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We study the split common fixed point problem (SCFP) for a class of total asymptotically pseudocontractive mappings. We obtain
some important properties of our class of mappings including the demiclosedness property and the closedness and convexity of the
fixed point set. We then propose an algorithm and prove weak and strong convergence theorems for the approximation of solutions
of the SCFP for certain class of these mappings.

1. Introduction

Let𝐻
1
and𝐻

2
be two real Hilbert spaces,𝐾 and𝑄 nonempty

closed convex subsets of 𝐻
1
and 𝐻

2
, respectively, and 𝐴 :

𝐻
1
→ 𝐻

2
a bounded linear operator. The split feasibility

problem (SFP) (see, e.g., [1–9]) is

find 𝑥
∗
∈ 𝐻
1

such that 𝑥
∗
∈ 𝐾,

𝐴𝑥
∗
∈ 𝑄.

(1)

If𝑄 = {𝑏}, a singleton, we have the convexly constrained linear
inverse problem (CCLIP):

find 𝑥
∗
∈ 𝐻
1
,

such that 𝑥
∗
∈ 𝐾,

𝐴𝑥
∗
= 𝑏.

(2)

The split feasibility problem (SFP) has various important
applications in several disciplines (see, e.g., [2–9]).

Let 𝑆 : 𝐻
1
→ 𝐻
1
and 𝑇 : 𝐻

2
→ 𝐻
2
be mappings such

that 𝐾 fl 𝐹(𝑆) = {𝑥 ∈ 𝐻
1
: 𝑆𝑥 = 𝑥} ̸= 0 and 𝑄 fl 𝐹(𝑇) =

{𝑥 ∈ 𝐻
2
: 𝑇𝑥 = 𝑥} ̸= 0. The split common fixed point problem

(SCFP) for 𝑆 and 𝑇 is to find a point 𝑥∗ ∈ 𝐻
1
such that 𝑥∗ ∈

𝐹(𝑆) and 𝐴𝑥∗ ∈ 𝐹(𝑇). In sequel we use Γ to denote the set of
solutions of (SCFP); that is,

Γ = {𝑥 ∈ 𝐾 = 𝐹 (𝑆) , 𝐴𝑥 ∈ 𝑄 = 𝐹 (𝑇)} . (3)

Definition 1. Let 𝐻 be a real Hilbert space, and let 𝐶 be a
nonempty closed convex subset of𝐻.

A mapping 𝑇 : 𝐶 → 𝐶 is said to be ({𝜇
𝑛
}
∞

𝑛=1
, {𝜉
𝑛
}
∞

𝑛=1
, 𝜙)-

total asymptotically 𝑘-strictly pseudocontractive (see, e.g., [3])
if there exist a constant 𝑘 ∈ [0, 1), a continuous and strictly
increasing function 𝜙 : [0,∞) → [0,∞) with 𝜙(0) = 0, and
sequences {𝜇

𝑛
} ⊂ [0,∞) and {𝜉

𝑛
} ⊂ [0,∞) with 𝜇

𝑛
→ 0 and

𝜉
𝑛
→ 0 such that, for all 𝑥, 𝑦 ∈ 𝐶,

𝑇
𝑛
𝑥 − 𝑇
𝑛
𝑦


2

≤
𝑥 − 𝑦



2

+ 𝑘
(𝐼 − 𝑇

𝑛
) 𝑥 − (𝐼 − 𝑇

𝑛
) 𝑦


2

+ 𝜇
𝑛
𝜙 (
𝑥 − 𝑦

) + 𝜉𝑛.

(4)

𝑇 is said to be ({𝜇
𝑛
}
∞

𝑛=1
, {𝜉
𝑛
}
∞

𝑛=1
, 𝜙)-total asymptotically pseu-

docontractive if 𝑘 = 1 in (4).
Observe that if 𝜙(𝑡) = 𝑡

2 and 𝜉
𝑛
= 0 ∀𝑛 ≥ 1 in (4), we

obtain
𝑇
𝑛
𝑥 − 𝑇
𝑛
𝑦


2

≤ 𝑘
𝑛

𝑥 − 𝑦


2

+ 𝑘
𝑥 − 𝑇

𝑛
𝑥 − (𝑦 − 𝑇

𝑛
𝑦)


