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We continue the study of discrete anisotropic equations and we will provide new multiplicity results of the solutions for a discrete
anisotropic equation. We investigate the existence of infinitely many solutions for a perturbed discrete anisotropic boundary value
problem. The approach is based on variational methods and critical point theory.

1. Introduction

The aim of this paper is to investigate the existence of
infinitely many solutions for the following perturbed discrete
anisotropic problem:

− Δ (𝛼 (𝑘) |Δ𝑢 (𝑘 − 1)|𝑝(𝑘−1)−2 Δ𝑢 (𝑘 − 1))
= 𝜆𝑓 (𝑘, 𝑢 (𝑘)) + 𝜇𝑔 (𝑘, 𝑢 (𝑘)) , 𝑘 ∈ [1, 𝑇] ,

𝑢 (0) = 𝑢 (𝑇 + 1) = 0,
(𝑃𝑓,𝑔𝜆 )

where 𝑇 ≥ 2 is a fixed positive integer number, [1, 𝑇] is the
discrete interval {1, . . . , 𝑇} ⊂ N, Δ𝑢(𝑘 − 1) = 𝑢(𝑘) − 𝑢(𝑘 − 1),𝛼 : [1, 𝑇 + 1] → (0, +∞), and 𝑝 : [0, 𝑇] → (1, +∞) are some
fixed functions, and𝑓, 𝑔 : [1, 𝑇]×R → R are two continuous
functions. Let

𝑝− = min
𝑘∈[0,𝑇]

𝑝 (𝑘) ,
𝑝+ = max
𝑘∈[0,𝑇]

𝑝 (𝑘) ,
𝛼− = min
𝑘∈[1,𝑇+1]

𝛼 (𝑘) ,
𝛼+ = max
𝑘∈[1,𝑇+1]

𝛼 (𝑘) .

(1)

Many problems in applied mathematics lead to the study
of discrete boundary value problems and difference equa-
tions. Indeed, common among many fields of research, such

as computer science, mechanical engineering, control sys-
tems, artificial or biological neural networks, and economics,
is the fact that the mathematical modelling of fundamental
questions is usually tended towards considering discrete
boundary value problems andnonlinear difference equations.
Regarding these issues, a thoroughgoing overview has been
given in, as an example, the monograph [1] and the reference
therein. On the other hand, in recent years some researchers
have studied the existence and multiplicity of solutions for
equations involving the discrete 𝑝-Laplacian operator by
using various fixed point theorems, lower andupper solutions
method, critical point theory and variationalmethods,Morse
theory, and themountain-pass theorem. For background and
recent results, we refer the reader to [2–20] and the references
therein. For example, Atici and Guseinov in [3] investigated
the existence of positive periodic solutions for nonlinear dif-
ference equations with periodic coefficients by employing a
fixed point theorem in cone. Atici and Cabada in [2], by using
the upper and lower solution method, obtained the existence
and uniqueness results for a discrete boundary value prob-
lem.Henderson andThompson in [12] gave conditions on the
nonlinear term involving pairs of discrete lower and discrete
upper solutions which led to the existence of at least three
solutions of discrete two-point boundary value problems, and
in a special case of the nonlinear term they gave growth
conditions on the function and applied their general result
to show the existence of three positive solutions. Chu and
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Jiang in [9] based on fixed point theorem in a cone, due to
Krasnoselskii, characterized the eigenvalues and showed the
existence of positive solutions to a discrete boundary value
problem. Jiang and Zhou in [13] employing a three-critical
point theorem, due to Ricceri, established the existence of at
least three solutions for perturbed nonlinear difference equa-
tions with discrete boundary conditions. Wang and Guan
in [20], by using the Five Functionals Fixed Point Theorem,
obtained the existence criteria for three positive solutions
of a 𝑝-Laplacian difference equation. Bonanno and Candito
[5], employing critical point theorems in the setting of finite
dimensional Banach spaces, investigated the multiplicity of
solutions for nonlinear difference equations involving the𝑝-Laplacian. Cabada et al. in [6], based on three critical
points’ theorems, investigated different sets of assumptions
which guarantee the existence and multiplicity of solutions
for difference equations involving the discrete 𝑝-Laplacian
operator. In [4] Bian et al. by using critical point theory
studied a class of discrete 𝑝-Laplacian periodic boundary
value problems; some results were obtained for the existence
of two positive solutions, three solutions, and multiple pairs
of solutions of the problem when the parameter lies in some
suitable infinite or finite intervals. In [15], by using variational
methods and critical point theory, the existence of infinitely
many solutions for perturbed nonlinear difference equations
with discrete Dirichlet boundary conditions was discussed.

There seems to be increasing interest in the existence of
solutions to discrete anisotropic equations, because of their
applications in many fields such as models in physics [21–
24], biology [25, 26], and image processing (see, for example,
Weickert’s monograph [27]). We also mention Fragalà et al.
[28] and El Hamidi and Vétois [29] as essential references
in treating the nonlinear anisotropic problems. Besides,
Mihăilescu et al. (see [30, 31]) were the first authors who
studied anisotropic elliptic problemswith variable exponents.
On the other hand, numerous researches have been under-
taken on the existence of solutions for discrete anisotropic
boundary value problems (BVPs) in recent years. As to the
background and latest results, the readers can refer to [32–
38] and the references therein. For example, Mihăilescu et al.
in [36], by using critical point theory, obtained the existence
of a continuous spectrum for a family of discrete boundary
value problems. Galewski and Wieteska in [34] investigated
the existence of solutions of the system of anisotropic discrete
boundary value problems using critical point theory, while
in [33], using variational methods, they derived the intervals
of the numerical parameter for which the problem (𝑃𝑓,𝑔𝜆 ) has
at least 1, exactly 1, or at least 2 positive solutions. They also
derived some useful discrete inequalities. Molica Bisci and
Repovš in [37] considered advantage of a recent critical point
theorem to establish the existence of infinitelymany solutions
for anisotropic difference equation:

−Δ (|Δ𝑢 (𝑘 − 1)|𝑝(𝑘−1)−2 Δ𝑢 (𝑘 − 1)) = 𝜆𝑓𝑘 (𝑢 (𝑘)) ,
𝑘 ∈ Z [1, 𝑇] ,

𝑢 (0) = 𝑢 (𝑇 + 1) = 0,
(2)

where 𝜆 is a positive parameter, 𝑓𝑘 : R → R is a continuous
function for every 𝑘 ∈ Z[1, 𝑇] (with 𝑇 ≥ 2), and Δ𝑢(𝑘 − 1) fl𝑢(𝑘) − 𝑢(𝑘 − 1) is the forward difference operator, assuming
that the map 𝑝 : Z[0, 𝑇] → R satisfies 𝑝− fl minZ[0,𝑇]𝑝(𝑘) >1 as well as 𝑝+ fl maxZ[0,𝑇]𝑝(𝑘) > 1. Stegliński in [38], based
on critical point theory, obtained the existence of infinitely
many solutions for the parametric version of the problem(𝑃𝑓,𝑔𝜆 ), in the case where 𝜇 = 0.

Motivated by the above works, in the present paper, by
employing a smooth version of [39, Theorem 2.1], which is
more precise version of Ricceri’s Variational Principle [40,
Theorem 2.5] under some hypotheses on the behavior of the
nonlinear terms at infinity, we prove the existence of definite
intervals about 𝜆 and 𝜇 in which the problem (𝑃𝑓,𝑔𝜆 ) admits
a sequence of solutions which is unbounded in the space 𝐸
which will be introduced later (Theorem 6). Furthermore,
some consequences of Theorem 6 are listed. A partial case
of main result is formulated as Theorem 5. Replacing the
conditions at infinity on the nonlinear terms, by a similar one
at zero, we obtain a sequence of pairwise distinct solutions
strongly converging at zero; see Theorem 14. Three examples
of applications are pointed out (see Examples 8, 13, and 16).

