − 𝜎1) − Γ (2 + 𝜎2)󵄨󵄨󵄨󵄨 𝑡 [
|𝜆|Γ (𝑞 + 𝜎2)

⋅ ∫1
0

𝑔 (𝑠)
(1 − 𝑠)1−𝑞−𝜎2 𝑑𝑠 +

1Γ (𝑞 − 𝜎1)
⋅ ∫1
0

𝑔 (𝑠)
(1 − 𝑠)1−𝑞+𝜎1 𝑑𝑠] = (𝐼𝑞0+𝑔) (𝑡)

+ Γ (2 + 𝜎2) Γ (2 − 𝜎1)󵄨󵄨󵄨󵄨𝜆Γ (2 − 𝜎1) − Γ (2 + 𝜎2)󵄨󵄨󵄨󵄨 𝑡 [|𝜆| (𝐼
𝑞+𝜎2
0+ 𝑔) (1)

+ (𝐼𝑞−𝜎10+ 𝑔) (1)] ≤ 󵄩󵄩󵄩󵄩󵄩𝐼𝑞−10+ 𝑔󵄩󵄩󵄩󵄩󵄩𝐿1
+ Γ (2 + 𝜎2) Γ (2 − 𝜎1)󵄨󵄨󵄨󵄨𝜆Γ (2 − 𝜎1) − Γ (2 + 𝜎2)󵄨󵄨󵄨󵄨 [|𝜆| (𝐼

𝑞+𝜎2
0+ 𝑔) (1)

+ (𝐼𝑞−𝜎10+ 𝑔) (1)] = 𝑀𝑔, 𝑡 ∈ [0, 1] .

(23)

Now, we define an operator 𝑇 : 𝐶[0, 1] → 𝐶[0, 1] by
(𝑇𝑢) (𝑡) = ∫1

0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 1] . (24)

Obviously, 𝑢 is a solution of the BVP (1) if and only if 𝑢 is a
fixed point of 𝑇.

Theorem 13. Assume that 𝑓(𝑡, 0) ̸≡ 0, 𝑡 ∈ (0, 1), and there
exist nonnegative functions 𝑔1, 𝑔2 ∈ 𝐿1[0, 1], nonnegative
increasing continuous function𝜙 defined on [0, +∞), and 𝑟 > 0
such that

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥)󵄨󵄨󵄨󵄨 ≤ 𝑔1 (𝑡) + 𝑔2 (𝑡) 𝜙 (|𝑥|) ,
(𝑡, 𝑥) ∈ [0, 1] ×R, (25)

𝑀𝑔1 + 𝜙 (𝑟)𝑀𝑔2 < 𝑟. (26)

Then the BVP (1) has one nontrivial solution.

Proof. Let Ω = {𝑢 ∈ 𝐶[0, 1] : ‖𝑢‖∞ < 𝑟}. Since 𝐺(𝑡, 𝑠)
and 𝑓(𝑡, 𝑥) are continuous on [0, 1] × [0, 1] and [0, 1] × R,
respectively, we may denote

𝐿 = max
(𝑡,𝑠)∈[0,1]×[0,1]

|𝐺 (𝑡, 𝑠)| , (27)

𝐻 = max
(𝑡,𝑥)∈[0,1]×[−𝑟,𝑟]

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥)󵄨󵄨󵄨󵄨 . (28)

First, we prove that 𝑇: Ω → 𝐶[0, 1] is continuous.
Suppose that 𝑢𝑛 (𝑛 = 1, 2, . . .), 𝑢0 ∈ Ω, and ‖𝑢𝑛 − 𝑢0‖∞ → 0
(𝑛 → ∞). Then for any 𝑛 and 𝑠 ∈ [0, 1], we have |𝑢𝑛(𝑠)| ≤ 𝑟.
This together with (27) and (28) implies that, for any 𝑛 and𝑡 ∈ [0, 1],

󵄨󵄨󵄨󵄨𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢𝑛 (𝑠))󵄨󵄨󵄨󵄨 ≤ 𝐿𝐻, 𝑠 ∈ [0, 1] . (29)

By applying Lebesgue dominated convergence theorem, we
get

lim
𝑛→∞

(𝑇𝑢𝑛) (𝑡) = lim
𝑛→∞

∫1
0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢𝑛 (𝑠)) 𝑑𝑠

= ∫1
0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢0 (𝑠)) 𝑑𝑠

= (𝑇𝑢0) (𝑡) , 𝑡 ∈ [0, 1] ,
(30)

which indicates that 𝑇: Ω → 𝐶[0, 1] is continuous.
Next, we show that 𝑇: Ω → 𝐶[0, 1] is compact. Assume

that𝐾 is a subset ofΩ. Then for any 𝑢 ∈ 𝐾, we have

|𝑢 (𝑠)| ≤ 𝑟, 𝑠 ∈ [0, 1] . (31)