2

,

(5)
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where 𝑘
𝑛
= 1+𝜇

𝑛
⊆ [1,∞) and lim

𝑛→∞
𝑘
𝑛
= 1.Mappings sat-

isfying (5) are thewell-known class of 𝑘-strictly asymptotically
pseudocontractive mappings, while mappings satisfying (5)
for 𝑘 = 1 are called asymptotically pseudocontractive map-
pings. These classes of mappings are generalizations of the
well-known important class of asymptotically nonexpansive
mappings introduced by Goebel and Kirk [10] (i.e., mappings
𝑇 : 𝐶 → 𝐶 which satisfy ‖𝑇𝑛𝑥 − 𝑇𝑛𝑦‖ ≤ 𝑘

𝑛
‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ 𝐶

and for some sequence {𝑘
𝑛
}
∞

𝑛=1
⊆ [1,∞)with lim

𝑛→∞
𝑘
𝑛
= 1).

We consider the following examples.

Example 2 (see [10]). In the real Hilbert space ℓ2, let 𝐶 =

{𝑥 ∈ ℓ
2
: ‖𝑥‖ ≤ 1} denote the closed unit ball, and define

𝑆 : 𝐶 → 𝐶 by 𝑆(𝑥
1
, 𝑥
2
, 𝑥
3
, . . .) = (0, 𝑥

2

1
, 𝑎
2
𝑥
2
, 𝑎
3
𝑥
3
, . . .), where

{𝑎
𝑗
}
∞

𝑗=1
is a real sequence in (0, 1) such that ∏∞

𝑗=1
𝑎
𝑗
= 1/2.

Then 𝑆 is asymptotically nonexpansive and hence asymp-
totically strictly pseudocontractive. It follows that 𝑆 is total
asymptotically strictly pseudocontractive and hence total
asymptotically pseudocontractive.

Example 3 (see [6, 7]). Let𝐷 be an orthogonal subspace of the
Euclidean spaceR𝑛, and for each𝑥 = (𝑥

1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
) ∈ 𝐷,

define 𝑇 : 𝐷 → 𝐷 by

𝑇𝑥 =

{{{{{

{{{{{

{

(𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
) , if

𝑛

∏

𝑗=1

𝑥
𝑗
< 0,

(−𝑥
1
, −𝑥
2
, −𝑥
3
, . . . , −𝑥

𝑛
) , if

𝑛

∏

𝑗=1

𝑥
𝑗
≥ 0.

(6)

Then 𝑇 is asymptotically nonexpansive (see, e.g., [7]) and
hence total asymptotically strictly pseudocontractive (see,
e.g., [6]) and hence it is total asymptotically pseudocontrac-
tive.

Example 4 (see [11]). Let R denote the reals with the usual
norm, 𝐶 = [−6, 2], and define 𝑇 : 𝐶 → 𝐶 by

𝑇𝑥 =

{

{

{

𝑥, if 𝑥 ∈ [−6, 1) ,

2𝑥 − 𝑥
2
, if 𝑥 ∈ [1, 2] .

(7)

It is shown in [11] that |𝑇𝑥−𝑇𝑦|2 ≤ |𝑥−𝑦|2+|𝑥−𝑇𝑥−(𝑦−𝑇𝑦)|2
and |𝑇𝑥 − 𝑇𝑦| ≤ 6|𝑥 − 𝑦|, ∀𝑥, 𝑦 ∈ [−6, 2]. It is easy to observe
that, for all integers 𝑛 > 1, we have

𝑇
𝑛
𝑥 =

{

{

{

𝑥, if 𝑥 ∈ [−6, 1) ,

2𝑥 − 𝑥
2
, if 𝑥 ∈ [1, 2] .

(8)

Thus we easily obtain

𝑇
𝑛
𝑥 − 𝑇
𝑛
𝑦


2

≤
𝑥 − 𝑦



2

+
𝑥 − 𝑇

𝑛
𝑥 − (𝑦 − 𝑇

𝑛
𝑦)


2

,

∀𝑥, 𝑦 ∈ [−6, 2] , ∀𝑛 ≥ 1.

