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A potential estimate type approach is used in order to obtain some a priori bounds for the solutions of certain classes of Dirichlet
problems associated with nondivergence structure elliptic equations.

1. Introduction

In this paper we are concerned with some aspects related to
the study of the strong solvability of the classical Dirichlet
problem

𝐿𝑢 = −𝑓, 𝑓 ∈ 𝐿
𝑝

(Ω) ,

𝑢|𝜕Ω = 0

(1)

in the space 𝑊
2,𝑝

(Ω), 𝑝 > 1, where Ω is a sufficiently regular
bounded open subset ofR𝑛, 𝑛 > 2, and 𝐿 is the second-order
linear differential operator in nondivergence form

𝐿 =

𝑛

∑

𝑖,𝑗=1

𝑎𝑖𝑗 (𝑥)
𝜕
2

𝜕𝑥𝑖𝜕𝑥𝑗

. (2)

As evidenced by a renewed example by C. Pucci (quoted
by Talenti in [1]), for 𝑛 > 2, the boundedness and ellipticity
of the 𝑎𝑖𝑗 are not enough to derive the strong solvability of
problem (1). There are two ways to overcome this difficulty:
the first approach consists in imposing suitable regularity of
the 𝑎𝑖𝑗, while the second one assumes that the coefficients do
not scatter too much, satisfying conditions stronger than the
uniform ellipticity (see, e.g., [2] for a wider survey on this
subject).

Concerning the first way, classical results (see, e.g., [3])
ensure that, for sufficiently regular sets Ω and for coefficients

𝑎𝑖𝑗 ∈ 𝐶
0
(Ω), 𝑖, 𝑗 = 1, . . . , 𝑛, one obtains the unique strong

solvability of (1) together with the bound

‖𝑢‖𝑊2,𝑝(Ω) ≤ 𝐶
𝑓

𝐿𝑝(Ω)
. (3)

The embedding theorems then give

‖𝑢‖𝐿𝑛𝑝/(𝑛−2𝑝)(Ω) ≤ 𝐶
𝑓

𝐿𝑝(Ω)
, (4)

for 𝑝 < 𝑛/2. Let us point out that the constant 𝐶 in (4) is
independent of 𝑢 but depends on the required regularity of
the coefficients.

Following the second approach, Talenti obtains existence
and uniqueness results for problem (1), for 𝑝 = 2, con-
sidering, in [1], coefficients satisfying the so-called Cordes
condition:

∑
𝑛

𝑖,𝑗=1
𝑎
2

𝑖𝑗
(𝑥)

(∑
𝑛

𝑖=1
𝑎𝑖𝑖 (𝑥))

2
≤

1

𝑛 − 1
− 𝛿, 𝛿 > 0. (5)

Condition (5) allows him to prove the estimate

‖𝑢‖𝑊2,2(Ω) ≤ 𝐶
𝑓

𝐿2(Ω)
. (6)

Later on, Campanato, in [4], extended these results to values
of 𝑝 sufficiently close to 2.

Taking into account these results, in the recent paper [5],
we assume that the coefficients 𝑎𝑖𝑗 ∈ 𝐶

0
(Ω), 𝑖, 𝑗 = 1, . . . , 𝑛,
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are symmetric bounded measurable functions satisfying the
following new hypothesis:

𝑙 = ess inf
𝑥∈Ω,𝜉∈R𝑛,|𝜉|=1

∑
𝑛

𝑖=1
𝑎𝑖𝑖 (𝑥)

∑
𝑛

𝑖,𝑗=1
𝑎𝑖𝑗 (𝑥) 𝜉𝑖𝜉𝑗

> 2. (7)

Hypothesis (7) generalizes the classical Cordes condition,
since (see Remark 3), for 𝑛 > 5, the class of operators satisfy-
ing (7) is wider than the one verifying Cordes assumption.

In [5] we prove estimate (4), showing that, for the range
of exponent 𝑛/𝑙 < 𝑝 < 𝑛/2, the constant 𝐶 is independent
of the regularity of the coefficients. This can be done by
assuming that𝑓 has an extension, belonging to certain gener-
alized Sobolev spaces 𝐿

𝛼

],𝑝(R
𝑛
) (see Section 2) verifying quite

restrictive conditions essentially due to the lack in literature
of opportune extension results in the involved functional
spaces. We point out that obtaining an estimate with a
constant independent of the regularity of the coefficients is an
important feature of the bound, since it can allow weakening
of the hypotheses on the regularity of the 𝑎𝑖𝑗.

