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This article presents a Generation Expansion Model of the power system taking into account the operational constraints and the
uncertainty of long-term electricity demand projections. The model is based on a discretization of the load duration curve and
explicitly considers that power plant ramping capabilities must meet demand variations. A model predictive control method is
used to improve the long-term planning decisions while considering the uncertainty of demand projections. The model presented
in this paper allows integrating technical constraints and uncertainty in the simulations, improving the accuracy of the results,
while maintaining feasible computational time. Results are tested over three scenarios based on load data of an energy retailer in
Colombia.

1. Introduction

Decisions related to investments in power plants, known as
Generation Expansion Planning (GEP), are often based on
the load duration curve (LDC). Linear optimization models
are already used for a long time to find the optimal mix of
generation technologies supplying this demand. The LDC-
based solutions describe the required installed generation
capacity of each technology and their operating hours, in
order to minimize the total cost, that is, the investment and
operational cost. Since traditional models do not include the
variations of the demand over time, they do not take into
account the ramping and cycling capabilities of power plants.
However, not including these technical constraints of power
systems underestimates the flexibility needs of the system.
This fact becomes increasingly relevant facing the rising trend
of participation of renewable generation characterized by
a variable profile of supply. Traditional approaches based
on the LDC are not considering the potential value of
flexibility provided by different generation technologies, and
this results in a suboptimal solution. On the other hand,
solutions that include these technical elements require high
computational efforts. The fact that traditional solutions do
not take into account the uncertainty of the demand forecast

results in overcapacity or reliability issues regarding the
installed capacity. As a consequence, suboptimal decisions of
investments are associated with the long-term use of power
plants.

The need to include technical constraints and uncer-
tainty in the GEP requires the integration of new elements.
However, these new elements increase the complexity of the
problem. The same difficulty is faced while using scenarios
which consider uncertainty but improve the ability to deal
with long-term planning decisions and make the results
robust in front of future trends in the power system. The
state of the art in the generation investment problem shows
different approaches to take the integration of new variables
and uncertainties into account. A first set of approaches deals
with the LDC model itself. In [1], a linear piecewise function
is used to represent the German and UK LDC; a residual
LDC is used to integrate renewable sources in the part of the
curve where most changes of demand take place. Technical
improvements such as ramp rates and the maximum on time
of a generating units are suggested to be included in the LDC
methodology [2]. In [3], a robust optimization that includes
uncertainty of demand, the electricity price, and generation
cost is proposed. A second set of approaches deals with the
problem of technical constraints integration into the classical
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economic generation investment model, that is, based on
the time series representation of the demand. Authors of [4]
include several additional variables and constraints related
to the power system to solve a single period problem. In
[5], a relevant discussion about how dynamic constraints
such as ramping rates and start-up cost are changing the
optimal point of the classical generation investment solution
is presented. The work stresses the need of methodologies
exploring the solution in a prediction time horizon also called
multiperiod solutions. A mixed solution proposed in [6]
considers the integration of renewable generation in the GEP
bymeans of net demand curve; to deal with prediction errors,
an operating reserve constraint is imposed. The solution
includes the ramp rate of the conventional technologies to
cover the uncertainty of the wind generation power.

Finally, a set of detailed solutions makes use of stochastic
and time series based models to solve the GEP. A generation
plan expansion methodology using a multiperiod horizon
solved by a bilevel problem is proposed in [7]. The problem
maximizes the investment profits in the top level and the
second level deals with technical constraints such as gener-
ation, transmission constraints, and load flows. The impact
of renewable sources in the GEP is discussed in [8] with
a model optimizing all the yearly investments, fixed and
variable operational cost, reserve costs, and ramping and
start-up costs constraints. The problem deals with a new
optimal point to balance the increasing amount of renewable
with reserves to meet the system reliability requirements.
Last, in book [9], the long-term investments considering
the GEP problem integrated with transmission investments
are discussed. This book presents a full methodology based
on stochastic processes. The solutions presented in this
book take into account the integration of several planning
horizons by means of multistage models with detailed tech-
nical constraints. Nevertheless, obtained results are based on
decision trees and exhaustive solutions and, due to the very
detailed models, results obtained in this book require a very
high computational effort. Now, as explored in this review,
time series and detailed solutions lead to use of complex
methodologies that imply a high computational cost. The
discussion of stochastic methods used to forecast power
variables is not presented in this review.The scope of this state
of art is to tackle the investment problem from the generation
mix design. Concluding, new methodologies must deal with
a trade-off between the detailed level and the required time
to solve the problem in a large time horizon. Details are
not paramount, planning exercises and scenarios analysis can
use more efficiently solutions with less technical and forecast
details.Thiswork focuses on an optimal, flexible, and efficient
multiperiod methodology to solve the GEP problem. The
solution is inspired by the MPC (model predictive control)
methodology. The solution includes ramping constraints
creating a compromise between the power system flexibility
and the installed capacity. This leads to a new optimal point
which guarantees a reliable operation minimizing the fixed
and variable investments cost. Four scenarios are simulated
with uncertainties in the variables showing the advantages as
a planning tool. The paper is organized as follows: Section 2
presents a brief description of the methodology. Sections