(9)

Hence 𝑇 is asymptotically pseudocontractive and hence
total asymptotically pseudocontractive. Furthermore, |𝑇𝑛𝑥 −
𝑇
𝑛
𝑦| ≤ 6|𝑥 − 𝑦|, ∀𝑥, 𝑦 ∈ [−6, 1] so that 𝑇 is uniformly 𝐿-

Lipschitzian.

The following is an example of a total asymptotically
pseudocontractive map which is not total asymptotically
strictly pseudocontractive.

Example 5. LetR denote the reals with the usual norm, 𝐶 =

[0, 1], and define 𝑇 : 𝐶 → 𝐶 by

𝑇𝑥 = (1 − 𝑥
2/3
)
3/2

. (10)

Then for all integers 𝑛 ≥ 1 and for all 𝑥 ∈ [0, 1] we have

𝑇
𝑛
𝑥 =

{

{

{

(1 − 𝑥
2/3
)
3/2

, if 𝑛 is odd,

𝑥, if 𝑛 is even.
(11)

Thus
𝑇
𝑛
𝑥 − 𝑇
𝑛
𝑦


2

≤
𝑥 − 𝑦



2

+
𝑥 − 𝑇

𝑛
𝑥 − (𝑦 − 𝑇

𝑛
𝑦)


2

,

∀𝑥, 𝑦 ∈ [0, 1] , 𝑛 ≥ 1,

(12)

and hence 𝑇 is total asymptotically pseudocontractive. 𝑇 is
not total asymptotically strictly pseudocontractive since, in
every real Hilbert space𝐻, every total asymptotically strictly
pseudocontractive mapping 𝑇 : 𝐶 ⊆ 𝐻 → 𝐶 satisfies

lim sup
𝑛→∞

𝑇
𝑛
𝑥 − 𝑇
𝑛
𝑦
 ≤

(1 + √𝑘)

1 − √𝑘

𝑥 − 𝑦
 ,

∀𝑥, 𝑦 ∈ 𝐶.

(13)

In [3] the authors studied the split common fixed point
problem (SCFP) for a class of total asymptotically strictly
pseudocontractive mappings in real Hilbert spaces. They
proposed an algorithm and proved weak and strong conver-
gence theorems for finding solutions of SCFP for the class of
mappings studied.

It is our purpose in this work to study the split common
fixed point problem (SCFP) for a class of total asymptotically
pseudocontractive mappings which is much more general
than the class of mappings studied in [3]. We obtain some
important properties of our class of mappings including the
demiclosedness property and then propose an algorithm and
prove weak and strong convergence theorems for the approx-
imation of solutions of the SCFP.

2. Preliminaries

In what follows, we will need the following.
Let 𝐸 be a real Banach space and 𝐶 a nonempty closed

convex subset of 𝐸. A mapping 𝑇 : 𝐶 → 𝐶 is said to be
𝑠𝑒𝑚𝑖𝑐𝑜𝑚𝑝𝑎𝑐𝑡 if, for any bounded sequence {𝑥

𝑛
} ⊂ 𝐶 with

lim
𝑛→∞

‖𝑥
𝑛
−𝑇𝑥
𝑛
‖ = 0, there exists a subsequence {𝑥

𝑛𝑖
} ⊂ {𝑥

𝑛
}

such that {𝑥
𝑛𝑖
} converges strongly to some point 𝑥∗ ∈ 𝐶.

𝑇 : 𝐶 → 𝐶 is said to be uniformly 𝐿-Lipschitzian if there
exists a constant 𝐿 ≥ 0, such that, for all 𝑥, 𝑦 ∈ 𝐶,

𝑇
𝑛
𝑥 − 𝑇
𝑛
𝑦
 ≤ 𝐿

𝑥 − 𝑦
 . (14)
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𝐸 is said to have the Opial property if, for any sequence {𝑥
𝑛
}

with 𝑥
𝑛
⇀ 𝑥, we have

lim inf
𝑛→∞

𝑥𝑛 − 𝑥
 < lim inf
𝑛→∞

𝑥𝑛 − 𝑦
 ,

∀𝑦 ∈ 𝐸 with 𝑦 ̸= 𝑥.

(15)

It is well known that every Hilbert space satisfies the Opial
condition.

