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We investigate the existence of multiple positive solutions of fractional differential equations with 𝑝-Laplacian operator
𝐷
𝛽

𝑎+
(𝜙𝑝(𝐷

𝛼
𝑎+𝑢(𝑡))) = 𝑓(𝑡, 𝑢(𝑡)), 𝑎 < 𝑡 < 𝑏, 𝑢(𝑗)(𝑎) = 0, 𝑗 = 0, 1, 2, . . . , 𝑛 − 2, 𝑢(𝛼1)(𝑏) = 𝜉𝑢

(𝛼
1
)
(𝜂), 𝜙𝑝(𝐷

𝛼
𝑎+𝑢(𝑎)) = 0 =

𝐷
𝛽
1

𝑎+
(𝜙𝑝(𝐷

𝛼
𝑎+𝑢(𝑏))), where 𝛽 ∈ (1, 2], 𝛼 ∈ (𝑛 − 1, 𝑛], 𝑛 ≥ 3, 𝜉 ∈ (0,∞), 𝜂 ∈ (𝑎, 𝑏), 𝛽1 ∈ (0, 1], 𝛼1 ∈ {1, 2, . . . , 𝛼 − 2} is a fixed

integer, and 𝜙𝑝(𝑠) = |𝑠|
𝑝−2

𝑠, 𝑝 > 1, 𝜙
−1
𝑝 = 𝜙𝑞, (1/𝑝) + (1/𝑞) = 1, by applying Leggett–Williams fixed point theorems and fixed

point index theory.

1. Introduction

The goal of differential equations is to understand the
phenomena of nature by developing mathematical models.
Fractional calculus is the field of mathematical analysis,
which deals with investigation and applications of derivatives
and integrals of an arbitrary order. Among all, a class
of differential equations governed by nonlinear differential
operators appears frequently and generated a great deal of
interest in studying such problems. In this theory, the most
applicable operator is the classical 𝑝-Laplacian, given by
𝜙𝑝(𝑢) = |𝑢|

𝑝−2
, 𝑝 > 1.

The positive solutions of boundary value problems asso-
ciated with ordinary differential equations were studied by
many authors [1–4] and extended to 𝑝-Laplacian boundary
value problems [5–8]. Later, these results are further extended
to fractional order boundary value problems [9–12] by
applying various fixed point theorems on cones. Recently,
researchers are concentrating on the theory of fractional
order boundary value problems associated with 𝑝-Laplacian
operator [13–19]. The above few papers motivated this work.

In this paper, we are concerned with the existence of
multiple positive solutions for the fractional differential
equation with 𝑝-Laplacian operator

𝐷
𝛽

𝑎+
(𝜙𝑝 (𝐷

𝛼
𝑎+𝑢 (𝑡))) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑎 < 𝑡 < 𝑏, (1)

with the boundary conditions

𝑢
(𝑗)
(𝑎) = 0, 𝑗 = 0, 1, 2, . . . , 𝑛 − 2,

𝑢
(𝛼
1
)
(𝑏) = 𝜉𝑢

(𝛼
1
)
(𝜂) ,

𝜙𝑝 (𝐷
𝛼
𝑎+𝑢 (𝑎)) = 𝐷

𝛽
1

𝑎+
(𝜙𝑝 (𝐷

𝛼
𝑎+𝑢 (𝑏))) = 0,

(2)

where 𝜙𝑝(𝑠) = |𝑠|
𝑝−2

𝑠, 𝑝 > 1, 𝜙−1𝑝 = 𝜙𝑞, (1/𝑝) + (1/𝑞) = 1,
𝛽 ∈ (1, 2], 𝛼 ∈ (𝑛 − 1, 𝑛], 𝑛 ≥ 3, 𝛽1 ∈ (0, 1], 𝛼1 ∈ [1, 𝛼 − 2]

is a fixed integer, and 𝜉 ∈ (0,∞), 𝜂 ∈ (𝑎, 𝑏) are constants.
The function 𝑓 : [𝑎, 𝑏] × 𝑅

+
→ 𝑅
+ is continuous and 𝐷𝛼𝑎+ ,

𝐷
𝛽

𝑎+
,𝐷𝛽1
𝑎+
are the standard Riemann-Liouville fractional order

derivatives.
The rest of this paper is organized as follows. In Section 2,

the Green functions for the homogeneous BVPs correspond-
ing to (1)-(2) are constructed and the bounds for the Green
functions are estimated. In Section 3, sufficient conditions for
the existence of at least two or at least three positive solutions
are established, by using fixed point index theory andLeggett-
Williams fixed point theorems. In Section 4, as an application,
an example is presented to illustrate our main result.
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2. Green’s Function and Bounds

In this section, we construct Green’s function for the homo-
geneous boundary value problem and estimate bounds for
Green’s function that will be used to prove our main theo-
rems.

Let 𝐺(𝑡, 𝑠) be Green’s function for the homogeneous BVP

−𝐷
𝛼
𝑎+𝑢 (𝑡) = 0, 𝑎 < 𝑡 < 𝑏,

𝑢
(𝑗)
(𝑎) = 0, 0 ≤ 𝑗 ≤ 𝑛 − 2,

𝑢
(𝛼
1
)
(𝑏) = 𝜉𝑢

(𝛼
1
)
(𝜂) .

(3)

Lemma 1. Let 𝑑 = (𝑏 − 𝑎)
𝛼−𝛼
1
−1
− 𝜉(𝜂 − 𝑎)

𝛼−𝛼
1
−1

> 0. If 𝑦 ∈

𝐶[𝑎, 𝑏], then the fractional order BVP

𝐷
𝛼
𝑎+𝑢 (𝑡) + 𝑦 (𝑡) = 0, 𝑎 < 𝑡 < 𝑏, (4)

𝑢
(𝑗)
(𝑎) = 0, 0 ≤ 𝑗 ≤ 𝑛 − 2,

𝑢
(𝛼
1
)
(𝑏) = 𝜉𝑢

(𝛼
1
)
(𝜂)

(5)

has a unique solution, 𝑢(𝑡) = ∫
𝑏

𝑎
𝐺(𝑡, 𝑠)𝑦(𝑠)𝑑𝑠, where

𝐺 (𝑡, 𝑠) = 𝐺1 (𝑡, 𝑠) +
𝜉 (𝑡 − 𝑎)

𝛼−1

𝑑
𝐺2 (𝜂, 𝑠) ;

(6)

here

𝐺1 (𝑡, 𝑠) =
1

Γ (𝛼)

⋅

{{{{

{{{{

{

(𝑡 − 𝑎)
𝛼−1

(𝑏 − 𝑠)
𝛼−𝛼
1
−1

(𝑏 − 𝑎)
𝛼−𝛼
1
−1

, 𝑎 ≤ 𝑡 ≤ 𝑠 ≤ 𝑏,

(𝑡 − 𝑎)
𝛼−1

(𝑏 − 𝑠)
𝛼−𝛼
1
−1

(𝑏 − 𝑎)
𝛼−𝛼
1
−1

− (𝑡 − 𝑠)
𝛼−1

, 𝑎 ≤ 𝑠 ≤ 𝑡 ≤ 𝑏,

𝐺2 (𝜂, 𝑠) =
1

Γ (𝛼)

⋅

{{{{{

{{{{{

{

(𝜂 − 𝑎)
𝛼−𝛼
1
−1
(𝑏 − 𝑠)

𝛼−𝛼
1
−1

(𝑏 − 𝑎)
𝛼−𝛼
1
−1

, 𝜂 ≤ 𝑠 ≤ 𝑏,

(𝜂 − 𝑎)
𝛼−𝛼
1
−1
(𝑏 − 𝑠)

𝛼−𝛼
1
−1

(𝑏 − 𝑎)
𝛼−𝛼
1
−1

− (𝜂 − 𝑠)
𝛼−𝛼
1
−1
, 𝑎 ≤ 𝑠 ≤ 𝜂.

(7)

Proof. Assume that 𝑢 ∈ 𝐶[𝛼]+1[𝑎, 𝑏] is a solution of fractional
order BVP (4)-(5) and is uniquely expressed as 𝐼𝛼𝑎+𝐷

𝛼
𝑎+𝑢(𝑡) =

−𝐼
𝛼
𝑎+𝑦(𝑡), so that

𝑢 (𝑡) =
−1

Γ (𝛼)
∫

𝑡

𝑎
(𝑡 − 𝑠)

𝛼−1
𝑦 (𝑠) 𝑑𝑠 + 𝑐1 (𝑡 − 𝑎)

𝛼−1

+ 𝑐2 (𝑡 − 𝑎)
𝛼−2

+ ⋅ ⋅ ⋅ + 𝑐𝑛 (𝑡 − 𝑎)
𝛼−𝑛

.

