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We investigate the symmetry properties of a variable coefficient space-time fractional potential Burgers’ equation. Fractional Lie
symmetries and corresponding infinitesimal generators are obtained. With the help of the infinitesimal generators, some group
invariant solutions are deduced. Further, some exact solutions of fractional potential Burgers’ equation are generated by the
invariant subspace method.

1. Introduction

Partial differential equations (PDEs) have a wide range of
applications in many fields, such as physics, engineering,
and chemistry, which are fundamental for the mathematical
formulation of continuum models [1, 2]. Burgers’ equation
is a one-dimensional nonlinear partial differential equation,
which is a simple form of the one-dimensional Navier-
Stokes equation. It was presented for the first time in a
paper in 1940s by Burgers. Later, Burgers’ equation was
studied by Cole [3] who gave a theoretical solution, based
on Fourier series analysis, using the appropriate initial and
boundary conditions. Burgers’ equation has a large variety
of applications in the modelling of water in unsaturated soil,
dynamics of soil water, statistics of flow problems,mixing and
turbulent diffusion, cosmology, and seismology [3, 4].

Recently, fractional differential equations have found
extensive applications in many fields. Many important phe-
nomena in viscoelasticity, electromagnetics, material science,
acoustics, and electrochemistry are elegantly described with
the help of fractional-order differential equations [4–9]. It
has been revealed that the nonconservative forces can be
described by fractional differential equations. Therefore, as
most of the processes in the real physical world are non-
conservative, the fractional calculus can be used to describe

them. Fractional integrals and derivatives also appear in the
theory of control of dynamical systems, when the controlled
system and/or the controller is described by a fractional
differential equation [10, 11]. In the last few decades, the
subject of the fractional calculus has caught the consideration
of many researchers who contributed to its development.
Recently, some analytical and numerical methods have been
introduced to solve a fractional-order differential equation
[7, 8, 11–24]. However, all the methods have insufficient
development as they allowone to find solutions only in case of
linear equations and for some isolated examples of nonlinear
equations [4, 7, 8, 11, 23, 24].

It is very well known that the Lie group method is the
most effective technique in the field of applied mathematics
to find exact solutions of ordinary and partial differential
equations [25, 26]. However, this approach is not yet applied
much to investigate symmetry properties of fractional dif-
ferential equations (FDEs). To the best of our knowledge,
there are a few papers (e.g., [17, 26–32]) in which Lie
symmetries and similarity solutions of some fractional dif-
ferential equations have been discussed by some researchers.
More recently, Jumarie [33] proposed themodified Riemann-
Liouville derivative and Jumarie-Lagrange method [34], after
which a generalized fractional characteristic method and a
fractional Lie group method have been introduced by Wu
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[32, 35] in order to solve a fractional-order partial differential
equation.

In this paper, we intend to apply Lie group method to
solve the space-time fractional potential Burgers’ equation of
the form

0𝐷
𝛼

𝑡
𝑢 = 𝑓 (𝑡)

0𝐷
2𝛽

𝑥
𝑢 + 𝑔 (𝑡) (

0
𝐷
𝛽

𝑥
𝑢)
2

,

𝑥 ∈ (0,∞) , 𝑡 > 0, 0 < 𝛼, 𝛽 < 1,

(1)

where
0𝐷
𝛼

𝑡
𝑢 and

0𝐷
𝛽

𝑥
𝑢 are the modified Riemann-Liouville

derivatives with respect to time and space variables, respec-
tively, and 𝑓(𝑡) and 𝑔(𝑡) are arbitrary functions of 𝑡. Equation
(1) is connected to the fractional Burgers’ equation by the
well-known Hopf-Cole transformations and is a generaliza-
tion of the time-fractional Burgers’ equation with constant
coefficients examined byWu [32].This work is based on some
basic elements of fractional calculus, with special emphasis
on the modified Riemann-Liouville type derivative. The
paper is organized as follows. In Section 2, we briefly describe
some definitions and properties of fractional calculus. In
Section 3, we obtain the symmetries for Burgers’ equation
having six-dimensional Lie algebra. In Section 4, we analyze
the reduced systems and find some invariant solutions of (1).
Section 5 contains application of invariant subspace method
on fractional Burgers’ equation (1). Finally, a conclusion is
given in Section 6.

2. Some Concepts from Fractional Calculus

In this paper, the modified Riemann-Liouville derivative
proposed by Jumarie [33] has been adopted. Some definitions
are given which have been used in this work.

2.1. Fractional Riemann-Liouville Integral. The fractional
Riemann-Liouville integral of a continuous (but not neces-
sarily differentiable) real valued function 𝑓(𝑥) with respect
to (𝑑𝑥)𝛼 is defined as [7, 33, 36]

0𝐼
𝛼

𝑥
𝑓 (𝑥) =

1

Γ (𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1
𝑓 (𝑡) 𝑑𝑡

=
1

Γ (1 + 𝛼)
∫

𝑥

0

𝑓 (𝑡) (𝑑𝑡)
𝛼
, 0 < 𝛼 ≤ 1.

(2)

The fractional integral with respect to (𝑑𝑡)𝛼 was introduced
by Jumarie [36] in order to study the fractional derivative of
nondifferentiable functions in modified Riemann-Liouville
sense. Here we are fully in Leibniz framework; that is to say
(𝑑𝑥)
𝛼 denote finite increment in fractional sense. As a result,

we shall be able to duplicate, in a straightforward manner,
most of the known standard formulae by merely making the
substitution (𝑑𝑥)𝛼 → 𝑑𝑥.

2.2. Riemann-Liouville Fractional Derivative. The fractional
Riemann-Liouville derivative of 𝑓(𝑥) is defined as [7]

0𝐷
𝛼

𝑥
𝑓 (𝑥) =

{{{

{{{

{

𝑑
𝑛
𝑓

𝑑𝑥𝑛
, 𝛼 = 𝑛 ∈ N

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥𝑛
∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛼−1

𝑓 (𝑡) 𝑑𝑡, 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ N.

