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We obtain the sharp bounds for the spectral radius of a nonnegative matrix and then obtain some known results or new results by
applying these bounds to a graph or a digraph and revise and improve two known results.

1. Introduction

First we recall some basic definitions and notations that will
be used in this paper. Let 𝐴 be an 𝑛 × 𝑛 real matrix and
𝜆1, 𝜆2, . . . , 𝜆𝑛 be the eigenvalues of 𝐴. Since 𝐴 is not sym-
metric in general, the eigenvalues may be complex numbers.
Without loss of generality, we assume that |𝜆1| ≥ |𝜆2| ≥ ⋅ ⋅ ⋅ ≥
|𝜆𝑛|, and then the spectral radius of 𝐴 is defined as 𝜌(𝐴) =
|𝜆1|; that is, it is the largest modulus of the eigenvalues of 𝐴.
By the Perron-Frobenius theorem, we have the following: (1)
𝜌(𝐴) is an eigenvalue of 𝐴 if 𝐴 is a nonnegative matrix; (2)
𝜌(𝐴) = 𝜆1 is simple if 𝐴 is a nonnegative irreducible matrix.

Let 𝐺 = (𝑉, 𝐸) (�⃗� = (𝑉, 𝐸)) be a graph (digraph) with
vertex set 𝑉 = 𝑉(𝐺) (= 𝑉(�⃗�)) = {V1, V2, . . . , V𝑛} and edge set
𝐸 = 𝐸(𝐺) (arc set 𝐸 = 𝐸(�⃗�)). A graph𝐺 (digraph �⃗�) is simple
if it has no loops and multiple edges (arcs). For any pairs of
vertices V𝑖, V𝑗 ∈ 𝑉, if there is a (directed) path from V𝑖 to V𝑗,
the graph𝐺 (digraph �⃗�) is called (strongly) connected. In this
paper, we consider finite, simple graphs and digraphs.

Let 𝐺 be a graph and diag (𝐺) = diag (𝑑1, 𝑑2, . . . , 𝑑𝑛) be
the diagonal matrix of vertex degrees of 𝐺, where 𝑑𝑖 is the
degree of vertex V𝑖.

Let �⃗� be a digraph; 𝑁−
�⃗�
(V𝑖) = {V𝑗 ∈ 𝑉(�⃗�) | (V𝑗, V𝑖) ∈

𝐸(�⃗�)} and 𝑁+
�⃗�
(V𝑖) = {V𝑗 ∈ 𝑉(�⃗�) | (V𝑖, V𝑗) ∈ 𝐸(�⃗�)} denote

the in-neighbors and out-neighbors of V𝑖, respectively. Let𝑑−𝑖 = |𝑁−
�⃗�
(V𝑖)| and 𝑑+𝑖 = |𝑁+

�⃗�
(V𝑖)| denote the indegree and

outdegree of the vertex V𝑖 in �⃗�, respectively, and diag (�⃗�) =
diag (𝑑+1 , 𝑑+2 , . . . , 𝑑+𝑛 ) be the diagonal matrix of the vertex
outdegrees of �⃗�.

Let𝐴(𝐺) = (𝑎𝑖𝑗) be the (0, 1) adjacencymatrix of𝐺, where

𝑎𝑖𝑗 =
{
{
{
1, if V𝑖 and V𝑗 are adjacent;

0, otherwise.
(1)

Let 𝐴(�⃗�) = (𝑎𝑖𝑗) denote the adjacency matrix of �⃗�, where 𝑎𝑖𝑗
is equal to the number of arcs (V𝑖, V𝑗).

Then the signless Laplacian matrix of 𝐺 (�⃗�) is defined as

𝑄 (𝐺) = diag (𝐺) + 𝐴 (𝐺)
(𝑄 (�⃗�) = diag (�⃗�) + 𝐴 (�⃗�)) .

(2)

The spectral radii of 𝐴(𝐺) and 𝑄(𝐺) (𝐴(�⃗�) and 𝑄(�⃗�)),
denoted by 𝜌(𝐺) and 𝑞(𝐺) (𝜌(�⃗�) and 𝑞(�⃗�)), are called
the (adjacency) spectral radius of 𝐺 (�⃗�) and the signless
Laplacian spectral radius of 𝐺 (�⃗�), respectively.

Let 𝐺 = (𝑉, 𝐸) be a connected graph and �⃗� = (𝑉, 𝐸)
be a strong connected digraph. For 𝑢, V ∈ 𝑉, the distance
from 𝑢 to V, denoted by𝑑𝐺(𝑢, V) (𝑑�⃗�(𝑢, V)), is the length of the
shortest (directed) path from 𝑢 to V in 𝐺 (�⃗�). For 𝑢 ∈ 𝑉, the
transmission of vertex 𝑢 in𝐺 (�⃗�) is the sum of distances from
𝑢 to all other vertices of 𝐺 (�⃗�), denoted by Tr𝐺(𝑢) (Tr�⃗�(𝑢)).
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The distance matrix of 𝐺 (�⃗�) is the 𝑛 × 𝑛 matrix D(𝐺) =
(𝑑𝑖𝑗), where 𝑑𝑖𝑗 = 𝑑𝐺(V𝑖, V𝑗) (D(�⃗�) = (𝑑𝑖𝑗), where 𝑑𝑖𝑗 =
𝑑�⃗�(V𝑖, V𝑗)). In fact, for 1 ≤ 𝑖 ≤ 𝑛, the transmission of vertex
V𝑖, Tr𝐺(V𝑖) (Tr�⃗�(V𝑖)), is just the 𝑖th row sum ofD(𝐺) (D(�⃗�)).
For convenience, we also call Tr𝐺(V𝑖) (Tr�⃗�(V𝑖)) the distance
degree (outdegree) of vertex V𝑖 in 𝐺 (�⃗�), denoted by𝐷𝑖 (𝐷+𝑖 );
that is, 𝐷𝑖 = ∑𝑛𝑗=1 𝑑𝑖𝑗 = Tr𝐺(V𝑖) (𝐷+𝑖 = ∑𝑛𝑗=1 𝑑𝑖𝑗 = Tr�⃗�(V𝑖)).
Similarly, we define𝐷−𝑖 = ∑𝑛𝑗=1 𝑑𝑗𝑖.