2.1 and 2.2 present the used LDC discretization and the
dynamic analysis made to include the ramping constraints.
Section 3 presents the comparison between the proposed
model that includes the ramping constraints and the classic
economic solution. Section 4 presents a brief description of
the MPC and the approach used for the multiperiod GEP
methodology. Lastly, Section 5 presents the used data, the
test scenarios, and the model performance comparison of
Section 3 finishing with the results of the MPC planning.

2. Methodology

As mentioned, the classic solution of the GEP based on the
LDC only considers economic variables. Additionally, the
method does not consider the time series of the demand
to create the LDC information. New generation expansion
plans should consider a wide selection of technologies
and uncertainties; each technology has their own technical
constraints and economic cost. An optimal temporal LDC
partition allows distributing the GEP problem in several
blocks or demand levels. Each level has his own features:
required power, uncertainties, and power changes. Including
the demand levels in the problem can be used to include
dynamic analysis in the solution as technical constraints for
the yearly operation. The constraint guarantees a minimum
power change response for each block. The proposed model
provides the optimal generation expansion plan cost with
a reliable operation design considering the power changes
in each block. Notice that, considering a maximum power
change for each block, all the feasible changes are covered,
and as a consequence, the LDC solution is robust for all
possible system changes in the planning period for each
block.Therefore, the optimal economic powermix problem is
solved integrating the ramp velocities in the economicmodel.
A trade-off between the economic and the technical part is
created. Finally, the proposed model only solves the one-year
problem and it is extended by means of the model predictive
control (MPC). The solution of the problem in a prediction
horizon provides a new optimal solution that considers the
predicted changes in the variables.Thismethodology is easily
improved by including additional constraints and models
into the problem.

2.1. Load Duration Curve Discretization. The LDC curve is a
continuously decreasing function 𝐷(𝛼𝑛) that represents the
amount of time that a certain electricity demand is requested
to the power system (see Figure 1). In this section, a LDC
discretization is proposed, based on [10, 11]. The proposed
LDC discretization minimizes the difference between the𝐷(𝛼𝑛) area and the area composed by several 𝑏𝑗 blocks based
on temporal decomposition. As shown in Figure 1, using the
time axis with 𝛼𝑛 values as optimization variables, the width
of each discretized block 𝜃𝑛 = 𝛼𝑛 − 𝛼𝑛−1 corresponds to the
time duration of the block along one year. Analogously, the
height of each 𝑏𝑗 block represents the maximum required
power (or installed capacity) and is given by the 𝐷(𝛼𝑛)
function. Now, with 𝜃𝑗 and 𝐷(𝛼𝑛) already defined, the
approximation of 𝐷(𝛼𝑛), as a discrete function considering
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Figure 1: Graphic explanation.

that 𝑛 is a finite number, 𝑛 ∈ R1 and 𝑛 ≥ 1, will have an error
associated 𝜖 that can be expressed as

𝜖 = ∫𝛼𝑛
0

𝐷(𝛼𝑛) d𝛼𝑛 −
𝛼𝑛∑
𝑛=1

𝜃𝑛𝐷𝛼𝑛−1 . (1)

If ∫𝛼𝑛
0

𝐷(𝛼𝑛)d𝛼𝑛 function is approximated piecewise with
trapezoids, the accuracy is improved and the result preserves
the LDC decreasing characteristic. Hence, it is possible to say
that

𝜃𝛼𝑛𝐷(𝛼𝑛−1) ≥ 𝜃𝛼𝑛𝐷(𝛼𝑛−1) − 𝐷 (𝛼𝑛)2 . (2)

