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Let 𝑙2 = 𝐿2(N, 𝜇), where N is set of all positive integers and 𝜇 is the counting measure whose 𝜎-algebra is the power set of N. In this
paper, we obtain necessary and sufficient conditions for a weighted composition operator to be antinormal on the Hilbert space 𝑙2.
We also determine a class of antinormal weighted composition operators on Hardy space𝐻2(D).

1. Introduction

A deep and interesting problem in operator theory is to
determine the distance of an operator from a given class of
bounded linear operators on a Hilbert space. In particular,
the distance between an operator and the set of Hermitian,
positive, compact, and unitary operators has been investi-
gated in [1–4]. In 1974, Holmes [5] discovered that there
are operators for which their largest possible distance from
the set of normal operators can be achieved. He named
such operators as antinormal operators and showed that
no compact operator is antinormal. Thus, this extremality
of operators is a consequence of infinite dimensional phe-
nomenon of the underlying space. Subsequently, this class
has been extensively studied by several authors in [6–9]. For
the first time, the same problem has been studied in context
of composition operators on the Hilbert space 𝑙2 in [10] by
Tripathi and Lal. In this paper, we investigate antinormality
of weighted composition operators on 𝑙2 and𝐻2(D).
Notation and Terminology. In this paper, N and C denote the
set of all positive integers and the set of all complex numbers,
respectively. Also, let 𝜒𝑛 : N→ {0, 1} be defined as

𝜒𝑛 (𝑚) = {{{
1, if 𝑚 = 𝑛
0, otherwise. (1)

Suppose 𝐻 is a separable complex Hilbert space and 𝐵(𝐻)
denotes the algebra of all bounded linear operators on 𝐻.
Further, for𝑇 ∈ 𝐵(𝐻), let𝑁(𝑇) and𝑅(𝑇), respectively, denote
the null space and the range space of 𝑇.

We now record certain definitions and results which are
useful in our context.

Definition 1. A function 𝑢 : 𝑋 → C is said to be bounded
away from zero if there exists a positive real number, say 𝑟,
such that 0 < 1/|𝑢(𝑥)| ≤ 𝑟 for all 𝑥 ∈ 𝑋.
Definition 2 (see [11]). An operator 𝑇 ∈ 𝐵(𝐻) is said to be
Fredholm operator if dimension of𝑁(𝑇) and the dimension
of the quotient space𝐻/𝑅(𝑇) are both finite.

We also note here that, equivalently,𝑇 is Fredholm if both𝑁(𝑇) and𝑁(𝑇∗) are finite dimensional.

Definition 3. Essential spectrum of an operator 𝑇 ∈ 𝐵(𝐻) is
defined as 𝜎𝑒(𝑇) = {𝛼 ∈ C : 𝑇 − 𝛼𝐼 is not Fredholm}.

Since every invertible operator is Fredholm operator,
therefore 𝜎𝑒(𝑇) ⊆ 𝜎(𝑇); see [12].
Definition 4. Minimum modulus of an operator 𝑇 ∈ 𝐵(𝐻) is
defined as𝑚(𝑇) = inf{‖𝑇𝑥‖ : ‖𝑥‖ = 1}.
Definition 5. Essential minimummodulus of an operator𝑇 ∈𝐵(𝐻) is defined as 𝑚𝑒(𝑇) = inf{𝛼 ≥ 0 : 𝛼 ∈ 𝜎𝑒(|𝑇|)}, where|𝑇| = (𝑇∗𝑇)1/2.
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Definition 6. An operator 𝑇 ∈ 𝐵(𝐻) is said to be antinormal
if 𝑑(𝑇,N) = inf𝑁∈N‖𝑇 − 𝑁‖ = ‖𝑇‖, where N is the class of
all normal operators in 𝐵(𝐻).

Remark 7. An operator 𝑇 ∈ 𝐵(𝐻) is antinormal if and only if
its adjoint 𝑇∗ is antinormal.