(3)

2.3. Modified Riemann-Liouville Derivative. Through the
fractional Riemann-Liouville integral, Jumarie [33] proposed
the modified Riemann-Liouville derivative of 𝑓(𝑥) as

0𝐷
𝛼

𝑥
𝑓 (𝑥)

=
1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥𝑛
∫

𝑥

0

(𝑥 − 𝑡)
𝑛−𝛼−1

(𝑓 (𝑡) − 𝑓 (0)) 𝑑𝑡,

𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ N.

(4)

2.4. Some Useful Formulae. Here, some properties of modi-
fied Riemann-Liouville derivative are given which have been
used in this paper:

(i) 𝑑𝑓(𝑥) =
0𝐷
𝛼

𝑥
𝑓(𝑥)(𝑑𝑥)

𝛼
/Γ(1 + 𝛼), 𝛼 > 0.

(ii)
0𝐷
𝛼

𝑡
(𝑢(𝑡)V(𝑡)) = (

0
𝐷
𝛼

𝑡
𝑢(𝑡))V(𝑡) + 𝑢(𝑡)(

0
𝐷
𝛼

𝑡
V(𝑡)), 0 <

𝛼 < 1.
(iii)
0𝐷
𝛼

𝑡
𝑓(𝑥(𝑡)) = (𝑑𝑓/𝑑𝑥)(

0
𝐷
𝛼

𝑡
𝑥(𝑡)), 0 < 𝛼 < 1, given

that 𝑑𝑓/𝑑𝑥 exists.

(iv)
0𝐷
𝛼

𝑥
𝑥
𝛽
= (Γ(1 + 𝛽)/Γ(1 + 𝛽 − 𝛼))𝑥

𝛽−𝛼
, 0 < 𝛼 < 1,

𝑥 > 0, and 𝛽 > −1.

(v) ∫(𝑑𝑥)𝛽 = 𝑥𝛽, 0 < 𝛽 ≤ 1.

(vi) Γ(1 + 𝛽)𝑑𝑥 = 𝑑𝛽𝑥.

The above formulae and details thereof along with the scope
of applications and limitations can be found in [33, 37].

2.5. Characteristic Method for Fractional-Order Differential
Equations. Applying the fractional chain rule proposed by
Jumarie [33], we have

𝑑𝑢 =
1

Γ (1 + 𝛽)

𝜕
𝛽
𝑢 (𝑥, 𝑡)

𝜕𝑥𝛽
(𝑑𝑥)
𝛽

+
1

Γ (1 + 𝛼)

𝜕
𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
(𝑑𝑡)
𝛼
, 0 < 𝛼, 𝛽 ≤ 1.

(5)

Wu [32, 35] extended the characteristic method of first-
order linear partial differential equation to a linear fractional
differential equation of the form

𝑎 (𝑥, 𝑡)
𝜕
𝛽
𝑢 (𝑥, 𝑡)

𝜕𝑥𝛽
+ 𝑏 (𝑥, 𝑡)

𝜕
𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
= 𝑐 (𝑥, 𝑡) ,

0 < 𝛼, 𝛽 ≤ 1

(6)
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and introduced the fractional characteristic equations [32] as
given herein:

(𝑑𝑥)
𝛽

Γ (1 + 𝛽) 𝑎 (𝑥, 𝑡)
=

(𝑑𝑡)
𝛼

Γ (1 + 𝛼) 𝑏 (𝑥, 𝑡)
=

𝑑𝑢

𝑐 (𝑥, 𝑡)
. (7)

On solving the characteristic equations (7) for various
infinitesimal generators of (1), one can obtain the similarity
variables and reduction of (1) to an ODE.

3. Symmetry Classification of (1)

Herein, we investigate the symmetries and reductions of
space-time fractional potential Burgers’ equation (1). A frac-
tional Lie symmetry of (1) is a continuous group of point
transformations of independent and dependent variables
which leaves (1) invariant.

Let us assume that (1) admits the Lie symmetries of the
form

̃
𝑥
𝛽

Γ (1 + 𝛽)
=

𝑥
𝛽

Γ (1 + 𝛽)
+ 𝜖𝜉 (𝑥, 𝑡, 𝑢) + 𝑜 (𝜖

2
) ,

𝑡
𝛼

Γ (1 + 𝛼)
=

𝑡
𝛼

Γ (1 + 𝛼)
+ 𝜖𝜏 (𝑥, 𝑡, 𝑢) + 𝑜 (𝜖

2
) ,

𝑢̃ = 𝑢 + 𝜖𝜂 (𝑥, 𝑡, 𝑢) + 𝑜 (𝜖
2
) ,

(8)

where 𝜖 is the group parameter and 𝜉, 𝜏, and 𝜂 are the
infinitesimals of the transformations for the independent and
dependent variables, respectively. A group invariant solution
of space-time fractional potential Burgers’ equation (1) is
a solution which can be mapped into another solution of
(1) under the point transformations (8). The associated Lie
algebra of infinitesimal symmetries of (1) is then the fractional
vector field of the form

𝑉 = 𝜉 (𝑥, 𝑡, 𝑢)
𝜕
𝛽

𝜕𝑥𝛽
+ 𝜏 (𝑥, 𝑡, 𝑢)

𝜕
𝛼

𝜕𝑡𝛼
+ 𝜂 (𝑥, 𝑡, 𝑢)

𝜕

𝜕𝑢
. (9)

The fractional second-order prolongation of (9) is given by

𝑝𝑟
(2)
𝑉 = 𝜉 (𝑥, 𝑡, 𝑢)

𝜕
𝛽

𝜕𝑥𝛽
+ 𝜏 (𝑥, 𝑡, 𝑢)

𝜕
𝛼

𝜕𝑡𝛼

+ 𝜂 (𝑥, 𝑡, 𝑢)
𝜕

𝜕𝑢
+ 𝜂
𝑡 𝜕

𝜕 (
0
𝐷
𝛼

𝑡
𝑢)

+ 𝜂
𝑥 𝜕

𝜕 (
0
𝐷
𝛽

𝑥𝑢)

+ 𝜂
𝑡𝑡 𝜕

𝜕 (
0
𝐷
2𝛼

𝑡
𝑢)

+ 𝜂
𝑥𝑡 𝜕

𝜕 (
0
𝐷
𝛼

𝑡
(
0
𝐷
𝛽

𝑥𝑢))

+ 𝜂
𝑥𝑥 𝜕

𝜕 (
0
𝐷
2𝛽

𝑥 𝑢)

.