Let Tr(𝐺) = diag (𝐷1, 𝐷2, . . . , 𝐷𝑛) be the diagonal matrix
of vertex transmissions of 𝐺, and let Tr(�⃗�) = diag (𝐷+1 , 𝐷+2 ,
. . . , 𝐷+𝑛 ) be the diagonal matrix of vertex transmissions of �⃗�.
The distance signless Laplacian matrix of 𝐺 (�⃗�) is the 𝑛 × 𝑛
matrix defined by Aouchiche and Hansen as [1]

Q (𝐺) = Tr (𝐺) +D (𝐺)
(Q (�⃗�) = Tr (�⃗�) +D (�⃗�)) .

(3)

The spectral radii of D(𝐺) and Q(𝐺) (D(�⃗�) and Q(�⃗�)),
denoted by 𝜌D(𝐺) and 𝑞D(𝐺) (𝜌D(�⃗�) and 𝑞D(�⃗�)), are called
the distance spectral radius of𝐺 (�⃗�) and the distance signless
Laplacian spectral radius of 𝐺 (�⃗�), respectively.

Let 𝐺 be a connected graph. The reciprocal distance
matrix (also called the Harary matrix) 𝑅(𝐺) = (𝑟𝑖𝑗) of 𝐺 is
the 𝑛 × 𝑛 matrix, where (𝑟𝑖𝑗) = 1/𝑑𝑖𝑗 if 𝑖 ̸= 𝑗 and 𝑟𝑖𝑖 = 0 for
𝑖 = 1, . . . , 𝑛. Clearly, the reciprocal distance matrix 𝑅(𝐺) is
nonnegative and symmetric.

Let𝐺 be a graph and �⃗� be a digraph; we call𝐺 (�⃗�) regular
if each vertex of𝐺 (�⃗�) has the same degree (outdegree). Other
definitions, terminology, and notations not in the article can
be found in [2–4].

In recent decades, there are many results on the bounds
of the spectral radius of a nonnegative matrix and the
various spectral radii of a graph or a digraph, including
the spectral radius, the signless Laplacian spectral radius,
the distance spectral radius, the distance signless Laplacian
spectral radius, and the spectral radius of the reciprocal
distance matrix; see [5–16] and so on.

In this paper, we obtain the sharp bounds for the spectral
radius of a nonnegative (irreducible) matrix in Section 2 and
then obtain some known results or new results by applying
these bounds to a graph in Section 3 or a digraph in Section 4;
we revise and improve two known results.

2. Main Results

In this section, we will obtain the sharp bounds for the
spectral radius of a nonnegative (irreducible) matrix and
revise and improve the result of Theorem 2.9 in [9]. The
techniques used in this section are motivated by [7, 9, 14] and
so on.

Lemma 1 (see [2]). If 𝐴 is an 𝑛 × 𝑛 nonnegative matrix
with the spectral radius 𝜆(𝐴) and row sums 𝑟1, 𝑟2, . . . , 𝑟𝑛, then
min1≤𝑖≤𝑛𝑟𝑖 ≤ 𝜆(𝐴) ≤ max1≤𝑖≤𝑛𝑟𝑖. Moreover, if 𝐴 is irreducible,
then one of the equalities holds if and only if the row sums of 𝐴
are all equal.

Theorem 2. Let𝐴 = (𝑎𝑖𝑗) be an 𝑛×𝑛 nonnegative matrix with
row sums 𝑟1, 𝑟2, . . . , 𝑟𝑛, where 𝑟1 ≥ 𝑟2 ≥ ⋅ ⋅ ⋅ ≥ 𝑟𝑛, and let 𝑆 be
the smallest diagonal element, 𝑇 be the smallest nondiagonal
element, and 𝜆(𝐴) be the spectral radius of 𝐴. Take 𝜙1 = 𝑟𝑛
and for 2 ≤ 𝑙 ≤ 𝑛,
𝜙𝑙

= 𝑟𝑛 + 𝑆 − 𝑇 + √(𝑟𝑛 + 𝑇 − 𝑆)2 + 4 (𝑙 − 1) (𝑟𝑙−1 − 𝑟𝑛) 𝑇
2 .

(4)

Let 𝜙𝑡 = max1≤𝑙≤𝑛{𝜙𝑙} for some 1 ≤ 𝑡 ≤ 𝑛. Then 𝜆(𝐴) ≥ 𝜙𝑡.
Moreover, if 𝐴 is irreducible, then

(1) 𝜆(𝐴) = 𝜙1 = 𝑟𝑛 if and only if 𝑟1 = 𝑟2 = ⋅ ⋅ ⋅ = 𝑟𝑛.
(2) 𝜆(𝐴) = 𝜙𝑡 > 𝑟𝑛 with 2 ≤ 𝑡 ≤ 𝑛 if and only if 𝐴 satisfies

the following conditions:

(i) 𝑎𝑖𝑖 = 𝑆 for 1 ≤ 𝑖 ≤ 𝑡 − 1;
(ii) 𝑎𝑖𝑗 = 𝑇 > 0 for 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ̸= 𝑖 ≤ 𝑡 − 1;
(iii) 𝑟1 = 𝑟2 = ⋅ ⋅ ⋅ = 𝑟𝑡−1 > 𝑟𝑡 = 𝑟𝑡+1 = ⋅ ⋅ ⋅ = 𝑟𝑛.

Proof. If 𝑇 = 0, then 𝜙𝑙 = 𝜙1 = 𝑟𝑛 for any 2 ≤ 𝑙 ≤ 𝑛 by 𝑟𝑛 ≥ 𝑆.
Thus by Lemma 1 and 𝑟1 ≥ 𝑟2 ≥ ⋅ ⋅ ⋅ ≥ 𝑟𝑛, we have 𝜆(𝐴) ≥ 𝑟𝑛 =
max1≤𝑙≤𝑛{𝜙𝑙} = 𝜙1, and if 𝐴 is irreducible, 𝜆(𝐴) = 𝜙1 = 𝑟𝑛 if
and only if 𝑟1 = 𝑟2 = ⋅ ⋅ ⋅ = 𝑟𝑛.