Lemma 6 (see [10]). Let𝐻 be a real Hilbert space. If {𝑥
𝑛
} is a

sequence in𝐻 weakly convergent to 𝑧, then

lim sup
𝑛→∞

𝑥𝑛 − 𝑦


2

= lim sup
𝑛→∞

𝑥𝑛 − 𝑧


2

+
𝑧 − 𝑦



2

,

∀𝑦 ∈ 𝐻.

(16)

Lemma 7 (see [11]). Let {𝑎
𝑛
}, {𝑏
𝑛
}, and {𝛿

𝑛
} be sequences of

nonnegative real numbers satisfying the inequality

𝑎
𝑛+1

≤ (1 + 𝛿
𝑛
) 𝑎
𝑛
+ 𝑏
𝑛
, ∀𝑛 ≥ 1. (17)

If ∑∞
𝑛=1

𝛿
𝑛
< ∞ and ∑∞

𝑛=1
𝑏
𝑛
< ∞, then lim

𝑛→∞
𝑎
𝑛
exists. If

in addition {𝑎
𝑛
}
∞

𝑛=1
has a subsequence which converges to zero,

then lim
𝑛→∞

𝑎
𝑛
= 0.

3. Main Results

We start with the following important properties of
({𝜇
𝑛
}
∞

𝑛=1
, {𝜉
𝑛
}
∞

𝑛=1
, 𝜙)-total asymptotically pseudocontractive

mappings.

Proposition 8. Let 𝐻 be a real Hilbert space, 𝐶 a nonempty
closed convex subset of 𝐻, and 𝑇 : 𝐶 → 𝐶 a uniformly
𝐿-Lipschitzian ({𝜇

𝑛
}
∞

𝑛=1
, {𝜉
𝑛
}
∞

𝑛=1
, 𝜙)-total asymptotically pseu-

docontractive mapping with 𝐹(𝑇) ̸= 0. Let 𝛽 ∈ (0, 1/(1 +

√1 + 𝐿2)); and set 𝐺
𝑛
= 𝑇
𝑛
[(1 − 𝛽)𝐼 + 𝛽𝑇

𝑛
]. Then for each

𝑞 ∈ 𝐹(𝑇) and each 𝑥 ∈ 𝐶, the following equivalent inequalities
hold:

⟨𝑥 − 𝐺
𝑛
𝑥, 𝑥 − 𝑞⟩ ≥

𝛽

2

𝑥 − 𝐺𝑛𝑥


2

− (1 + 𝛽)
𝜇
𝑛

2
𝜙 (
𝑥 − 𝑞

)

− (1 + 𝛽)
𝜉
𝑛

2
,

(18)

⟨𝑥 − 𝐺
𝑛
𝑥, 𝑞 − 𝐺

𝑛
𝑥⟩ ≤

2 − 𝛽

2

𝑥 − 𝐺𝑛𝑥


2

+ (1 + 𝛽)
𝜇
𝑛

2
𝜙 (
𝑥 − 𝑞

)

+ (1 + 𝛽)
𝜉
𝑛

2
.

(19)

Proof. For arbitrary 𝑥 ∈ 𝐶 and 𝑞 ∈ 𝐹(𝑇) we have

𝐺𝑛𝑥 − 𝑞


2

=
𝑇
𝑛
[(1 − 𝛽) 𝑥 + 𝛽𝑇

𝑛
𝑥] − 𝑇

𝑛
𝑞


2

≤
(1 − 𝛽) 𝑥 + 𝛽𝑇

𝑛
𝑥 − 𝑞



2

+
(1 − 𝛽) 𝑥 + 𝛽𝑇

𝑛
𝑥 − 𝐺

𝑛
𝑥


2

+ 𝜇
𝑛
𝜙 (
𝑥 − 𝑞

)

+ 𝜉
𝑛

=
(1 − 𝛽) (𝑥 − 𝑞) + 𝛽 (𝑇

𝑛
𝑥 − 𝑞)



2

+
(1 − 𝛽) (𝑥 − 𝐺𝑛𝑥) + 𝛽 (𝑇

𝑛
𝑥 − 𝐺

𝑛
𝑥)