(10)

Now, for the invariance of (1) according to [26] under (8), we
must have

𝑝𝑟
(2)
𝑉 ([Δ𝑢])|[Δ𝑢]=0 = 0, (11)

where [Δ𝑢] =
0𝐷
𝛼

𝑡
𝑢 − 𝑓(𝑡)

0𝐷
2𝛽

𝑥
𝑢 − 𝑔(𝑡)(

0
𝐷
𝛽

𝑥
𝑢)
2 or equiva-

lently where

(𝜂
𝑡
− 𝑓 (𝑡) 𝜂

𝑥𝑥
− 2𝑔 (𝑡) (0𝐷

𝛽

𝑥
𝑢) 𝜂
𝑥

− 𝜏 (
0
𝐷
𝛼

𝑡
𝑓 (𝑡))

0𝐷
2𝛽

𝑥
𝑢

− 𝜏 (
0
𝐷
𝛼

𝑡
𝑔 (𝑡)) (0𝐷

𝛽

𝑥
𝑢)
2

)
󵄨󵄨󵄨󵄨󵄨󵄨[Δ𝑢]=0

= 0.

(12)

The generalized fractional prolongation vector fields 𝜂𝑥, 𝜂𝑡,
and 𝜂𝑥𝑥 are given by

𝜂
𝑥
=
0𝐷
𝛽

𝑥
𝜂 + (
0
𝐷
𝛽

𝑥
𝑢) 𝜂
𝑢
− (
0
𝐷
𝛽

𝑥
𝜉 + (
0
𝐷
𝛽

𝑥
𝑢) 𝜉
𝑢
)
0𝐷
𝛽

𝑥
𝑢

− (
0
𝐷
𝛽

𝑥
𝜏 + (
0
𝐷
𝛽

𝑥
𝑢) 𝜏
𝑢
)
0𝐷
𝛼

𝑡
𝑢,

𝜂
𝑡
=
0𝐷
𝛼

𝑡
𝜂 + (
0
𝐷
𝛼

𝑡
𝑢) 𝜂
𝑢
− (
0
𝐷
𝛼

𝑡
𝜉 + (
0
𝐷
𝛼

𝑡
𝑢) 𝜉
𝑢
)
0𝐷
𝛽

𝑥
𝑢

− (
0
𝐷
𝛼

𝑡
𝜏 + (
0
𝐷
𝛼

𝑡
𝑢) 𝜏
𝑢
)
0𝐷
𝛼

𝑡
𝑢,

𝜂
𝑥𝑥
=
0𝐷
2𝛽

𝑥
𝜂 + (
0
𝐷
𝛽

𝑥
𝑢) (
0
𝐷
𝛽

𝑥
𝜂
𝑢
) − (
0
𝐷
2𝛽

𝑥
𝜉

+ (
0
𝐷
𝛽

𝑥
𝑢) (
0
𝐷
𝛽

𝑥
𝜉
𝑢
))
0𝐷
𝛽

𝑥
𝑢 − (
0
𝐷
2𝛽

𝑥
𝜏

+ (
0
𝐷
𝛽

𝑥
𝑢) (
0
𝐷
𝛽

𝑥
𝜏
𝑢
))
0𝐷
𝛼

𝑡
𝑢 − 2 (

0
𝐷
𝛽

𝑥
𝜏

+ (
0
𝐷
𝛽

𝑥
𝑢) 𝜏
𝑢
)
0𝐷
𝛼

𝑡
(
0
𝐷
𝛽

𝑥
𝑢) + (

0
𝐷
2𝛽

𝑥
𝑢) (𝜂
𝑢

− (
0
𝐷
𝛽

𝑥
𝑢) 𝜉
𝑢
− (
0
𝐷
𝛼

𝑡
𝑢) 𝜏
𝑢
) − 2 (

0
𝐷
𝛽

𝑥
𝜉

+ (
0
𝐷
𝛽

𝑥
𝑢) 𝜉
𝑢
)
0𝐷
2𝛽

𝑥
𝑢 + [
0
𝐷
𝛽

𝑥
𝜂
𝑢
+ (
0
𝐷
𝛽

𝑥
𝑢) 𝜂
𝑢𝑢

− (
0
𝐷
𝛽

𝑥
𝜉
𝑢
+ (
0
𝐷
𝛽

𝑥
𝑢) 𝜉
𝑢𝑢
)
0𝐷
𝛽

𝑥
𝑢

− (
0
𝐷
𝛽

𝑥
𝜏
𝑢
+ (
0
𝐷
𝛽

𝑥
𝑢) 𝜏
𝑢𝑢
)
0𝐷
𝛼

𝑡
𝑢]
0𝐷
𝛽

𝑥
𝑢.

(13)

Now, using the above generalized fractional prolongation
vector fields in (12) and equating the coefficient of various
derivative terms to zero, we get the following simplified set
of determining equations:

𝜏
𝑢
= 0, (14)

0𝐷
𝛽

𝑥
𝜏 = 0, (15)

𝜉
𝑢
= 0, (16)

2𝑔 (𝑡)
0𝐷
𝛽

𝑥
𝜉 − 𝑔 (𝑡)

0𝐷
𝛼

𝑡
𝜏 − 𝜏 (

0
𝐷
𝛼

𝑡
𝑔 (𝑡)) − 𝑔 (𝑡) 𝜂

𝑢

− 𝑓 (𝑡) 𝜂𝑢𝑢 = 0,

(17)

2𝑓 (𝑡)
0𝐷
𝛽

𝑥
𝜉 − 𝑓 (𝑡)

0𝐷
𝛼

𝑡
𝜏 − 𝜏 (

0
𝐷
𝛼

𝑡
𝑓 (𝑡)) = 0, (18)

𝑓 (𝑡)
0𝐷
2𝛽

𝑥
𝜉 −
0𝐷
𝛼

𝑡
𝜉 − 2𝑔 (𝑡)