In what follows, we will prove that𝑇(𝐾) is relatively compact.
On the one hand, for any 𝑦 ∈ 𝑇(𝐾), there exists 𝑢 ∈ 𝐾 such
that 𝑦 = 𝑇𝑢, and so, it follows from (27), (28), and (31) that

󵄨󵄨󵄨󵄨𝑦 (𝑡)󵄨󵄨󵄨󵄨 = |(𝑇𝑢) (𝑡)| = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
1

0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫1
0
|𝐺 (𝑡, 𝑠)| 󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))󵄨󵄨󵄨󵄨 𝑑𝑠 ≤ 𝐿𝐻,

𝑡 ∈ [0, 1] ,
(32)

which shows that 𝑇(𝐾) is uniformly bounded. On the other
hand, for any 𝜀 > 0, since 𝐺(𝑡, 𝑠) is uniformly continuous on
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[0, 1]×[0, 1], there exists 𝛿 > 0 such that, for any 𝑡1, 𝑡2 ∈ [0, 1]
with |𝑡1 − 𝑡2| < 𝛿,

󵄨󵄨󵄨󵄨𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠)󵄨󵄨󵄨󵄨 < 𝜀𝐻, 𝑠 ∈ [0, 1] . (33)

For any 𝑦 ∈ 𝑇(𝐾), there exists 𝑢 ∈ 𝐾 such that 𝑦 = 𝑇𝑢, and
so, for any 𝑡1, 𝑡2 ∈ [0, 1]with |𝑡1−𝑡2| < 𝛿, it follows from (28),
(31), and (33) that

󵄨󵄨󵄨󵄨𝑦 (𝑡1) − 𝑦 (𝑡2)󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨(𝑇𝑢) (𝑡1) − (𝑇𝑢) (𝑡2)󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
1

0
[𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠)] 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫1
0

󵄨󵄨󵄨󵄨𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))󵄨󵄨󵄨󵄨 𝑑𝑠
≤ 𝐻∫1

0

󵄨󵄨󵄨󵄨𝐺 (𝑡1, 𝑠) − 𝐺 (𝑡2, 𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠 < 𝜀,

(34)

which indicates that 𝑇(𝐾) is equicontinuous. By Arzela-
Ascoli theorem, we know that 𝑇(𝐾) is relatively compact.
Therefore, 𝑇: Ω → 𝐶[0, 1] is compact.

Now, we will prove that (a) of Theorem 1 is fulfilled.
Suppose on the contrary that (b) ofTheorem 1 is satisfied; that
is, there exists 𝑢 ∈ 𝜕Ω and 𝜂 ∈ (0, 1) such that 𝑢 = 𝜂𝑇𝑢.Then,
in view of (25), (26), and Lemma 12, we have

|𝑢 (𝑡)| = 󵄨󵄨󵄨󵄨𝜂 (𝑇𝑢) (𝑡)󵄨󵄨󵄨󵄨 ≤ |(𝑇𝑢) (𝑡)|
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
1

0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫1
0
|𝐺 (𝑡, 𝑠)| 󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))󵄨󵄨󵄨󵄨 𝑑𝑠

≤ ∫1
0
|𝐺 (𝑡, 𝑠)| [𝑔1 (𝑠) + 𝑔2 (𝑠) 𝜙 (|𝑢 (𝑠)|)] 𝑑𝑠

≤ ∫1
0
|𝐺 (𝑡, 𝑠)| 𝑔1 (𝑠) 𝑑𝑠

+ 𝜙 (𝑟) ∫1
0
|𝐺 (𝑡, 𝑠)| 𝑔2 (𝑠) 𝑑𝑠

≤ 𝑀𝑔1 + 𝜙 (𝑟)𝑀𝑔2 < 𝑟, 𝑡 ∈ [0, 1] ,

(35)

which shows that

‖𝑢‖∞ < 𝑟. (36)

This contradicts the fact 𝑢 ∈ 𝜕Ω.
So, it follows fromTheorem 1 that 𝑇 has a fixed point 𝑢∗,

which is a desired solution of the BVP (1). At the same time,
since 𝑓(𝑡, 0) ̸≡ 0, 𝑡 ∈ (0, 1), we know that the zero function
is not a solution of the BVP (1). Therefore, 𝑢∗ is a nontrivial
solution of the BVP (1).

Theorem 14. Assume that there exists a nonnegative function𝑔3 ∈ 𝐿1[0, 1] such that󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)󵄨󵄨󵄨󵄨 ≤ 𝑔3 (𝑡) 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 ,
𝑡 ∈ [0, 1] , 𝑥, 𝑦 ∈ R, (37)

𝑀𝑔3 < 1. (38)

Then the BVP (1) has a unique solution.