2. Preliminaries

Our main tool to ensure the existence of infinitely many
solutions for the problem (𝑃𝑓,𝑔𝜆 ) is a smooth version of
Theorem 2.1 of [39] which is a more precise version of
Ricceri’s Variational Principle [40] that we now recall here.

Theorem 1. Let 𝑋 be a reflexive real Banach space and letΦ,Ψ : 𝑋 → R be two Gâteaux differentiable functionals such
that Φ is sequentially weakly lower semicontinuous, strongly
continuous, and coercive and Ψ is sequentially weakly upper
semicontinuous. For every 𝑟 > inf𝑋Φ, let one put

𝜑 (𝑟) fl inf
𝑢∈Φ−1(]−∞,𝑟[)

supV∈Φ−1(]−∞,𝑟])Ψ (V) − Ψ (𝑢)
𝑟 − Φ (𝑢) ,

𝛾 fl lim inf
𝑟→+∞

𝜑 (𝑟) ,
𝛿 fl lim inf
𝑟→(inf𝑋Φ)+

𝜑 (𝑟) .
(3)

Then, one has the following:
(a) For every 𝑟 > inf𝑋Φ and every 𝜆 ∈ ]0, 1/𝜑(𝑟)[, the

restriction of the functional 𝐼𝜆 = Φ − 𝜆Ψ to Φ−1(] −∞, 𝑟[) admits a global minimum, which is a critical
point (local minimum) of 𝐼𝜆 in 𝑋.

(b) If 𝛾 < +∞, then, for each 𝜆 ∈ ]0, 1/𝛾[, the following
alternative holds:
either

(b1) 𝐼𝜆 possesses a global minimum
or

(b2) there is a sequence {𝑢𝑛} of critical points (local
minima) of 𝐼𝜆 such that

lim
𝑛→+∞

Φ(𝑢𝑛) = +∞. (4)
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(c) If 𝛿 < +∞, then, for each 𝜆 ∈ ]0, 1/𝛿[, the following
alternative holds:
either

(c1) there is a global minimum of Φ which is a local
minimum of 𝐼𝜆
or

(c2) there is a sequence of pairwise distinct critical
points (local minima) of 𝐼𝜆 which weakly con-
verges to a global minimum ofΦ.

We refer the reader to the paper [41–47] in which
Theorem 1 was successfully employed to ensure the existence
of infinitely many solutions for boundary value problems.

Here and in the sequel we take the𝑇-dimensional Banach
space

𝐸 fl {𝑢 : [0, 𝑇 + 1] → R : 𝑢 (0) = 𝑢 (𝑇 + 1) = 0} , (5)

endowed with the norm

‖𝑢‖ fl (𝑇+1∑
𝑘=1

|Δ𝑢 (𝑘 − 1)|2)
1/2

. (6)

Remark 2. We consider that whenever 𝐸 is a finite dimen-
sional Banach space in Theorem 1, in order to show the
regularity of the derivative ofΦ andΨ, it is merely enough to
indicate thatΦ andΨ are two continuous functionals on𝐸∗.
Lemma 3 (see [48, Section 2]). (a.1) For every 𝑢 ∈ 𝐸 with‖𝑢‖ > 1 we have

𝑇+1∑
𝑘=1

|Δ𝑢 (𝑘 − 1)|𝑝(𝑘−1) ≥ 𝑇(2−𝑝−)/2 ‖𝑢‖𝑝− − 𝑇. (7)

(a.2) For every 𝑢 ∈ 𝐸 with ‖𝑢‖ ≤ 1 we have
𝑇+1∑
𝑘=1

|Δ𝑢 (𝑘 − 1)|𝑝(𝑘−1) ≥ 𝑇(𝑝+−2)/2 ‖𝑢‖𝑝+ . (8)

(a.3) For every 𝑢 ∈ 𝐸 and for any 𝑚 ≥ 2 we have
(𝑇 + 1)(2−𝑚)/2 ‖𝑢‖𝑚 ≤ 𝑇+1∑

𝑘=1

|Δ𝑢 (𝑘 − 1)|𝑚
≤ (𝑇 + 1) ‖𝑢‖𝑚 .

(9)

(a.4) If 𝑝+ ≥ 2 there exists positive constant 𝐶𝑝+ such that
for every 𝑢 ∈ 𝐸
𝑇+1∑
𝑘=1

|Δ𝑢 (𝑘 − 1)|𝑝(𝑘−1) ≤ 2𝑝+ (𝑇 + 1) (𝐶𝑝+ ‖𝑢‖𝑝+ + 1) . (10)

(a.5) For every 𝑢 ∈ 𝐸 and for any 𝑚 ≥ 2 we have
𝑇+1∑
𝑘=1

|Δ𝑢 (𝑘 − 1)|𝑚 ≤ 2𝑚 𝑇∑
𝑘=1

|𝑢 (𝑘)|𝑚 . (11)

(a.6) For every 𝑢 ∈ 𝐸 and for any 𝑝, 𝑞 > 1 such that 1/𝑝 +1/𝑞 = 1 we have
‖𝑢‖∞ = max

𝑘∈[1,𝑇]
|𝑢 (𝑘)|

≤ (𝑇 + 1)1/𝑞(𝑇+1∑
𝑘=1

|Δ𝑢 (𝑘 − 1)|𝑝)
1/𝑝

. (12)

Put

𝐹 (𝑘, 𝑡) fl ∫𝑡
0
𝑓 (𝑘, 𝜉) d𝜉 ∀ (𝑘, 𝑡) ∈ [1, 𝑇] ×R. (13)

Remark 4. We recall that a map 𝑓 : [1, 𝑇] × R → R is
continuous if it is continuous as amapof the topological space[1, 𝑇] × R into the topological space R. In this paper, the
topology on [1, 𝑇] will be the discrete topology.

A special case of ourmain result is the following theorem.

Theorem 5. Let 𝑓 : R → R be a continuous function and put𝐹(𝑡) = ∫𝑡
0
𝑓(𝜉)d𝜉 for all 𝑡 ∈ R. Assume that

lim inf
𝜉→+∞

𝐹 (𝜉)𝜉𝑝 = 0,
lim sup
𝜉→+∞

𝐹 (𝜉)𝜉𝑝 = +∞.
(14)

Then, for every continuous function 𝑔 : R → R whose 𝐺(𝑡) =∫𝑡
0
𝑔(𝜉)d𝜉, for every 𝑡 ∈ R, is a nonnegative function satisfying

the condition

𝑔⋆ fl 𝑇𝑝𝑝 lim
𝜉→+∞

sup|𝑡|≤𝜉𝐺 (𝑡)
𝜉𝑝 < +∞ (15)

and for every 𝜇 ∈ [0, 𝜇⋆,𝜆[, where 𝜇⋆,𝜆 fl (1/𝑔⋆)(1 −𝜆𝑇𝑝𝑝 lim inf𝜉→+∞(𝐹(𝜉)/𝜉𝑝)), the problem
− Δ (|Δ𝑢 (𝑘 − 1)|𝑝−2 Δ𝑢 (𝑘 − 1))

= 𝜆𝑓 (𝑢 (𝑘)) + 𝜇𝑔 (𝑢 (𝑘)) , 𝑘 ∈ [1, 𝑇] ,
𝑢 (0) = 𝑢 (𝑇 + 1) = 0

(16)

has an unbounded sequence of solutions.