Definition 8. For an operator𝑇 in 𝐵(𝐻), index of𝑇 is defined
as

index (𝑇) = {{{
dim (𝑁 (𝑇)) − dim (𝑁 (𝑇∗)) , if dim (𝑁 (𝑇)) or dim (𝑁 (𝑇∗)) < ∞
0, otherwise. (2)

Remark 9. Observe that index(𝑇) = −index(𝑇∗).
The following results will be used in the later part of the

paper.

Theorem 10 (see [7]). Let 𝑇 ∈ 𝐵(𝐻).
(i) If index(𝑇) = 0, then 𝑑(𝑇,N) ≤ (‖𝑇‖ − 𝑚(𝑇))/2.
(ii) If index(𝑇) < 0, then 𝑚𝑒(𝑇) ≤ 𝑑(𝑇,N) ≤ (‖𝑇‖ +𝑚𝑒(𝑇))/2.

Remark 11. If index(𝑇) = 0, then 𝑇 is not antinormal.

Theorem 12 (see [7]). Let 𝑇 ∈ 𝐵(𝐻)with index(𝑇) < 0. Then,
following conditions are equivalent:

(i) 𝑇 is antinormal.

(ii) 𝑚𝑒(𝑇) = ‖𝑇‖.
(iii) 𝑑(𝑇,U) = 1 + ‖𝑇‖, where U is the class of all unitary

operators in 𝐵(𝐻).
(iv) 𝑇 = 𝛼𝑊(1 − 𝐾) for some 𝛼 > 0, isometry 𝑊 and

positive compact contraction 𝐾.
2. Antinormal Weighted Composition

Operators on 𝑙2
The Hilbert space 𝑙2 is the space of all square summable
sequences of complex numbers. Let 𝜑 : N → N be self-map
and𝜑−1(𝑛) denote the inverse image of 𝑛 under𝜑. Let |𝜑−1(𝑛)|
denote the cardinality of 𝜑−1(𝑛). For 𝑢 ∈ 𝑙∞, a weighted
composition transformation induced by 𝑢 and 𝜑 is defined as
(𝑢𝐶𝜑) (𝑓) (𝑛) = 𝑢 (𝑛) 𝑓 (𝜑 (𝑛)) ∀𝑓 ∈ 𝑙2, ∀𝑛 ∈ N. (3)

If 𝑢𝐶𝜑 is bounded, then it is called weighted composition
operator induced by 𝑢 and 𝜑. The following result gives a
necessary and sufficient condition for boundedness of 𝑢𝐶𝜑.
Theorem 13. Weighted composition operator 𝑢𝐶𝜑 on 𝑙2 is
bounded if and only if sup𝑛∈N{|𝑢(𝑛)|2|𝜑−1(𝑛)|} < ∞. In this
case, ‖𝑢𝐶𝜑‖ = {sup𝑛∈N{|𝑢(𝑛)|2|𝜑−1(𝑛)|}}1/2.

Proof. Let 𝑓 = ∑𝑛∈N 𝑓(𝑛)𝜒𝑛 be an element in 𝑙2. Then,

𝑢𝐶𝜑𝑓2 =
𝑢𝐶𝜑(∑𝑛∈N𝑓 (𝑛) 𝜒𝑛)


2

= ∑𝑛∈N𝑢 (𝑛) 𝑓 (𝑛) 𝜒𝜑−1(𝑛)

2

= ∑
𝑛∈N

|𝑢 (𝑛)|2 𝑓 (𝑛)2 𝜑−1 (𝑛)
≤ sup
𝑛∈N

{|𝑢 (𝑛)|2 𝜑−1 (𝑛)} ∑
𝑛∈N

𝑓 (𝑛)2

= sup
𝑛∈N

{|𝑢 (𝑛)|2 𝜑−1 (𝑛)} 𝑓2 .

(4)

Thus,

sup
𝑛∈N

{|𝑢 (𝑛)|2 𝜑−1 (𝑛)} < ∞ (5)

implies that 𝑢𝐶𝜑 is bounded and

𝑢𝐶𝜑 ≤ {sup
𝑛∈N

{|𝑢 (𝑛)|2 𝜑−1 (𝑛)}}
1/2 . (6)

Conversely, if 𝑢𝐶𝜑 is bounded, then we have

𝑢𝐶𝜙𝜒𝑛2 = |𝑢 (𝑛)|2 𝜑−1 (𝑛) ∀𝑛 ∈ N. (7)

Therefore,

{sup
𝑛∈N

{|𝑢 (𝑛)|2 𝜑−1 (𝑛)}}
1/2 ≤ 𝑢𝐶𝜑 , (8)

hence the proof.