Proof. For any 𝑢, V ∈ 𝐶[0, 1], in view of (37) and Lemma 12,
we have

|(𝑇𝑢) (𝑡) − (𝑇V) (𝑡)|
= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
1

0
𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))] 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫1
0
|𝐺 (𝑡, 𝑠)| 󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))󵄨󵄨󵄨󵄨 𝑑𝑠

≤ ∫1
0
|𝐺 (𝑡, 𝑠)| 𝑔3 (𝑠) |𝑢 (𝑠) − V (𝑠)| 𝑑𝑠

≤ ‖𝑢 − V‖∞ ∫1
0
|𝐺 (𝑡, 𝑠)| 𝑔3 (𝑠) 𝑑𝑠 ≤ 𝑀𝑔3 ‖𝑢 − V‖∞ ,

𝑡 ∈ [0, 1] .

(39)

This indicates that

‖𝑇𝑢 − 𝑇V‖∞ ≤ 𝑀𝑔3 ‖𝑢 − V‖∞ , (40)

which together with (38) implies that 𝑇 is contractive. So, it
follows fromTheorem 2 that 𝑇 has a unique fixed point, and
so, the BVP (1) has a unique solution.

Example 15. We consider the BVP

(𝐶𝐷5/20+ 𝑢) (𝑡) = 𝑡 − 𝑡2√|𝑢 (𝑡)|, 𝑡 ∈ (0, 1) ,
𝑢 (0) = 𝑢󸀠󸀠 (0) = 0,

(𝐶𝐷1/20+ 𝑢) (1) = 12 (𝐼3/20+ 𝑢) (1) .
(41)

Let 𝑓(𝑡, 𝑥) = 𝑡 − (𝑡/2)√|𝑥|, (𝑡, 𝑥) ∈ [0, 1] × R. Then 𝑓 :[0, 1] ×R → R is continuous and 𝑓(𝑡, 0) ̸= 0, 𝑡 ∈ (0, 1).
If we choose 𝑔1(𝑡) = 𝑡, 𝑔2(𝑡) = 𝑡/2, 𝑡 ∈ [0, 1], and 𝜙(𝑦) =√𝑦, 𝑦 ∈ [0, +∞), then it is easy to verify that (25) is satisfied.
Since 𝑞 = 5/2, 𝜎1 = 1/2, 𝜎2 = 3/2, and 𝜆 = 1/2, a direct

calculation shows that

Γ (2 + 𝜎2)Γ (2 − 𝜎1) = 154 ,
𝑀𝑔1 = 6656 + 4305𝜋43680√𝜋 ,
𝑀𝑔2 = 6656 + 4305𝜋87360√𝜋 .

(42)

If we choose 𝑟 = 1, then (26) is fulfilled.
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Therefore, it follows from Theorem 13 that the BVP (41)
has one nontrivial solution.

Example 16. We consider the BVP

(𝐶𝐷5/20+ 𝑢) (𝑡)
= 𝑡𝜋 {𝑢 (𝑡) arctan 𝑢 (𝑡) − 12 ln [1 + 𝑢2 (𝑡)]} ,

𝑡 ∈ (0, 1) ,
𝑢 (0) = 𝑢󸀠󸀠 (0) = 0,
(𝐶𝐷1/20+ 𝑢) (1) = 12 (𝐼3/20+ 𝑢) (1) .

(43)

Let 𝑓(𝑡, 𝑥) = (𝑡/𝜋)[𝑥 arctan𝑥 − (1/2) ln(1 + 𝑥2)], (𝑡, 𝑥) ∈[0, 1] ×R. Then 𝑓 : [0, 1] ×R → R is continuous.
If we choose 𝑔3(𝑡) = 𝑡/2, 𝑡 ∈ [0, 1], then we may assert

that (37) is satisfied. In fact, for any 𝑡 ∈ [0, 1], if 𝑥 = 𝑦, then
(37) is obvious. When 𝑥 ̸= 𝑦, we may suppose that 𝑥 < 𝑦.
In this case, by Lagrange mean value theorem, there exists𝜉 ∈ (𝑥, 𝑦) such that, for any 𝑡 ∈ [0, 1],

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)󵄨󵄨󵄨󵄨 = 𝑡𝜋
󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥 arctan𝑥 − 12 ln (1 + 𝑥2)

− 𝑦 arctan𝑦 + 12 ln (1 + 𝑦2)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 𝑡𝜋 󵄨󵄨󵄨󵄨arctan 𝜉󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑥
− 𝑦󵄨󵄨󵄨󵄨 ≤ 𝑔3 (𝑡) 󵄨󵄨󵄨󵄨𝑥 − 𝑦󵄨󵄨󵄨󵄨 ;

(44)

that is, (37) is satisfied.
On the other hand, in view of 𝑀𝑔3 = 𝑀𝑔2 = (6656 +4305𝜋)/87360√𝜋, we know that (38) is fulfilled.
Therefore, it follows from Theorem 14 that the BVP (43)

has a unique solution.
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