3. Main Results

We present our main result as follows.

Theorem 6. Assume that(A1) lim inf𝜉→+∞(∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐹(𝑘, 𝑡)/𝜉𝑝−) < (𝑝−𝛼−/
2𝛼+𝑇𝑝−𝑝+)lim sup𝜉→+∞(∑𝑇𝑘=1 𝐹(𝑘, 𝜉)/𝜉𝑝+).

Then, for each 𝜆 ∈ ]𝜆1, 𝜆2[, where
𝜆1 fl 2𝛼+

𝑝−lim sup𝜉→+∞ (∑𝑇𝑘=1 𝐹 (𝑡, 𝜉) /𝜉𝑝+) ,

𝜆2 fl 𝛼−
𝑇𝑝−𝑝+lim inf𝜉→+∞ (∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐹 (𝑘, 𝑡) /𝜉𝑝−) ,

(17)
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for every continuous function 𝑔 : [1, 𝑇] × R → R whose𝐺(𝑘, 𝑡) = ∫𝑡
0
𝑔(𝑘, 𝜉)d𝜉 for every (𝑘, 𝑡) ∈ [1, 𝑇] × R, is a

nonnegative function satisfying the condition

𝑔∞ fl
𝑇𝑝−𝑝+𝛼− lim

𝜉→+∞

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐺 (𝑘, 𝑡)
𝜉𝑝− < ∞ (18)

and for every 𝜇 ∈ [0, 𝜇𝑔,𝜆[, where
𝜇𝑔,𝜆

fl
1𝑔∞ (1 − 𝜆𝑇𝑝−𝑝+𝛼− lim inf

𝜉→+∞

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐹 (𝑘, 𝑡)
𝜉𝑝− ) , (19)

the problem (𝑃𝑓,𝑔𝜆 ) has an unbounded sequence of solutions.

Proof. Fix 𝜆 ∈ ]𝜆1, 𝜆2[ and let 𝑔 be a function satisfying the
condition (18). Since𝜆 < 𝜆2, one has𝜇𝑔,𝜆 > 0. Fix𝜇 ∈ [0, 𝜇𝑔,𝜆[
and put ]1 fl 𝜆1 and ]2 fl 𝜆2/(1 + (𝜇/𝜆)𝜆2𝑔∞). If 𝑔∞ =0, clearly, ]1 = 𝜆1, ]2 = 𝜆2, and 𝜆 ∈ ]]1, ]2[. If 𝑔∞ ̸= 0,
since 𝜇 < 𝜇𝑔,𝜆, we obtain 𝜆/𝜆2 + 𝜇𝑔∞ < 1, and so 𝜆2/(1 +
(𝜇/𝜆)𝜆2𝑔∞) > 𝜆, namely, 𝜆 < ]2. Hence, since 𝜆 > 𝜆1 = ]1,
one has 𝜆 ∈ ]]1, ]2[. Now, set 𝑄(𝑘, 𝑡) = 𝐹(𝑘, 𝑡) + (𝜇/𝜆)𝐺(𝑘, 𝑡)
for all (𝑘, 𝑡) ∈ [1, 𝑇] × R. Take 𝑋 = 𝐸 and define on 𝑋 two
functionalsΦ and Ψ as follows:

Φ (𝑢) = 𝑇+1∑
𝑘=1

𝛼 (𝑘)𝑝 (𝑘 − 1) |Δ𝑢 (𝑘 − 1)|𝑝(𝑘−1) ,

Ψ (𝑢) = 𝑇∑
𝑘=1

𝐹 (𝑘, 𝑢 (𝑘)) + 𝜇
𝜆
𝑇∑
𝑘=1

𝐺 (𝑘, 𝑢 (𝑘)) .
(20)

Since 𝑋 is a finite dimensional Banach space, Ψ is a Gâteaux
differentiable functional and sequentially weakly upper semi-
continuouswhoseGâteaux derivative at the point𝑢 ∈ 𝑋 is the
functional Ψ(𝑢) ∈ 𝑋∗, given by

Ψ (𝑢) V = 𝑇∑
𝑘=1

𝑓 (𝑘, 𝑢 (𝑘)) V (𝑘)

+ 𝜇
𝜆
𝑇∑
𝑘=1

𝑔 (𝑘, 𝑢 (𝑘)) V (𝑘) ,
(21)

for every V ∈ 𝑋, and Ψ : 𝑋 → 𝑋∗ is a compact operator.
Moreover, Φ is a Gâteaux differentiable functional of which
Gâteaux derivative at the point 𝑢 ∈ 𝑋 is the functionalΦ(𝑢) ∈ 𝑋∗, given by

Φ (𝑢) (V)
= 𝑇+1∑
𝑘=1

𝛼 (𝑘) |Δ𝑢 (𝑘 − 1)|𝑝(𝑘−1)−2 Δ𝑢 (𝑘 − 1) ΔV (𝑘 − 1) (22)

for every V ∈ 𝑋. Furthermore,Φ is sequentially weakly lower
semicontinuous (see [5, Remarks 2.2 and 2.3]). Put 𝐼𝜆 fl Φ−
𝜆Ψ. We observe that the solutions of the problem (𝑃𝑓,𝑔𝜆 ) are

exactly the solutions of the equation 𝐼
𝜆
(𝑢) = 0. So, our end is

to apply Theorem 1 to Φ and Ψ. Now, we wish to prove that𝛾 < +∞, where 𝛾 is defined in Theorem 1. Let {𝜉𝑛} be a real
sequence such that 𝜉𝑛 > 0 for all 𝑛 ∈ N and 𝜉𝑛 → +∞ as𝑛 → ∞ and

lim
𝑛→∞

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝑛𝑄 (𝑘, 𝑡)
𝜉𝑝−𝑛

= lim inf
𝜉→+∞

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝑄 (𝑘, 𝑡)
𝜉𝑝− .

(23)

Put 𝑟𝑛 = (𝛼−/𝑇𝑝−𝑝+)𝜉𝑝−𝑛 for all 𝑛 ∈ N. Let 𝑛0 ∈ N be such that(𝑝+/𝛼−)𝑟𝑛 > 1 for all 𝑛 > 𝑛0. We claim that

Φ−1 ((−∞, 𝑟𝑛)) ⊆ {𝑢 : ‖𝑢‖∞ ≤ 𝜉𝑛 ∀𝑘 ∈ [0, 𝑇 + 1]} . (24)

Indeed, if V ∈ 𝑋 and 𝜙(V) < 𝑟𝑚, one has
𝑇+1∑
𝑘=1

𝛼 (𝑘)𝑝 (𝑘 − 1) |Δ𝑢 (𝑘 − 1)|𝑝(𝑘−1) < 𝑟𝑚. (25)

Then,

|Δ𝑢 (𝑘 − 1)| < (𝑝 (𝑘 − 1)𝛼 (𝑘) 𝑟𝑚)1/𝑝(𝑘−1) ≤ (𝑝+𝛼− 𝑟𝑚)
1/𝑝−

(26)

for every 𝑘 ∈ [1, 𝑇+1]. Consequently, since 𝑢 ∈ 𝑋, we deduce
by easy induction that

|𝑢 (𝑘)| ≤ |Δ𝑢 (𝑘 − 1)| + |𝑢 (𝑘 − 1)|
< (𝑝+𝛼− 𝑟𝑛)