In the following result, we determined weighted compo-
sition operators on 𝑙2 which are not antinormal.

Theorem 14. Let 𝑢 ∈ 𝑙∞ be bounded away from zero and 𝜑 be
a bijective self-map on N. Then, 𝑢𝐶𝜑 is not antinormal.

Proof. Since 𝜑 is bijective and 𝑢 is bounded away from zero,𝑢𝐶𝜑 is invertible on 𝑙2. Hence, index(𝑢𝐶𝜑) = 0. Consequently,𝑢𝐶𝜑 is not antinormal by Remark 11.
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The following remark shows that the condition that “𝑢 is
bounded away from zero” is not essential for the validity of
the above theorem.

Remark 15. Let 𝑢 ∈ 𝑙∞ be such that 𝑢(𝑛) → 0 as 𝑛 → ∞.
Then, it is well known that𝑢𝐶𝜑 is compact ([13], p. 89).Hence,𝑢𝐶𝜑 is not antinormal.

We now prove the following lemma.

Lemma 16. Suppose𝜑 is injective but not surjective and𝑢(𝑛) ̸=0 for each 𝑛 ∈ N. Then, 𝑢𝐶𝜑 is not injective but (𝑢𝐶𝜑)∗ is
injective.

Proof. Since 𝜑 is not surjective, there exists 𝑛0 ∈ N such that𝜑−1(𝑛0) is empty. Therefore,

(𝑢𝐶𝜑) 𝜒𝑛0 = 𝑢 (𝑛0) 𝜒𝜑−1(𝑛0) = 0. (9)

Consequently, 𝑢𝐶𝜑 is not injective.
Now, for 𝑓 = ∑𝑛∈N 𝑓(𝑛)𝜒𝑛, we have

(𝑢𝐶𝜑)∗ 𝑓 = ∑
𝑛∈N

𝑢 (𝑛)𝑓 (𝑛) 𝜒𝜑(𝑛). (10)

Now, a simple computation using the above expression and
injectivity of 𝜑 shows that whenever (𝑢𝐶𝜑)∗𝑓 = 0, then𝑢(𝑛)𝑓(𝑛) = 0 ∀𝑛 ∈ N. Since 𝑢(𝑛) ̸= 0 ∀𝑛 ∈ N, therefore𝑓 = 0. Hence, (𝑢𝐶𝜑)∗ is injective.

The following result gives a necessary and sufficient
condition for antinormality of 𝑢𝐶𝜑 when 𝜑 is injective but
not surjective.

Theorem 17. Suppose 𝑢(𝑛) ̸= 0 for each 𝑛 ∈ N and 𝜑 is
injective but not surjective.Then, 𝑢𝐶𝜑 is antinormal if and only
if the following conditions hold:

(a) For each 0 ≤ 𝛼 < ‖𝑢𝐶𝜑‖2, 𝑢(𝑛)𝑢(𝜑(𝑛)) ̸= 𝛼, except for
finitely many 𝑛 ∈ N.

(b) ‖𝑢𝐶𝜑‖2 = 𝑢(𝑛)𝑢(𝜑(𝑛)) for infinitely many 𝑛 ∈ N.
Proof. Since 𝜑 is injective but not surjective and 𝑢(𝑛) ̸= 0 for
each 𝑛 ∈ N, hence by above lemma index((𝑢𝐶𝜑)∗) < 0. Now,
for 𝑓 = ∑𝑛∈N 𝑓(𝑛)𝜒𝑛 ∈ 𝑙2 and for given complex number 𝛼,
we have

((𝑢𝐶𝜑) (𝑢𝐶𝜑)∗ − 𝛼𝐼)𝑓
= ∑
𝑛∈N

(𝑢 (𝑛)𝑢 (𝜑 (𝑛)) − 𝛼)𝑓 (𝑛) 𝜒𝑛. (11)