2

+ 𝜇
𝑛
𝜙 (
𝑥 − 𝑞

) + 𝜉𝑛

= (1 − 𝛽)
𝑥 − 𝑞



2

+ 𝛽
𝑇
𝑛
𝑥 − 𝑞



2

− 𝛽 (1 − 𝛽)
𝑥 − 𝑇

𝑛
𝑥


2

+ (1 − 𝛽)
𝑥 − 𝐺𝑛𝑥



2

+ 𝛽
𝑇
𝑛
𝑥 − 𝐺

𝑛
𝑥


2

− 𝛽 (1 − 𝛽)
𝑥 − 𝑇

𝑛
𝑥


2

+ 𝜇
𝑛
𝜙 (
𝑥 − 𝑞

) + 𝜉𝑛

≤
𝑥 − 𝑞



2

+ 𝛽 [
𝑥 − 𝑇

𝑛
𝑥


2

+ 𝜇
𝑛
𝜙 (
𝑥 − 𝑞

) + 𝜉𝑛]

− 𝛽 (1 − 𝛽)
𝑥 − 𝑇

𝑛
𝑥


2

+ (1 − 𝛽)
𝑥 − 𝐺𝑛𝑥



2

+ 𝐿
2
𝛽
3 𝑥 − 𝑇

𝑛
𝑥


2

− 𝛽 (1 − 𝛽)
𝑥 − 𝑇

𝑛
𝑥


2

+ 𝜇
𝑛
𝜙 (
𝑥 − 𝑞

) + 𝜉𝑛

=
𝑥 − 𝑞



2

+ (1 − 𝛽)
𝐺𝑛𝑥 − 𝑥



2

+ (1 + 𝛽) 𝜇
𝑛
𝜙 (
𝑥 − 𝑞

) + (1 + 𝛽) 𝜉𝑛

− 𝛽 (1 − 2𝛽 − 𝐿
2
𝛽
2
)
𝑥 − 𝑇

𝑛
𝑥


2

≤
𝑥 − 𝑞



2

+ (1 − 𝛽)
𝐺𝑛𝑥 − 𝑥



2

+ (1 + 𝛽) 𝜇
𝑛
𝜙 (
𝑥 − 𝑞

) + (1 + 𝛽) 𝜉𝑛.

(20)

It follows from (20) that

⟨𝑥 − 𝐺
𝑛
𝑥, 𝑥 − 𝑞⟩ ≥

𝛽

2

𝑥 − 𝐺𝑛𝑥


2

− (1 + 𝛽)
𝜇
𝑛

2
𝜙 (
𝑥 − 𝑞

)

− (1 + 𝛽)
𝜉
𝑛

2
,

⟨𝑥 − 𝐺
𝑛
𝑥, 𝑞 − 𝐺

𝑛
𝑥⟩ ≤

2 − 𝛽

2

𝑥 − 𝐺𝑛𝑥


2

+ (1 + 𝛽)
𝜇
𝑛

2
𝜙 (
𝑥 − 𝑞

)

+ (1 + 𝛽)
𝜉
𝑛

2
.

(21)
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Proposition 9. Let 𝐻 be a real Hilbert space, and let 𝐶 be a
nonempty closed convex subset of𝐻. Let 𝑇 : 𝐶 → 𝐶 be a uni-
formly 𝐿-Lipschitzian ({𝜇

𝑛
}
∞

𝑛=1
, {𝜉
𝑛
}
∞

𝑛=1
, 𝜙)-total asymptotically

pseudocontractive mapping with lim
𝑛→∞

𝜇
𝑛
= 0, lim

𝑛→∞
𝜉
𝑛
=

0. Then

(i) (𝐼 − 𝑇) is demiclosed at 0;

(ii) 𝐹(𝑇) = {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥} is closed and convex.