1/𝑝− + |𝑢 (𝑘 − 1)| ≤ 𝑘 (𝑝+𝛼− 𝑟𝑛)
1/𝑝−

≤ 𝑇(𝑝+𝛼− 𝑟𝑛)
1/𝑝− = 𝜉𝑛

(27)

for every 𝑘 ∈ [1, 𝑇] and this gives (24). Hence, taking into
account the fact that Φ(0) = Ψ(0) = 0, for every 𝑛 large
enough, one has

𝜑 (𝑟𝑛) = inf
𝑢∈Φ−1(]−∞,𝑟𝑛[)

(supV∈Φ−1(]−∞,𝑟𝑛])Ψ (V)) − Ψ (𝑢)
𝑟𝑛 − Φ (𝑢)

≤ supV∈Φ−1(]−∞,𝑟𝑛])Ψ (V)
𝑟𝑛

≤ ∑𝑇𝑘=1 sup|𝑡|≤𝜉𝑛𝑄 (𝑘, 𝑡)
𝛼−𝜉𝑝−𝑛 /𝑇𝑝−𝑝+

= ∑𝑇𝑘=1 sup|𝑡|≤𝜉𝑛𝐹 (𝑘, 𝑡) + (𝜇/𝜆)𝐺 (𝑘, 𝑡)
𝛼−𝜉𝑝−𝑛 /𝑇𝑝−𝑝+

≤ ∑𝑇𝑘=1 sup|𝑡|≤𝜉𝑛𝐹 (𝑘, 𝑡)
𝛼−𝜉𝑝−𝑛 /𝑇𝑝−𝑝+

+ 𝜇
𝜆
∑𝑇𝑘=1 sup|𝑡|≤𝜉𝑛𝐺 (𝑘, 𝑡)

𝛼−𝜉𝑝−𝑛 /𝑇𝑝−𝑝+ .

(28)
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Moreover, it follows from Assumption (A1) that
lim inf
𝜉→+∞

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐹 (𝑘, 𝑡)
𝜉𝑝−𝑛 < +∞, (29)

which concludes that

lim
𝑛→∞

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝑛𝐹 (𝑘, 𝑡)
𝜉𝑝−𝑛 < +∞. (30)

Then, in view of (18) and (30), we have

lim
𝑛→∞

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝑛𝐹 (𝑘, 𝑡)
𝜉𝑝−𝑛

+ lim
𝑛→∞

𝜇
𝜆
∑𝑇𝑘=1 sup|𝑡|≤𝜉𝑛𝐺 (𝑘, 𝑡)

𝜉𝑝−𝑛 < +∞,
(31)

which follows

lim
𝑛→∞

∑𝑇𝑘=1 sup|𝑥|≤𝜉𝑛𝐹 (𝑘, 𝑡) + (𝜇/𝜆)𝐺 (𝑘, 𝑡)
𝜉𝑝−𝑛 < +∞. (32)

Therefore,

𝛾 ≤ lim inf
𝑛→+∞

𝜑 (𝑟𝑛)
≤ lim
𝑛→∞

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝑛𝐹 (𝑘, 𝑡) + (𝜇/𝜆)𝐺 (𝑘, 𝑡)
𝛼−𝜉𝑝−𝑛 /𝑇𝑝−𝑝+ < +∞. (33)

Since

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝑛𝑄 (𝑘, 𝑡)
𝜉𝑝−𝑛 ≤ ∑𝑇𝑘=1 sup|𝑡|≤𝜉𝑛𝐹 (𝑘, 𝑡)

𝜉𝑝−𝑛
+ 𝜇

𝜆
∑𝑇𝑘=1 sup|𝑡|≤𝜉𝑛𝐺 (𝑘, 𝑡)

𝜉𝑝−𝑛 ,
(34)

taking (18) into account, one has

𝑇𝑝−𝑝+𝛼− lim inf
𝜉→+∞

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝑄 (𝑘, 𝑡)
𝜉𝑝−

≤ 𝑇𝑝−𝑝+𝛼− lim inf
𝜉→+∞

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐹 (𝑘, 𝑡)
𝜉𝑝− + 𝜇

𝜆𝑔∞.
(35)

Moreover, since 𝐺 is nonnegative, we have

lim sup
|𝜉|→+∞

∑𝑇𝑘=1 𝑄 (𝑘, 𝜉)
𝜉𝑝+ ≥ lim sup

|𝜉|→+∞

∑𝑇𝑘=1 𝐹 (𝑘, 𝜉)
𝜉𝑝+ . (36)

Therefore, from (35) and (36) and fromAssumption (A1) and
(33), one has

𝜆 ∈ ]]1, ]2[
⊆ ] 2𝛼+

𝑝−lim sup|𝜉|→+∞ (∑𝑇𝑘=1 𝑄 (𝑘, 𝜉) /𝜉𝑝+) ,
𝛼−

𝑇𝑝−𝑝+lim inf𝜉→+∞ (∑𝑇𝑘=1 sup|𝑡|≤𝜉𝑄 (𝑘, 𝑡) /𝜉𝑝−)[

⊆ ]0, 1𝛾[ .

(37)

For fixed 𝜆, inequality (33) assures that condition (b) of
Theorem 1 can be used and either 𝐼𝜆 has a global minimumor
there exists a sequence {𝑢𝑛} of solutions of the problem (𝑃𝑓,𝑔𝜆 )
such that lim𝑛→∞‖𝑢‖ = +∞.

The other step is to verify that the functional 𝐼𝜆 has no
global minimum. Since

1
𝜆 < 𝑝−2𝛼+ lim sup

|𝜉|→+∞

∑𝑇𝑘=1 𝐹 (𝑘, 𝜉)
𝜉𝑝+ , (38)

we can consider a real sequence {𝛾𝑛} with 𝛾𝑛 > 1 for all 𝑛 ∈ N

and a positive constant 𝜏 such that 𝛾𝑛 → +∞ as 𝑛 → ∞ and

1
𝜆 < 𝜏 < 𝑝−2𝛼+

∑𝑇𝑘=1 𝐹 (𝑘, 𝛾𝑛)
𝛾𝑝+𝑛 (39)

for each 𝑛 ∈ N large enough. Thus, we consider a sequence{𝑤𝑛} in𝑋 defined by setting

𝑤𝑛 (𝑘) = {{{
𝛾𝑛 for 𝑘 ∈ [1, 𝑇]
0 for 𝑘 = 0, 𝑇 + 1. (40)

Thus

𝑤𝑛2 =
𝑇+1∑
𝑘=1

Δ𝑤𝑛 (𝑘 − 1)2 = 2𝛾2𝑛 , (41)

2𝛼−𝑝+ 𝛾𝑝−𝑛 ≤ Φ (𝑤𝑛) ≤ 2𝛼+𝑝− 𝛾𝑝+𝑛 . (42)

On the other hand, since 𝐺 is nonnegative, we observe

Ψ (𝑤𝑛) ≥ 𝑇∑
𝑘=1

𝐹 (𝑘, 𝛾𝑛) . (43)

So, from (39), (42), and (43), we conclude that

𝐼𝜆 (𝑤𝑛) = Φ (𝑤𝑛) − 𝜆Ψ (𝑤𝑛)
≤ 2𝛼+𝑝− 𝛾𝑝+𝑛 − 𝜆 𝑇∑

𝑘=1

𝐹 (𝑘, 𝛾𝑛)

< 2𝛼+ (1 − 𝜆𝜏)
𝑝− 𝛾𝑝+𝑛 ,

(44)
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for every 𝑛 ∈ N large enough. Hence, the functional 𝐼𝜆
is unbounded from below, and it follows that 𝐼𝜆 has no
global minimum. Therefore, Theorem 1 assures that there
is a sequence {𝑢𝑛} ⊂ 𝑋 of critical points of 𝐼𝜆 such that
lim𝑛→∞Φ(𝑢𝑛) = +∞, which from Lemma 3 follows that
lim𝑛→∞‖𝑢𝑛‖ = +∞. Hence, we have the conclusion.