The goal of the present work is to achieve an a priori
bound for the solution of problem (1) in the same framework
of [5], but dropping the restrictive conditions on the datum
𝑓, required therein.

Our main result, obtained assuming that 𝑓 is the restric-
tion to Ω of a function 𝑓 belonging to 𝐿

𝛼

],𝑝(R
𝑛
) (roughly

speaking, 𝑓 ∈ 𝐿
𝑝
(Ω) is the restriction to Ω of the Riesz

potential 𝐼𝛼(𝑔) of a function 𝑔 ∈ 𝐿
]
(R𝑛), with 𝛼 = 𝑛/]−𝑛/𝑝),

consists in the following estimate:

‖𝑢‖𝐿𝑛𝑝/(𝑛−2𝑝)(Ω) ≤ 𝐶

𝑓

𝐿𝛼],𝑝(R
𝑛)

, (8)

for 𝑛/𝑙 < 𝑝 < 𝑛/2, where the constant 𝐶 is again independent
of the regularity of the coefficients.

The main tools in achieving (8) are certain potential type
estimates previously obtained for the solutions of problems of
the same kind of (1), but with more regular datum. We refer
to estimates (35) in Step 1 and (52) in Step 2 of Theorem 5.
We remark that hypothesis (7) is the key point in the proof
of Lemma 4, which allows showing the abovementioned
potential type bounds.

2. A Class of Generalized Sobolev Spaces

This section is devoted to the definition and the main
properties of a class of generalized Sobolev spaces where the
datum 𝑓 will be taken (see also [5]).

To our aim, we recall the main features of Riesz potentials
and hypersingular integrals focusing just on some specific
aspects, required to our needs. For wider and deeper surveys
we refer the reader, for instance, to [6–9].

Let 0 < 𝛼 < 𝑛 and 1 ≤ ] < +∞. It is known that if
𝑔 ∈ 𝐿

]
(R𝑛) then the integral

(𝐼
𝛼
𝑔) (𝑥) = ∫

R𝑛

𝑔 (𝑦)

𝑥 − 𝑦


𝑛−𝛼
𝑑𝑦, 𝑥 ∈ R

𝑛
, (9)

converges absolutely for almost every 𝑥.

The function 𝐼
𝛼
𝑔 in (9) defines, up to a positive multi-

plicative constant depending on 𝛼, the Riesz potential of 𝑔.
For 0 < 𝛼 < 𝑛 and 1 ≤ ] < +∞, it is therefore possible to

consider the space

𝐼
𝛼

(𝐿
]
) = {𝑓 : 𝑓 = 𝐼

𝛼
(𝑔) , 𝑔 ∈ 𝐿

]
(R
𝑛
)} , (10)

that is, a Banach space, with respect to the norm
𝑓

𝐼𝛼(𝐿])
=

𝑔
𝐿](R𝑛)

. (11)

If, in addition, 1 < ] < 𝑛/𝛼, one has the following strict
inclusion:

𝐼
𝛼

(𝐿
]
) ⊂ 𝐿
𝑞

(R
𝑛
) , with 𝑞 =

𝑛]
𝑛 − 𝛼]

, (12)

and moreover
𝐼
𝛼
𝑔

𝐿𝑞(R𝑛)
≤ 𝑐

𝑔
𝐿](R𝑛)

. (13)

Now, let 0 < 𝛼 < 𝑛, 1 < ] < 𝑛/𝛼, and 𝑞 = 𝑛]/(𝑛 − 𝛼]). A
characterization of hypersingular integrals in terms of Riesz
potentials (see [7]) allows us to define the space 𝐿

𝛼

],𝑞(R
𝑛
) of

hypersingular integrals as

𝐿
𝛼

],𝑞 (R
𝑛
)

= {𝑓 ∈ 𝐿
𝑞

(R
𝑛
) : 𝑓 = 𝐼

𝛼
(𝑔) with 𝑔 in 𝐿

]
(R
𝑛
)} .

(14)

The function 𝑔 in (14) is called the Riesz derivative of 𝑓; it is
denoted by D𝛼𝑓 and can be interpreted as an inverse of the
Riesz potential.