Now we consider the case 𝑇 > 0.
Firstly, we show 𝜆(𝐴) ≥ 𝜙𝑙 for all 2 ≤ 𝑙 ≤ 𝑛.
Since 𝐴 is a nonnegative matrix, then 𝑎𝑝,𝑞 ≥ 𝑇 > 0 for

1 ≤ 𝑝 ̸= 𝑞 ≤ 𝑛. Thus

𝑙−1

∑
𝑗=1

𝑎𝑖𝑗 ≥
{
{
{
𝑆 + (𝑙 − 2) 𝑇, if 1 ≤ 𝑖 ≤ 𝑙 − 1;
(𝑙 − 1) 𝑇, if 𝑙 ≤ 𝑖 ≤ 𝑛. (5)

Let
𝑥

= 𝑆 − 𝑟𝑛 + (2𝑙 − 3) 𝑇 + √(𝑟𝑛 + 𝑇 − 𝑆)2 + 4 (𝑙 − 1) (𝑟𝑙−1 − 𝑟𝑛) 𝑇
2 (𝑙 − 1) 𝑇 .

(6)

It is easy to show that 𝑥 > 1. Take

𝑥𝑗 =
{
{
{
𝑥, if 1 ≤ 𝑗 ≤ 𝑙 − 1,
1, if 𝑙 ≤ 𝑗 ≤ 𝑛, (7)

and let U = diag (𝑥1, 𝑥2, . . . , 𝑥𝑛) be a diagonal matrix of
order 𝑛. Let 𝐵 = U−1𝐴U, and then 𝐵 and 𝐴 have the same
eigenvalues, and 𝜆(𝐵) = 𝜆(𝐴).

Now we consider the row sums of 𝐵, say, 𝑠1, 𝑠2, . . . , 𝑠𝑛.
Case 1 (1 ≤ 𝑖 ≤ 𝑙 − 1). Consider

𝑠𝑖 =
𝑛

∑
𝑗=1

𝑥𝑗
𝑥𝑖 𝑎𝑖𝑗 =

𝑙−1

∑
𝑗=1

𝑎𝑖𝑗 + 1
𝑥
𝑛

∑
𝑗=𝑙

𝑎𝑖𝑗

= 1
𝑥
𝑛

∑
𝑗=1

𝑎𝑖𝑗 + (1 − 1
𝑥)
𝑙−1

∑
𝑗=1

𝑎𝑖𝑗 = 1
𝑥𝑟𝑖 + (1 − 1

𝑥)
𝑙−1

∑
𝑗=1

𝑎𝑖𝑗

≥ 1
𝑥𝑟𝑖 + (1 − 1

𝑥) [𝑆 + (𝑙 − 2) 𝑇]
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= 1
𝑥 (𝑟𝑖 − 𝑆) + 𝑆 + (1 − 1

𝑥) (𝑙 − 2) 𝑇

≥ 1
𝑥 (𝑟𝑙−1 − 𝑆) + 𝑆 + (1 − 1

𝑥) (𝑙 − 2) 𝑇,

(8)

with equality if and only if (a) and (b) hold: (a) 𝑎𝑖𝑖 = 𝑆 and
𝑎𝑖𝑗 = 𝑇 if 1 ≤ 𝑗 ≤ 𝑙 − 1 with 𝑗 ̸= 𝑖 and (b) 𝑟𝑖 = 𝑟𝑙−1.
Case 2 (𝑙 ≤ 𝑖 ≤ 𝑛). Consider

𝑠𝑖 =
𝑛

∑
𝑗=1

𝑥𝑗
𝑥𝑖 𝑎𝑖𝑗 = 𝑥

𝑙−1

∑
𝑗=1

𝑎𝑖𝑗 +
𝑛

∑
𝑗=𝑙

𝑎𝑖𝑗

=
𝑛

∑
𝑗=1

𝑎𝑖𝑗 + (𝑥 − 1)
𝑙−1

∑
𝑗=1

𝑎𝑖𝑗 = 𝑟𝑖 + (𝑥 − 1)
𝑙−1

∑
𝑗=1

𝑎𝑖𝑗

≥ 𝑟𝑖 + (𝑥 − 1) (𝑙 − 1) 𝑇 ≥ 𝑟𝑛 + (𝑥 − 1) (𝑙 − 1) 𝑇,

(9)

with equality if and only if (c) and (d) hold: (c) 𝑎𝑖𝑗 = 𝑇 if
1 ≤ 𝑗 ≤ 𝑙 − 1 and (d) 𝑟𝑖 = 𝑟𝑛.

Noting that

𝑟𝑛 + (𝑥 − 1) (𝑙 − 1) 𝑇

= 1
𝑥 (𝑟𝑙−1 − 𝑆) + 𝑆 + (1 − 1

𝑥) (𝑙 − 2) 𝑇

= 𝑆 + 𝑟𝑛 − 𝑇 + √(𝑟𝑛 + 𝑇 − 𝑆)2 + 4 (𝑙 − 1) (𝑟𝑙−1 − 𝑟𝑛) 𝑇
2

= 𝜙𝑙,

(10)

then, by Lemma 1, we have 𝜆(𝐴) = 𝜆(𝐵) ≥ min{𝑠1, 𝑠2, . . . ,𝑠𝑛} ≥ 𝜙𝑙.
Noting that 𝜙𝑙 ≥ 𝜙1 = 𝑟𝑛 by 𝑟𝑛 + 𝑇 ≥ 𝑆, thus 𝜆(𝐴) ≥ 𝜙𝑡,

where 𝜙𝑡 = max1≤𝑙≤𝑛{𝜙𝑙} for some 1 ≤ 𝑡 ≤ 𝑛.
Let 𝐴 be irreducible; 𝜙𝑡 = max1≤𝑙≤𝑛{𝜙𝑙} for some 1 ≤ 𝑡 ≤

𝑛.
Case 1 (𝜆(𝐴) = 𝜙1). For 2 ≤ 𝑙 ≤ 𝑛, by 𝜙𝑙 ≥ 𝜙1 and 𝑇 > 0, we
have 𝜙𝑙 = 𝜙1 ⇔ 𝑟𝑙−1 = 𝑟𝑛. Then