With the described trapezoidal approximation, the named
LDC block discretization will always be greater than the
LDC function for a finite number of blocks. This provides
a confidence interval to generate a maximum amount of
energy. The next step minimizes the approximation error
between the trapezoid LDC approximation and the energy
blocks. If 𝛼𝑛 are the mesh points for the time discretization
and 𝑁 = 1, 2, . . . , 8760 the hours of the year, then, it is
possible to define the 𝜃𝑗 intervals in hours [h] as optimization
variable. Now, with the LDC function, the power value for
the 𝛼𝑗 point 𝐷(𝛼𝑛) is obtained. In consequence, the product
between 𝜃𝑗 and𝐷(𝛼𝑛−1) will produce block 𝑏𝑗 that represents
the energy required by the country along the year. The
optimization problem is formulated as follows:

min
𝛼𝑛

[ 𝑁∑
𝑛=1

(𝛼𝑛 − 𝛼𝑛−1)𝐷 (𝛼𝑛−1) − 𝑁∑
𝑛=1

(𝐷 (𝛼𝑛−1) − 𝐷 (𝛼𝑛)2 ) (𝛼𝑛 − 𝛼𝑛−1)]
subject to 0 ≤ 𝛼𝑛 ≤ 8760

𝐷 (𝛼𝑛) ≤ 0.
(3)

Using the optimal values that minimizes the LDC discretiza-
tion error, for simplicity, the optimal trapezoidswill be named
as energy blocks and represented as follows:

𝜃𝑗 = 𝛼𝑛 − 𝛼𝑛−1
𝑏𝑗 = 𝜃𝑗𝐷(𝛼𝑛) . (4)

This work considers three blocks to discretize the LDC
function 𝑗 = 1, 2, 3. The optimal discrete LDC approach
presents the following characteristics for each block: block 𝑏3
has the lowest variation and the minor approximation error.
From the financial and operative point of view, this block
represents the load related to forward energy agreements.
This energy has a small volatility and is dispatched with
base load generation technologies. Block 𝑏2 represents an
increasing variable energy consumption; this block includes
load composed by energy agreements, residential customers,
and companies. The volatility of this block is bigger than𝑏3 block and is correlated with the consumption patterns
of regulated users. Also 𝑏2 block energy demand is usually
generated with technologies which had affordable prices for
big amounts of energy but also should be flexible and with
a fast response to the load variations. Finally, the 𝑏1 demand
block represents the higher demand points. In one year, these
peak demand points have a duration of no more than one
hour, and their appearances during the day are few. These

low frequency peaks create a flexibility market opportunity;
peak demand points imply the need to have a corresponding
generation installed capacity available, even if it is only used
few hours in the year. It is a duty from the generator and
the energy retailers to have the required energy available
at any time. In this sense, demand response and load shift
among other smart grid technologies can be used to supply
the required energy at peak hours; for now, this work wants
to deal only with installed capacity to supply the energy.

2.2. Ramping Constraint Model. The discretization proposed
in Section 2.1 allows including particular constraints for
each block. Particularly, it is possible to find the optimal
economicmix of generation technologies including technical
constraints of the generation portfolio. The proposed man-
agement strategy optimizes the generation technologies mix
according to the ramp velocities criteria to meet the power
changes values on each block. Considering the notion that
every change in the load implies a change in the generation
system is true that Δ𝐷(𝛼𝑛) = Δ𝑝 results in a change in the
operational point of one or several power plants of the system
to meet the demand denoted as Δ𝑦. Then, it is possible to
establish that Δ𝑝 = Δ𝑦 for each 𝑡. The generation technology
or mix must be able to reach the new operation point in a
proper time. Considering a power generation matrix with𝑁𝑡
generation technologies available, it is possible to meet the
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Figure 2: Discretization levels and time series match.

operation changes in the system with a mix of the capacities
of each technology represented as a weighted sum, where 𝜆𝑖
is the participation of the 𝑖th technology in the power change
and 𝑉𝑖 is the ramp rate of each technology:

𝑁𝑡∑
𝑖=1

𝜆𝑖𝑉𝑖𝑦𝑖 = Δ𝑝. (5)

Defining 𝑦𝑖 as the produced energy for a generation tech-
nology, the variable is correlated with the generation cost
and installed capacity. The weighted portfolio approach
formulated can be included according to a particular design
parameter in the GEP changing the obtained solution. Now,
this work will use the load time series analysis described in
Section 2.3 to find the Δ𝑝 values for𝑁𝑏 demand levels. These
values will be used as the minimum ramping value that the
solution must guarantee as follows:

𝑁𝑡∑
𝑖=1

𝑁𝑏∑
𝑗=1

𝜆𝑖𝑗𝑉𝑖 ≥ Δ𝑝𝑗. (6)

2.3. Methodology Used for Time Series Analysis and Descrip-
tion of the Data Used. In order to identify the Δ 𝑝 value
in each demand level as measurement of the higher energy
changes in each block, the methodology calculates the time
ahead demand time series derivative. To do this, the time
series is matched with each demand level obtained in Sec-
tion 2.1 (see Figure 2). The derivatives of each block are
shown in Figure 3. Finally, the Δ𝑝𝑗 values are obtained from
the maximum derivative value for each block and presented
in Table 1. The comparison between the identified and the
maximum Δ𝑝𝑗 values for each demand level is shown in
Table 1. The maximum values represent the biggest change
defined by the block size. The data used is described in
Section 5.
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Figure 3: Matched block derivatives.