For 0 < 𝛼 < 𝑛, 1 < ] < 𝑛/𝛼, and 𝑞 = 𝑛]/(𝑛 − 𝛼]), the
space 𝐿

𝛼

],𝑞(R
𝑛
) can be therefore rewritten as

𝐿
𝛼

],𝑞 (R
𝑛
) = {𝑓 ∈ 𝐿

𝑞
(R
𝑛
) : D
𝛼
𝑓 in 𝐿

]
(R
𝑛
)} (15)

and it is a Banach space endowed with the norm

𝑓
𝐿𝛼],𝑞(R

𝑛)
=

𝑓
𝐿𝑞(R𝑛)

+
D
𝛼
𝑓

𝐿](R𝑛)
. (16)

From definition (15) it appears to be clear that 𝐿
𝛼

],𝑞(R
𝑛
)

generalizes the notion of Sobolev space to the fractional case.
It is known that 𝐶

∞

0
(R𝑛) is dense in 𝐿

𝛼

],𝑞(R
𝑛
), where, as

usual, 𝐶
∞

0
(R𝑛) stands for the class of all 𝐶

∞ functions on R𝑛

with compact support.

Definition 1. Let Ω be an open subset of R𝑛, 𝑛 > 2. For 0 <

𝛼 < 𝑛, 1 < ] < 𝑛/𝛼, and 𝑞 = 𝑛]/(𝑛 − 𝛼]), we define 𝐿
𝛼

],𝑞(Ω) as
the set of restrictions to Ω of functions in 𝐿

𝛼

],𝑞(R
𝑛
). Namely,

𝑓 ∈ 𝐿
𝛼

],𝑞(Ω) if there exists a function 𝑓 ∈ 𝐿
𝛼

],𝑞(R
𝑛
) such that

𝑓 = 𝑓 in Ω.

The space 𝐿
𝛼

],𝑞(Ω) is a Banach space endowed with the
norm

𝑓
𝐿𝛼],𝑞(Ω)

= inf {

𝑓

𝐿𝛼],𝑞(R
𝑛)

| 𝑓
|Ω

= 𝑓} . (17)
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3. Main Result

LetΩ be an open subset ofR𝑛, 𝑛 > 2.Wewant to prove some a
priori estimates for strong solutions of the followingDirichlet
problem:

𝑢 ∈ 𝑊
2,𝑝

(Ω) ∩
∘

𝑊

1,𝑝

(Ω) ,

𝐿𝑢 = −𝑓, 𝑓 ∈ 𝐿
𝑝

(Ω) ,

(18)

𝑝 > 1.
Here 𝐿 is a second-order linear differential operator in

nondivergence form

𝐿 =

𝑛

∑

𝑖,𝑗=1

𝑎𝑖𝑗 (𝑥)
𝜕
2

𝜕𝑥𝑖𝜕𝑥𝑗

, (19)

with coefficients 𝑎𝑖𝑗 that are symmetric bounded measurable
functions satisfying the uniform ellipticity condition; there-
fore, there exists a constant 𝜇 ∈ (0, 1) such that

𝜇
𝜉



2
≤

𝑛

∑

𝑖,𝑗=1

𝑎𝑖𝑗 (𝑥) 𝜉𝑖𝜉𝑗 ≤ 𝜇
−1 𝜉



2
, (20)

for almost every 𝑥 ∈ Ω and for any 𝜉 ∈ R𝑛.
In the sequel we assume that

𝑎𝑖𝑗 ∈ 𝐶
0

(Ω) , 𝑖, 𝑗 = 1, . . . , 𝑛, (21)

and set

𝑙 = ess inf
𝑥∈Ω,𝜉∈R𝑛,|𝜉|=1

∑
𝑛

𝑖=1
𝑎𝑖𝑖 (𝑥)

∑
𝑛

𝑖,𝑗=1
𝑎𝑖𝑗 (𝑥) 𝜉𝑖𝜉𝑗

, (22)

and we suppose that

𝑙 > 2. (23)

Condition (23) is equivalent to

𝑙 = inf
𝑥∈Ω

∑
𝑛

𝑖=1
𝜆𝑖 (𝑥)

max1≤𝑖≤𝑛 {𝜆𝑖 (𝑥)}
> 2, (24)

where 𝜆𝑖, 𝑖 = 1, . . . , 𝑛, are the eigenvalues of the matrix ‖𝑎𝑖𝑗‖.

Remark 2. By the definition of 𝑙 it easily follows that 1 < 𝑙 < 𝑛.