From the above equation and condition (a) it follows that
dimker((𝑢𝐶𝜑)(𝑢𝐶𝜑)∗ − 𝛼𝐼) = dimker((𝑢𝐶𝜑)(𝑢𝐶𝜑)∗ − 𝛼𝐼)∗
is finite whenever 0 ≤ 𝛼 < ‖𝑢𝐶𝜑‖2. Hence, ((𝑢𝐶𝜑)(𝑢𝐶𝜑)∗ −𝛼𝐼) is Fredholm for each 0 ≤ 𝛼 < ‖𝑢𝐶𝜑‖2. Thus, √𝛼 ∉𝜎𝑒(|(𝑢𝐶𝜑)∗|) for each 0 ≤ 𝛼 < ‖𝑢𝐶𝜑‖2. Again by condition
(b) ‖𝑢𝐶𝜑‖2 = 𝑢(𝑛)𝑢(𝜑(𝑛)) for infinitely many 𝑛 ∈ N.
Hence, dimker((𝑢𝐶𝜑)(𝑢𝐶𝜑)∗−‖𝑢𝐶𝜑‖2𝐼) is infinite.Therefore,

‖𝑢𝐶𝜑‖ ∈ 𝜎𝑒(|(𝑢𝐶𝜑)∗|). Thus, 𝑚𝑒((𝑢𝐶𝜑)∗) = ‖𝑢𝐶𝜑‖. Hence,(𝑢𝐶𝜑)∗ is antinormal by Theorem 12. Now, since adjoint
of an antinormal operator is antinormal, therefore 𝑢𝐶𝜑 is
antinormal. Conversely, if either of the conditions fail, then
we claim that 𝑢𝐶𝜑 is not antinormal. For, if condition (a)
fails, there exists an 𝛼0 with 0 ≤ 𝛼0 < ‖𝑢𝐶𝜑‖2 such that√𝛼0 ∈ 𝜎𝑒(|(𝑢𝐶𝜑)∗|). Therefore, 𝑚𝑒((𝑢𝐶𝜑)∗) ≤ √𝛼0 < ‖𝑢𝐶𝜑‖.
Hence, (𝑢𝐶𝜑)∗ is not antinormal. Now, suppose condition
(b) fails. Then, by (11), ‖(𝑢𝐶𝜑)∗‖ ∉ 𝜎𝑒(|(𝑢𝐶𝜑)∗|). Therefore,𝑚𝑒((𝑢𝐶𝜑)∗) < ‖𝑢𝐶𝜑‖. Hence, 𝑢𝐶𝜑 is not antinormal.

We now prove the following lemma.

Lemma 18. Suppose𝜑 is surjective but not injective and𝑢(𝑛) ̸=0 for each 𝑛 ∈ N. Then, 𝑢𝐶𝜑 is injective but (𝑢𝐶𝜑)∗ is not
injective.

Proof. Let 𝑓 ∈ 𝑙2 be such that 𝑢𝐶𝜑(𝑓) = 0. Therefore,𝑢(𝑛)𝑓(𝜑(𝑛)) = 0 ∀𝑛 ∈ N. This implies 𝑓(𝜑(𝑛)) = 0 ∀𝑛 ∈ N as𝑢(𝑛) ̸= 0 ∀𝑛 ∈ N. Now, subjectivity 𝜑 implies 𝑓 = 0. Further,
Since 𝜑 is not injective, there exist𝑚, 𝑛 ∈ N with𝑚 ̸= 𝑛 such
that 𝜑(𝑚) = 𝜑(𝑛). Now, define 𝑓 = 𝑢(𝑚)𝜒𝑛 and 𝑔 = 𝑢(𝑛)𝜒𝑚.
It is easy to see that 𝑓, 𝑔 ∈ 𝑙2 and 𝑓 ̸= 𝑔 but (𝑢𝐶𝜑)∗(𝑓) =(𝑢𝐶𝜑)∗(𝑔). Therefore, (𝑢𝐶𝜑)∗ is not injective.

Using above lemma we prove the following result.