Table 1: Δ𝑝𝑗 values for each block.

Max Δ𝑝𝑗 [MW/h] Derivative Δ𝑝𝑗 [MW/h]
Block 1 62 53
Block 2 716 422
Block 3 136 136

3. Ramping Constrained Model Approach

With the Δ𝑝𝑗 values of each demand block, the next step is
to find the optimal combination of generation technologies
to supply the demand at the lowest cost taking into account
the ramping constraints. The formulation presented in (6)
allows combining the technologies ramp velocities by means
of the 𝜆𝑖𝑗 values to guarantee a desired performance for
each demand block. The integration is made balancing the
generation per block of each generation technology 𝑦𝑖𝑗 with
the 𝜆𝑖𝑗 values. The∑𝑁𝑡𝑖=1∑𝑁𝑏𝑗=1 𝑦𝑖𝑗𝜆𝑖𝑗𝜃𝑗 = 𝑏𝑗 equality guarantees
the installed capacity of each block. The dynamic constraint∑𝑁𝑡𝑖=1∑𝑁𝑏𝑗=1 𝜆𝑖𝑗𝑉𝑖 ≤ Δ𝑝𝑗 puts the desired operative level for
the ramping combination in each block. Finally, considering0 ≤ 𝑦𝑖𝑗 ≤ 𝑥𝑖𝜆𝑖𝑗 the operation of each plant and the installed
capacity are also restricted by the 𝜆𝑖𝑗 variables; this constraint
joint with ∑𝑁𝑡𝑖=1∑𝑁𝑏𝑗=1 𝑦𝑖𝑗 ≤ 𝑥𝑖 extends the 𝜆𝑖𝑗 impact to the
installed capacity. The reference for the used variables is
presented inTable 2 and the classic anddynamic formulations
are presented in (9). To solve the optimization problems, let

𝑋 = [𝑥1 ⋅ ⋅ ⋅ 𝑥𝑖 𝑦11 ⋅ ⋅ ⋅ 𝑦1𝑗 ⋅ ⋅ ⋅ 𝑦𝑖𝑗 𝜆𝑖𝑗]𝑇 , (7)

where 𝑋 represents the system variables: installed capacity,
use of each technology, and the weights of the dynamic
solution for each technology.

𝐶 = [𝑐1 ⋅ ⋅ ⋅ 𝑐𝑖 𝑓1𝜃1 ⋅ ⋅ ⋅ 𝑓1𝜃𝑗 ⋅ ⋅ ⋅ 𝑓𝑖𝜃𝑗 0𝑖𝑗] , (8)
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Table 2: Variable description.

Variable Name Unit
𝑖 = 1, . . . , 𝑁𝑡 Generation technologies𝑗 = 1, . . . , 𝑁𝑏 Discretized blocks𝑐𝑖 Annualized installation cost [$/kW]𝑓𝑖 Operation cost [$/MW]𝑥𝑖 Installed capacity [MW]𝑦𝑖𝑗 Technology use [MW]
𝜃𝑗 Block duration [h]
𝑏𝑗 Maximum required energy [MWh]
Δ𝑝𝑗 Maximum power change [MW/h]
𝜆𝑖𝑗 Velocity weight [%]

where 𝐶 is the vector with the generation technologies
fixed and variable cost per year. The 𝑐𝑖 values represent the
annualized installation capacity and fixed operation cost for
each generation technology; 𝑓𝑖 represent the sum of the
operation and maintenance (O&M) cost and the fuel cost for
each technology. The use of the annualized costs shares the
installed capacity price over the lifespan of each technology.
Notice that the cost of the 𝜆𝑖𝑗 values is zero. In order to
compare the classic and the ramping constrained models, the
same cost function is used.