0𝐷
𝛽

𝑥
𝜂

− 2𝑓 (𝑡)
0𝐷
𝛽

𝑥
𝜂
𝑢
= 0,

(19)

0𝐷
𝛼

𝑡
𝜂 − 𝑓 (𝑡)

0𝐷
2𝛽

𝑥
𝜂 = 0. (20)
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On solving (20) by using fractional Lie group method, we
obtain a particular solution as

𝜂 = 𝑎
1

𝑥
𝛽

Γ (1 + 𝛽)
+ 𝑎
2
(
0
𝐷
𝛼

𝑡
𝐹 (𝑡)) + 𝑎2

𝑥
2𝛽

Γ (1 + 2𝛽)
+ 𝑎
3
, (21)

where
0𝐷
2𝛼

𝑡
𝐹(𝑡) =

0𝐷
𝛼

𝑡
𝑓(𝑡) and 𝑎

1
, 𝑎
2
, and 𝑎

3
are arbitrary

constants. Using this value of 𝜂 in (17) and (18), we get

2 (𝑔 (𝑡) − 𝑓 (𝑡))
0𝐷
2𝛽

𝑥
𝜉 = 0, (22)

which brings forth the following possibilities:

(i)
0𝐷
2𝛽

𝑥
𝜉 = 0.

(ii) 𝑔(𝑡) = 𝑓(𝑡).

Case (i). In this case, from the determining equations, we get

𝜉 = −2𝑎
1
𝐺 (𝑡) − 2𝑎

2
𝐺 (𝑡)

𝑥
𝛽

Γ (1 + 𝛽)
+ 𝑎
4

𝑥
𝛽

Γ (1 + 𝛽)

+ 𝑎
5
,

𝜏 =
1

0𝐷
2𝛼

𝑡
𝐹 (𝑡)

− [4𝑎
2
𝐻(𝑡) + 2𝑎

4
(
0
𝐷
𝛼

𝑡
𝐹 (𝑡)) + 𝑎

6
] ,

𝜂 = 𝑎
1

𝑥
𝛽

Γ (1 + 𝛽)
+ 𝑎
2
(
0
𝐷
𝛼

𝑡
𝐹 (𝑡)) + 𝑎

2

𝑥
2𝛽

Γ (1 + 2𝛽)
+ 𝑎
3
,

(23)

where
0𝐷
𝛼

𝑡
𝐺(𝑡) = 𝑔(𝑡),

0𝐷
𝛼

𝑡
𝐻(𝑡) = (

0
𝐷
2𝛼

𝑡
𝐹(𝑡))𝐺(𝑡), and 𝑎

1
,

𝑎
2
, . . . , 𝑎

6
are six arbitrary constants. Using (23) in (17), we

also get 𝑔(𝑡) = 𝑘𝑓(𝑡), where 𝑘 is an arbitrary constant. This
covers case (ii); as for 𝑓(𝑡) = 𝑔(𝑡) on solving the determining
equations, we get

0𝐷
2𝛽

𝑥
𝜉 = 0. Further, for 𝑓(𝑡) = 𝑔(𝑡) = 1 and

𝛽 = 1, the infinitesimals can be reduced to those reported in
[32] by setting the coefficients 𝑎

1
= −𝑐
5
, 𝑎
2
= −2𝑐

6
, 𝑎
3
= 𝑐
3
,

𝑎
4
= 𝑐
4
, 𝑎
5
= 𝑐
1
, and 𝑎

6
= 𝑐
2
.

Hence, the fractional point symmetry generators admit-
ted by (1) are given by

𝑉
1
= −2𝐺 (𝑡)

𝜕
𝛽

𝜕𝑥𝛽
+

𝑥
𝛽

Γ (1 + 𝛽)

𝜕

𝜕𝑢
,

𝑉
2
= −2𝐺 (𝑡)

𝑥
𝛽

Γ (1 + 𝛽)

𝜕
𝛽

𝜕𝑥𝛽
−
4𝐻 (𝑡)

0𝐷
2𝛼

𝑡
𝐹 (𝑡)

𝜕
𝛼

𝜕𝑡𝛼

+ [
0
𝐷
𝛼

𝑡
𝐹 (𝑡) +

𝑥
2𝛽

Γ (1 + 2𝛽)

𝜕

𝜕𝑢
] ,

𝑉
3
=
𝜕

𝜕𝑢
,

𝑉
4
=

𝑥
𝛽

Γ (1 + 𝛽)

𝜕
𝛽

𝜕𝑥𝛽
+
2 (
0
𝐷
𝛼

𝑡
𝐹 (𝑡))

0𝐷
2𝛼

𝑡
𝐹 (𝑡)

𝜕
𝛼

𝜕𝑡𝛼
,

𝑉
5
=
𝜕
𝛽

𝜕𝑥𝛽
,

𝑉
6
=

1

0𝐷
2𝛼

𝑡
𝐹 (𝑡)

𝜕
𝛼

𝜕𝑡𝛼
.

(24)

Table 1

𝑉
1

𝑉
2

𝑉
3

𝑉
4

𝑉
5

𝑉
6

𝑉
1

0 0 0 𝑉
1

−𝑉
3

2𝑉
5

𝑉
2

0 0 0 2𝑉
2

2𝑉
1

4𝑉
4
− 2𝑉
3

𝑉
3

0 0 0 0 0 0
𝑉
4

−𝑉
1

−2𝑉
2

0 0 −𝑉
5

2𝑉
6

𝑉
5

𝑉
3

−2𝑉
1

0 𝑉
5

0 0
𝑉
6

−2𝑉
5

2𝑉
3
− 4𝑉
4

0 −2𝑉
6

0 0

These infinitesimal generators can be used to determine
a six-parameter fractional Lie group of point transformation
acting on (𝑥, 𝑡, 𝑢)-space. It can be verified easily that the
set {𝑉
1
, 𝑉
2
, 𝑉
3
, 𝑉
4
, 𝑉
5
, 𝑉
6
} forms a six-dimensional Lie algebra

under the Lie bracket [𝑋, 𝑌] = 𝑋𝑌−𝑌𝑋, which reduces to the
well-known generalized Galilea algebra [26] for 𝛼 = 𝛽 = 1.
The commutator table is as given in Table 1.