Remark 7. Under the conditions

lim inf
𝜉→+∞

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐹 (𝑘, 𝑡)
𝜉𝑝− = 0,

lim sup
𝜉→+∞

∑𝑇𝑘=1 𝐹 (𝑘, 𝜉)
𝜉𝑝+ = ∞,

(45)

Theorem 6 assures that for every 𝜆 > 0 and for each𝜇 ∈ [0, 1/𝑔∞[ the problem (𝑃𝑓,𝑔𝜆 ) admits infinitely many
solutions. Moreover, if 𝑔∞ = 0, the result holds for every𝜆 > 0 and 𝜇 ≥ 0.

Now, we give an application of Theorem 6 as follows.

Example 8. Let 𝑇 = 10, let 𝑝(𝑘) = 2 + 𝑘/5 for all 𝑘 ∈ [0, 10],
let 𝛼(𝑘) = 1 + 1/𝑘 for all 𝑘 ∈ [1, 11], and let 𝑎𝑛 be a sequence
defined by

𝑎1 = 4,
𝑎𝑛+1 = 1 + 10√22𝑎2𝑛 for 𝑛 ≥ 2 (46)

and let 𝑏𝑛 be a sequence such that 𝑏1 = 44 and 𝑏𝑛 = 𝑎4𝑛 − 𝑎4𝑛−1
for all 𝑛 ≥ 2. Consider the problem

− Δ((1 + 1𝑘) |Δ𝑢 (𝑘 − 1)|(𝑘−1)/5 Δ𝑢 (𝑘 − 1))
= 𝜆𝑓 (𝑘, 𝑢 (𝑘)) + 𝜇𝑒𝑘𝑢 (𝑘) , 𝑘 ∈ [1, 10] ,

𝑢 (0) = 𝑢 (11) = 0,
(47)

where 𝑓(𝑘, 𝑡) = 𝑒𝑘ℎ(𝑡) for all (𝑘, 𝑡) ∈ [1, 10] ×R with

ℎ (𝑡) = ∞∑
𝑛=1

2𝑏𝑛 (1 − 2 𝑡 − 𝑎𝑛 + 12
) 𝜒[𝑎𝑛−1,𝑎𝑛] (𝑡)

∀𝑡 ∈ R,
(48)

where𝜒[𝛼,𝛽] denotes the characteristic function of the interval[𝛼, 𝛽]. According to the above data we have 𝑝− = 2, 𝑝+ = 4,𝛼− = 12/11, 𝛼+ = 2, and 𝐺(𝑘, 𝑡) = 𝑒𝑘𝑡2/2 for all (𝑘, 𝑡) ∈[1, 10] × R and it is easy to verify that 𝑎𝑛+1 − 1 > 𝑎𝑛 and∫𝑎𝑛
𝑎𝑛−1

ℎ(𝑡)d𝑡 = 𝑏𝑛 for all 𝑛 ∈ N. Then, one has 𝐹(𝑘, 𝑎𝑛) =
𝑒𝑘 ∫𝑎𝑛
0

ℎ(𝜉)d𝜉 = 𝑎4𝑛 , and it is easy to see that

lim inf
𝜉→+∞

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐹 (𝑘, 𝑡)𝜉𝑝−
= lim
𝑛→+∞

∑𝑇𝑘=1 𝑒𝑘𝐹 (𝑎𝑛+1 − 1)
(𝑎𝑛+1 − 1)2

= 12200 lim
𝑛→∞

𝑎4𝑛 ∑10𝑘=1 𝑒𝑘𝑎4𝑛 = 12200
10∑
𝑘=1

𝑒𝑘,

lim sup
𝜉→+∞

∑𝑇𝑘=1 𝐹 (𝑘, 𝑡)
𝜉𝑝+ = lim

𝑛→+∞

∑𝑇𝑘=1 𝐹 (𝑘, 𝑎𝑛)𝑎4𝑛 = 10∑
𝑘=1

𝑒𝑘.
(49)

Hence, usingTheorem 6, since

𝑔∞ fl
𝑇𝑝−𝑝+𝛼− lim

𝜉→+∞

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐺 (𝑘, 𝑡)
𝜉𝑝−

= 8003 lim
𝜉→+∞

𝜉2∑𝑇𝑘=1 𝑒𝑘𝜉2 = 800∑10𝑘=1 𝑒𝑘3 < +∞,
(50)

problem (47) for every 𝜆 ∈ ]2/∑10𝑘=1 𝑒𝑘, 6/∑10𝑘=1 𝑒𝑘[ and 𝜇 ∈[0, (6 −𝜆∑10𝑘=1 𝑒𝑘)/1600∑10𝑘=1 𝑒𝑘[ has an unbounded sequence
of solutions in the space

𝐸10 fl {𝑢 : [0, 11] → R : 𝑢 (0) = 𝑢 (11) = 0} . (51)

Remark 9. Assumption (A1) inTheorem 6 could be replaced
by the following more general condition:(A2) there exist two sequences {𝜃𝑛} and {𝜂𝑛} with 𝜂𝑛 > 0
for every 𝑛 ∈ N and (2𝛼+/𝑝−)𝜃𝑝+𝑛 < (𝛼−/𝑇𝑝−𝑝+)𝜂𝑝−𝑛 for all𝑛 ∈ N and lim𝑛→+∞𝜂𝑛 = +∞ such that

lim
𝑛→+∞

∑𝑇𝑘=1 sup|𝑡|≤𝜂𝑛𝐹 (𝑘, 𝑡) − ∑𝑇𝑘=1 𝐹 (𝑘, 𝜃𝑛)
(𝛼−/𝑇𝑝−𝑝+) 𝜂𝑝−𝑛 − (2𝛼+/𝑝−) 𝜃𝑝+𝑛

< 𝑝−2𝛼+ lim sup
|𝜉|→+∞

∑𝑇𝑘=1 𝐹 (𝑘, 𝜉)
𝜉𝑝+ .

(52)

Indeed, clearly, by choosing 𝜃𝑛 = 0 for all 𝑛 ∈ N, from (A2)we
obtain (A1). Moreover, if we assume (A2) instead of (A1) and
choose 𝑟𝑛 = 𝛼−𝜂𝑝−𝑛 /𝑇𝑝−𝑝+ for all 𝑛 ∈ N, applying the same
argument in the proof of Theorem 6, we obtain

𝜑 (𝑟𝑛)
≤ supV∈Φ−1(]−∞,𝑟𝑛])Ψ (V) − ∑𝑇𝑘=1 𝐹 (𝑘, 𝑤𝑛 (𝑘))

𝑟𝑛 − ∑𝑇+1𝑘=1 (𝛼 (𝑘) /𝑝 (𝑘 − 1)) |Δ𝑢 (𝑘 − 1)|𝑝(𝑘−1)
≤ ∑𝑇𝑘=1 sup|𝑥|≤𝜂𝑛𝐹 (𝑘, 𝑡) − ∑𝑇𝑘=1 𝐹 (𝑘, 𝜃𝑛)

(𝛼−/𝑇𝑝−𝑝+) 𝜂𝑝−𝑛 − (2𝛼+/𝑝−) 𝜃𝑝+𝑛 ,
(53)

where 𝑤𝑛(𝑡) is the same as (40) but 𝛾𝑛 is replaced by 𝜃𝑛. We
have the same conclusion as in Theorem 6 with the interval
]𝜆1, 𝜆2[ replaced by the interval
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Λ = ]
]

2𝛼+
𝑝−lim sup|𝜉|→+∞ (∑𝑇𝑘=1 𝐹 (𝑘, 𝜉) /𝜉𝑝+) ,

1
lim𝑛→+∞ ((∑𝑇𝑘=1 sup|𝑡|≤𝜂𝑛𝐹 (𝑘, 𝑡) − ∫𝑇

𝑘=1
𝐹 (𝑘, 𝜃𝑛)) / ((𝛼−/𝑇𝑝−𝑝+) 𝜂𝑝−𝑛 − (2𝛼+/𝑝−) 𝜃𝑝+𝑛 ))[

[
.