Economical solution

min
𝑥𝑖 ,𝑦𝑖𝑗

𝐶𝑋
Subject to:

𝑁𝑡∑
𝑖=1

𝑁𝑏∑
𝑗=1

𝑦𝑖𝑗 ≤ 𝑥𝑖
𝑁𝑡∑
𝑖=1

𝑁𝑏∑
𝑗=1

𝑦𝑖𝑗𝜃𝑗 = 𝑏𝑗
0 ≤ 𝑥𝑖 ≤ ∞
0 ≤ 𝑦𝑖𝑗 ≤ ∞

Ramping constrained solution

min
𝑥𝑖 ,𝑦𝑖𝑗

𝐶𝑋
Subject to:

𝑁𝑡∑
𝑖=1

𝑁𝑏∑
𝑗=1

𝑦𝑖𝑗 ≤ 𝑥𝑖
𝑁𝑡∑
𝑖=1

𝑁𝑏∑
𝑗=1

𝑦𝑖𝑗𝜆𝑖𝑗𝜃𝑗 = 𝑏𝑗
𝑁𝑡∑
𝑖=1

𝑁𝑏∑
𝑗=1

𝜆𝑖𝑗𝑉𝑖 ≥ Δ𝑝𝑗
0 ≤ 𝑦𝑖𝑗 ≤ 𝑥𝑖𝜆𝑖𝑗
0 ≤ 𝜆𝑖𝑗 ≤ 1

(9)

4. Model Predictive Control

The solution of the generation investment planning in a
prediction timewindow is relevant asmentioned in [5]. Here,
the merit order dispatch is discussed in front of the emergent
dynamic constrains of the power system. The inclusion of
variables such as green generation technologies, demand
response plans, fuel prices, and storage technologies among
others variables becomes necessary to deal with the future
scenarios of the power system. The integration of these new
variables increases the amount and complexity of the models
used in the power system planning and operation. Control
applications and control based management strategies had
proven their efficiency to achieve good and desired perfor-
mance in several dynamic and complex systems.Thedynamic
constrained generation expansion problem formulated in
Section 2 found an optimal economic point that meets the
imposed LDC dynamics for a single year. The new challenge
is to propose an analog dynamic problem formulation that
considers the future scenarios and the previous installed
capacities in a set of optimal solutions. A well-known tool
used to solve constrained dynamic linear and nonlinear
problems providing the optimal trajectory for based on the
future problem states is the model predictive control (MPC);
using the receding horizon principle after the computation
of the optimal control sequence applies only the first control
actions; then, the next iteration solution provides a new
control sequence including the new information available
and the previous system states. The loop continues until a
desired horizon is reached. This kind of solution provides a
planning tool able to analyze several scenarios at the same
time, providing a set of optimal trajectories for the variables
and control actions that allow analyzing and determining, for
each time, the generation system evolution and his related
returns including fixed and variable cost.

4.1. Model Predictive Controller Formulation. To create an
optimal generation planning tool, this work implements an
MPC controller. MPC makes use of the receding horizon
strategy that allow solving the ramping constrained model
in a prediction horizon. The solution calculates the optimal
decisions for the GEP considering future LDC values. Using
the model proposed in (9) as an economical objective
function and including the proper constraints, the optimal
solution formulation is presented considering a time discrete
state space model:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘)
𝑦 (𝑘) = 𝐶𝑥 (k) + 𝐷𝑢 (𝑘) , (10)

where 𝑥(𝑘) ∈ R𝑛𝑥 are the system states, 𝑦(𝑘) ∈ R𝑛𝑦 are the
system outputs, and 𝑢(𝑘) ∈ R𝑛𝑢 is the current control vector.
Using (6), the state space representation of the problem for𝑖 = 1, . . . , 𝑁𝑡 generation technologies and a LDC discretized
in 𝑗 = 1, . . . , 𝑁𝑏 blocks can be written as follows:

𝑥 (𝑘) = [𝑥1 ⋅ ⋅ ⋅ 𝑥𝑖 𝑦11 ⋅ ⋅ ⋅ 𝑦𝑖𝑗 𝜆11 ⋅ ⋅ ⋅ 𝜆𝑖𝑗]𝑇 . (11)

As mentioned, infrastructure investments have a natural
condition for the 𝑥𝑖 variables: they cannot decrease. Negative
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changes in the installed capacity would mean a “destruction”
or dismantling of the plant; this in the real operation implies
to shut down the plant or decrements in the plant efficiency.
In this work, negative values are not considered, plant aging
is reduced by considering the maintenance cost in the fixed
operation cost. However, the aging parameter can be easily
included in the space state model.