(8)

From 𝑢
(𝑗)
(𝑎) = 0, 0 ≤ 𝑗 ≤ 𝑛 − 2, we have 𝑐𝑛 = 𝑐𝑛−1 = 𝑐𝑛−2 =

⋅ ⋅ ⋅ = 𝑐2 = 0. Then

𝑢 (𝑡) =
−1

Γ (𝛼)
∫

𝑡

𝑎
(𝑡 − 𝑠)

𝛼−1
𝑦 (𝑠) 𝑑𝑠 + 𝑐1 (𝑡 − 𝑎)

𝛼−1
,

𝑢
(𝛼
1
)
(𝑡) = 𝑐1

𝛼
1

∏

𝑖=1

(𝛼 − 𝑖) (𝑡 − 𝑎)
𝛼−𝛼
1
−1

−

𝛼
1

∏

𝑖=1

(𝛼 − 𝑖)
1

Γ (𝛼)
∫

𝑡

𝑎
(𝑡 − 𝑠)

𝛼−𝛼
1
−1
𝑦 (𝑠) 𝑑𝑠.

(9)

From 𝑢
(𝛼
1
)
(𝑏) = 𝜉𝑢

(𝛼
1
)
(𝜂), we have

𝑐1

𝛼
1

∏

𝑖=1

(𝛼 − 𝑖) (𝑏 − 𝑎)
𝛼−𝛼
1
−1
−

𝛼
1

∏

𝑖=1

(𝛼 − 𝑖)
1

Γ (𝛼)

⋅ ∫

𝑏

𝑎
(𝑏 − 𝑠)

𝛼−𝛼
1
−1
𝑦 (𝑠) 𝑑𝑠

= 𝜉 [𝑐1

𝛼
1

∏

𝑖=1

(𝛼 − 𝑖) (𝜂 − 𝑎)
𝛼−𝛼
1
−1

−

𝛼
1

∏

𝑖=1

(𝛼 − 𝑖)
1

Γ (𝛼)
∫

𝜂

𝑎
(𝜂 − 𝑠)

𝛼−𝛼
1
−1
𝑦 (𝑠) 𝑑𝑠] .

(10)

Therefore

𝑐1 =
1

Γ (𝛼) [(𝑏 − 𝑎)
𝛼−𝛼
1
−1
− 𝜉 (𝜂 − 𝑎)

𝛼−𝛼
1
−1
]

× [∫

𝑏

𝑎
(𝑏 − 𝑠)

𝛼−𝛼
1
−1
𝑦 (𝑠) 𝑑𝑠

− 𝜉∫

𝜂

𝑎
(𝜂 − 𝑠)

𝛼−𝛼
1
−1
𝑦 (𝑠) 𝑑𝑠] =

1

Γ (𝛼) [(𝑏 − 𝑎)
𝛼−𝛼
1
−1
]

⋅ ∫

𝑏

𝑎
(𝑏 − 𝑠)

𝛼−𝛼
1
−1
𝑦 (𝑠) 𝑑𝑠

+
𝜉 (𝜂 − 𝑎)

𝛼−𝛼
1
−1

Γ (𝛼) (𝑏 − 𝑎)
𝛼−𝛼
1
−1
[(𝑏 − 𝑎)

𝛼−𝛼
1
−1
− 𝜉 (𝜂 − 𝑎)

𝛼−𝛼
1
−1
]

⋅ ∫

𝑏

𝑎
(𝑏 − 𝑠)

𝛼−𝛼
1
−1
𝑦 (𝑠) 𝑑𝑠

−
𝜉

Γ (𝛼) [(𝑏 − 𝑎)
𝛼−𝛼
1
−1
− 𝜉 (𝜂 − 𝑎)

𝛼−𝛼
1
−1
]

⋅ ∫

𝜂

𝑎
(𝜂 − 𝑠)

𝛼−𝛼
1
−1
𝑦 (𝑠) 𝑑𝑠 =

1

Γ (𝛼) (𝑏 − 𝑎)
𝛼−𝛼
1
−1

⋅ ∫

𝑏

𝑎
(𝑏 − 𝑠)

𝛼−𝛼
1
−1
𝑦 (𝑠) 𝑑𝑠

+
𝜉

[(𝑏 − 𝑎)
𝛼−𝛼
1
−1
− 𝜉 (𝜂 − 𝑎)

𝛼−𝛼
1
−1
]

⋅ ∫

𝑏

𝑎
𝐺2 (𝜂, 𝑠) 𝑦 (𝑠) 𝑑𝑠.

(11)
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Thus, the unique solution of (4)-(5) is

𝑢 (𝑡) =
−1

Γ (𝛼)
∫

𝑡

𝑎
(𝑡 − 𝑠)

𝛼−1
𝑦 (𝑠) 𝑑𝑠

+
(𝑡 − 𝑎)

𝛼−1

Γ (𝛼) (𝑏 − 𝑎)
𝛼−𝛼
1
−1
∫

𝑏

𝑎
(𝑏 − 𝑠)

𝛼−𝛼
1
−1
𝑦 (𝑠) 𝑑𝑠

+
𝜉 (𝑡 − 𝑎)

𝛼−1

[(𝑏 − 𝑎)
𝛼−𝛼
1
−1
− 𝜉 (𝜂 − 𝑎)

𝛼−𝛼
1
−1
]

⋅ ∫

𝑏

𝑎
𝐺2 (𝜂, 𝑠) 𝑦 (𝑠) 𝑑𝑠 = ∫

𝑏

𝑎
𝐺1 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠

+
𝜉 (𝑡 − 𝑎)

𝛼−1

[(𝑏 − 𝑎)
𝛼−𝛼
1
−1
− 𝜉 (𝜂 − 𝑎)

𝛼−𝛼
1
−1
]

⋅ ∫

𝑏

𝑎
𝐺2 (𝜂, 𝑠) 𝑦 (𝑠) 𝑑𝑠 = ∫

𝑏

𝑎
𝐺 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠,

(12)

where 𝐺(𝑡, 𝑠) is given in (6).

Lemma 2. If ℎ ∈ 𝐶[𝑎, 𝑏], then the fractional order differential
equation

𝐷
𝛽

𝑎+
(𝜙𝑝 (𝐷

𝛼
𝑎+𝑢 (𝑡))) = ℎ (𝑡) , 𝑎 < 𝑡 < 𝑏, (13)

satisfying (5) and

𝜙𝑝 (𝐷
𝛼
𝑎+𝑢 (𝑎)) = 0,

𝐷
𝛽
1

𝑎+
(𝜙𝑝 (𝐷

𝛼
𝑎+𝑢 (𝑏))) = 0

(14)

has a unique solution,

𝑢 (𝑡) = ∫

𝑏

𝑎
𝐺 (𝑡, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝑠, 𝜏) ℎ (𝜏) 𝑑𝜏)𝑑𝑠, (15)

where

𝐻(𝑡, 𝑠) =
1

Γ (𝛽)

⋅

{{{{{

{{{{{

{

(𝑡 − 𝑎)
𝛽−1

(𝑏 − 𝑠)
𝛽−𝛽
1
−1

(𝑏 − 𝑎)
𝛽−𝛽
1
−1

, 𝑎 ≤ 𝑡 ≤ 𝑠 ≤ 𝑏,

(𝑡 − 𝑎)
𝛽−1

(𝑏 − 𝑠)
𝛽−𝛽
1
−1

(𝑏 − 𝑎)
𝛽−𝛽
1
−1

− (𝑡 − 𝑠)
𝛽−1

, 𝑎 ≤ 𝑠 ≤ 𝑡 ≤ 𝑏.

(16)

Here𝐻(𝑡, 𝑠) is Green’s function for

−𝐷
𝛽

𝑎+
(𝜙𝑝 (𝑥 (𝑡))) = 0, 𝑎 < 𝑡 < 𝑏,

𝜙𝑝 (𝑥 (𝑎)) = 0,

𝐷
𝛽
1

𝑎+
(𝜙𝑝 (𝑥 (𝑏))) = 0.