𝜙𝑡 = 𝜙1 ⇐⇒ 𝜙𝑙 = 𝜙1 ∀2 ≤ 𝑙 ≤ 𝑛 ⇐⇒ 𝑟1 = 𝑟2 = ⋅ ⋅ ⋅ = 𝑟𝑛. (11)

On the other hand, by Lemma 1 and 𝑟1 ≥ 𝑟2 ≥ ⋅ ⋅ ⋅ ≥ 𝑟𝑛,
we have

𝜆 (𝐴) = 𝑟𝑛 ⇐⇒ 𝑟1 = 𝑟2 = ⋅ ⋅ ⋅ = 𝑟𝑛. (12)

By (11), (12), and 𝜙1 = 𝑟𝑛, (1) holds.
Case 2 (𝜆(𝐴) = 𝜙𝑡 > 𝜙1 for some 2 ≤ 𝑡 ≤ 𝑛). Then 𝑟𝑡−1 > 𝑟𝑛
and 𝑇 > 0 by 𝜙𝑡 > 𝜙1 = 𝑟𝑛.

If 𝜆(𝐴) = 𝜙𝑡, then 𝑠1 = 𝑠2 = ⋅ ⋅ ⋅ = 𝑠𝑛 = 𝜙𝑡 by the above
arguments and Lemma 1; thus (a) and (b) hold for 1 ≤ 𝑖 ≤ 𝑡−1
and (c) and (d) hold for 𝑡 ≤ 𝑖 ≤ 𝑛. Thus 𝑎𝑖𝑖 = 𝑆 for 1 ≤ 𝑖 ≤
𝑡−1, 𝑟1 = 𝑟2 = ⋅ ⋅ ⋅ = 𝑟𝑡−1 > 𝑟𝑡 = 𝑟𝑡+1 = ⋅ ⋅ ⋅ = 𝑟𝑛 and 𝑎𝑖𝑗 = 𝑇 > 0
for 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ̸= 𝑖 ≤ 𝑡 − 1. Now (i), (ii), and (iii) follow.

Conversely, if (i), (ii), and (iii) hold, it is easy to show that
equality holds.

Corollary 3. Let𝐴 = (𝑎𝑖𝑗) be an 𝑛×𝑛 nonnegativematrix with
row sums 𝑟1, 𝑟2, . . . , 𝑟𝑛, where 𝑟1 ≥ 𝑟2 ≥ ⋅ ⋅ ⋅ ≥ 𝑟𝑛, and let 𝑆 be
the smallest diagonal element, 𝑇 be the smallest nondiagonal
element, and 𝜆(𝐴) be the spectral radius of 𝐴. Take 𝜙1 = 𝑟𝑛
and, for 2 ≤ 𝑙 ≤ 𝑛,
𝜙𝑙

= 𝑟𝑛 + 𝑆 − 𝑇 + √(𝑟𝑛 + 𝑇 − 𝑆)2 + 4 (𝑙 − 1) (𝑟𝑙−1 − 𝑟𝑛) 𝑇
2 .

(13)

Let 𝜙𝑡 = max1≤𝑙≤𝑛{𝜙𝑙} for some 1 ≤ 𝑡 ≤ 𝑛. Then 𝜆(𝐴) ≥ 𝜙𝑡.
Moreover, if 𝐴 is irreducible with 𝑇 = 0 or 𝐴 is irreducible and
symmetric, then

𝜆 (𝐴) = 𝜙𝑡 iff 𝑡 = 1, 𝑟1 = 𝑟2 = ⋅ ⋅ ⋅ = 𝑟𝑛. (14)

Proof. We complete the proof by the following two cases.

Case 1 (𝑇 = 0). It is obvious by the proof of Theorem 2.

Case 2 (𝐴 is symmetric and 𝑇 > 0). By (i) and (ii), 𝐴 is
symmetric and 𝑇 is the smallest nondiagonal element. We
have 𝑟1 = 𝑟2 = ⋅ ⋅ ⋅ = 𝑟𝑡−1 = 𝑆 + (𝑛 − 1)𝑇 < 𝑟𝑡 = ⋅ ⋅ ⋅ = 𝑟𝑛.
It is a contradiction by the fact 𝑟𝑡−1 ≥ 𝑟𝑡.

Similar to the proof of Theorem 2 (so we omit the proof
of Theorem 4), we can show Theorem 4 which revises and
improves the result of Theorem 2.9 in [9].

Theorem 4. Let𝐴 = (𝑎𝑖𝑗) be an 𝑛×𝑛 nonnegative matrix with
row sums 𝑟1, 𝑟2, . . . , 𝑟𝑛, where 𝑟1 ≥ 𝑟2 ≥ ⋅ ⋅ ⋅ ≥ 𝑟𝑛, and let 𝑀
be the largest diagonal element, 𝑁 be the largest nondiagonal
element, and 𝜆(𝐴) be the spectral radius of 𝐴. Take 𝜙1 = 𝑟1
and, for 2 ≤ 𝑙 ≤ 𝑛,
𝜙𝑙

= 𝑟𝑙 +𝑀 −𝑁 + √(𝑟𝑙 + 𝑁 −𝑀)2 + 4 (𝑙 − 1) (𝑟1 − 𝑟𝑙)𝑁
2 .

(15)

Let 𝜙𝑡 = min1≤𝑙≤𝑛{𝜙𝑙} for some 1 ≤ 𝑡 ≤ 𝑛. Then 𝜆(𝐴) ≤ 𝜙𝑡.
Moreover, if 𝐴 is irreducible, then

(1) 𝜆(𝐴) = 𝜙1 = 𝑟1 if and only if 𝑟1 = 𝑟2 = ⋅ ⋅ ⋅ = 𝑟𝑛.
(2) 𝜆(𝐴) = 𝜙𝑡 < 𝑟1 with 2 ≤ 𝑡 ≤ 𝑛 if and only if 𝐴 satisfies

the following conditions:

(i) 𝑎𝑖𝑖 = 𝑀 for 1 ≤ 𝑖 ≤ 𝑡 − 1;
(ii) 𝑎𝑖𝑗 = 𝑁 > 0 for 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ̸= 𝑖 ≤ 𝑡 − 1;
(iii) 𝑟1 = 𝑟2 = ⋅ ⋅ ⋅ = 𝑟𝑡−1 > 𝑟𝑡 = 𝑟𝑡+1 = ⋅ ⋅ ⋅ = 𝑟𝑛.