𝑢 (𝑘)
= [𝑢𝑥1 ⋅ ⋅ ⋅ 𝑢𝑥𝑖 𝑢𝑦11 ⋅ ⋅ ⋅ 𝑢𝑦𝑖𝑗 𝑢𝜆11 ⋅ ⋅ ⋅ 𝑢𝜆𝑖𝑗]𝑇 , (12)

where 𝑢(𝑘) vector represents the control actions taken to
modify the 𝑥𝑖 variables; 𝑢𝑥𝑖 represent the decisions taken to
increase the installed capacity; 𝑢𝑦𝑖𝑗 represent the expected
use of the generations technologies; and 𝑢𝜆𝑖𝑗 represent the
weights of the generation technologies according to the ramp
velocities. The interactions between the 𝑥(𝑘) and the 𝑢(𝑘)
variables are described by 𝐴 and 𝐵 matrices as follows:

𝐴 = [[[[[
[

1 0 0 ⋅ ⋅ ⋅ 0
0 d 0 ⋅ ⋅ ⋅ 0
0 0 1𝑖 ⋅ ⋅ ⋅ 0
0 0 0 ⋅ ⋅ ⋅ 0

]]]]]
]

, (13)

where 𝐴 represents the states evolution. Thus, the installed
capacities are the only variables considered persistent in the
system (integration variables). The installed capacity at step𝑘 + 1 depends only on the previous state 𝑘 and the 𝑢(𝑘 +1) control actions explicit in the 𝐵 matrix. 𝐵 ∈ R𝑛𝑥×𝑛𝑥 is
an identity matrix. The 𝐵 matrix indicates the relationship
between the decision variables and the state variables. In this
case, there is only a direct influence of each control variable
over its corresponding state.

𝐶 = [𝑐1 ⋅ ⋅ ⋅ 𝑐𝑖 𝑓1𝜃1 ⋅ ⋅ ⋅ 𝑓1𝜃𝑗 ⋅ ⋅ ⋅ 𝑓𝑖𝜃𝑗 0𝑖𝑗] . (14)

The 𝐶 vector is the same as described in (8); the use of the
same cost vector in all optimizations cost functions allows
directly comparing the results of the presented methodolo-
gies. The relationships related to the constraints are explicit
in theMPC as hard constraints. Changes in the model output
as a consequence of the control actions are not considered;
therefore 𝐷 = 0. Now, with the dynamic state space system
written, the traditional economicMPC problem based in [12]
is defined as follows:

min
𝑢𝑘

𝐽eco (𝑥𝑘, 𝑢𝑘)
subject to: 𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘)

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝐷𝑢 (𝑘)
𝑥 (𝑘) ∈ X, 𝑘 = 0, . . . , 𝑁𝑝
𝑢 (𝑘) ∈ U, 𝑘 = 0, . . . , 𝑁𝑝.

(15)

At time step 𝑘, let 𝑥𝑘 = [𝑥𝑇(𝑘), . . . , 𝑥𝑇(𝑘 + 𝑁𝑝)]𝑇 and𝑢𝑘 = [𝑢𝑇(𝑘), . . . , 𝑢𝑇(𝑘 + 𝑁𝑝)]𝑇 be the state trajectory and

the control sequences, with 𝑁𝑝 being the prediction horizon
and 𝐽eco(𝑥𝑘, 𝑢𝑘) being the economic stage cost. The system is
subject to hard constraints on state 𝑥(𝑘) ∈ X, output 𝑦(𝑘) ∈
Y , and input 𝑢(𝑘) ∈ U for all 𝑘 ≥ 0, whereX ⊂ R𝑛𝑥 , Y ⊂ R𝑛𝑦 ,
and U ⊂ R𝑛𝑢 are closed sets. The objective functions of (9)
are clearly a linear combination of the states. Using the MPC
methodology, a great flexibility in the objective function is
available. In order to calculate the optimal control solution𝑢𝑘, the cost function will be based on the state space output𝑦(𝑘) = 𝐶𝑥(𝑘) described in (10) as �̃�(𝑘) = [𝐶(𝑘), . . . , 𝐶(𝑘 +𝑁𝑝)]𝑇 and the economic MPC formulation is given by

𝐽eco (𝑥𝑘, 𝑢𝑘) = 𝑁𝑝∑
𝑛=0

�̃� (𝑘 + 𝑛) 𝑥𝑘 (𝑘 + 𝑛)
subject to: 𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘)