(54)

Here, we point out a simple consequence of Theorem 6.

Corollary 10. Assume that(A3) lim inf𝜉→+∞(∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐹(𝑘, 𝑡)/𝜉𝑝−) < 𝛼−/𝑇𝑝−𝑝+;
(A4) lim sup𝜉→+∞(∑𝑇𝑘=1 𝐹(𝑘, 𝜉)/𝜉𝑝+) > 2𝛼+/𝑝−.
Then, for every arbitrary function 𝑔 ∈ 𝐶 ([1, 𝑇] × R,R)

whose 𝐺(𝑘, 𝑡) = ∫𝑡
0
𝑔(𝑘, 𝜉)d𝜉 for every (𝑘, 𝑡) ∈ [1, 𝑇] × R is

a nonnegative function satisfying condition (18) and for every𝜇 ∈ [0, 𝜇𝑔,1[, where
𝜇𝑔,1

fl
1𝑔∞ (1 − 𝑇𝑝−𝑝+𝛼− lim inf

𝜉→+∞

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐹 (𝑘, 𝑡)
𝜉𝑝− ) , (55)

the problem

− Δ (𝛼 (𝑘) |Δ𝑢 (𝑘 − 1)|𝑝(𝑘−1)−2 Δ𝑢 (𝑘 − 1))
= 𝑓 (𝑘, 𝑢 (𝑘)) + 𝜇𝑔 (𝑘, 𝑢 (𝑘)) , 𝑘 ∈ [1, 𝑇] ,

𝑢 (0) = 𝑢 (𝑇 + 1) = 0
(56)

has an unbounded sequence of solutions.

Remark 11. Theorem 5 is an immediate consequence of
Corollary 10.

We here give the following consequence of the main
result.

Corollary 12. Let 𝑓1 ∈ 𝐶 ([1, 𝑇] × R,R) and let 𝐹1(𝑘, 𝑡) =∫𝑡
0
𝑓1(𝑘, 𝜉) for all 𝑡 ∈ R. Assume that
(A5) lim inf𝜉→+∞(∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐹1(𝑘, 𝑡)/𝜉𝑝−) < +∞;
(A6) lim sup𝜉→+∞(∑𝑇𝑘=1 𝐹1(𝑘, 𝜉)/𝜉𝑝+) = +∞.
Then, for every function 𝑓𝑖 ∈ 𝐶 ([1, 𝑇] × R,R), denoting𝐹𝑖(𝑘, 𝑡) = ∫𝑡

0
𝑓𝑖(𝑘, 𝜉)d𝜉 for all 𝑡 ∈ R for 2 ≤ 𝑖 ≤ 𝑛, satisfying
max{sup

𝜉∈R

𝐹𝑖 (𝑘, 𝜉) ; 2 ≤ 𝑖 ≤ 𝑛} ≤ 0,
min{lim inf

𝜉→+∞

𝐹𝑖 (𝑘, 𝜉)𝜉𝑝− ; 2 ≤ 𝑖 ≤ 𝑛} > −∞,
(57)

for each

𝜆 ∈ ]0, 𝛼−𝑇𝑝−𝑝+lim inf𝜉→+∞ (𝐹1 (𝑡, 𝜉) /𝜉𝑝−)[ , (58)

for every arbitrary function 𝑔 ∈ 𝐶 ([1, 𝑇] × R,R) whose𝐺(𝑘, 𝑡) = ∫𝑡
0
𝑔(𝑘, 𝜉)d𝜉 for every (𝑘, 𝑡) ∈ [1, 𝑇] × R, is a

nonnegative function satisfying condition (18) and for every𝜇 ∈ [0, 𝜇𝑔,𝜆[, where
𝜇𝑔,𝜆
fl

1𝑔∞ (1 − 𝜆𝑇𝑝−𝑝+𝛼− lim inf
𝜉→+∞

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐹1 (𝑘, 𝑡)𝜉𝑝− ) , (59)

the problem

− Δ (𝛼 (𝑘) |Δ𝑢 (𝑘 − 1)|𝑝(𝑘−1)−2 Δ𝑢 (𝑘 − 1))
= 𝜆 𝑛∑
𝑖=1

𝑓𝑖 (𝑘, 𝑢 (𝑘)) + 𝜇𝑔 (𝑘, 𝑢 (𝑘)) , 𝑘 ∈ [1, 𝑇] ,
𝑢 (0) = 𝑢 (𝑇 + 1) = 0

(60)

has an unbounded sequence of solutions.

Proof. Set 𝐹(𝑘, 𝜉) = ∑𝑛𝑖=1 𝐹𝑖(𝑘, 𝜉) for all 𝜉 ∈ R. Assumption(A6) along with the condition

min{lim inf
𝜉→+∞

𝐹𝑖 (𝑘, 𝜉)𝜉𝑝− ; 2 ≤ 𝑖 ≤ 𝑛} > −∞ (61)

ensures that

lim sup
𝜉→+∞

∑𝑇𝑘=1 𝐹 (𝑘, 𝜉)
𝜉𝑝+ = lim sup

𝜉→+∞

∑𝑛𝑖=1 ∑𝑇𝑘=1 𝐹𝑖 (𝑘, 𝜉)𝜉𝑝+
= +∞.

(62)

Moreover, Assumption (A5), together with the condition

max{sup
𝜉∈R

𝐹𝑖 (𝑘, 𝜉) ; 2 ≤ 𝑖 ≤ 𝑛} ≤ 0, (63)

implies that

lim inf
𝜉→+∞

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐹 (𝑘, 𝑡)
𝜉𝑝−

≤ lim inf
𝜉→+∞

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐹1 (𝑘, 𝑡)𝜉𝑝− < +∞.
(64)

Hence, the conclusion follows fromTheorem 6.
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Here we give the following example to illustrate Corol-
lary 12.