3. Various Spectral Radii of a Graph

Let 𝐺 be a graph. In Section 1, the (adjacency) matrix 𝐴(𝐺),
the signless Laplacianmatrix𝑄(𝐺), the distancematrixD(𝐺)
(if 𝐺 is connected), the distance signless Laplacian matrix
Q(𝐺) (if 𝐺 is connected), the reciprocal distance matrix 𝑅(𝐺)
(if 𝐺 is connected), the (adjacency) spectral radius 𝜌(𝐺), the
signless Laplacian spectral radius 𝑞(𝐺), the distance spectral
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radius 𝜌D(𝐺), the distance signless Laplacian spectral radius
𝑞D(𝐺), and the spectral radius of the reciprocal distance
matrix 𝜆(𝑅(𝐺)) are defined. Now, in this section, we will
applyTheorem 2, Corollary 3, andTheorem 4 to𝐴(𝐺),𝑄(𝐺),
D(𝐺),Q(𝐺), and𝑅(𝐺) and obtain some new results or known
results.

3.1. Adjacency Spectral Radius of a Graph. Let 𝐺 be a graph.
By applying Corollary 3 and Theorem 4 to the (adjacency)
matrix 𝐴(𝐺) with 𝑆 = 0, 𝑇 = 0,𝑀 = 0,𝑁 = 1, and 𝑟𝑖 = 𝑑𝑖 for
any 1 ≤ 𝑖 ≤ 𝑛, we have the following.
Corollary 5. Let 𝐺 be a graph on 𝑛 vertices with degree
sequence 𝑑1, 𝑑2, . . . , 𝑑𝑛, where 𝑑1 ≥ 𝑑2 ≥ ⋅ ⋅ ⋅ ≥ 𝑑𝑛. Then one
has

𝑑𝑛 ≤ 𝜌 (𝐺)

≤ min
1≤𝑖≤𝑛

{{
{{
{

𝑑𝑖 − 1 + √(𝑑𝑖 + 1)2 + 4 (𝑖 − 1) (𝑑1 − 𝑑𝑖)
2

}}
}}
}

.
(16)

Moreover, if 𝐺 is connected, then the left equality holds if and
only if 𝐺 is a regular graph, the right equality holds if and only
if 𝐺 is a regular graph, or there exists some 𝑡 with 2 ≤ 𝑡 ≤ 𝑛
such that𝐺 is a bidegreed graph with 𝑑1 = ⋅ ⋅ ⋅ = 𝑑𝑡−1 = 𝑛−1 >
𝑑𝑡 = ⋅ ⋅ ⋅ = 𝑑𝑛.
Remark 6. The left inequality in Corollary 5 can be obtained
by Lemma 1 immediately, and the right inequality in Corol-
lary 5 is the result of Theorem 2.2 in [13].

3.2. Signless Laplacian Spectral Radius of a Graph. Let 𝐺 be a
graph. By applying Corollary 3 andTheorem 4 to the signless
Laplacian matrix 𝑄(𝐺) with 𝑆 = 𝑑𝑛, 𝑇 = 0, 𝑀 = 𝑑1, 𝑁 = 1,
and 𝑟𝑖 = 2𝑑𝑖 for any 1 ≤ 𝑖 ≤ 𝑛, we have the following.
Corollary 7. Let 𝐺 be a graph on 𝑛 vertices with degree
sequence 𝑑1, 𝑑2, . . . , 𝑑𝑛, where 𝑑1 ≥ 𝑑2 ≥ ⋅ ⋅ ⋅ ≥ 𝑑𝑛. Then one
has

2𝑑𝑛 ≤ 𝑞 (𝐺)

≤ min
1≤𝑖≤𝑛

{{
{{
{

𝑑1 + 2𝑑𝑖 − 1 + √(2𝑑𝑖 − 𝑑1 + 1)2 + 8 (𝑖 − 1) (𝑑1 − 𝑑𝑖)
2

}}
}}
}

. (17)

Moreover, if 𝐺 is connected, then the left equality holds if and
only if 𝐺 is a regular graph, the right equality holds if and only
if 𝐺 is a regular graph, or there exists some 𝑡 with 2 ≤ 𝑡 ≤ 𝑛
such that 𝐺 is a bidegreed graph in which 𝑑1 = ⋅ ⋅ ⋅ = 𝑑𝑡−1 =𝑛 − 1 > 𝑑𝑡 = ⋅ ⋅ ⋅ = 𝑑𝑛.

Remark 8. The left inequality in Corollary 7 can be obtained
by Lemma 1 immediately, and the right inequality in Corol-
lary 7 is the result of Theorem 3.2 in [15].

3.3. Distance Spectral Radius of aGraph. Let𝐺 be a connected
graph and 𝑑 be the diameter of 𝐺. Then the distance matrix
D(𝐺) = (𝑑𝑖𝑗) is nonnegative and symmetric. By applying
Corollary 3 andTheorem 4 to the distance matrixD(𝐺) with
𝑆 = 0, 𝑇 = 1,𝑀 = 0,𝑁 = 𝑑, and 𝑟𝑖 = 𝐷𝑖 for any 1 ≤ 𝑖 ≤ 𝑛, we
note that 𝑑21 = ⋅ ⋅ ⋅ = 𝑑𝑛1 = 𝑑 implies a contradiction. Then
we have the following.