Proof. (i) Let {𝑥
𝑛
}
∞

𝑛=1
be a sequence in 𝐶 which converges

weakly to 𝑝 and {𝑥
𝑛
− 𝑇𝑥
𝑛
}
∞

𝑛=1
converges strongly to 0. We

prove that 𝑝 ∈ 𝐹(𝑇). Since {𝑥
𝑛
}
∞

𝑛=1
converges weakly, it is

bounded. For each 𝑥 ∈ 𝐻, define 𝑓 : 𝐻 → [0,∞) by

𝑓 (𝑥) fl lim sup
𝑛→∞

𝑥𝑛 − 𝑥


2

. (22)

Observe that, for arbitrary but fixed integer𝑚 ≥ 1, we have

𝑥𝑛 − 𝑇
𝑚
𝑥
𝑛

 ≤
𝑥𝑛 − 𝑇𝑥𝑛

 +

𝑇𝑥
𝑛
− 𝑇
2
𝑥
𝑛


+ ⋅ ⋅ ⋅

+

𝑇
𝑚−1

𝑥
𝑛
− 𝑇
𝑚
𝑥
𝑛



≤ 𝑚𝐿
𝑥𝑛 − 𝑇𝑥𝑛

 → 0 as 𝑛 → ∞.

(23)

Set 𝐺
𝑚
𝑥 fl 𝑇

𝑚
((1 − 𝛽)𝑥 + 𝛽𝑇

𝑚
𝑥), where 𝛽 ∈ (0, 1/(1 +

√𝐿2 + 1)).Then we obtain

(1 − 𝛽) 𝑥𝑛 + 𝛽𝑇
𝑚
𝑥
𝑛
− 𝑇
𝑚
𝑥
𝑛



= (1 − 𝛽)
𝑥𝑛 − 𝑇

𝑚
𝑥
𝑛

 → 0 as 𝑛 → ∞,

𝑇
𝑚
𝑥
𝑛
− 𝐺
𝑚
𝑥
𝑛

 ≤ 𝐿𝛽
𝑥𝑛 − 𝑇𝑥𝑛

 → 0

as 𝑛 → ∞.

(24)

Hence

(1 − 𝛽) 𝑥𝑛 + 𝛽𝑇
𝑚
𝑥
𝑛
− 𝐺
𝑚
𝑥
𝑛



≤
(1 − 𝛽) 𝑥𝑛 + 𝛽𝑇

𝑚
𝑥
𝑛
− 𝑇
𝑚
𝑥
𝑛



+
𝑇
𝑚
𝑥
𝑛
− 𝐺
𝑚
𝑥
𝑛

 → 0 as 𝑛 → ∞.

(25)

Furthermore,

𝑥𝑛 − 𝐺𝑚𝑥𝑛
 ≤

𝑥𝑛 − 𝑇
𝑚
𝑥
𝑛

 +
𝑇
𝑚
𝑥
𝑛
− 𝐺
𝑚
𝑥
𝑛

 → 0

as 𝑛 → ∞.

(26)

Since {‖𝑥
𝑛
− 𝑝‖} is bounded we also obtain

(1 − 𝛽) 𝑥𝑛 + 𝛽𝑇
𝑚
𝑥
𝑛
− ((1 − 𝛽) 𝑝 + 𝛽𝑇

𝑚
𝑝)


≤ (1 + 𝐿)
𝑥𝑛 − 𝑝

 ≤ 𝐷 ∀𝑛 ≥ 1,

(27)

for some𝐷 > 0.

From Lemma 6, we obtain𝑓(𝑥) = lim sup
𝑛→∞

‖𝑥
𝑛
−𝑝‖
2
+

‖𝑝 − 𝑥‖
2, ∀𝑥 ∈ 𝐻. Thus 𝑓(𝑥) = 𝑓(𝑝) + ‖𝑝 − 𝑥‖2, ∀𝑥 ∈ 𝐻, and

hence

𝑓 (𝐺
𝑚
𝑝) = 𝑓 (𝑝) +

𝑝 − 𝐺𝑚𝑝


2

. (28)

Observe that

𝑓 (𝐺
𝑚
𝑝) = lim sup

𝑛→∞

𝑥𝑛 − 𝐺𝑚𝑝


2

= lim sup
𝑛→∞

𝑥𝑛 − 𝐺𝑚𝑥𝑛

+ 𝐺
𝑚
𝑥
𝑛
− 𝐺
𝑚
𝑝


2

= lim sup
𝑛→∞

𝐺𝑚𝑥𝑛 − 𝐺𝑚𝑝


2

= lim sup
𝑛→∞

𝑇
𝑚
((1 − 𝛽) 𝑥

𝑛
+ 𝛽𝑇
𝑚
𝑥
𝑛
) − 𝑇
𝑚
((1 − 𝛽) 𝑝

+ 𝛽𝑇
𝑚
𝑝)