(17)

Proof. An equivalent integral equation for (13) is given by

𝜙𝑝 (𝐷
𝛼
𝑎+𝑢 (𝑡)) =

1

Γ (𝛽)
∫

𝑡

𝑎
(𝑡 − 𝜏)

𝛽−1
ℎ (𝜏) 𝑑𝜏

+ 𝑐1 (𝑡 − 𝑎)
𝛽−1

+ 𝑐2 (𝑡 − 𝑎)
𝛽−2

.

(18)

By (14), one can determine 𝑐2 = 0 and 𝑐1 = (−1/(𝑏 −

𝑎)
𝛽−𝛽
1
−1
)(1/Γ(𝛽)) ∫

𝑏

𝑎
(𝑏 − 𝜏)

𝛽−𝛽
1
−1
ℎ(𝜏)𝑑𝜏.

Thus, the unique solution of (13), (2) is

𝜙𝑝 (𝐷
𝛼
𝑎+𝑢 (𝑡))

=
1

Γ (𝛽)
∫

𝑡

𝑎
(𝑡 − 𝜏)

𝛽−1
ℎ (𝜏) 𝑑𝜏

−
(𝑡 − 𝑎)

𝛽−1

(𝑏 − 𝑎)
𝛽−𝛽
1
−1

1

Γ (𝛽)
∫

𝑏

𝑎
(𝑏 − 𝜏)

𝛽−𝛽
1
−1
ℎ (𝜏) 𝑑𝜏

= −∫

𝑏

𝑎
𝐻(𝑡, 𝜏) ℎ (𝜏) 𝑑𝜏.

(19)

Therefore, 𝜙−1𝑝 (𝜙𝑝(𝐷
𝛼
𝑎+𝑢(𝑡))) = −𝜙

−1
𝑝 (∫
𝑏

𝑎
𝐻(𝑡, 𝜏)ℎ(𝜏)𝑑𝜏). Con-

sequently,𝐷𝛼𝑎+𝑢(𝑡) + 𝜙𝑞(∫
𝑏

𝑎
𝐻(𝑡, 𝜏)ℎ(𝜏)𝑑𝜏) = 0.

Hence,

𝑢 (𝑡) = ∫

𝑏

𝑎
𝐺 (𝑡, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝑠, 𝜏) ℎ (𝜏) 𝑑𝜏)𝑑𝑠. (20)

Lemma 3. Green’s function 𝐺(𝑡, 𝑠) satisfies the following
inequalities:

(i) 𝐺(𝑡, 𝑠) ≤ 𝐺(𝑏, 𝑠), 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑡, 𝑠) ∈ [𝑎, 𝑏] × [𝑎, 𝑏],

(ii) 𝐺(𝑡, 𝑠) ≥ ((𝜂 − 𝑎)/(𝑏 − 𝑎))
𝛼−1

𝐺(𝑏, 𝑠), 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑡, 𝑠) ∈

[𝜂, 𝑏] × [𝑎, 𝑏].

Proof. Consider Green’s function given by (6).
Let 𝑎 ≤ 𝑡 ≤ 𝑠 ≤ 𝑏. Then, we have

𝜕

𝜕𝑡
𝐺1 (𝑡, 𝑠) =

1

Γ (𝛼 − 1)
[
(𝑡 − 𝑎)

𝛼−2
(𝑏 − 𝑠)

𝛼−𝛼
1
−1

(𝑏 − 𝑎)
𝛼−𝛼
1
−1

]

≥
𝑡
𝛼−2

Γ (𝛼 − 1)
[
(1 − 𝑎)

𝛼−2
𝑏
𝛼−𝛼
1
+1
(1 − (1 − 𝛼1) 𝑠 + 𝑂 (𝑠

2
))

(𝑏 − 𝑎)
𝛼−𝛼
1
−1

]

⋅ (1 − 𝑠)
𝛼−2

≥ 0.

(21)
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Let 𝑎 ≤ 𝑠 ≤ 𝑡 ≤ 𝑏. Then, we have

𝜕

𝜕𝑡
𝐺1 (𝑡, 𝑠) =

1

Γ (𝛼 − 1)
[
(𝑡 − 𝑎)

𝛼−2
(𝑏 − 𝑠)

𝛼−𝛼
1
−1

(𝑏 − 𝑎)
𝛼−𝛼
1
−1

− (𝑡 − 𝑠)
𝛼−2

]

≥
𝑡
𝛼−2

Γ (𝛼 − 1)
[
(1 − 𝑎)

𝛼−2
𝑏
𝛼−𝛼
1
+1
(1 − (1 − 𝛼1) 𝑠 + 𝑂 (𝑠

2
)) − (𝑏 − 𝑎)

𝛼−𝛼
1
−1

(𝑏 − 𝑎)
𝛼−𝛼
1
−1

] (1 − 𝑠)
𝛼−2

≥ 0.

(22)

Therefore 𝐺1(𝑡, 𝑠) is increasing in 𝑡, which implies 𝐺1(𝑡, 𝑠) ≤
𝐺1(𝑏, 𝑠).

Now we prove

𝐺2 (𝜂, 𝑠) ≥ 0, 𝑠 ∈ [𝑎, 𝑏] . (23)

In fact, if 𝑠 ≥ 𝜂, obviously, (23) holds. If 𝑠 ≤ 𝜂, one has

𝐺2 (𝜂, 𝑠) =
1

Γ (𝛼)
[
(𝜂 − 𝑎)

𝛼−𝛼
1
−1
(𝑏 − 𝑠)

𝛼−𝛼
1
−1

(𝑏 − 𝑎)
𝛼−𝛼
1
−1

− (𝜂 − 𝑠)
𝛼−𝛼
1
−1
]

≥
1

Γ (𝛼)
[
(𝜂 − 𝑎)

𝛼−𝛼
1
−1
(𝑏 − 𝑠)

𝛼−𝛼
1
−1
− (𝜂 − 𝜂𝑠)

𝛼−𝛼
1
−1
(𝑏 − 𝑎)

𝛼−𝛼
1
−1

(𝑏 − 𝑎)
𝛼−𝛼
1
−1

] ≥ 0.

(24)

That implies that (23) is also true. Therefore, by (6), (21), and
(23), we find

𝜕

𝜕𝑡
𝐺 (𝑡, 𝑠) =

𝜕

𝜕𝑡
𝐺1 (𝑡, 𝑠) +

(𝛼 − 1) 𝜉 (𝑡 − 𝑎)
𝛼−2

𝑑
𝐺2 (𝜂, 𝑠)

≥ 0.

(25)

Therefore𝐺(𝑡, 𝑠) is increasingwith respect to 𝑡 ∈ [𝑎, 𝑏]. Hence
the inequality (i) is proved. Now, we establish the inequality
(ii).

On the other hand, if 𝑎 ≤ 𝑠 ≤ 𝑡 ≤ 𝑏, we have

𝐺1 (𝑡, 𝑠)

=
1

Γ (𝛼)
[
(𝑡 − 𝑎)

𝛼−1
(𝑏 − 𝑠)

𝛼−𝛼
1
−1

(𝑏 − 𝑎)
𝛼−𝛼
1
−1

− (𝑡 − 𝑠)
𝛼−1

]

≥
1

Γ (𝛼)
(
𝑡 − 𝑎

𝑏 − 𝑎
)

𝛼−1

⋅ [
(𝑏 − 𝑎)

𝛼−1
(𝑏 − 𝑠)

𝛼−𝛼
1
−1

(𝑏 − 𝑎)
𝛼−𝛼
1
−1

− (𝑏 − 𝑠)
𝛼−1

]

≥ (
𝜂 − 𝑎

𝑏 − 𝑎
)

𝛼−1

𝐺1 (𝑏, 𝑠) .

(26)

If 𝑎 ≤ 𝑡 ≤ 𝑠 ≤ 𝑏, we have

𝐺1 (𝑡, 𝑠) =
1

Γ (𝛼)
[
(𝑡 − 𝑎)

𝛼−1
(𝑏 − 𝑠)

𝛼−𝛼
1
−1

(𝑏 − 𝑎)
𝛼−𝛼
1
−1

]

=
1

Γ (𝛼)
(
𝑡 − 𝑎

𝑏 − 𝑎
)

𝛼−1

[
(𝑏 − 𝑎)

𝛼−1
(𝑏 − 𝑠)

𝛼−𝛼
1
−1

(𝑏 − 𝑎)
𝛼−𝛼
1
−1

]

≥ (
𝜂 − 𝑎

𝑏 − 𝑎
)

𝛼−1

𝐺1 (𝑏, 𝑠) .