Remark 3. For 𝑛 > 5 the class of operators satisfying the
assumption (23) is wider than the one verifying the Cordes
condition. Indeed the Cordes assumption reads as

∑
𝑛

𝑖,𝑗=1
𝑎
2

𝑖𝑗
(𝑥)

(∑
𝑛

𝑖=1
𝑎𝑖𝑖 (𝑥))

2
≤

1

𝑛 − 1
− 𝛿, 𝛿 > 0, a.e. in Ω, (25)

or equivalently

∑
𝑛

𝑖=1
𝜆
2

𝑖
(𝑥)

(∑
𝑛

𝑖=1
𝜆𝑖 (𝑥))

2
≤

1

𝑛 − 1
− 𝛿, 𝛿 > 0, a.e. in Ω. (26)

Thus, if (26) is satisfied, by (26) and by the definition of 𝑙, it
follows that 𝑙 > √𝑛 − 1. This gives (24) for 𝑛 > 5.

Let us now state the following lemma, proved in [5], that
is an essential tool in the proof of our main result.

Lemma 4. Let 𝐿 be the operator defined in (19) satisfying (20)
and (23). If 𝑛 > 2, 0 < 𝑠 < 𝑙−2, and 𝑔 is a nonnegative function
in 𝐿

]
(R𝑛), for some fixed 1 < ] < 𝑛/(𝑛−𝑠), then for sufficiently

small 𝜀 > 0 the potential

𝑊
𝜀
(𝑥) = ∫

R𝑛

𝑔 (𝑦)

(
𝑥 − 𝑦



2
+ 𝜀2)
𝑠/2

𝑑𝑦, 𝑥 ∈ Ω, (27)

is such that

𝐿𝑊
𝜀
(𝑥)

≤ −𝜇𝑠 (𝑙 − 𝑠 − 2) ∫
R𝑛

𝑔 (𝑦)

(
𝑥 − 𝑦



2
+ 𝜀2)
(𝑠+2)/2

𝑑𝑦 ≤ 0,
(28)

for a.e. 𝑥 ∈ Ω, and therefore 𝑊
𝜀 is 𝐿-superharmonic.

We are now in a position to prove our main result.

Theorem 5. Let Ω be a bounded domain in R𝑛, 𝑛 > 2, with
the 𝐶
1,1-regularity property and let 𝐿 be the operator defined

in (19) satisfying (20), (21), and (23). Let 𝑛/𝑙 < 𝑝 < 𝑛/2, 1 <

] < 𝑛/(𝑛 − 𝑙 + 𝑛/𝑝). If 𝑢 is a solution of problem (18) with
datum 𝑓 ∈ 𝐿

𝑛/]−𝑛/𝑝
],𝑝 (Ω), then there exists a positive constant

𝐶 = 𝐶(𝑛, 𝑝, 𝑙, 𝜇, ]) such that

‖𝑢‖𝐿𝑛𝑝/(𝑛−2𝑝)(Ω) ≤ 𝐶

𝑓

𝐿
𝑛/]−𝑛/𝑝
],𝑝 (R

𝑛)
, (29)

with 𝑓 as in Definition 1.

Proof. Theorem 5 will be proved in three steps. In the first
two we show some potential type estimates for the solutions
of certain auxiliary problems. In the last one, we exploit the
estimate of Step 2 to achieve (29).

Step 1. The datum 𝑓 ∈ 𝐿
𝑛/]−𝑛/𝑝
],𝑝 (Ω); thus by Definition 1 there

exists a function 𝑓 ∈ 𝐿
𝑛/]−𝑛/𝑝
],𝑝 (R𝑛) such that 𝑓 = 𝑓 in Ω.

Therefore, by (14) we can find 𝑔 ∈ 𝐿
]
(R𝑛) such that

𝑓 (𝑥) = ∫
R𝑛

𝑔 (𝑦)

𝑥 − 𝑦


𝑛−(𝑛/]−𝑛/𝑝) 𝑑𝑦, 𝑥 ∈ R
𝑛
. (30)

Denoted by 𝑔
+ and 𝑔

− the positive and negative parts of
the function 𝑔, respectively, by classical results we get the fact
that there exist two sequences of smooth and nonnegative
functions 𝑔

+

ℎ
and 𝑔

−

ℎ
such that

𝑔
±

ℎ
→ 𝑔

± in 𝐿
]

(R
𝑛
) as ℎ → 0. (31)