Corollary 9. Let 𝐺 be a connected graph on 𝑛 vertices
and 𝑑 be the diameter of 𝐺, with distance degree sequence
𝐷1, 𝐷2, . . . , 𝐷𝑛 such that 𝐷1 ≥ 𝐷2 ≥ ⋅ ⋅ ⋅ ≥ 𝐷𝑛. Let

𝑓 (𝑖) = 𝐷𝑛 − 1 + √(𝐷𝑛 + 1)2 + 4 (𝑖 − 1) (𝐷𝑖−1 − 𝐷𝑛)
2 . (18)

Then one has

max
2≤𝑖≤𝑛

{𝐷𝑛, 𝑓 (𝑖)} ≤ 𝜌D (𝐺)

≤ min
1≤𝑖≤𝑛

{{
{{
{

𝐷𝑖 − 𝑑 + √(𝐷𝑖 + 𝑑)2 + 4𝑑 (𝑖 − 1) (𝐷1 − 𝐷𝑖)
2

}}
}}
}

.
(19)

Moreover, one of the equalities holds if and only if 𝐷1 = 𝐷2 =⋅ ⋅ ⋅ = 𝐷𝑛.
Remark 10. The right inequality in Corollary 9 is the result of
Corollary 1.8 in [6].

By applying Theorem 2 and Corollary 3 to the distance
matrixD(𝐺) with 𝑆 = 0, 𝑇 = 1, and 𝑟𝑖 = 𝐷𝑖 for 𝑖 = 1, 2, . . . , 𝑛,
we have the following.

Corollary 11 (see [16, Theorem 2]). Let 𝐺 be a con-
nected graph on 𝑛 vertices with distance degree sequence
𝐷1, 𝐷2, . . . , 𝐷𝑛 such that𝐷1 ≥ 𝐷2 ≥ 𝐷𝑖−1 > 𝐷𝑖 ≥ ⋅ ⋅ ⋅ ≥ 𝐷𝑛 for
some 2 ≤ 𝑖 ≤ 𝑛. Then

𝜌D (𝐺)

> 𝐷𝑛 − 1 + √(𝐷𝑛 + 1)2 + 4 (𝑖 − 1) (𝐷𝑖−1 − 𝐷𝑛)
2 .

(20)

3.4. Distance Signless Laplacian Spectral Radius of a Graph.
Let 𝐺 be a connected graph and 𝑑 be the diameter of 𝐺. Then
the distance matrix Q(𝐺) is nonnegative and symmetric. By
applying Corollary 3 and Theorem 4 to the distance matrix
Q(𝐺) with 𝑆 = 𝐷𝑛, 𝑇 = 1, 𝑀 = 𝐷1, 𝑁 = 𝑑, and 𝑟𝑖 = 2𝐷𝑖
for 𝑖 = 1, 2, . . . , 𝑛, we note that 𝑑21 = ⋅ ⋅ ⋅ = 𝑑𝑛1 = 𝑑 implies a
contradiction. Then we have the following.
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Corollary 12. Let 𝐺 be a connected graph on 𝑛 vertices with
distance degree sequence 𝐷1, 𝐷2, . . . , 𝐷𝑛 such that 𝐷1 ≥ 𝐷2 ≥⋅ ⋅ ⋅ ≥ 𝐷𝑛 and 𝑑 be the diameter of 𝐺. Let

𝑓 (𝑖) = 3𝐷𝑛 − 1 + √(𝐷𝑛 + 1)2 + 8 (𝑖 − 1) (𝐷𝑖−1 − 𝐷𝑛)
2 ,

𝑔 (𝑖)

= 𝐷1 + 2𝐷𝑖 − 𝑑 + √(2𝐷𝑖 − 𝐷1 + 𝑑)2 + 8𝑑 (𝑖 − 1) (𝐷1 − 𝐷𝑖)
2 .

(21)

Then one has

max
2≤𝑖≤𝑛

{2𝐷𝑛, 𝑓 (𝑖)} ≤ 𝑞D (𝐺) ≤ min
1≤𝑖≤𝑛

{𝑔 (𝑖)} . (22)

Moreover, one of the equalities holds if and only if 𝐷1 = 𝐷2 =⋅ ⋅ ⋅ = 𝐷𝑛.
Remark 13. The right inequality in Corollary 12 is the result
of Theorem 3.8 in [9].

By applying Theorem 2 and Corollary 3 to the distance
matrix Q(𝐺) with 𝑆 = 𝐷𝑛, 𝑇 = 1, and 𝑟𝑖 = 2𝐷𝑖 for 𝑖 =
1, 2, . . . , 𝑛, we have the following.
Corollary 14. Let 𝐺 be a connected graph on 𝑛 vertices with
distance degree sequence 𝐷1, 𝐷2, . . . , 𝐷𝑛 such that 𝐷1 ≥ 𝐷2 ≥
𝐷𝑖−1 > 𝐷𝑖 ≥ ⋅ ⋅ ⋅ ≥ 𝐷𝑛 for some 2 ≤ 𝑖 ≤ 𝑛. Then 𝑞D(𝐺) > 𝑓(𝑖).

3.5. Spectral Radius of the Reciprocal Distance Matrix. By
applyingCorollary 3 andTheorem4 to the reciprocal distance
matrix 𝑅(𝐺) with 𝑆 = 0, 𝑇 = 1/𝑑,𝑀 = 0,𝑁 = 1, and 𝑟𝑖 = 𝑅𝑖
for 𝑖 = 1, . . . , 𝑛, we have the following.
Corollary 15. Let 𝐺 be a connected graph on 𝑛 vertices, 𝑑 be
the diameter of 𝐺, 𝑅𝑖 = ∑𝑛𝑗=1 𝑟𝑖𝑗, and the row sum sequence be
𝑅1, 𝑅2, . . . , 𝑅𝑛 of 𝑅(𝐺) satisfying 𝑅1 ≥ 𝑅2 ≥ ⋅ ⋅ ⋅ ≥ 𝑅𝑛. Let

𝑓 (𝑖)

= 𝑅𝑛 − 1/𝑑 + √(𝑅𝑛 + 1/𝑑)2 + (4/𝑑) (𝑖 − 1) (𝑅𝑖−1 − 𝑅𝑛)
2 ,

𝑔 (𝑖) = 𝑅𝑖 − 1 + √(𝑅𝑖 + 1)2 + 4 (𝑖 − 1) (𝑅1 − 𝑅𝑖)
2 .