(27)

Therefore

𝐺1 (𝑡, 𝑠) ≥ (
𝜂 − 𝑎

𝑏 − 𝑎
)

𝛼−1

𝐺1 (𝑏, 𝑠) . (28)

From (6) and (28) we have

𝐺 (𝑡, 𝑠) = 𝐺1 (𝑡, 𝑠) +
𝜉 (𝑡 − 𝑎)

𝛼−1

𝑑
𝐺2 (𝜂, 𝑠)

≥ (
𝜂 − 𝑎

𝑏 − 𝑎
)

𝛼−1

𝐺1 (𝑡, 𝑠) +
𝜉 (𝑡 − 𝑎)

𝛼−1

𝑑
𝐺2 (𝜂, 𝑠)

≥ (
𝜂 − 𝑎

𝑏 − 𝑎
)

𝛼−1

𝐺 (𝑏, 𝑠) .

(29)

Therefore

𝐺 (𝑡, 𝑠) ≥ (
𝜂 − 𝑎

𝑏 − 𝑎
)

𝛼−1

𝐺 (𝑏, 𝑠)

∀ (𝑡, 𝑠) ∈ [𝜂, 𝑏] × [𝑎, 𝑏] .

(30)

Hence the inequality (ii) is proved.
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Lemma 4. Green’s function 𝐻(𝑡, 𝑠) satisfies the following
inequalities:

(i) 𝐻(𝑡, 𝑠) ≤ 𝐻(𝑠, 𝑠), 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑡, 𝑠) ∈ [𝑎, 𝑏] × [𝑎, 𝑏],
(ii) 𝐻(𝑡, 𝑠) ≥ 𝛾𝐻(𝑠, 𝑠), 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑡, 𝑠) ∈ 𝐼 × [𝑎, 𝑏],

where 𝐼 = [(3𝑎 + 𝑏)/4, (𝑎 + 3𝑏)/4] and 𝛾 = (1/4)
𝛽−1.

The method of proof is similar to that [20], and we omit
it here.

Theorem 5 (Leggett-Williams [3]). Let 𝑇 : 𝑃𝑐 → 𝑃𝑐 be
completely continuous and let 𝜙 be a nonnegative continuous
concave functional on 𝑃 such that 𝜙(𝑦) ≤ ‖𝑦‖ for all 𝑦 ∈ 𝑃𝑐.
Suppose that there exist 𝑎, 𝑏, 𝑐, and 𝑑 with 0 < 𝑎 < 𝑏 < 𝑑 ≤ 𝑐

such that

(𝐴1) {𝑦 ∈ 𝑃(𝜙, 𝑏, 𝑑) : 𝜙(𝑦) > 𝑏} ̸= 0 and 𝜙(𝑇𝑦) > 𝑏 for
𝑦 ∈ 𝑃(𝜙, 𝑏, 𝑑),

(𝐴2) ‖𝑇𝑦‖ < 𝑎 for ‖𝑦‖ ≤ 𝑎,
(𝐴3) 𝜙(𝑇𝑦) > 𝑏 for 𝑦 ∈ 𝑃(𝜙, 𝑏, 𝑐)with ‖𝑇𝑦‖ > 𝑑.Then𝑇 has

at least three fixed points 𝑦1, 𝑦2, and 𝑦3 in 𝑃𝑐 satisfying
‖𝑦1‖ < 𝑎, 𝑏 < 𝜙(𝑦2), ‖𝑦3‖ > 𝑎, and 𝜙(𝑦3) < 𝑏.

Theorem 6 (see [3]). Let 𝑇 : 𝑃𝑐 → 𝑃 be a completely
continuous operator and let 𝜙 be a nonnegative continuous
concave functional on 𝑃 such that 𝜙(𝑦) ≤ ‖𝑦‖ for all 𝑦 ∈ 𝑃𝑐.
Suppose that there exist 𝑎, 𝑏, and 𝑐 with 0 < 𝑎 < 𝑏 < 𝑐 such
that

(𝐵1) {𝑦 ∈ 𝑃(𝜙, 𝑏, 𝑐) : 𝜙(𝑦) > 𝑏} ̸= 0 and 𝜙(𝑇𝑦) > 𝑏 for
𝑦 ∈ 𝑃(𝜙, 𝑏, 𝑐),

(𝐵2) ‖𝑇𝑦‖ < 𝑎 for ‖𝑦‖ ≤ 𝑎,

(𝐵3) 𝜙(𝑇𝑦) > (𝑏/𝑐)‖𝑇𝑦‖ for 𝑦 ∈ 𝑃𝑐 with ‖𝑇𝑦‖ > 𝑐. Then 𝑇
has at least two fixed points 𝑦1 and 𝑦2 in 𝑃𝑐 satisfying
‖𝑦1‖ < 𝑎, ‖𝑦2‖ > 𝑎 and 𝜙(𝑦2) < 𝑏.

Theorem 7 (see [21]). Let 𝑃 be a closed convex set in a Banach
space𝐸 and letΩ be a bounded open set such thatΩ𝑝 fl Ω∩𝑃 ̸=

0. Let 𝑇 : Ω𝑝 → 𝑃 be a compact map. Suppose that 𝑥 ̸= 𝑇𝑥 for
all 𝑥 ∈ 𝜕𝑝:

(𝐶1) Existence: if 𝑖(𝑇, Ω𝑝, 𝑃) ̸= 0, then 𝑇 has a fixed point in
Ω𝑝.

(𝐶2) Normalization: if 𝑢 ∈ Ω𝑝, then 𝑖(𝑢̂, Ω𝑝, 𝑃) = 1, where
𝑢̂(𝑥) = 𝑢 for 𝑥 ∈ Ω𝑝.

(𝐶3) Homotopy: let V : [0, 1] × Ω𝑝 → 𝑃 be a compact map
such that 𝑥 ̸= V(𝑡, 𝑥) for 𝑥 ∈ 𝜕Ω𝑝 and 𝑡 ∈ [0, 1]. Then
𝑖(V(0, ⋅), Ω𝑝, 𝑃) = 𝑖(V(1, ⋅), Ω𝑝, 𝑃).

(𝐶4) Additivity: if𝑈1,𝑈2 are disjoint relatively open subsets
of Ω𝑝 such that 𝑥 ̸= 𝑇𝑥 for 𝑥 ∈ Ω𝑝 \ (𝑈1 ∪ 𝑈2),
then 𝑖(𝑇, Ω𝑝, 𝑃) = 𝑖(𝑇, 𝑈1, 𝑃) + 𝑖(𝑇, 𝑈2, 𝑃), where
𝑖(𝑇, 𝑈𝑗, 𝑃) = 𝑖(𝑇 | 𝑢𝑗, 𝑈𝑗, 𝑃) (𝑗 = 1, 2).

Theorem8 (see [22]). Let𝑃 be a cone in a Banach space𝐸. For
𝑞 > 0, defineΩ𝑞 = {𝑥 ∈ 𝑃 : ‖𝑥‖ < 𝑞}. Assume that𝑇 : Ω𝑞 → 𝑃

is a compact map such that 𝑥 ̸= 𝑇𝑥 for 𝑥 ∈ 𝜕Ω𝑞. Thus, one has
the following conclusions:
(𝐷1) If ‖𝑥‖ < ‖𝑇𝑥‖ for 𝑥 ∈ 𝜕Ω𝑞, then 𝑖(𝑇, Ω𝑞, 𝑃) = 0.
(𝐷2) If ‖𝑥‖ ≥ ‖𝑇𝑥‖ for 𝑥 ∈ 𝜕Ω𝑞, then 𝑖(𝑇, Ω𝑞, 𝑃) = 1.

3. Main Results

In this section, the existence of at least two or at least three
positive solutions for fractional differential equation with
𝑝-Laplacian operator BVP (1)-(2) is established by using
fixed point index theory and Leggett-Williams fixed point
theorems.

Let 𝐸 = {𝑢 : 𝑢 ∈ 𝐶[𝑎, 𝑏]} be the real Banach space
equipped with the norm ‖𝑢‖ = max𝑡∈[𝑎,𝑏]|𝑢(𝑡)|. Define the
cone 𝑃 ⊂ 𝐸 by

𝑃 = {𝑢 ∈ 𝐸 : 𝑢 (𝑡) ≥ 0, ∀𝑡 ∈ [𝑎, 𝑏] , min
𝑡∈[𝜂,𝑏]

𝑢 (𝑡)

≥ (
𝜂 − 𝑎

𝑏 − 𝑎
)

𝛼−1

‖𝑢‖} .