Let 𝜀 take its values in a sequence of positive reals numbers
converging to zero and set

𝑓
±

ℎ,𝜀
(𝑥) = ∫

R𝑛

𝑔
±

ℎ
(𝑦) 𝑑𝑦

(
𝑥 − 𝑦



2
+ 𝜀2)
(𝑠+2)/2

, 𝑥 ∈ R
𝑛
, (32)
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with 𝑠 = 𝑛 − (𝑛/] − 𝑛/𝑝) − 2. Then, consider the classical
solutions 𝑢

+

ℎ,𝜀
and 𝑢

−

ℎ,𝜀
of the problems

𝐿𝑢
+

ℎ,𝜀
= −𝑓
+

ℎ,𝜀
in Ω,

𝑢
+

ℎ,𝜀
= 0 on 𝜕Ω,

(33)

𝐿𝑢
−

ℎ,𝜀
= −𝑓
−

ℎ,𝜀
in Ω,

𝑢
−

ℎ,𝜀
= 0 on 𝜕Ω.

(34)

In this step we want show that

𝑢
±

ℎ,𝜀
(𝑥) ≤ 𝐶1 ∫

R𝑛

𝑓
±

ℎ
(𝑦)

𝑥 − 𝑦


𝑛−2
𝑑𝑦 in Ω, (35)

with 𝐶1 = 𝐶1(𝑛, 𝑝, 𝑙, 𝜇, ]) positive constant, where

𝑓
±

ℎ
(𝑥) = ∫

R𝑛

𝑔
±

ℎ
(𝑦)

𝑥 − 𝑦


𝑠+2
𝑑𝑦, 𝑥 ∈ R

𝑛
. (36)

To this aim, put

𝑊
+

ℎ,𝜀
(𝑥) = ∫

R𝑛

𝑔
+

ℎ
(𝑦)

(
𝑥 − 𝑦



2
+ 𝜀2)
𝑠/2

𝑑𝑦, 𝑥 ∈ Ω. (37)

In view of Lemma 4 there exists a positive constant 𝐶
 such

that

𝐿𝑊
+

ℎ,𝜀
≤ −𝐶

∫
R𝑛

𝑔
+

ℎ
(𝑦)

(
𝑥 − 𝑦



2
+ 𝜀2)
(𝑠+2)/2

𝑑𝑦 = −𝐶

𝑓
+

ℎ,𝜀
, (38)

with 𝐶


= 𝐶

(𝑛, 𝑝, 𝑙, 𝜇, ]). Then

𝐿 (𝑢
+

ℎ,𝜀
−

𝑊
+

ℎ,𝜀

𝐶
) ≥ 0 in Ω. (39)

Moreover, by (33) and (37), one gets

𝑢
+

ℎ,𝜀
−

𝑊
+

ℎ,𝜀

𝐶
≤ 0 on 𝜕Ω. (40)

Thus, as a consequence of our hypotheses, the maximum
principle in its classical forms applies (see, e.g., [3],Theorems
3.1 and 3.3) and therefore by (32) and (37) we have

0 ≤ 𝑢
+

ℎ,𝜀
(𝑥) ≤

𝑊
+

ℎ,𝜀
(𝑥)

𝐶
≤

1

𝐶
∫
R𝑛

𝑔
+

ℎ
(𝑦)

𝑥 − 𝑦


𝑠 𝑑𝑦 in Ω. (41)

This last inequality and the composition formula for frac-
tional integrals (see, e.g., [6]) give then

𝑢
+

ℎ,𝜀
(𝑥) ≤ 𝐶1 ∫

R𝑛

1

𝑥 − 𝑦


𝑛−2
(∫

R𝑛

𝑔
+

ℎ
(𝑧)

𝑦 − 𝑧


𝑠+2
𝑑𝑧) 𝑑𝑦

in Ω,

(42)

with 𝐶1 = 𝐶1(𝑛, 𝑝, 𝑙, 𝜇, ]) positive constant. Following the
same argument one obtains a similar estimate for the function
𝑢
−

ℎ,𝜀
:

𝑢
−

ℎ,𝜀
(𝑥) ≤ 𝐶1 ∫

R𝑛

1

𝑥 − 𝑦


𝑛−2
(∫

R𝑛

𝑔
−

ℎ
(𝑧)

𝑦 − 𝑧


𝑠+2
𝑑𝑧) 𝑑𝑦

in Ω.