Further, from the commutator table, it can be seen that
the sets {𝑉

3
} and {𝑉

1
, 𝑉
2
, 𝑉
3
} form solvable subalgebra. Also,

𝑉
3
is the centre of the six-dimensional Lie algebra as it

commutes with every element of the Lie algebra. The group
transformation generated by the infinitesimal generators
𝑉
𝑖
, 𝑖 = 1, 2, . . . , 6, is obtained by solving the system of

ordinary differential equations:

(𝑑𝑥̃)
𝛽

Γ (1 + 𝛽) 𝑑𝜖
= 𝜉 (𝑥̃, 𝑡̃, 𝑢̃) ,

(𝑑𝑡̃)
𝛼

Γ (1 + 𝛼) 𝑑𝜖
= 𝜏 (𝑥̃, 𝑡̃, 𝑢̃) ,

𝑑𝑢̃

𝑑𝜖
= 𝜂 (𝑥̃, 𝑡̃, 𝑢̃) ,

(25)

with the initial conditions

𝑥̃|𝜖=0 = 𝑥,

𝑡̃
󵄨󵄨󵄨󵄨𝜖=0
= 𝑡,

𝑢̃|𝜖=0 = 𝑢.

(26)

Exponentiating the infinitesimal symmetries of (1), we get the
one-parameter groups 𝑔

𝑖
(𝜖) generated by 𝑉

𝑖
, 𝑖 = 1, 2, . . . , 6:

𝑔
1
: (

𝑥
𝛽

Γ (1 + 𝛽)
,

𝑡
𝛼

Γ (1 + 𝛼)
, 𝑢) 󳨀→ (

𝑥
𝛽

Γ (1 + 𝛽)

−
2𝜖𝐺

Γ (1 + 𝛼)
,

𝑡
𝛼

Γ (1 + 𝛼)
, 𝑢 +

𝜖𝑥
𝛽

Γ (1 + 𝛽)
) ,

𝑔
2
: (

𝑥
𝛽

Γ (1 + 𝛽)
,

𝑡
𝛼

Γ (1 + 𝛼)
, 𝑢)

󳨀→ (
𝑥
𝛽

Γ (1 + 𝛽)
𝑒
−2𝜖𝐺
,

𝐺

(1 + 2𝜖𝐺)
, 𝑢 +

𝜖 (
0
𝐷
𝛼

𝑡
𝐹 (𝑡))

(1 + 2𝜖𝐺)

+
𝜖𝑥
2𝛽

Γ (1 + 2𝛽)
𝑒
−4𝜖𝐺/(1+2𝜖𝐺)

) ,
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𝑔
3
: (

𝑥
𝛽

Γ (1 + 𝛽)
,

𝑡
𝛼

Γ (1 + 𝛼)
, 𝑢)

󳨀→ (
𝑥
𝛽

Γ (1 + 𝛽)
,

𝑡
𝛼

Γ (1 + 𝛼)
, 𝑢 + 𝜖) ,

𝑔
4
: (

𝑥
𝛽

Γ (1 + 𝛽)
,

𝑡
𝛼

Γ (1 + 𝛼)
, 𝑢)

󳨀→ (
𝑒
𝜖
𝑥
𝛽

Γ (1 + 𝛽)
,
𝑒
2𝜖
𝑡
𝛼

Γ (1 + 𝛼)
, 𝑢) ,

𝑔
5
: (

𝑥
𝛽

Γ (1 + 𝛽)
,

𝑡
𝛼

Γ (1 + 𝛼)
, 𝑢) 󳨀→ (

𝑥
𝛽

Γ (1 + 𝛽)

+ 𝜖,
𝑡
𝛼

Γ (1 + 𝛼)
, 𝑢) ,

𝑔
6
: (

𝑥
𝛽

Γ (1 + 𝛽)
,

𝑡
𝛼

Γ (1 + 𝛼)
, 𝑢)

󳨀→ (
𝑥
𝛽

Γ (1 + 𝛽)
,

𝑡
𝛼

Γ (1 + 𝛼)
+ 𝜖, 𝑢) .

(27)

Now, since 𝑔
𝑖
is a symmetry, if 𝑢 = 𝜒(𝑥𝛽/Γ(1+𝛽), 𝑡𝛼/Γ(1+𝛼))

is a solution of (1), following 𝑢
𝑖
are also solutions of (1):

𝑢
1
= 𝜒(

𝑥
𝛽

Γ (1 + 𝛽)
−

2𝜖𝐺

Γ (1 + 𝛼)
,

𝑡
𝛼

Γ (1 + 𝛼)
)

−
𝜖𝑥
𝛽

Γ (1 + 𝛽)
,

𝑢
2
= 𝜒(

𝑥
𝛽

Γ (1 + 𝛽)
𝑒
−2𝜖𝐺
,

𝐺

(1 + 2𝜖𝐺)
) −

𝜖 (
0
𝐷
𝛼

𝑡
𝐹 (𝑡))

(1 + 2𝜖𝐺)

−
𝜖𝑥
2𝛽

Γ (1 + 2𝛽)
𝑒
−4𝜖𝐺/(1+2𝜖𝐺)

,

𝑢
3
= 𝜒(

𝑥
𝛽

Γ (1 + 𝛽)
,

𝑡
𝛼

Γ (1 + 𝛼)
) − 𝜖,

𝑢
4
= 𝜒(

𝑒
𝜖
𝑥
𝛽

Γ (1 + 𝛽)
,
𝑒
2𝜖
𝑡
𝛼

Γ (1 + 𝛼)
) ,

𝑢
5
= 𝜒(

𝑥
𝛽

Γ (1 + 𝛽)
+ 𝜖,

𝑡
𝛼

Γ (1 + 𝛼)
) ,

𝑢
6
= 𝜒(

𝑥
𝛽

Γ (1 + 𝛽)
,

𝑡
𝛼

Γ (1 + 𝛼)
+ 𝜖) .