(31)

Let 𝑇 : 𝑃 → 𝐸 be the operator defined by
𝑇𝑢 (𝑡)

= ∫

𝑏

𝑎
𝐺 (𝑡, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠.

(32)

If 𝑢 ∈ 𝑃 is a fixed point of 𝑇, then 𝑢 satisfies (32) and hence
𝑢 is a positive solution of 𝑝-Laplacian fractional order BVP
(1)-(2).

Lemma 9. The operator 𝑇 defined by (32) is a self-map on 𝑃.

Proof. Let 𝑢 ∈ 𝑃. Clearly, 𝑇𝑢(𝑡) ≥ 0, for all 𝑡 ∈ [𝑎, 𝑏] and

𝑇𝑢 (𝑡) = ∫

𝑏

𝑎
𝐺 (𝑡, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠

≤ ∫

𝑏

𝑎
𝐺 (𝑏, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠

(33)

so that

‖𝑇𝑢‖ ≤ ∫

𝑏

𝑎
𝐺 (𝑏, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠. (34)

On the other hand, by Lemma 3, we have

min
𝑡∈[𝜂,𝑏]

𝑇𝑢 (𝑡) = min
𝑡∈[𝜂,𝑏]

∫

𝑏

𝑎
𝐺 (𝑡, 𝑠)

⋅ 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠

≥ (
𝜂 − 𝑎

𝑏 − 𝑎
)

𝛼−1

∫

𝑏

𝑎
𝐺 (𝑏, 𝑠)

⋅ 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠

≥ (
𝜂 − 𝑎

𝑏 − 𝑎
)

𝛼−1

‖𝑇𝑢‖ .

(35)
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Hence 𝑇𝑢 ∈ 𝑃 and so 𝑇 : 𝑃 → 𝑃. Standard argument
involving the Arzela-Ascoli theorem shows that 𝑇 is com-
pletely continuous.

For convenience of the reader, we denote

𝐴 =
2 ((𝑏 − 𝑎) / (𝜂 − 𝑎))

𝛼−1

∫
𝑏

𝜂
𝐺 (𝜂, 𝑠) 𝜙𝑞 (∫𝜏∈𝐼

𝛾𝐻 (𝜏, 𝜏) 𝑑𝜏) 𝑑𝑠

,

𝐵 =
1

∫
𝑏

𝑎
𝐺 (𝑏, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝜏, 𝜏) 𝑑𝜏) 𝑑𝑠

,

𝑓0 = lim
𝑢→0+

min
𝑡∈[𝑎,𝑏]

𝑓 (𝑡, 𝑢)

𝜙𝑝 (𝑢)
,

𝑓∞ = lim
𝑢→∞

max
𝑡∈[𝑎,𝑏]

𝑓 (𝑡, 𝑢)

𝜙𝑝 (𝑢)
.

(36)

Theorem 10. Let𝑓(𝑡, 𝑢) be nonnegative continuous on [𝑎, 𝑏]×
[0,∞). Assume that there exist constants 𝑎󸀠, 𝑏󸀠 with 𝑏󸀠 > 𝑎

󸀠
> 0

such that the following conditions are satisfied:

(𝐻1) 𝑓(𝑡, 𝑢(𝑡)) ≥ 𝜙𝑝(𝐴𝑏
󸀠
) for all (𝑡, 𝑢) ∈ [𝜂, 𝑏] × [𝑏󸀠, 𝑏󸀠((𝑏 −

𝑎)/(𝜂 − 𝑎))
2(𝛼−1)

].

(𝐻2) 𝑓(𝑡, 𝑢(𝑡)) < 𝜙𝑝(𝐵𝑎
󸀠
) for all (𝑡, 𝑢) ∈ [𝑎, 𝑏] × [0, 𝑎󸀠].

Then fractional order BVP (1)-(2) has at least two positive
solutions 𝑢1 and 𝑢2 satisfying ‖𝑢1‖ < 𝑎

󸀠, min𝑡∈[𝜂,𝑏]𝑢2(𝑡) < 𝑏
󸀠,

and ‖𝑢2‖ > 𝑎
󸀠.

Proof. Let 𝜃 : 𝑃 → [0,∞) be the nonnegative continuous
concave functional defined by 𝜃(𝑢) = min𝑡∈[𝜂,𝑏]𝑢(𝑡), 𝑢 ∈ 𝑃.
Evidently, for each 𝑢 ∈ 𝑃, we have 𝜃(𝑢) ≤ ‖𝑢‖.

It is easy to see that 𝑇 : 𝑃𝑏󸀠((𝑏−𝑎)/(𝜂−𝑎))2(𝛼−1) → 𝑃 is
completely continuous and 𝑏󸀠((𝑏 − 𝑎)/(𝜂 − 𝑎))

2(𝛼−1)
> 𝑏
󸀠
>

𝑎
󸀠
> 0. We choose 𝑢(𝑡) = 𝑏

󸀠
((𝑏 − 𝑎)/(𝜂 − 𝑎))

2(𝛼−1); then

𝑢 ∈ 𝑃(𝜃, 𝑏
󸀠
, 𝑏
󸀠
(
𝑏 − 𝑎

𝜂 − 𝑎
)

2(𝛼−1)

) ,

𝜃 (𝑢) = 𝑏
󸀠
(
𝑏 − 𝑎

𝜂 − 𝑎
)

2(𝛼−1)

> 𝑏
󸀠
.

(37)

So {𝑢 ∈ 𝑃(𝜃, 𝑏
󸀠
, 𝑏
󸀠
((𝑏 − 𝑎)/(𝜂 − 𝑎))

2(𝛼−1)
) | 𝜃(𝑢) > 𝑏

󸀠
} ̸= 0.

Hence, if 𝑢 ∈ 𝑃(𝜃, 𝑏󸀠, 𝑏󸀠((𝑏−𝑎)/(𝜂−𝑎))2(𝛼−1)), then 𝑏󸀠 ≤ 𝑢(𝑡) ≤

𝑏
󸀠
((𝑏 − 𝑎)/(𝜂 − 𝑎))

2(𝛼−1) for 𝑡 ∈ [𝜂, 𝑏]. Thus for 𝑡 ∈ [𝜂, 𝑏], from
assumption (𝐻1), we have

𝑇𝑢 (𝜂)

= ∫

𝑏

𝑎
𝐺 (𝜂, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠

≥ ∫

𝑏

𝜂
𝐺 (𝜂, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠

≥ 𝐴𝑏
󸀠
∫

𝑏

𝜂
𝐺 (𝜂, 𝑠) 𝜙𝑞 (∫

𝜏∈𝐼
𝛾𝐻 (𝜏, 𝜏) 𝑑𝜏) 𝑑𝑠

= 2𝑏
󸀠
(
𝑏 − 𝑎

𝜂 − 𝑎
)

𝛼−1

> 𝑏
󸀠
(
𝑏 − 𝑎

𝜂 − 𝑎
)

𝛼−1

.

(38)
Consequently,

min
𝑡∈[𝜂,𝑏]

𝑇𝑢 (𝑡) ≥ (
𝜂 − 𝑎

𝑏 − 𝑎
)

𝛼−1

‖𝑇𝑢‖

> (
𝜂 − 𝑎

𝑏 − 𝑎
)

𝛼−1

× 𝑏
󸀠
(
𝑏 − 𝑎

𝜂 − 𝑎
)

𝛼−1

= 𝑏
󸀠

(39)

for 𝜂 ≤ 𝑡 ≤ 𝑏, 𝑏
󸀠
≤ 𝑢(𝑡) ≤ 𝑏

󸀠
((𝑏 − 𝑎)/(𝜂 − 𝑎))

2(𝛼−1). That is,

𝜃 (𝑇𝑢) > 𝑏
󸀠
, ∀𝑢 ∈ 𝑃(𝜃, 𝑏

󸀠
, 𝑏
󸀠
(
𝑏 − 𝑎

𝜂 − 𝑎
)

2(𝛼−1)

) . (40)

Therefore, condition (𝐵1) of Theorem 6 is satisfied. Now if
𝑢 ∈ 𝑃𝑎󸀠 , then ‖𝑢‖ ≤ 𝑎

󸀠. By assumption (𝐻2), we have

‖𝑇𝑢‖ = max
𝑡∈[𝑎,𝑏]

|𝑇𝑢 (𝑡)| = max
𝑡∈[𝑎,𝑏]