(23)

Then

max
2≤𝑖≤𝑛

{𝑅𝑛, 𝑓 (𝑖)} ≤ 𝜆 (𝑅 (𝐺)) ≤ min
1≤𝑖≤𝑛

{𝑔 (𝑖)} . (24)

Moreover, the left equality holds if and only if 𝑅1 = 𝑅2 =
⋅ ⋅ ⋅ = 𝑅𝑛, and the right equality holds if and only if either

𝑅1 = 𝑅2 = ⋅ ⋅ ⋅ = 𝑅𝑛 or there exists some 𝑡 with 2 ≤ 𝑡 ≤ 𝑛
such that𝐺 is a graph with 𝑡 − 1 vertices of degree 𝑛−1 and the
remaining 𝑛 − 𝑡 + 1 vertices have equal degree less than 𝑛 − 1.
Remark 16. The right inequality in Corollary 15 is the result
(i) of Theorem 4 in [16].

4. Various Spectral Radii of a Digraph

Let �⃗� be a strong connected digraph. In Section 1, the
adjacency matrix 𝐴(�⃗�), the signless Laplacian matrix 𝑄(�⃗�),
the distance matrix D(�⃗�) (if �⃗� is connected), the distance
signless Laplacian matrix Q(�⃗�) (if �⃗� is connected), the
adjacency spectral radius𝜌(�⃗�), the signless Laplacian spectral
radius 𝑞(�⃗�), the distance spectral radius 𝜌D(�⃗�), and the
distance signless Laplacian spectral radius 𝑞D(�⃗�) are defined.
Now, in this section, we will apply Theorem 2, Corollary 3,
andTheorem 4 to 𝐴(�⃗�),𝑄(�⃗�),D(�⃗�), and Q(�⃗�), obtain some
new results or known results, and revise and improve the
result of Theorem 2.5 in [11].

4.1. Adjacency Spectral Radius of a Digraph. Let �⃗� be a
digraph. By applying Corollary 3 and Theorem 4 to the
(adjacency) matrix 𝐴(�⃗�) with 𝑆 = 0, 𝑇 = 0, 𝑀 = 0, 𝑁 = 1,
and 𝑟𝑖 = 𝑑+𝑖 for 𝑖 = 1, . . . , 𝑛, we have the following.
Corollary 17. Let �⃗� be a digraph on 𝑛 vertices with outdegree
sequence 𝑑+1 , 𝑑+2 , . . . , 𝑑+𝑛 such that 𝑑+1 ≥ 𝑑+2 ≥ ⋅ ⋅ ⋅ ≥ 𝑑+𝑛 . Then
one has

𝑑+𝑛 ≤ 𝜌 (�⃗�)

≤ min
1≤𝑖≤𝑛

{{
{{
{

𝑑+𝑖 − 1 + √(𝑑+𝑖 + 1)2 + 4 (𝑖 − 1) (𝑑+1 − 𝑑+𝑖 )
2

}}
}}
}

.
(25)

Moreover, if �⃗� is a strong connected digraph, then the left
equality holds if and only if �⃗� is a regular digraph, the right
equality holds if and only if �⃗� is a regular digraph, or there
exists some 𝑡 with 2 ≤ 𝑡 ≤ 𝑛 such that �⃗� is a bidegreed digraph
with 𝑑+1 = ⋅ ⋅ ⋅ = 𝑑+𝑡−1 > 𝑑+𝑡 = ⋅ ⋅ ⋅ = 𝑑+𝑛 and the indegrees
𝑑−1 = ⋅ ⋅ ⋅ = 𝑑−𝑡−1 = 𝑛 − 1.

4.2. Signless Laplacian Spectral Radius of a Digraph. Let �⃗�
be a digraph. By applying Corollary 3 and Theorem 4 to the
signless Laplacian matrix 𝑄(�⃗�) with 𝑆 = 𝑑+𝑛 , 𝑇 = 0, 𝑀 =
𝑑+1 , 𝑁 = 1, and 𝑟𝑖 = 2𝑑+𝑖 for 𝑖 = 1, . . . , 𝑛, we have the following.
Corollary 18. Let �⃗� be a digraph on 𝑛 vertices with outdegree
sequence 𝑑+1 , 𝑑+2 , . . . , 𝑑+𝑛 such that 𝑑+1 ≥ 𝑑+2 ≥ ⋅ ⋅ ⋅ ≥ 𝑑+𝑛 . Then
one has
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2𝑑+𝑛 ≤ 𝑞 (�⃗�) ≤ min
1≤𝑖≤𝑛

{{
{{
{

𝑑+1 + 2𝑑+𝑖 − 1 + √(2𝑑+𝑖 − 𝑑+1 + 1)2 + 8 (𝑖 − 1) (𝑑+1 − 𝑑+𝑖 )
2

}}
}}
}

. (26)

Moreover, if �⃗� is a strong connected digraph, then the left
equality holds if and only if �⃗� is a regular digraph, the right
equality holds if and only if �⃗� is a regular digraph, or there
exists some 𝑡 with 2 ≤ 𝑡 ≤ 𝑛 such that �⃗� is a bidegreed digraph
with 𝑑+1 = ⋅ ⋅ ⋅ = 𝑑+𝑡−1 > 𝑑+𝑡 = ⋅ ⋅ ⋅ = 𝑑+𝑛 and the indegrees
𝑑−1 = ⋅ ⋅ ⋅ = 𝑑−𝑡−1 = 𝑛 − 1.

Remark 19. The left inequality inCorollary 18 can be obtained
by Lemma 1 immediately, and the right inequality in Corol-
lary 18 revises and improves Proposition 20.

Proposition 20 (see [11, Theorem 2.5]). Let �⃗� be a strong
connected digraph on 𝑛 vertices with outdegree sequence
𝑑+1 , 𝑑+2 , . . . , 𝑑+𝑛 such that 𝑑+1 ≥ 𝑑+2 ≥ ⋅ ⋅ ⋅ ≥ 𝑑+𝑛 . Then one has

𝑞 (�⃗�) ≤ min
1≤𝑖≤𝑛

{{
{{
{

𝑑+1 + 2𝑑+𝑖 − 1 + √(2𝑑+𝑖 − 𝑑+1 + 1)2 + 8 (𝑖 − 1) (𝑑+1 − 𝑑+𝑖 )
2

}}
}}
}

. (27)

Moreover, if 𝑖 = 1, the equality holds if and only if �⃗� is a regular
digraph. If 2 ≤ 𝑖 ≤ 𝑛, the equality holds if and only if �⃗� is a
regular digraph or a bidegreed digraph in which 𝑑+1 = 𝑑+2 =
⋅ ⋅ ⋅ = 𝑑+𝑖−1 = 𝑛 − 1 and 𝑑+𝑖 = ⋅ ⋅ ⋅ = 𝑑+𝑛 = 𝛿+.