(28)

4. Some Exact Solutions of the Space-Time
Fractional Burgers’ Equation

In this section, we investigate some exact solutions of (1)
corresponding to following infinitesimal generators:

(i) 𝑉
1

(ii) 𝑉
4

(iii) 𝑛𝑉
5
+ 𝑚𝑉
3

(iv) 𝑟𝑉
5
+ 𝑉
6
and

(v) 𝑠𝑉
3
+ 𝑉
6

𝑟, 𝑠,𝑚, and 𝑛 are nonzero arbitrary constant parameters.

Theorem 1. Under the group of transformations 𝑇(𝑥, 𝑡) = 𝑡𝛼/
Γ(1+𝛼) and𝜙(𝑇) = 𝑥2𝛽/Γ(1+2𝛽)+2𝐺(𝑡)𝑢(𝑥, 𝑡), Burgers’ equa-
tion (1) reduces to a linear differential equation of first order:
𝜙
󸀠
(𝑇) − 𝐻

1
(𝑇)𝜙(𝑇) = −𝐻

2
(𝑇), where𝐻

1
(𝑇) =

0𝐷
𝛼

𝑡
𝐺(𝑡)/𝐺(𝑡)

and 𝐻
2
(𝑇) =

0𝐷
2𝛼

𝑡
𝐹(𝑡), which admits a solution given by

𝑢(𝑥, 𝑡) = (1/2𝐺(𝑡))[𝑒
∫𝐻
1
𝑑𝑇
(𝑘
1
−∫𝐻

2
𝑒
−∫𝐻

1
𝑑𝑇
𝑑𝑇) −𝑥

2𝛽
/Γ(1 +

2𝛽)], where 𝑘
1
is an arbitrary constant.

Proof. Consider the infinitesimal generator 𝑉
1
, given by

𝑉
1
= −2𝐺 (𝑡)

𝜕
𝛽

𝜕𝑥𝛽
+

𝑥
𝛽

Γ (1 + 𝛽)

𝜕

𝜕𝑢
. (29)

We find the resulting invariant solution by reducing (1) to
a linear ordinary differential equation (32) using differential
invariants. The fractional characteristic equations for 𝑉

1
are

(𝑑𝑥)
𝛽
/Γ (1 + 𝛽)

−2𝐺 (𝑡)
=
(𝑑𝑡)
𝛼
/Γ (1 + 𝛼)

0
=

𝑑𝑢

𝑥𝛽/Γ (1 + 𝛽)
. (30)

On solving the above fractional characteristic equations,
we obtain two functionally independent invariants as 𝑇 =
𝑡
𝛼
/Γ(1 + 𝛼) and ] = 𝑥2𝛽/Γ(1 + 2𝛽) + 2𝐺(𝑡)𝑢.
Now the solution of the fractional characteristic equa-

tions will be of the form ] = 𝜙(𝑇); therefore

𝑢 =
1

2𝐺 (𝑇)
[𝜙 (𝑇) −

𝑥
2𝛽

Γ (1 + 2𝛽)
] . (31)

Substituting this value of 𝑢 in (1), we get the reduced linear
ordinary differential equation as

𝜙
󸀠
(𝑇) − 𝐻

1
(𝑇) 𝜙 (𝑇) = −𝐻

2
(𝑇) , (32)

where 𝑇 = 𝑡𝛼/Γ(1 + 𝛼),𝐻
1
(𝑇) =

0𝐷
𝛼

𝑡
𝐺(𝑡)/𝐺(𝑡), and𝐻

2
(𝑇) =

0𝐷
2𝛼

𝑡
𝐹(𝑡). On solving (32), we obtain 𝜙(𝑇) = 𝑒∫𝐻1𝑑𝑇(𝑘

1
−

∫𝐻
2
𝑒
−∫𝐻

1
𝑑𝑇
𝑑𝑇), where 𝑘

1
is an arbitrary constant.This gives

𝑢 (𝑥, 𝑡) =
1

2𝐺 (𝑡)
[𝑒
∫𝐻
1
𝑑𝑇
(𝑘
1
− ∫𝐻

2
𝑒
−∫𝐻

1
𝑑𝑇
𝑑𝑇)

−
𝑥
2𝛽

Γ (1 + 2𝛽)
] .

(33)

Theorem 2. The similarity transformations 𝑢(𝑥, 𝑡) = 𝜓(𝑋)
along with the similarity variable 𝑋(𝑥, 𝑡) = 𝑥2𝛽/(Γ(1 + 𝛽))2
(
0
𝐷
𝛼

𝑡
𝐹(𝑡)) reduce fractional Burgers’ equation (1) to a nonlinear
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ordinary differential equation 𝜓󸀠󸀠(𝑋) + (𝑔(𝑡)/𝑓(𝑡))(𝜓󸀠(𝑋))2 +
(1/4)𝜓

󸀠
(𝑋) + (1/2𝑋)𝜓

󸀠
(𝑋) = 0, which leads to the solution

𝑢(𝑥, 𝑡) = (1/𝑘) log {𝑘
2
+2√𝜋𝑘 erf (𝑥𝛽/2Γ(1+𝛽)√(

0
𝐷
𝛼

𝑡
𝐹(𝑡)))}

+𝑘
3
, where 𝑘

2
and 𝑘
3
are arbitrary constants.

Proof. Let us consider the infinitesimal generator

𝑉
4
=

𝑥
𝛽

Γ (1 + 𝛽)

𝜕
𝛽

𝜕𝑥𝛽
+
2 (
0
𝐷
𝛼

𝑡
𝐹 (𝑡))

0𝐷
2𝛼

𝑡
𝐹 (𝑡)

𝜕
𝛼

𝜕𝑡𝛼
. (34)

Here the fractional characteristic equations give the invari-
ants 𝑋(𝑥, 𝑡) = 𝑥2𝛽/(Γ(1 + 𝛽))2(

0
𝐷
𝛼

𝑡
𝐹(𝑡)) and 𝑢(𝑥, 𝑡) = 𝜓(𝑋).