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝐷𝑢 (𝑘)
𝑁𝑡∑
𝑖=1

𝑁𝑏∑
𝑗=1

𝑦𝑖𝑗 (𝑘 + 𝑛) ≤ 𝑥𝑖 (𝑘 + 𝑛)
𝑁𝑡∑
𝑖=1

𝑁𝑏∑
𝑗=1

𝑦𝑖𝑗 (𝑘 + 𝑛) 𝜆𝑖𝑗 (𝑘 + 𝑛) 𝜃𝑗
= 𝑏𝑗 (𝑘 + 𝑛)
𝑁𝑡∑
𝑖=1

𝑁𝑏∑
𝑗=1

𝜆𝑖𝑗 (𝑘 + 𝑛)𝑉𝑖 ≥ Δ𝑝𝑗 (𝑘 + 𝑛)
0 ≤ 𝑦𝑖𝑗 (𝑘 + 𝑛) ≤ 𝑥𝑖 (𝑘 + 𝑛) 𝜆𝑖𝑗 (𝑘 + 𝑛)
0 ≤ 𝜆𝑖𝑗 (𝑘 + 𝑛) ≤ 1.

(16)

5. Case Study

As an application case, the 2013 year demand data from EPM
(Empresas Publicas de Medellin) that is one of the biggest
energy retailers from the center region of Colombia sharing
the 23.9% of the maximum 25% allowed by the country
regulation is used.The demand is composed by regulated and
nonregulated users; in Colombia, there are not differential
energy prices, and even regulated costumers ignore the real-
time energy price.Therefore, the regulated load does not have
an energy saving culture making use of the energy at any
time along the day increasing the load volatility. Renewable
generation technologies are notmature in themarket, neither
are demand response or similar technologies.The generation
technologies used in the problem are selected considering
competitive technologies in terms of cost and ramping rates
into the problem; the technical values are obtained from
[8, 13] and presented in Table 3.The results compare the tradi-
tional economical LDC solution without ramping constraints
and the ramping constrained LDC methodology described
in Section 2.1. Three additional artificial scenarios shown in
Figure 4 are created based on the data set.The first scenario is
taken from the demand time series presented in Figure 3 and
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Table 3: Generation technologies cost and operational variables.

Gen. tech. Capital cost [$/kW] Fixed cost [$/kW] Variable cost [$/MWh] Life [years] Ramp rate [MW/h]
Coal 1700 34 36 40 240
OCGT 486 12 76 20 600
CCGT 855 21 53 30 360
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Figure 4: LDC scenarios.

the demand levels obtained from the discretization presented
in Section 2.1. The Δ𝑝 values of the first scenario correspond
to the values presented in Table 1.The remaining scenarios are
hypothetical and they are designed to stress the methodology
in front of positive and negative LDC and dynamics changes
as follows: second scenario presents a 10% growth in all
the blocks for the 𝑏𝑗 and Δ 𝑝 values assuming a positive
development in the country. The third scenario assumes an
additional 10% increase in block 1 and a 30% reduction in
block 2. Finally, the fourth scenario simulates a 10% growth
in block 3 load.

5.1. Economic and Ramping Constrained Comparison. The
installed capacities for each solution are presented in Figure 5
and the generation mix use for each scenario is presented
in Figures 6 and 7; the traditional model without ramping
constraints and the proposed ramping constrained model
provides the same solution for the first scenario: a base load
technology operating in blocks 𝑏2 and 𝑏3 with higher energy
demand.AnOCGT (open-cycle gas turbine) generation plant
is the choice in the 𝑏1 block providing the energy with a
higher cost but the lowest install capacity cost (see Figures
5 and 6). In this solution, the same technology mix meets
the ramping requirements. Then, in scenario number two,
the absence of ramping constrains increases the installed
capacity mix of scenario 1 proportionally to the increase of
each demand level. The lack of ramping constraints makes
the solution blind to the dynamic changes of the demand. In
contrast, a noticeable change in the generationmix ismade by
the ramping constrained solution compensating the demand

increment using CCGT (combined-cycle gas turbine) in the
solution. This change increases the cost but represents the
lowest cost possible to meet the ramping requirements. The
trade-off between capacity and the response flexibility of the
system has been shown. Scenario three presents a particular
case where the classic and the ramping constraint solutions
are the same.The derivative value in this scenario is included
in the feasible region where the classic solution has his
optimal value. Scenario three shows that, in relaxed cases
where the dynamics are not so severe (low load values),
the classic and the ramping constrained solutions could be
the same. Finally, scenario four shows how a increment in
the base load can move the optimal point increasing the
coal installed capacity and generating the energy in all the
blocks onlywith the cheapest technology.The result generates
an interesting solution where a big installed capacity of a
slow generation technology could meet the imposed load
dynamics.