Example 13. Let 𝑇 = 100, 𝑝(𝑘) = (𝑘 + 100)/50 for all𝑘 ∈ [0, 100], and 𝛼(𝑘) = 𝑒𝑘 for all 𝑘 ∈ [1, 101]. Let 𝑓1, 𝑓2 :[1, 100] ×R → R be defined by

𝑓1 (𝑘, 𝑡) = {{{
ℎ (𝑘) 𝑡4 (5 + 10 sin2 (ln 𝑡) + 2 sin (2 ln 𝑡)) if (𝑘, 𝑡) ∈ [1, 100] × (0, +∞) ,
0 if (𝑘, 𝑡) ∈ [1, 100] × (−∞, 0] ,

𝑓2 (𝑘, 𝑡) = −𝑙 (𝑘) 2𝑡
(1 + 𝑡2)2 ,

(65)

respectively, where ℎ, 𝑙 : [1, 100] → R are two nonnegative
continuous functions. Consider the problem

− Δ (𝑒𝑘 |Δ𝑢 (𝑘 − 1)|(𝑘−1)/50 Δ𝑢 (𝑘 − 1))
= 𝜆 (𝑓1 + 𝑓2) (𝑘, 𝑢 (𝑘)) , 𝑘 ∈ [1, 100] ,

𝑢 (0) = 𝑢 (101) = 0.
(66)

A direct calculation shows 𝑝− = 2, 𝑝+ = 4, and
𝐹1 (𝑘, 𝑡)
= {{{

ℎ (𝑘) 𝑡5 (1 + 2 sin2 (ln 𝑡)) if (𝑘, 𝑡) ∈ [1, 100] × (0, +∞) ,
0 if (𝑘, 𝑡) ∈ [1, 100] × (−∞, 0] ,

𝐹2 (𝑘, 𝑡) = −𝑙 (𝑘) 𝑡21 + 𝑡2 .
(67)

Put

𝑎𝑚 = {{{
𝑚 if𝑚 is even,

𝑒−𝑚𝜋 if𝑚 is odd,

𝑏𝑚 = 𝑒𝑚𝜋
for every𝑚 ∈ N.

(68)

Then

lim
𝑚→+∞

∑𝑇𝑘=1 sup|𝑡|≤𝑎𝑚𝐹1 (𝑘, 𝑡)𝑎2𝑚 = {{{
0 if𝑚 is odd,
+∞ if𝑚 is even,

lim sup
𝑚→+∞

∑𝑇𝑘=1 𝐹1 (𝑘, 𝑏𝑚)𝑏4𝑚 = +∞.
(69)

So,

lim inf
𝜉→+∞

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐹1 (𝑘, 𝑡)𝜉𝑝− = 0 < +∞,

lim sup
𝜉→+∞

∑𝑇𝑘=1 𝐹1 (𝑘, 𝑡)𝜉𝑝+ = +∞.
(70)

Moreover,

sup
𝜉∈R

𝐹2 (𝑘, 𝜉) = 0,

lim inf
𝜉→+∞

𝐹2 (𝑘, 𝜉)𝜉𝑝− = lim inf
𝜉→+∞

−𝑙 (𝑘) 𝜉2𝜉2 (1 + 𝜉2) = 0 > −∞. (71)

Hence, all assumptions of Corollary 12 with 𝜇 = 0 are
satisfied. So, for every 𝜆 ∈ (0, +∞), problem (66) has an
unbounded sequence of solutions in the space

𝐸100 fl {𝑢 : [0, 101] → R : 𝑢 (0) = 𝑢 (101) = 0} . (72)

Arguing as in the proof of Theorem 6 but using con-
clusion (c) of Theorem 1 instead of (b), one establishes the
following result.

Theorem 14. Assume that(A7) lim inf𝜉→0+(∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐹(𝑘, 𝑡)/𝜉𝑝−) < (𝑝−𝛼−/
2𝛼+𝑝+𝑇𝑝−)lim sup𝜉→0+(∑𝑇𝑘=1 𝐹(𝑘, 𝜉)/𝜉𝑝+).

Then, for each 𝜆 ∈ ]𝜆3, 𝜆4[, where
𝜆3 fl 2𝛼+

𝑝−lim sup𝜉→0+ (∑𝑇𝑘=1 𝐹 (𝑘, 𝜉) /𝜉𝑝+) ,

𝜆4 fl 𝛼−
𝑇𝑝−𝑝+lim inf𝜉→0+ (∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐹 (𝑘, 𝑡) /𝜉𝑝−) ,

(73)

for every arbitrary function 𝑔 ∈ 𝐶 ([1, 𝑇] × R,R) whose𝐺(𝑘, 𝑡) = ∫𝑡
0
𝑔(𝑘, 𝜉)d𝜉 for every (𝑘, 𝑡) ∈ [1, 𝑇] × R is a

nonnegative function satisfying the condition

𝑔0 fl 𝑇𝑝−𝑝+𝛼− lim
𝜉→0+

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐺 (𝑘, 𝑡)
𝜉𝑝− < +∞ (74)

and for every 𝜇 ∈ [0, 𝜇𝑔,𝜆[ where
𝜇𝑔,𝜆

fl
1𝑔0 (1 − 𝜆𝑇𝑝−𝑝+𝛼− lim inf

𝜉→0+

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐹 (𝑘, 𝑡)
𝜉𝑝− ) , (75)

the problem (𝑃𝑓,𝑔𝜆 ) has a sequence of pairwise distinct solutions
which strongly converges to 0 in 𝐸.
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Proof. Fix 𝜆 ∈ ]𝜆3, 𝜆4[ and let 𝑔 be the function satisfying
condition (74). Since 𝜆 < 𝜆2, one has 𝜇𝑔,𝜆 > 0. Fix 𝜇 ∈
]0, 𝜇𝑔,𝜆[ and set ]3 fl 𝜆3 and ]4 fl 𝜆4/(1 + (𝜇/𝜆)𝜆4𝑔0). If𝑔0 = 0, clearly, ]3 = 𝜆3, ]4 = 𝜆4, and 𝜆 ∈ ]]3, ]4[. If 𝑔0 ̸= 0,
since 𝜇 < 𝜇𝑔,𝜆, one has

𝜆𝜆4 + 𝜇𝑔0 < 1, (76)

and so

𝜆41 + (𝜇/𝜆) 𝜆4𝑔0 > 𝜆; (77)

namely, 𝜆 < ]4. Hence, recalling that 𝜆 > 𝜆3 = ]3, one has𝜆 ∈ ]]3, ]4[.
Now, put𝑄(𝑘, 𝑡) = 𝐹(𝑘, 𝑡) + (𝜇/𝜆)𝐺(𝑘, 𝑡) for all 𝑡 ∈ R and𝑘 ∈ [1, 𝑇]. Since
∑𝑇𝑘=1 sup|𝑡|≤𝜉𝑄 (𝑘, 𝑡)

𝜉𝑝− ≤ ∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐹 (𝑘, 𝑡)
𝜉𝑝−

+ 𝜇
𝜆
∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐺 (𝑘, 𝑡)

𝜉𝑝− ,
(78)

taking (74) into account, one has

𝑇𝑝−𝑝+𝛼− lim inf
𝜉→0+

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝑄 (𝑘, 𝑡)
𝜉𝑝−

≤ 𝑇𝑝−𝑝+𝛼− lim inf
𝜉→0+

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐹 (𝑘, 𝑡)
𝜉𝑝− + 𝜇

𝜆𝑔0.
(79)

Moreover, since𝐺 is nonnegative, fromAssumption (A7), we
have

lim sup
𝜉→0+

∑𝑇𝑘=1 𝑄 (𝑘, 𝜉)
𝜉𝑝+ ≥ lim sup

𝜉→0+

∑𝑇𝑘=1 𝐹 (𝑘, 𝜉)
𝜉𝑝+ . (80)

Therefore, from (79) and (80), we obtain

𝜆 ∈ ]]3, ]4[ ⊆ ] 2𝛼+
𝑝−lim sup𝜉→0+ (∑𝑇𝑘=1 𝑄 (𝑘, 𝜉) /𝜉𝑝+) ,

𝛼−
𝑇𝑝−𝑝+lim inf𝜉→0+ (∑𝑇𝑘=1 sup|𝑡|≤𝜉𝑄 (𝑘, 𝑡) /𝜉𝑝−)[
⊆ ]𝜆3, 𝜆4[ .