On substituting the above invariants in (1), it becomes a
nonlinear ordinary differential equation of second order:

𝜓
󸀠󸀠
(𝑋) +

𝑔 (𝑡)

𝑓 (𝑡)
(𝜓
󸀠
(𝑋))
2

+
1

4
𝜓
󸀠
(𝑋) +

1

2𝑋
𝜓
󸀠
(𝑋)

= 0,

(35)

which leads to the solution

𝑢 (𝑥, 𝑡) =
1

𝑘
log
{{

{{

{

𝑘
2

+ 2√𝜋𝑘 erf( 𝑥
𝛽

2Γ (1 + 𝛽)√(
0
𝐷
𝛼

𝑡
𝐹 (𝑡))

)

}}

}}

}

+ 𝑘
3
.

(36)

Theorem 3. Under the transformations 𝜁(𝑥, 𝑡) = 𝑡𝛼/Γ(1 + 𝛼)
and 𝜑(𝜁) = 𝑥𝛽/Γ(1 + 𝛽) − (𝑛/𝑚)𝑢(𝑥, 𝑡), fractional Burgers’
equation (1) reduces to an ordinary fractional differential
equation

0𝐷
𝛼

𝑡
𝜑(𝑡) + (𝑚/𝑛)(

0
𝐷
𝛼

𝑡
𝐺(𝑡)) = 0, which has the

general solution as 𝑢(𝑥, 𝑡) = (𝑚/𝑛)[𝑥𝛽/Γ(1+𝛽)+ (𝑚/𝑛)𝐺(𝑡) −
𝑘
4
], with 𝑘

4
being an arbitrary constant.

Proof. In this case, we study the infinitesimal generator

𝑉 = 𝑛𝑉
5
+ 𝑚𝑉
3
= 𝑛

𝜕
𝛽

𝜕𝑥𝛽
+ 𝑚

𝜕

𝜕𝑢
. (37)

The following invariants can be derived easily: 𝜁(𝑥, 𝑡) = 𝑡𝛼/
Γ(1 + 𝛼) and ] = 𝑥𝛽/Γ(1 + 𝛽) − (𝑛/𝑚)𝑢(𝑥, 𝑡) and the reduced
form of (1) as

0𝐷
𝛼

𝑡
𝜑 (𝑡) +

𝑚

𝑛
(
0
𝐷
𝛼

𝑡
𝐺 (𝑡)) = 0. (38)

This easily yields the solution

𝑢 (𝑥, 𝑡) =
𝑚

𝑛
[

𝑥
𝛽

Γ (1 + 𝛽)
+
𝑚

𝑛
𝐺 (𝑡) − 𝑘4] . (39)

Theorem 4. Under the transformations 𝜇(𝑥, 𝑡) = (1/𝑟)

(𝑥
𝛽
/Γ(1 + 𝛽)) −

0𝐷
𝛼

𝑡
𝐹(𝑡)/Γ(1 + 𝛼) and 𝜔(𝜇) = 𝑢(𝑥, 𝑡),

fractional Burgers’ equation (1) reduces to a nonlinear ordi-
nary differential equation 𝜔󸀠󸀠(𝜇) + 𝑘𝜔󸀠2(𝜇) + (𝑟2/Γ(1 +
𝛼))𝜔
󸀠
(𝜇) = 0, which admits the solution 𝑢(𝑥, 𝑡) =

(1/𝑘) log {𝑒(𝑟
2
/Γ(1+𝛼)){𝑥

𝛽
/𝑟Γ(1+𝛽)−

0𝐷
𝛼

𝑡
𝐹(𝑡)/Γ(1+𝛼)}

− 𝑘𝑒
𝑐
1
𝑟
2
/Γ(1+𝛼)

} −

(𝑟
2
/Γ(1 + 𝛼)){𝑥

𝛽
/𝑟Γ(1 + 𝛽) −

0𝐷
𝛼

𝑡
𝐹(𝑡)/Γ(1 + 𝛼)} + 𝑐

2
, where 𝑐

1

and 𝑐
2
are arbitrary constants.

Proof. Results can be easily derived by solving the fractional
characteristic equations for the infinitesimal generator 𝑟𝑉

5
+

𝑉
6
.

Theorem 5. The similarity transformations 𝛾(𝑥, 𝑡) = 𝑥𝛽/Γ(1+
𝛽) and𝜌(𝛾) =

0𝐷
𝛼

𝑡
𝐹(𝑡)−(Γ(1+𝛼)/𝑠)𝑢 reduce Burgers’ equation

(1) to a nonlinear ordinary differential equation 𝜌󸀠󸀠(𝛾) −
(𝑘𝑠/Γ(1 + 𝛼))(𝜌

󸀠
(𝛾))
2
+ 1 = 0, which has the general solution

as 𝑢(𝑥, 𝑡) = (𝑠/Γ(1 + 𝛼))[
0
𝐷
𝛼

𝑡
𝐹(t) + (1/𝑘) log {cosh√𝑘(𝑐

3
+

𝑥
𝛽
/Γ(1 + 𝛽))} − 𝑐

4
], where 𝑐

3
and 𝑐
4
are arbitrary constants.

Proof. The proof is very much similar to the previous theo-
rems.

5. Some Exact Solutions of Fractional
Potential Burgers’ Equation by the Invariant
Subspace Method

The invariant subspace method was introduced by Galak-
tionov [38] in order to discover exact solutions of nonlinear
partial differential equations.Themethodwas further applied
by Gazizov and Kasatkin [39] and Sahadevan [40] to some
nonlinear fractional-order differential equations. Here, we
give a brief description of the method.