5.2. Model Predictive Control Results. The use of MPC as
generation investment planning tool results are presented. As
designed in 𝐴 matrix, the MPC should keep the installed
capacity between scenarios and increases the values if it is
needed. Comparing the installed capacity of the ramping
constrained solution with the MPC results in Figure 8, the
previous capacity values are preserved. When a previous
installed capacity is already built, the optimization has the
choice to turn off a particular technology and to pay the fixed
O&M cost and supply the energy with another technology.
The second scenario as seen in Section 5.1 pushes the system
to another technology mix including CCGT as base genera-
tion plant increasing the energy production cost. The MPC
keeps the previous coal capacity of scenario one and installs
a small CCGT installed capacity amount to fulfill the prob-
lem requirements. This behavior creates the opportunity to
include andmanage demand response technologies designed
to supply small amounts of energy with low installation cost.
Scenarios three and four present smaller load values. The
MPC keeps the previously installed capacities avoiding the
negative changes presented in Figure 5.

With the installed capacities described in Figure 8, the
MPC proposes a different energy generation mix for each
scenario presented in Figure 9. Now, having the installed
capacities and fixed O&M cost, stabilized generation costs
are the key to achieve the economic optimal. The dynamic
imposed to the installed capacity allows deciding, in the
planning horizon, which technology is themost appropriated
towork in a specific scenario selectingwhich plants should be
turned on or off. The strategy offers a planning tool making
use of the cheapest technology efficiently and covers high load
dynamics with fastest but expensive technologies.
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Figure 5: Traditional and ramping constrained installed capacities for each scenario.

Table 4: Economic cost comparison of the solutions.

S1 S2 S3 S4
Traditional 5.75𝑒 + 08 6.33𝑒 + 08 5.41𝑒 + 08 5.9𝑒 + 08
Ramping 5.75𝑒 + 08 7.83𝑒 + 08 5.41𝑒 + 08 5.94𝑒 + 08
MPC 5.75𝑒 + 08 6.44𝑒 + 08 5.53𝑒 + 08 5.92𝑒 + 08

Finally, the economic cost presented solutions are com-
pared in Table 4. The presented values correspond to the
objective function of each solution. As expected, the tradi-
tional solution is always the cheapest solution. The ramping
constraint increased the solution cost in scenarios two and
fourwhere the load and ramping condition increased. Finally,
the MPC faced the scenarios keeping the solution cost close
to the traditional solution but at the same time meeting
the solution cost. Finally, the MPC solution minimizes the
economic overall cost meeting the ramping constrains and
staying close to the traditional methodology cost.

6. Conclusions

The above presented work proposed an optimal generation
planning tool based on amodified GEP.TheGEP is improved
including a technical constraint that considers the generation
technologies ramp velocities and the load dynamics in the
optimization. The constraint includes the ramping values
of the generation technologies and mix them to satisfy a
design operating condition optimizing to the lowest cost
of the installed capacity and fixed and variable values cost
of the generation portfolio. Then, using MPC theory, the

optimal long-term planning problem is solved providing a
new generation mix that is reliable in front of load dynamics
and keeps a minimal economic cost. The LDC discretization
used in the GEP is improved minimizing the difference
between the LDC and three demand levels. As a result,
generated levels are used to classify the load time series
dynamics and also represent the expected energy required
by each level per year. This representation resumes the load
and the demand peaks per year with a few values allowing
the easy integration of several data sources as stochastic
models, expert knowledge, or even fictional scenarios. This
provides a planning tool useful to analyze several cases
with low computational time. Presented discretization is not
suitable for real-time operation due to the assumption of
the ramp values in MW/h, when they usually are given in
orders of MW/min. Last, solving the proposed ramping con-
strainedmodel and comparing the solutionwith the exclusive
economic model applied to four scenarios, a comparison
of the performance is made. The comparison shows that
considering the generation technology ramp velocities in the
technology mix problem defines a new optimal solution cost.
The new solution provides a reliable generation mix design
able to fulfill the system power changes imposed by the load
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Figure 6: Traditional solution use for each scenario.
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Figure 7: Ramping constrained solution use for each scenario.

dynamics. Then, using the MPC methodology, the model
is used to create an optimal generation investment plan.
The MPC formulation provides a vector with the optimal
solutions for all the scenarios in the order of seconds. The
methodology deals with the uncertainties of the LDC forecast
considering past and future values of the variables tomake an

technical and economical GEP solution. The MPC strategy
found an optimal economic solution including the ramping
constraints into the problem. Mixing the operation of slow
and fast generation technologies, the strategy minimized the
installed capacity changes, meeting the load requirements by
keeping the economic cost close to the traditional solution.
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Figure 8: MPC solution: installed capacity for each scenario.
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