(43)

Combining inequalities (42) and (43) and definitions (36) we
get (35).

Step 2. Let 𝑢ℎ,𝜀 be the classical solution of the problem

𝐿𝑢ℎ,𝜀 = −𝑓
ℎ,𝜀

in Ω,

𝑢ℎ,𝜀 = 0 on 𝜕Ω,

(44)

where 𝑓
ℎ,𝜀

= 𝑓
+

ℎ,𝜀
− 𝑓
−

ℎ,𝜀
.

In view of the uniqueness of the solutions of problems
(33), (34), and (44) (see, e.g., [3], Theorem 9.15) one has that
𝑢ℎ,𝜀 = 𝑢

+

ℎ,𝜀
− 𝑢
−

ℎ,𝜀
and, therefore, since 𝑢

±

ℎ,𝜀
are nonnegative,

as observed in (41), |𝑢ℎ,𝜀| ≤ 𝑢
+

ℎ,𝜀
+ 𝑢
−

ℎ,𝜀
. Thus, (35) gives the

following potential type estimate for 𝑢ℎ,𝜀:

𝑢ℎ,𝜀 (𝑥)
 ≤ 𝐶1 ∫

R𝑛

[𝑓
+

ℎ
(𝑦) + 𝑓

−

ℎ
(𝑦)]

𝑥 − 𝑦


𝑛−2
𝑑𝑦 in Ω. (45)

We want to pass to the limit as 𝜀 → 0 in (45).
By classical estimates (observe that the coefficients of

problem (44) are smooth and, therefore [3], Lemma 9.17

applies) we get
𝑢ℎ,𝜀 − 𝑢ℎ,𝜀

𝑊2,𝑝(Ω)
≤ 𝐶
 

𝑓
ℎ,𝜀

− 𝑓
ℎ,𝜀

𝐿𝑝(Ω)
. (46)

For 𝑓
+

ℎ,𝜀
and 𝑓

−

ℎ,𝜀
, for any fixed ℎ, by (36), (32), and Beppo

Levi’s theorem, we obtain

𝑓
±

ℎ,𝜀
(𝑥) → 𝑓

±

ℎ
(𝑥) a.e. in R

𝑛 as 𝜀 → 0. (47)

By Lebesgue’s dominated convergence theorem, these last
convergences take place in 𝐿

𝑝
(R𝑛) too:

𝑓
±

ℎ,𝜀
(𝑥) → 𝑓

±

ℎ
(𝑥) in 𝐿

𝑝
(R
𝑛
) as 𝜀 → 0, (48)

and thus

𝑓
ℎ,𝜀

(𝑥) → 𝑓
ℎ

(𝑥) in 𝐿
𝑝

(R
𝑛
) as 𝜀 → 0, (49)

where we set

𝑓
ℎ

= 𝑓
+

ℎ
− 𝑓
−

ℎ
. (50)

Putting together (46) and (49), we derive that 𝑢ℎ,𝜀 is a Cauchy
sequence in 𝑊

2,𝑝
(Ω). Thus, by the completeness of 𝑊

2,𝑝
(Ω),

there exists 𝑢ℎ ∈ 𝑊
2,𝑝

(Ω) such that 𝑢ℎ,𝜀 → 𝑢ℎ in 𝑊
2,𝑝

(Ω), as
𝜀 → 0. Hence, up to a subsequence, still denoted by 𝑢ℎ,𝜀, we
have

𝑢ℎ,𝜀 → 𝑢ℎ a.e. in Ω as 𝜀 → 0. (51)
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Taking into account (51), we can finally pass to the limit as
𝜀 → 0 in (45), obtaining the following potential type estimate
for 𝑢ℎ:

𝑢ℎ (𝑥)
 ≤ 𝐶1 ∫

R𝑛

[𝑓
+

ℎ
(𝑦) + 𝑓

−

ℎ
(𝑦)]

𝑥 − 𝑦


𝑛−2
𝑑𝑦 in Ω. (52)

Step 3. Combining (52) and (13) we have
𝑢ℎ

𝐿𝑛𝑝/(𝑛−2𝑝)(Ω)

≤ 𝐶1(∫
Ω

(∫
R𝑛

[𝑓
+

ℎ
(𝑦) + 𝑓

−

ℎ
(𝑦)]

𝑥 − 𝑦


𝑛−2
𝑑𝑦)

𝑛𝑝/(𝑛−2𝑝)