Consider the fractional evolution equation
0𝐷
𝛼

𝑡
𝑢 = 𝐹[𝑢],

where𝑢 = 𝑢(𝑥, 𝑡) and𝐹[𝑢] is a nonlinear differential operator.
The 𝑛-dimensional linear space𝑊

𝑛
= ⟨𝑓
1
(𝑥), . . . , 𝑓

𝑛
(𝑥)⟩

is called invariant under the operator 𝐹[𝑢], if 𝐹[𝑢] ∈

𝑊
𝑛
for any 𝑢 ∈ 𝑊

𝑛
, which means there exist 𝑛 func-

tions 𝜙
1
, . . . , 𝜙

𝑛
such that 𝐹[𝐶

1
𝑓
1
(𝑥) + ⋅ ⋅ ⋅ + 𝐶

𝑛
𝑓
𝑛
(𝑥)] =

𝜙
1
(𝐶
1
, . . . , 𝐶

𝑛
)𝑓
1
(𝑥) + ⋅ ⋅ ⋅ + 𝜙

𝑛
(𝐶
1
, . . . , 𝐶

𝑛
)𝑓
𝑛
(𝑥), where 𝐶

1
,

. . . , 𝐶
𝑛
are arbitrary constants and {𝜙

𝑛
} are the expansion

coefficients of 𝐹[𝑢] ∈ 𝑊
𝑛
in the basis {𝑓

𝑖
}. It follows that

an exact solution of fractional evolution equation can be
obtained as 𝑢(𝑥, 𝑡) = ∑𝑛

𝑖=1
𝑎
𝑖
(𝑡)𝑓
𝑖
(𝑥), where the coefficient

functions 𝑎
1
(𝑡), 𝑎
2
(𝑡), . . . , 𝑎

𝑛
(𝑡) satisfy a system of fractional

ODEs:

0𝐷
𝛼

𝑡
𝑎
𝑖 (𝑡) = 𝜙𝑖 (𝑎1 (𝑡) , 𝑎2 (𝑡) , . . . , 𝑎𝑛 (𝑡)) ,

𝑖 = 1, 2, . . . , 𝑛.

(40)

For further details, the reader is referred to [40].
For (1), 𝐹[𝑢] =

0𝐷
𝛼

𝑡
𝑢 − 𝑓(𝑡)

0𝐷
2𝛽

𝑥
𝑢 − 𝑔(𝑡)(

0
𝐷
𝛽

𝑥
𝑢)
2. We

have the space 𝑊
3
= ⟨1, 𝑥

𝛽
/Γ(1 + 𝛽), 𝑥

2𝛽
/Γ(1 + 2𝛽)⟩ as

invariant under 𝐹[𝑢], if and only if, for any 𝑢(𝑥, 𝑡) = 𝑎
1
(𝑡) +
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𝑎
2
(𝑡)(𝑥
𝛽
/Γ(1 + 𝛽)) + 𝑎

3
(𝑡)(𝑥
2𝛽
/Γ(1 + 2𝛽)) ∈ 𝑊

3
, 𝐹[𝑢] ∈ 𝑊

3
or

equivalently if

𝑎
3 (𝑡) 𝑓 (𝑡) + (𝑎2 (𝑡))

2
𝑔 (𝑡) = 𝑏1,

(𝑎
3
(𝑡))
2
𝑔 (𝑡) = 𝑏

2
,

𝑎
2
(𝑡) 𝑎
3
(𝑡) 𝑔 (𝑡) = 𝑏

3
,

(41)

where 𝑏
1
, 𝑏
2
, and 𝑏

3
are arbitrary constants. This allows us to

consider an exact solution of (1) as

𝑢 (𝑥, 𝑡) = 𝑎
1
(𝑡) + 𝑎

2
(𝑡)

𝑥
𝛽

Γ (1 + 𝛽)
+ 𝑎
3
(𝑡)

𝑥
2𝛽

Γ (1 + 2𝛽)
. (42)

Substituting the value of 𝑢(𝑥, 𝑡) from (42) into (1) and
equating the coefficients of the elements of space 𝑊

3
=

⟨1, 𝑥
𝛽
/Γ(1 + 𝛽), 𝑥

2𝛽
/Γ(1 + 2𝛽)⟩, we get the following system

of fractional differential equations:

0𝐷
𝛼

𝑡
𝑎
3
(𝑡) =

Γ (1 + 2𝛽)

(Γ (1 + 𝛽))
2
𝑔 (𝑎
3
(𝑡))
2
,

0𝐷
𝛼

𝑡
𝑎
2 (𝑡) = 2𝑎2 (𝑡) 𝑎3 (𝑡) 𝑔,

0𝐷
𝛼

𝑡
𝑎
1
(𝑡) = 𝑓𝑎

3
(𝑡) + 𝑔 (𝑎

2
(𝑡))
2
.

(43)

Equations (43) can be readily solved to yield

−
1

𝑎
3 (𝑡)

=
Γ (1 + 2𝛽)

(Γ (1 + 𝛽))
2
(
0
𝐼
𝛼

𝑡
𝑔) ,

log 𝑎
2 (𝑡) = 2 (0𝐼

𝛼

𝑡
(𝑎
3 (𝑡) 𝑔)) ,

𝑎
1
(𝑡) =

0𝐼
𝛼

𝑡
(𝑎
3
(𝑡) 𝑓 + (𝑎

2
(𝑡))
2
𝑔) ,

(44)

where the functions 𝑓(𝑡) and 𝑔(𝑡) are integrable in the sense
of Riemann-Liouville and

0𝐼
𝛼

𝑡
𝑔(𝑡) ̸= 0.

On solving (44), we get

𝑎
3
(𝑡) =

𝐵

0𝐼
𝛼

𝑡
𝑔 (𝑡)

,

𝑎
2
(𝑡) = (

0
𝐼
𝛼

𝑡
𝑔 (𝑡))
2𝐵
,

𝑎
1
(𝑡) =

0𝐼
𝛼

𝑡
[𝑔 (𝑡) (

0
𝐼
𝛼

𝑡
𝑔 (𝑡))
4𝐵
+
𝐵𝑓 (𝑡)

0𝐼
𝛼

𝑡
𝑔 (𝑡)

] ,

(45)

where 𝐵 = −(Γ(1 + 𝛽))2/Γ(1 + 2𝛽).
Using (42) and (45), one can easily obtain an exact

solution of (1).

6. Conclusion

The main purpose of Lie symmetry method is to reduce
PDEs to ODEs by introducing suitable similarity variable
and similarity solutions. Here, in this paper, the authors
show that the fractional potential Burgers’ equation possesses
similarity solutions exactly as its counterparts with integer-
order derivatives. By using conveniently defined similarity

variables, fractional potential Burgers’ equation reduces to
ordinary differential equations which are further solved to
derive some group invariant solutions. The authors also
utilised the invariant subspace method to deduce some exact
solutions of fractional potential Burgers’ equation. Software
likeMathematica andMaple has been utilised in solving some
ordinary differential equations.
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