Theorem 19. Suppose 𝑢(𝑛) ̸= 0 for each 𝑛 ∈ N and 𝜑 is
surjective but not injective.Then, 𝑢𝐶𝜑 is antinormal if and only
if the following conditions hold:

(a) For each 0 ≤ 𝛼 < ‖𝑢𝐶𝜑‖2, 𝑢(𝑛)∑𝑚∈𝜑−1(𝑛) 𝑢(𝑚) ̸= 𝛼,
except for finitely many 𝑛 ∈ N,

(b) ‖𝑢𝐶𝜑‖2 = 𝑢(𝑛)∑𝑚∈𝜑−1(𝑛) 𝑢(𝑚) for infinitely many 𝑛 ∈
N.

Proof. Since 𝜑 is surjective but not injective and 𝑢(𝑛) ̸= 0 for
each 𝑛 ∈ N, hence by above lemma index((𝑢𝐶𝜑)∗) < 0. For𝑓 ∈ 𝑙2 and 𝛼 ∈ C, we have

((𝑢𝐶𝜑)∗ (𝑢𝐶𝜑) − 𝛼𝐼)𝑓
= ∑
𝑛∈N

(𝑢 (𝑛) ∑
𝑚∈𝜑−1(𝑛)

𝑢 (𝑚) − 𝛼)𝑓 (𝑛) 𝜒𝑛. (12)

Therefore, dimker((𝑢𝐶𝜑)∗(𝑢𝐶𝜑)−𝛼𝐼)=dimker((𝑢𝐶𝜑)∗(𝑢𝐶𝜑)−𝛼𝐼)∗ is finite for each 0 ≤ 𝛼 < ‖𝑢𝐶𝜑‖2 by condition (a).
Hence, √𝛼 ∉ 𝜎𝑒(|𝑢𝐶𝜑|) for each 0 ≤ 𝛼 < ‖𝑢𝐶𝜑‖2. Also,𝑢(𝑛)∑𝑚∈𝜑−1(𝑛) 𝑢(𝑚) = ‖𝑢𝐶𝜑‖2 for infinitely many 𝑛 ∈ N, so‖𝑢𝐶𝜑‖ ∈ 𝜎𝑒(|𝑢𝐶𝜑|). Thus, 𝑚𝑒(𝑢𝐶𝜑) = ‖𝑢𝐶𝜑‖. Consequently,𝑢𝐶𝜑 is antinormal. Conversely, if either of the conditions is
not true, then we claim that 𝑢𝐶𝜑 is not antinormal. If condi-
tion (a) fails, then there exists an 𝛼0 with 0 ≤ 𝛼0 < ‖𝑢𝐶𝜑‖2,
such that √𝛼0 ∈ 𝜎𝑒(|𝑢𝐶𝜑|). Therefore, 𝑚𝑒(𝑢𝐶𝜑) ≤ √𝛼0 <‖𝑢𝐶𝜑‖ and so 𝑢𝐶𝜑 is not antinormal. Now, suppose condition
(b) fails. Then, by (12), ‖𝑢𝐶𝜑‖ ∉ 𝜎𝑒(|𝑢𝐶𝜑|). Therefore,
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𝑚𝑒(𝑢𝐶𝜑) < ‖𝑢𝐶𝜑‖. Thus, 𝑢𝐶𝜑 is not antinormal in either
case.

Theorem 20. Suppose 𝑢(𝑛) ̸= 0 ∀𝑛 ∈ N and 𝜑 is neither
injective nor surjective.

(i) If index(𝑢𝐶𝜑) = 0, then 𝑢𝐶𝜑 is not antinormal.
(ii) If index(𝑢𝐶𝜑) < 0, then 𝑢𝐶𝜑 is antinormal if and only

if the following conditions hold:

(a) for each 0 ≤ 𝛼 < ‖𝑢𝐶𝜑‖, 𝑢(𝑛)∑𝑚∈𝜑−1(𝑛) 𝑢(𝑚) ̸=𝛼, except for finitely many 𝑛 ∈ 𝑟𝑎𝑛𝑔𝑒(𝜑),
(b) if ‖𝑢𝐶𝜑‖2 = 𝑢(𝑛)∑𝑚∈𝜑−1(𝑛) 𝑢(𝑚) for infinitely

many 𝑛 ∈ 𝑟𝑎𝑛𝑔𝑒(𝜑).
Proof. (i) It follows by Remark 11.