[∫

𝑏

𝑎
𝐺 (𝑡, 𝑠) 𝜙𝑞

⋅ (∫

𝑏

𝑎
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠] ≤ ∫

𝑏

𝑎
𝐺 (𝑏, 𝑠)

⋅ 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝜏, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠

< 𝐵𝑎
󸀠
∫

𝑏

𝑎
𝐺 (𝑏, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝜏, 𝜏) 𝑑𝜏)𝑑𝑠 = 𝑎

󸀠
,

(41)

which shows that 𝑇 : 𝑃𝑎󸀠 → 𝑃𝑎󸀠 , that is, ‖𝑇𝑢‖ < 𝑎
󸀠 for

𝑢 ∈ 𝑃𝑎󸀠 . This shows that condition (𝐵2) of Theorem 6 is
satisfied. Finally, we show that (𝐵3) of Theorem 6 also holds.
Assume that 𝑢 ∈ 𝑃𝑏󸀠((𝑏−𝑎)/(𝜂−𝑎))2(𝛼−1) with ‖𝑇𝑢‖ > 𝑏

󸀠
((𝑏−𝑎)/(𝜂−

𝑎))
2(𝛼−1); then by the definition of cone 𝑃, we have

𝜃 (𝑇𝑢) = min
𝑡∈[𝜂,𝑏]

𝑇𝑢 (𝑡) ≥ (
𝜂 − 𝑎

𝑏 − 𝑎
)

(𝛼−1)

‖𝑇𝑢‖

> (
𝜂 − 𝑎

𝑏 − 𝑎
)

2(𝛼−1)

‖𝑇𝑢‖

=
𝑏
󸀠

𝑏󸀠 ((𝑏 − 𝑎) / (𝜂 − 𝑎))
2(𝛼−1)

‖𝑇𝑢‖ .

(42)

So condition (𝐵3) of Theorem 6 is satisfied. Thus using
Theorem 6, 𝑇 has at least two fixed points. Consequently,
boundary value problem (1)-(2) has at least two positive
solutions 𝑢1 and 𝑢2 in 𝑃𝑏󸀠((𝑏−𝑎)/(𝜂−𝑎))2(𝛼−1) satisfying

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩 < 𝑎
󸀠
,

min
𝑡∈[𝜂,𝑏]

𝑢2 (𝑡) < 𝑏
󸀠
,

󵄩󵄩󵄩󵄩𝑢2
󵄩󵄩󵄩󵄩 > 𝑎
󸀠
.

(43)
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Theorem 11. Let 𝑓(𝑡, 𝑢) be nonnegative continuous on [𝑎, 𝑏] ×
[0,∞). Assume that there exist constants 𝑎󸀠, 𝑏󸀠, 𝑐󸀠 with ((𝜂 −
𝑎)/(𝑏 − 𝑎))

2(𝛼−1)
𝑐
󸀠
> 𝑏
󸀠
> 𝑎
󸀠
> 0 such that

(𝐻3) 𝑓(𝑡, 𝑢(𝑡)) < 𝜙𝑝(𝐵𝑎
󸀠
) for all (𝑡, 𝑢) ∈ [𝑎, 𝑏] × [0, 𝑎󸀠],

(𝐻4) 𝑓(𝑡, 𝑢(𝑡)) ≥ 𝜙𝑝(𝐴𝑏
󸀠
) for all (𝑡, 𝑢) ∈ [𝜂, 𝑏] × [𝑏󸀠, 𝑏󸀠((𝑏 −

𝑎)/(𝜂 − 𝑎))
2(𝛼−1)

],

(𝐻5) 𝑓(𝑡, 𝑢(𝑡)) ≤ 𝜙𝑝(𝐵𝑐
󸀠
) for all (𝑡, 𝑢) ∈ [𝑎, 𝑏] × [0, 𝑐󸀠].

Then fractional order BVP (1)-(2) has at least three positive
solutions 𝑢1, 𝑢2, and 𝑢3 with ‖𝑢1‖ < 𝑎

󸀠, min𝑡∈[𝜂,𝑏]𝑢2(𝑡) > 𝑏
󸀠,

‖𝑢3‖ > 𝑎
󸀠, andmin𝑡∈[𝜂,𝑏]𝑢3(𝑡) < 𝑏

󸀠.

Proof. If 𝑢 ∈ 𝑃𝑐󸀠 , then ‖𝑢‖ ≤ 𝑐
󸀠. By assumption (𝐻5), we have

‖𝑇𝑢‖ = max
𝑡∈[𝑎,𝑏]

|𝑇𝑢 (𝑡)| = max
𝑡∈[𝑎,𝑏]

[∫

𝑏

𝑎
𝐺 (𝑡, 𝑠) 𝜙𝑞

⋅ (∫

𝑏

𝑎
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠] ≤ ∫

𝑏

𝑎
𝐺 (𝑏, 𝑠)

⋅ 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝜏, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠

≤ 𝐵𝑐
󸀠
∫

𝑏

𝑎
𝐺 (𝑏, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝜏, 𝜏) 𝑑𝜏)𝑑𝑠 = 𝑐

󸀠
.

(44)

This shows that 𝑇 : 𝑃𝑐󸀠 → 𝑃𝑐󸀠 . Using the same arguments as
in the proof ofTheorem 10, we can show that 𝑇 : 𝑃𝑐󸀠 → 𝑃𝑐󸀠 is
a completely continuous operator. It follows from conditions
(𝐻3) and (𝐻4) in Theorem 11 that 𝑐󸀠 > 𝑏

󸀠
((𝑏 − 𝑎)/(𝜂 −

𝑎))
2(𝛼−1)

> 𝑏
󸀠
> 𝑎
󸀠. Similarly to the proof of Theorem 10, we

have 𝑇 : 𝑃𝑎󸀠 → 𝑃𝑎󸀠 and

{𝑢 ∈ 𝑃(𝜃, 𝑏
󸀠
, 𝑏
󸀠
(
𝑏 − 𝑎

𝜂 − 𝑎
)

2(𝛼−1)

) | 𝜃 (𝑢) > 𝑏
󸀠
} ̸= 0,

𝜃 (𝑇𝑢) > 𝑏
󸀠
,

(45)

for all 𝑢 ∈ 𝑃(𝜃, 𝑏󸀠, 𝑏󸀠((𝑏 − 𝑎)/(𝜂 − 𝑎))2(𝛼−1)).
Moreover, for 𝑢 ∈ 𝑃(𝜃, 𝑏󸀠, 𝑐󸀠) and ‖𝑇𝑢‖ > 𝑏

󸀠
((𝑏 − 𝑎)/(𝜂 −

𝑎))
2(𝛼−1), we have

𝜃 (𝑇𝑢) = min
𝑡∈[𝜂,𝑏]

𝑇𝑢 (𝑡) ≥ (
𝜂 − 𝑎

𝑏 − 𝑎
)

𝛼−1

‖𝑇𝑢‖

> 𝑏
󸀠
(
𝑏 − 𝑎

𝜂 − 𝑎
)

𝛼−1

> 𝑏
󸀠
.

(46)

So all the conditions of Theorem 5 are satisfied. Thus using
Theorem 5, 𝑇 has at least three fixed points. So, th boundary
value problem (1)-(2) has at least three positive solutions 𝑢1,
𝑢2, and 𝑢3 with ‖𝑢1‖ < 𝑎

󸀠, min𝑡∈[𝜂,𝑏]𝑢2(𝑡) > 𝑏
󸀠, ‖𝑢3‖(𝑡) > 𝑎

󸀠,
and min𝑡∈[𝜂,𝑏]‖𝑢3‖(𝑡) < 𝑏

󸀠.

Theorem 12. Let𝑓(𝑡, 𝑢) be nonnegative continuous on [𝑎, 𝑏]×
[0,∞). If the following assumptions are satisfied:
(𝐻6) 𝑓0 = 𝑓∞ = ∞;
(𝐻7) there exists a constant 𝜇1 > 0 such that 𝑓(𝑡, 𝑢) <

𝜙𝑝(𝐵𝜇1), for (𝑡, 𝑢) ∈ [𝑎, 𝑏] × [0, 𝜇1], then boundary
value problem (1)-(2) has at least two positive solutions
𝑢1 and 𝑢2 such that 0 < ‖𝑢1‖ < 𝜇1 < ‖𝑢2‖.