(81)

We take 𝑋, Φ, Ψ, and 𝐼𝜆 as in the proof of Theorem 6. We
prove that 𝛿 < +∞. For this, let {𝜉𝑛} be a sequence of positive
numbers such that 𝜉𝑛 → 0+ as 𝑛 → +∞ and

lim
𝑛→∞

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝑛𝐹 (𝑘, 𝑡)
𝜉𝑝−𝑛 < +∞. (82)

Put 𝑟𝑛 = (𝛼−/𝑇𝑝−𝑝+)𝜉𝑝−𝑛 for all 𝑛 ∈ N. Let us show that the
functional 𝐼𝜆 has not a local minimum at zero. For this, let{𝛾𝑛} be a sequence of positive numbers and 𝜏 > 0 such that𝛾𝑛 → 0+ as 𝑛 → ∞ and

1
𝜆 < 𝜏 < 𝑝−2𝛼+

∑𝑇𝑘=1 𝐹 (𝑘, 𝛾𝑛)
𝛾𝑝+𝑛 (83)

for each 𝑛 ∈ N large enough. Let {𝑤𝑛} be a sequence in 𝑋
defined by (40). So, owing to (42), (43), and (83), we obtain

𝐼𝜆 (𝑤𝑛) = Φ (𝑤𝑛) − 𝜆Ψ (𝑤𝑛)
≤ 2𝛼+𝑝− 𝛾𝑝+𝑛 − 𝜆 𝑇∑

𝑘=1

𝐹 (𝑘, 𝛾𝑛)

< 2𝛼+ (1 − 𝜆𝜏)
𝑝− 𝛾𝑝+𝑛 < 0

(84)

for every 𝑛 ∈ N large enough. Since 𝐼𝜆(0) = 0, that means that0 is not a local minimum of the functional 𝐼𝜆. Hence, part (c)
ofTheorem 1 ensures that there exists a sequence {𝑢𝑛} in𝑋 of
critical points of 𝐼𝜆 such that ‖𝑢𝑛‖ → 0 as 𝑛 → ∞, and the
proof is complete.

Remark 15. ApplyingTheorem 14, results similar to Remark 9
and Corollaries 10 and 12 can be obtained.

We end this paper by giving the following example as an
application of Theorem 14.

Example 16. Let 𝑇 = 5, 𝑝(𝑘) = 𝑘2 + 2 for all 𝑘 ∈ [0, 5], and𝛼(𝑘) = 𝑘2+1 for all 𝑘 ∈ [1, 6] and let𝑓1 : [1, 𝑇]×(R\{0}) → R

be the function defined by

𝑓1 (𝑡) = 2𝑡 (ln(ln( 1𝑡2 )) − ln−1 ( 1𝑡2 ))
⋅ sin2 (ln(ln(ln( 1𝑡2 )))) − 4𝑡 ln−1 ( 1𝑡2 )
⋅ sin(ln(ln(ln( 1𝑡2 )))) + 8𝑡 ln−2 ( 1𝑡2 )
⋅ (1 + ln( 1𝑡2 )) ,

𝑓 (𝑘, 𝑡) = {{{
𝑒𝑘𝑓1 (𝑡) if (𝑘, 𝑡) ∈ [1, 5] × (R \ {0}) ,
0 if (𝑘, 𝑡) ∈ [1, 5] × {0} .

(85)

Let 𝑔(𝑘, 𝑡) = 𝑡2 ln(𝑘2) for all (𝑘, 𝑡) ∈ [1, 5] × R. Direct
calculations show 𝑝− = 2, 𝑝+ = 27, 𝛼− = 2, 𝛼+ = 26,𝐺(𝑘, 𝑡) = 𝑡3 ln(𝑘2)/3 for all (𝑘, 𝑡) ∈ [1, 5] ×R, and
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𝐹 (𝑘, 𝑡) = {{{
𝑒𝑘𝑡2 ln(ln( 1𝑡2 )) sin2 (ln(ln(ln( 1𝑡2 )))) + 4𝑡2ln−1 ( 1𝑡2 ) , if (𝑘, 𝑡) ∈ [1, 𝑇] × (R \ {0}) ,
0 if (𝑘, 𝑡) ∈ [1, 𝑇] × {0} . (86)

Thus

lim inf
𝜉→0+

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐹 (𝑘, 𝑡)
𝜉𝑝−

= lim inf
𝜉→0+

∑5𝑘=1 sup|𝑡|≤𝜉𝐹 (𝑘, 𝑡)
𝜉2 = 0,

lim sup
𝜉→0+

∑𝑇𝑘=1 𝐹 (𝑘, 𝜉)
𝜉𝑝+ = lim sup

𝜉→0+

∑5𝑘=1 𝐹 (𝑘, 𝜉)𝜉27 = +∞.

(87)

Hence, usingTheorem 14, since

𝑔0 fl 𝑇𝑝−𝑝+𝛼− lim
𝜉→0+

∑𝑇𝑘=1 sup|𝑡|≤𝜉𝐺 (𝑘, 𝑡)
𝜉𝑝+ = 0, (88)

the problem

− Δ((𝑘2 + 1) |Δ𝑢 (𝑘 − 1)|𝑘2 Δ𝑢 (𝑘 − 1))
= 𝜆𝑓 (𝑘, 𝑢 (𝑘)) + 𝜇 ln (𝑘2) 𝑢2 (𝑘) , 𝑘 ∈ [1, 5] ,

𝑢 (0) = 𝑢 (6) = 0
(89)

for every (𝜆, 𝜇) ∈ (0, +∞)×[0,∞) has a sequence of pairwise
distinct solutions which strongly converges to 0 in the space

𝐸5 fl {𝑢 : [0, 6] → R : 𝑢 (0) = 𝑢 (6) = 0} . (90)

Remark 17. If 𝑓 and 𝑔 are nonnegative then the nontrivial
solutions of the problem (𝑃𝑓,𝑔𝜆 ) are positive. Indeed, let 𝑢∗ be a
nontrivial solution of the problem (𝑃𝑓,𝑔𝜆 ); assume that the dis-
crete interval A = {𝑘 ∈ [1, 𝑇]; 𝑢∗(𝑘) < 0} is nonempty. Put
V(𝑘) = min{𝑢∗(𝑘), 0} for 𝑘 ∈ [1, 𝑇]. Clearly, V ∈ 𝐸 and one has
𝑇+1∑
𝑘=1

𝛼 (𝑘) Δ𝑢∗ (𝑘 − 1)𝑝(𝑘−1)−2 Δ𝑢∗ (𝑘 − 1) ΔV (𝑘 − 1)

− 𝜆 𝑇∑
𝑘=1

𝑓 (𝑘, 𝑢∗ (𝑘)) V (𝑘) − 𝜇 𝑇∑
𝑘=1

𝑔 (𝑘, 𝑢∗ (𝑘)) V (𝑘)
= 0.

(91)

Since 𝑓 and 𝑔 are nonnegative, by choosing V = 𝑢∗, one has
0 ≤ 𝛼−∑

𝑘∈A

Δ𝑢∗ (𝑘 − 1)𝑝(𝑘−1) ≤ 0; (92)

that is, 𝑢∗A ≤ 0, (93)

which contradicts with the fact that 𝑢∗ is a nontrivial
solution. Hence, 𝑢∗ is positive.
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[18] G. M. Bisci and D. Repovš, “Nonlinear algebraic systems with
discontinuous terms,” Journal of Mathematical Analysis and
Applications, vol. 398, no. 2, pp. 846–856, 2013.

[19] G. Molica Bisci and D. Repovš, “On some variational algebraic
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