(ii) Proof is same as in case of Theorem 19.

We now give examples, one in each case, satisfying
Theorems 17 and 19.

Example 21. Let 𝜑(𝑛) = 2𝑛 and
𝑢 (𝑛) = {{{

1, 𝑛 = 1, 2
2, otherwise. (13)

Clearly,𝜑 is injective but not surjective and 𝑢(𝑛)𝑢(𝜑(𝑛)) = 4 =‖𝑢𝐶𝜑‖2 for 𝑛 ≥ 2. Hence, by Theorem 17, 𝑢𝐶𝜑 is antinormal.

Example 22. Let

𝜑 (𝑛) = {{{{{{{

𝑛 + 12 , 𝑛 is odd𝑛2 , 𝑛 is even,
𝑢 (𝑛) = {{{

1, 𝑛 = 1
2, otherwise.

(14)

Clearly, 𝜑 is surjective but not injective and ‖𝑢𝐶𝜑‖2 = 8 =𝑢(𝑛)∑𝑚∈𝜑−1(𝑛) 𝑢(𝑚) for 𝑛 ≥ 2. Hence, antinormality of 𝑢𝐶𝜑
follows fromTheorem 19.

3. Antinormal Weighted Composition
Operators on Hardy Space

In this section, we continue our line of investigation of anti-
normal operators. Let D = {𝑧 ∈ C : |𝑧| < 1} and 𝜕D = {𝑧 ∈
C : |𝑧| = 1}. Hardy space𝐻2(D) [14] is defined to be the space
of all analytic functions𝑓 on the unit diskDwith the property

𝑓2 = sup
0≤𝑟<1
∫2𝜋
0

𝑓 (𝑟𝑧)2 𝑑𝜃2𝜋 < ∞. (15)

The inner product on𝐻2(D) is defined as follows:

⟨𝑓, 𝑔⟩ = ∫2𝜋
0
𝑓 (𝑒𝑖𝜃) 𝑔 (𝑒𝑖𝜃)𝑑𝜃2𝜋 . (16)

Let 𝜑 : D → D be analytic self-map. For 𝑢 ∈ 𝐻∞(D),
weighted composition transformation 𝑢𝐶𝜑 on 𝐻2(D) is
defined by (𝑢𝐶𝜑)(𝑓)(𝑧) = 𝑢(𝑧)𝑓(𝜑(𝑧)) for all 𝑓 ∈ 𝐻2(D) and
for all 𝑧 ∈ D. The fact that 𝑢𝐶𝜑 is bounded linear operator
on 𝐻2(D) follows from the well-known Hardy-Littlewood
subordination, Theorem [15]. In 2011, Gunatillake [16] has
shown that the operator 𝑢𝐶𝜑 on 𝐻2(D) is invertible if and
only if 𝑢 is both bounded and bounded away from zero on
the unit disc and 𝜑 is an automorphism of the unit disc.

Following result is an easy consequence of preceding
statement.

Theorem 23. If 𝑢 ∈ 𝐻∞(D) is bounded away from zero and 𝜑
is automorphism of the unit disc, then𝑢𝐶𝜑 is not an antinormal
composition operator.

Proof. Since 𝑢𝐶𝜑 is bijective, so index(𝑢𝐶𝜑) = 0. Hence, 𝐶𝜑
is not antinormal by Remark 11.

One of the difficult issues is to find a useful description
of the adjoint of 𝑢𝐶𝜑 for arbitrary 𝜑. In 2011, Matache [17]
showed that if 𝜑(0) = 0 then 𝐶∗𝜑(𝑧𝑛) = ∑𝑘=𝑛𝑘=1⟨𝑧𝑛, 𝜑𝑘⟩𝑧𝑘 for
each 𝑛 = 1, 2, 3, . . .. We have used his idea in the following
theorem.

Theorem 24. If self-map 𝜑(𝑧) = 𝑧𝑛 for 𝑛 ≥ 2 and |𝑢(𝑧)| = 1
a.e. on 𝜕D, then 𝑢𝐶𝜑 is antinormal.