The following example shows that the result of Proposi-
tion 20 is incorrect.

Example 21. Let 𝑛 ≥ 5 and 𝐷1 is shown in Figure 1. For 𝐷1,
the outdegree sequence is 3 = 𝑑+1 > 𝑑+2 = 𝑑+3 = ⋅ ⋅ ⋅ = 𝑑+𝑛 = 2
and the indegree 𝑑−1 = 𝑛−1.We have 𝑞(𝐷1) = 3+√3 by direct
computation. It is clear that

𝑞 (𝐷1) = 3 + √3 = min
1≤𝑖≤𝑛

{{
{{
{

𝑑+1 + 2𝑑+𝑖 − 1 + √(2𝑑+𝑖 − 𝑑+1 + 1)2 + 8 (𝑖 − 1) (𝑑+1 − 𝑑+𝑖 )
2

}}
}}
}

. (28)

4.3. Distance Spectral Radius of a Digraph. Let �⃗� be a strong
connected digraph and 𝑑 be the diameter of �⃗�. By applying
Theorems 2 and 4 to the distancematrixD(�⃗�)with 𝑆 = 0, 𝑇 =
1, 𝑀 = 0,𝑁 = 𝑑, and 𝑟𝑖 = 𝐷+𝑖 for 𝑖 = 1, . . . , 𝑛, we note that
𝑑21 = ⋅ ⋅ ⋅ = 𝑑𝑛1 = 𝑑 implies a contradiction. Then we have
the following.

Corollary 22. Let �⃗� be a strong connected digraph on 𝑛
vertices with distance outdegree sequence𝐷+1 , 𝐷+2 , . . . , 𝐷+𝑛 such
that𝐷+1 ≥ 𝐷+2 ≥ ⋅ ⋅ ⋅ ≥ 𝐷+𝑛 , and let 𝑑 be the diameter of �⃗�. Let

𝑓 (𝑖)

= 𝐷+𝑛 − 1 + √(𝐷+𝑛 + 1)2 + 4 (𝑖 − 1) (𝐷+𝑖−1 − 𝐷+𝑛 )
2 ,

𝑔 (𝑖)

= 𝐷+𝑖 − 𝑑 + √(𝐷+𝑖 + 𝑑)2 + 4𝑑 (𝑖 − 1) (𝐷+1 − 𝐷+𝑖 )
2 .

(29)

Then one has

max
2≤𝑖≤𝑛

{𝐷+𝑛 , 𝑓 (𝑖)} ≤ 𝜌D (�⃗�) ≤ min
1≤𝑖≤𝑛

{𝑔 (𝑖)} . (30)

Moreover, the left equality holds if and only if 𝐷+1 = ⋅ ⋅ ⋅ = 𝐷+𝑛
or there exists some 𝑡 with 2 ≤ 𝑡 ≤ 𝑛 such that 𝐷+1 = ⋅ ⋅ ⋅ =
𝐷+𝑡−1 > 𝐷+𝑡 = ⋅ ⋅ ⋅ = 𝐷+𝑛 and 𝐷−1 = ⋅ ⋅ ⋅ = 𝐷−𝑡−1 = 𝑛 − 1 and the
right equality holds if and only if𝐷+1 = ⋅ ⋅ ⋅ = 𝐷+𝑛 .

4.4. Distance Signless Laplacian Spectral Radius of a Digraph.
Let �⃗� be a strong connected digraph and 𝑑 be the diameter
of �⃗�. By applying Theorems 2 and 4 to the distance signless
Laplacian matrix Q(�⃗�) with 𝑆 = 𝐷+𝑛 , 𝑇 = 1,𝑀 = 𝐷+1 , 𝑁 = 𝑑,
and 𝑟𝑖 = 2𝐷+𝑖 for 𝑖 = 1, . . . , 𝑛, we note two facts: the first fact is
that (i) and (iii) of (2) in Theorem 2 cannot hold at the same
time by 𝑎𝑖𝑖 = 𝐷+𝑖 = ∑1≤𝑗≤𝑛 𝑑𝑖𝑗 and 𝑟𝑖 = 2𝐷+𝑖 , and the second
fact is that 𝑑21 = ⋅ ⋅ ⋅ = 𝑑𝑛1 = 𝑑 implies a contradiction. Then
we have the following.
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Figure 1: The digraphs 𝐷1.

Corollary 23. Let �⃗� be a strong connected digraph on 𝑛
vertices with distance outdegree sequence𝐷+1 , 𝐷+2 , . . . , 𝐷+𝑛 such
that𝐷+1 ≥ 𝐷+2 ≥ ⋅ ⋅ ⋅ ≥ 𝐷+𝑛 , and let 𝑑 be the diameter of �⃗�. Let

𝑓 (𝑖) = 3𝐷+𝑛 − 1 + √(𝐷+𝑛 + 1)2 + 8 (𝑖 − 1) (𝐷+𝑖−1 − 𝐷+𝑛 )
2 ,

𝑔 (𝑖)

= 𝐷+1 + 2𝐷+𝑖 − 𝑑 + √(2𝐷+𝑖 − 𝐷+1 + 𝑑)2 + 8𝑑 (𝑖 − 1) (𝐷+1 − 𝐷+𝑖 )
2 .

(31)

Then one has

max
2≤𝑖≤𝑛

{𝐷+𝑛 , 𝑓 (𝑖)} ≤ 𝑞D (�⃗�) ≤ min
1≤𝑖≤𝑛

{𝑔 (𝑖)} . (32)

Moreover, one of the equalities holds if and only if 𝐷+1 = ⋅ ⋅ ⋅ =
𝐷+𝑛 .
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