𝑑𝑥)

(𝑛−2𝑝)/𝑛𝑝

≤ 𝐶1


𝐼
2

(𝑓
+

ℎ
+ 𝑓
−

ℎ
)
𝐿𝑛𝑝/(𝑛−2𝑝)(R𝑛)

≤ 𝐶2


𝑓
+

ℎ
+ 𝑓
−

ℎ

𝐿𝑝(R𝑛)

≤ 𝐶2 (

𝑓
+

ℎ

𝐿𝑝(R𝑛)
+


𝑓
−

ℎ

𝐿𝑝(R𝑛)
) ,

(53)

with 𝐶2 = 𝐶2(𝑛, 𝑝, 𝑙, 𝜇, ]).
To prove our claim, we want to pass to the limit as ℎ → 0

in (53).
From (31), (36), and (13), it follows that

𝑓
±

ℎ
(𝑥) → 𝑓

±

(𝑥) in 𝐿
𝑝

(R
𝑛
) as ℎ → 0, (54)

where we set

𝑓
+

(𝑥) = ∫
R𝑛

𝑔
+

(𝑦)

𝑥 − 𝑦


𝑛−(𝑛/]−𝑛/𝑝) 𝑑𝑦,

𝑓
−

(𝑥) = ∫
R𝑛

𝑔
−

(𝑦)

𝑥 − 𝑦


𝑛−(𝑛/]−𝑛/𝑝) 𝑑𝑦,

(55)

𝑥 ∈ R𝑛.
Thus, since 𝑓 = 𝑓

+

− 𝑓
−

, by (54) we have

𝑓
ℎ

(𝑥) → 𝑓 (𝑥) in 𝐿
𝑝

(R
𝑛
) as ℎ → 0. (56)

Now, observe that, by uniqueness, 𝑢ℎ is the solution of the
problem

𝐿𝑢ℎ = −𝑓
ℎ

in Ω,

𝑢ℎ = 0 on 𝜕Ω.

(57)

Classical results give then

𝑢ℎ − 𝑢ℎ
𝑊2,𝑝(Ω)

≤ 𝐶
 

𝑓
ℎ

− 𝑓
ℎ

𝐿𝑝(Ω)
, (58)

and so, in view of convergence (56), we obtain

𝑢ℎ → 𝑢 in 𝑊
2,𝑝

(Ω) , as ℎ → 0, (59)

where 𝑢 is the solution of problem (18).
The embedding 𝑊

2,𝑝
(Ω) ⊂ 𝐿

𝑛𝑝/(𝑛−2𝑝)
(Ω) then ensures

that

𝑢ℎ → 𝑢 in 𝐿
𝑛𝑝/(𝑛−2𝑝)

(Ω) , as ℎ → 0. (60)

Finally, by convergences (54) and (60) we can pass to the limit
as ℎ → 0 in (53), obtaining

‖𝑢‖𝐿𝑛𝑝/(𝑛−2𝑝)(Ω) ≤ 𝐶2 (

𝑓
+𝐿𝑝(R𝑛)

+

𝑓
−𝐿𝑝(R𝑛)

) . (61)

We are now able to conclude our proof. Indeed, by (61)
and (13) we get

‖𝑢‖𝐿𝑛𝑝/(𝑛−2𝑝)(Ω) ≤ 𝐶3 (
𝑔
+𝐿](R𝑛)

+
𝑔
−𝐿](R𝑛)

) , (62)

with 𝐶3 = 𝐶3(𝑛, 𝑝, 𝑙, 𝜇, ]).
Moreover,

𝑔
𝐿](R𝑛)

≈
𝑔
+𝐿](R𝑛)

+
𝑔
−𝐿](R𝑛)

, (63)

the functions 𝑔
+ and 𝑔

− having disjoint supports.
Thus, by (62), (63), and (16), we obtain our estimate

‖𝑢‖𝐿𝑛𝑝/(𝑛−2𝑝)(Ω) ≤ 𝐶4
𝑔

𝐿](R𝑛)
= 𝐶4


D
𝑛/]−𝑛/𝑝

𝑓
𝐿](R𝑛)

≤ 𝐶4


𝑓

𝐿
𝑛/]−𝑛/𝑝
],𝑝 (R

𝑛)
,

(64)

with 𝐶4 = 𝐶4(𝑛, 𝑝, 𝑙, 𝜇, ]).
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