Proof. FromLemma 1, we obtain𝑇 : 𝑃 → 𝑃 being completely
continuous. In view of 𝑓0 = ∞, there exists 𝜎1 ∈ (0, 𝜇1) such
that 𝑓(𝑡, 𝑢) ≥ 𝜙𝑝(𝜂1𝑢), for 𝑎 ≤ 𝑡 ≤ 𝑏, 0 < 𝑢 ≤ 𝜎1, where
𝜂1 ∈ (𝐴/2,∞). Let Ω𝜎

1

= {𝑢 ∈ 𝑃 | ‖𝑢‖ < 𝜎1}. Then, for any
𝑢 ∈ 𝜕Ω𝜎

1

, we have

𝑇𝑢 (𝜂) = ∫

𝑏

𝑎
𝐺 (𝜂, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝑠, 𝜏)

⋅ 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠 ≥ ∫

𝑏

𝜂
𝐺 (𝜂, 𝑠)

⋅ 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝑠, 𝜏) 𝜙𝑝 (𝜂1𝑢) 𝑑𝜏)𝑑𝑠 ≥ ∫

𝑏

𝜂
𝐺 (𝜂,

𝑠) 𝜙𝑞 (∫
𝜏∈𝐼

𝛾𝐻 (𝜏, 𝜏)

⋅ 𝜙𝑝 (𝜂1 (
𝜂 − 𝑎

𝑏 − 𝑎
)

𝛼−1

‖𝑢‖) 𝑑𝜏)𝑑𝑠

= 𝜂1 (
𝜂 − 𝑎

𝑏 − 𝑎
)

𝛼−1

‖𝑢‖∫

𝑏

𝜂
𝐺 (𝜂, 𝑠)

⋅ 𝜙𝑞 (∫
𝜏∈𝐼

𝛾𝐻 (𝜏, 𝜏) 𝑑𝜏) 𝑑𝑠 =
2𝜂1

𝐴
‖𝑢‖ > ‖𝑢‖ ,

(47)

which implies ‖𝑇𝑢‖ > ‖𝑢‖ for 𝑢 ∈ 𝜕Ω𝜎
1

. Hence, Theorem 8
implies

𝑖 (𝑇,Ω𝜎
1

, 𝑃) = 0. (48)

On the other hand, since 𝑓∞ = ∞, there exists 𝜎3 > 𝜇1 such
that 𝑓(𝑡, 𝑢) ≥ 𝜙𝑝(𝜂2𝑢), for 𝑢 ≥ 𝜎3, where 𝜂2 ∈ (𝐴/2,∞). Let
𝜎2 > max{𝜎3((𝑏 − 𝑎)/(𝜂 − 𝑎))

𝛼−1
, 𝜇1} and Ω𝜎

2

= {𝑢 ∈ 𝑃 |

‖𝑢‖ < 𝜎2}. Then min𝑡∈[𝜂,𝑏]𝑢(𝑡) ≥ ((𝑏 − 𝑎)/(𝜂 − 𝑎))
𝛼−1

‖𝑢‖ > 𝜎3,
for any 𝑢 ∈ 𝜕Ω𝜎

2

. By using the method to get (48), we obtain
𝑇𝑢(𝜂) > (2𝜂1/𝐴)‖𝑢‖ > ‖𝑢‖, which implies ‖𝑇𝑢‖ > ‖𝑢‖ for
𝑢 ∈ 𝜕Ω2. Thus, fromTheorem 8, we have

𝑖 (𝑇,Ω𝜎
2

, 𝑃) = 0. (49)

Finally, let Ω𝜇
1

= {𝑢 ∈ 𝑃 | ‖𝑢‖ < 𝜇1}. Then, for any 𝑢 ∈ 𝜕Ω𝜇
1

,
by (𝐻7), we then get

𝑇𝑢 (𝑡) = ∫

𝑏

𝑎
𝐺 (𝑡, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠

≤ ∫

𝑏

𝑎
𝐺 (𝑏, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝜏, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠

< ∫

𝑏

𝑎
𝐺 (𝑏, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝜏, 𝜏) 𝜙𝑝 (𝐵𝜇1) 𝑑𝜏)𝑑𝑠
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= 𝐵𝜇1 ∫

𝑏

𝑎
𝐺 (𝑏, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝜏, 𝜏) 𝑑𝜏)𝑑𝑠 = 𝜇1

= ‖𝑢‖ ,

(50)

which implies ‖𝑇𝑢‖ < ‖𝑢‖ for 𝑢 ∈ 𝜕Ω𝜇
1

. Using Theorem 8
again, we get

𝑖 (𝑇,Ω𝜇
1

, 𝑃) = 1. (51)

Note that 𝜎1 < 𝜇1 < 𝜎2, by the additivity of fixed point index
and (48)–(51); we obtain

𝑖 (𝑇,Ω𝜇
1

\ Ω𝜎
1

, 𝑃) = 𝑖 (𝑇,Ω𝜇
1

, 𝑃) − 𝑖 (𝑇,Ω𝜎
1

, 𝑃) = 1,

𝑖 (𝑇,Ω𝜎
2

\ Ω𝜇
1

, 𝑃) = 𝑖 (𝑇,Ω𝜎
2

, 𝑃) − 𝑖 (𝑇,Ω𝜇
1

, 𝑃)

= −1.

(52)

Hence, 𝑇 has a fixed point 𝑢1 in Ω𝜇
1

\ Ω𝜎
1

, and it has a fixed
point 𝑢2 inΩ𝜎

2

\Ω𝜇
1

. Clearly, 𝑢1 and 𝑢2 are positive solutions
of boundary value problem (1)-(2) and 0 < ‖𝑢1‖ < 𝜇1 < ‖𝑢2‖.

Theorem 13. Let𝑓(𝑡, 𝑢) be nonnegative continuous on [𝑎, 𝑏]×
[0,∞). If the following assumptions are satisfied:

(𝐻8) 𝑓0 = 𝑓∞ = 0;
(𝐻9) there exists a constant 𝜇2 > 0 such that 𝑓(𝑡, 𝑢) >

𝜙𝑝(𝐴𝜇2), for (𝑡, 𝑢) ∈ [𝜂, 𝑏]×[((𝜂−𝑎)/(𝑏−𝑎))
𝛼−1

𝜇2, 𝜇2],
then boundary value problem (1)-(2) has at least two
positive solutions 𝑢1 and 𝑢2 such that 0 < ‖𝑢1‖ < 𝜇2 <

‖𝑢2‖.

Proof. FromLemma9,we obtain𝑇 : 𝑃 → 𝑃 being completely
continuous. In view of 𝑓0 = 0, there exists 𝛿1 ∈ (0, 𝜇2) such
that 𝑓(𝑡, 𝑢) ≤ 𝜙𝑝(𝜂2𝑢), for 𝑎 ≤ 𝑡 ≤ 𝑏, 0 < 𝑢 ≤ 𝛿1, where
𝜂2 ∈ (0, 𝐵). Let Ω𝛿

1

= {𝑢 ∈ 𝑃 | ‖𝑢‖ < 𝛿1}. Then, for any
𝑢 ∈ 𝜕Ω𝛿

1

, we have

𝑇𝑢 (𝑡)

≤ ∫

𝑏

𝑎
𝐺 (𝑏, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝜏, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠

≤ ∫

𝑏

𝑎
𝐺 (𝑏, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝜏, 𝜏) 𝜙𝑝 (𝜂2𝑢) 𝑑𝜏)𝑑𝑠

≤ 𝜂2 ‖𝑢‖∫

𝑏

𝑎
𝐺 (𝑏, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝜏, 𝜏) 𝑑𝜏)𝑑𝑠

=
𝜂2

𝐵
‖𝑢‖ < ‖𝑢‖ ,

(53)

which implies ‖𝑇𝑢‖ < ‖𝑢‖ for 𝑢 ∈ 𝜕Ω𝛿
1

. Hence, Theorem 8
implies

𝑖 (𝑇,Ω𝛿
1

, 𝑃) = 0. (54)

Next, since 𝑓∞ = 0, there exists 𝛿3 > 𝜇2 such that 𝑓(𝑡, 𝑢) ≤
𝜙𝑝(𝜂3𝑢), for 𝑢 ≥ 𝛿3, where 𝜂3 ∈ (0, 𝐵). We consider two cases.