Proof. Let 𝑓(𝑧) = ∑𝑟≥0 𝑎𝑟𝑧𝑟 ∈ 𝐻2(D). Then,

(𝑢𝐶𝜑)∗ (𝑢𝐶𝜑) 𝑓 (𝑧) = ∑
𝑟≥0

𝑎𝑟 (𝑢𝐶𝜑)∗ (𝑢𝐶𝜑) (𝑧𝑟)
= ∑
𝑟≥0

𝑎𝑟 (𝑢𝐶𝜑)∗ (𝑢 (𝑧) 𝜑𝑟 (𝑧))
= ∑
𝑟≥0

𝑎𝑟∑
𝑘≥0

⟨𝑢𝐶𝜑)∗ (𝑢 (𝑧) 𝜑𝑟 (𝑧) , 𝑧𝑘⟩ 𝑧𝑘
= ∑
𝑟≥0

𝑎𝑟∑
𝑘≥0

⟨𝑢 (𝑧) 𝜑𝑟 (𝑧) , 𝑢𝐶𝜑 (𝑧𝑘)⟩ 𝑧𝑘
= ∑
𝑟≥0

𝑎𝑟∑
𝑘≥0

⟨𝑢 (𝑧) 𝜑𝑟 (𝑧) , 𝑢 (𝑧) 𝜑𝑘 (𝑧)⟩ 𝑧𝑘

= ∑
𝑟≥0

𝑎𝑟∑
𝑘≥0

(∫
𝜕D
𝑢 (𝑒𝑖𝜃) 𝜑𝑟 (𝑒𝑖𝜃) 𝑢 (𝑒𝑖𝜃) 𝜑𝑘 (𝑒𝑖𝜃)𝑑𝜃2𝜋) 𝑧𝑘

= ∑
𝑟≥0

𝑎𝑟∑
𝑘≥0

(∫
𝜕D
𝑒𝑖𝑛𝑟𝜃𝑒−𝑖𝑛𝑘𝜃 𝑑𝜃2𝜋) 𝑧𝑘 = ∑𝑟≥0𝑎𝑟𝑧𝑟 = 𝑓 (𝑧) .

(17)

Therefore (𝑢𝐶𝜑)∗(𝑢𝐶𝜑) − 𝛼𝐼 = (1 − 𝛼)𝐼 ∀𝛼 ≥ 0. This implies
that (𝑢𝐶𝜑)∗(𝑢𝐶𝜑) − 𝛼𝐼 is invertible for 0 ≤ 𝛼 < 1. Hence,(𝑢𝐶𝜑)∗(𝑢𝐶𝜑) − 𝛼𝐼 is Fredholm for 0 ≤ 𝛼 < 1. Thus, 𝛼 ∉𝜎𝑒(|𝑢𝐶𝜑|) whenever 0 ≤ 𝛼 < 1. Also dimker((𝑢𝐶𝜑)∗(𝑢𝐶𝜑) −𝛼𝐼) is infinite for 𝛼 = 1. Hence, 1 ∈ 𝜎𝑒(|𝑢𝐶𝜑|). Therefore,𝑚𝑒(𝑢𝐶𝜑) = inf{𝛼 ≥ 0 : 𝛼 ∈ 𝜎𝑒(|𝑢𝐶𝜑|)} = 1. Since𝜑(0) = 0 and |𝑢(𝑧)| = 1 a.e. on 𝜕D, ‖𝑢𝐶𝜙‖ = ‖𝐶𝜑‖ = 1.
Further, 𝑢𝐶𝜑 is injective, and 𝑢𝐶𝜑 is not surjective as 𝜑 is not
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an automorphism. Consequently, index(𝑢𝐶𝜑) < 0. Hence,
the antinormality of 𝑢𝐶𝜑 follows fromTheorem 12.

Following corollary is an immediate consequence of the
preceding theorem.

Corollary 25. If self-map 𝜑(𝑧) = 𝑧𝑛 ∀𝑧 ∈ D, 𝑛 ≥ 2, then 𝐶𝜑
is antinormal.
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