Case (i). Suppose that 𝑓 is bounded, which implies that there
exists 𝑁 > 0 such that 𝑓(𝑡, 𝑢) ≤ 𝜙𝑝(𝑁) for all 𝑡 ∈ [𝑎, 𝑏] and
𝑢 ∈ [0,∞). Take 𝛿4 > max{𝑁/𝐵, 𝛿3}. Then, for 𝑢 ∈ 𝑃 with
‖𝑢‖ = 𝛿4, we get

𝑇𝑢 (𝑡)

≤ ∫

𝑏

𝑎
𝐺 (𝑏, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝜏, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠

≤ ∫

𝑏

𝑎
𝐺 (𝑏, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝜏, 𝜏) 𝜙𝑝 (𝑁) 𝑑𝜏)𝑑𝑠

= 𝑁∫

𝑏

𝑎
𝐺 (𝑏, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝜏, 𝜏) 𝑑𝜏)𝑑𝑠 =

𝑁

𝐵
< 𝛿4

= ‖𝑢‖ .

(55)

Case (ii). Suppose that 𝑓 is unbounded. In view of 𝑓 : [𝑎, 𝑏] ×
[0,∞) → [0,∞) being continuous, there exist 𝑡⋆ ∈ [𝑎, 𝑏]

and 𝛿5 > max{((𝑏 − 𝑎)/(𝜂 − 𝑎))𝛼−1𝛿3, 𝜇2} such that 𝑓(𝑡, 𝑢) ≤
𝑓(𝑡
⋆
, 𝛿5), for 𝑎 ≤ 𝑡 ≤ 𝑏, 0 ≤ 𝑢 ≤ 𝛿5. Then, for 𝑢 ∈ 𝑃 with

‖𝑢‖ = 𝛿5, we obtain

𝑇𝑢 (𝑡)

≤ ∫

𝑏

𝑎
𝐺 (𝑏, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝜏, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠

≤ ∫

𝑏

𝑎
𝐺 (𝑏, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝜏, 𝜏) 𝑓 (𝑡

⋆
, 𝛿5) 𝑑𝜏)𝑑𝑠

≤ ∫

𝑏

𝑎
𝐺 (𝑏, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝜏, 𝜏) 𝜙𝑝 (𝜂3 ‖𝑢‖) 𝑑𝜏)𝑑𝑠

≤ 𝜂3𝛿5 ∫

𝑏

𝑎
𝐺 (𝑏, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝜏, 𝜏) 𝑑𝜏)𝑑𝑠 =

𝜂3𝛿5

𝐵

< 𝛿5 = ‖𝑢‖ .

(56)

So, in either case, if we always choose Ω𝛿
2

= {𝑢 ∈ 𝐸 | ‖𝑢‖ <

𝛿2 = max{𝛿4, 𝛿5}}, then we have ‖𝑇𝑢‖ < ‖𝑢‖, for 𝑢 ∈ 𝜕Ω2.
Thus, fromTheorem 8, we have

𝑖 (𝑇,Ω𝛿
2

, 𝑃) = 1. (57)

Finally, let Ω𝜇
2

= {𝑢 ∈ 𝑃 | ‖𝑢‖ < 𝜇2}. Then, for any 𝑢 ∈ 𝜕Ω𝜇
2

,
min𝑡∈[𝜂,𝑏]𝑢(𝑡) ≥ ((𝜂−𝑎)/(𝑏−𝑎))

𝛼−1
‖𝑢‖ = ((𝜂−𝑎)/(𝑏−𝑎))

𝛼−1
𝜇2,

by (𝐻9), and we then obtain

𝑇𝑢 (𝜂)

= ∫

𝑏

𝑎
𝐺 (𝜂, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝑠, 𝜏) 𝑓 (𝜏, 𝑢 (𝜏)) 𝑑𝜏)𝑑𝑠

≥ ∫

𝑏

𝜂
𝐺 (𝜂, 𝑠) 𝜙𝑞 (∫

𝑏

𝑎
𝐻(𝑠, 𝜏) 𝜙𝑝 (𝐴𝜇2) 𝑑𝜏)𝑑𝑠
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≥ 𝐴𝜇2 ∫

𝑏

𝜂
𝐺 (𝜂, 𝑠) 𝜙𝑞 (∫

𝜏∈𝐼
𝛾𝐻 (𝜏, 𝜏) 𝑑𝜏) 𝑑𝑠

= 2(
𝑏 − 𝑎

𝜂 − 𝑎
)

𝛼−1

𝜇2 > 𝜇2 = ‖𝑢‖ ,

(58)

which implies ‖𝑇𝑢‖ > ‖𝑢‖ for 𝑢 ∈ 𝜕Ω𝜇
2

. An application of
Theorem 8 again shows that

𝑖 (𝑇,Ω𝜇
2

, 𝑃) = 0. (59)

Note that 𝛿1 < 𝜇2 < 𝛿2 by the additivity of fixed point index
and (54)–(59); we obtain

𝑖 (𝑇,Ω𝜇
2

\ Ω𝛿
1

, 𝑃) = 𝑖 (𝑇,Ω𝜇
2

, 𝑃) − 𝑖 (𝑇,Ω𝛿
1

, 𝑃)

= −1,

𝑖 (𝑇,Ω𝛿
2

\ Ω𝜇
2

, 𝑃) = 𝑖 (𝑇,Ω𝛿
2

, 𝑃) − 𝑖 (𝑇,Ω𝜇
2

, 𝑃) = 1.

(60)

Hence, 𝑇 has a fixed point 𝑢1 in Ω𝜇
2

\ Ω𝛿
1

, and it has a fixed
point 𝑢2 in Ω𝛿

2

\ Ω𝜇
2

. Consequently, 𝑢1 and 𝑢2 are positive
solutions of boundary value problem (1)-(2) and 0 < ‖𝑢1‖ <

𝜇2 < ‖𝑢2‖.

4. Example

In this section, we consider boundary value problem of the
fractional differential equation

𝐷
1.5
0+ (𝜙𝑝 (𝐷

2.5
0+ 𝑢 (𝑡))) = 𝑓 (𝑡, 𝑢 (𝑡)) , 0 < 𝑡 < 1,

𝑢 (0) = 0,

𝑢
󸀠
(0) = 0,

𝑢
󸀠
(1) =

1

3
𝑢
󸀠
(
1

2
) ,

𝜙𝑝 (𝐷
2.5
0+ 𝑢 (0)) = 0,

𝐷
0.5
0+ (𝜙𝑝 (𝐷

2.5
0+ 𝑢 (1))) = 0,

(61)

where

𝑓 (𝑡, 𝑢) =

{{{

{{{

{

𝑡

100
+ 12𝑢

5
, 0 ≤ 𝑢 ≤ 2,

𝑡

100
+ 𝑢 + 58, 𝑢 ≥ 2.

(62)

Let 𝑝 = 1/2.We note that 𝑎 = 0, 𝑏 = 1, 𝜂 = 1/2, 𝜉 = 1/3,
𝛽 = 3/2, 𝛽1 = 1/2, 𝑛 = 3, 𝛼 = 5/2, and 𝛼1 = 1. By a simple
calculation, we obtain ((𝜂 − 𝑎)/(𝑏 − 𝑎))𝛼−1 = 0.3535, 𝛾 = 0.5,
𝐵 = 1.0452, and 𝐴 = 34.1482. Choosing 𝑎󸀠 = 1, 𝑏󸀠 = 2, and
𝑐
󸀠
= 100, then 0 < 𝑎

󸀠
< 𝑏
󸀠
< ((𝜂 − 𝑎)/(𝑏 − 𝑎))

2(𝛼−1)
𝑐
󸀠 and 𝑓

satisfies

(i) 𝑓(𝑡, 𝑢(𝑡)) < 1.0452 = 𝜙𝑝(𝐵𝑎
󸀠
) for all (𝑡, 𝑢) ∈ [0, 1] ×

[0, 1],

(ii) 𝑓(𝑡, 𝑢(𝑡)) ≥ 68.364 = 𝜙𝑝(𝐴𝑏
󸀠
) for all (𝑡, 𝑢) ∈ [0.5, 2] ×

[2, 16.0049],

(iii) 𝑓(𝑡, 𝑢(𝑡)) ≤ 104.52 = 𝜙𝑝(𝐵𝑐
󸀠
) for all (𝑡, 𝑢) ∈ [0, 1] ×

[0, 100].

Consequently, all of the conditions ofTheorem 11 are satisfied.
With the use ofTheorem 11, boundary value problem (61) has
at least three positive solutions 𝑢1, 𝑢2, and 𝑢3 with

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩 < 1,

min
𝑡∈[1/2,1]

𝑢2 (𝑡) > 2,

󵄩󵄩󵄩󵄩𝑢3
󵄩󵄩󵄩󵄩 > 1,

min
𝑡∈[1/2,1]

𝑢3 (𝑡) < 2.

(63)
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