2

≤ lim sup
𝑛→∞

[
(1 − 𝛽) 𝑥𝑛 + 𝛽𝑇

𝑚
𝑥
𝑛

− ((1 − 𝛽) 𝑝 + 𝛽𝑇
𝑚
𝑝)


2

+
(1 − 𝛽) 𝑥𝑛 + 𝛽𝑇

𝑚
𝑥
𝑛

− 𝐺
𝑚
𝑥
𝑛
− ((1 − 𝛽) 𝑝 + 𝛽𝑇

𝑚
𝑝 − 𝐺

𝑚
𝑝)


2

+ 𝜇
𝑚
𝜙 (
(1 − 𝛽) 𝑥𝑛 + 𝛽𝑇

𝑚
𝑥
𝑛
− ((1 − 𝛽) 𝑝 + 𝛽𝑇

𝑚
𝑝)
)

+ 𝜉
𝑚
] ≤ lim sup
𝑛→∞

[
(1 − 𝛽) (𝑥𝑛 − 𝑝)

+ 𝛽 (𝑇
𝑚
𝑥
𝑛
− 𝑇
𝑚
𝑝)


2

+
(1 − 𝛽) (𝑝 − 𝐺𝑚𝑝)

+ 𝛽 (𝑇
𝑚
𝑝 − 𝐺

𝑚
𝑝)


2

+ 𝜇
𝑚
𝜙 (𝐷) + 𝜉

𝑚
] ≤ lim sup
𝑛→∞

[(1

− 𝛽)
𝑥𝑛 − 𝑝



2

+ 𝛽
𝑇
𝑚
𝑥
𝑛
− 𝑇
𝑚
𝑝


2

− 𝛽 (1 − 𝛽)
𝑥𝑛

− 𝑇
𝑚
𝑥
𝑛
− (𝑝 − 𝑇

𝑚
𝑝)


2

+ (1 − 𝛽)
𝑝 − 𝐺𝑚𝑝



2

+ 𝛽
𝑇
𝑚
𝑝 − 𝐺

𝑚
𝑝


2

− 𝛽 (1 − 𝛽)
𝑝 − 𝑇

𝑚
𝑝


2

+ 𝜇
𝑚
𝜙 (𝐷) + 𝜉

𝑚
] ≤ lim sup
𝑛→∞

[(1 − 𝛽)
𝑥𝑛 − 𝑝



2

+ 𝛽 [
𝑥𝑛 − 𝑝



2

+
𝑥𝑛 − 𝑇

𝑚
𝑥
𝑛
− (𝑝 − 𝑇

𝑚
𝑝)


2

+ 𝜇
𝑚
𝜙 (
𝑥𝑛 − 𝑝

) + 𝜉𝑚] − 𝛽 (1 − 𝛽)
𝑥𝑛 − 𝑇

𝑚
𝑥
𝑛

− (𝑝 − 𝑇
𝑚
𝑝)


2

+ (1 − 𝛽)
𝑝 − 𝐺𝑚𝑝



2

+ 𝐿
2
𝛽
3 𝑝

− 𝑇
𝑚
𝑝


2

− 𝛽 (1 − 𝛽)
𝑝 − 𝑇

𝑚
𝑝


2

+ 𝜇
𝑚
𝜙 (𝐷) + 𝜉

𝑚
]

≤ lim sup
𝑛→∞

[
𝑥𝑛 − 𝑝



2

− 𝛽 [1 − 2𝛽 − 𝐿
2
𝛽
2
]
𝑝 − 𝑇

𝑚
𝑝


2

+ (1 − 𝛽)
𝑝 − 𝐺𝑚𝑝



2

+ (1 + 𝛽) 𝜇
𝑚
𝜙 (𝐷) + (1 + 𝛽)

⋅ 𝜉
𝑚
] .

(29)

It follows that

𝑓 (𝑝) +
𝑝 − 𝐺𝑚𝑝



2

≤ 𝑓 (𝑝) + (1 − 𝛽)
𝑝 − 𝐺𝑚𝑝



2

+ (1 + 𝛽) 𝜇
𝑚
𝜙 (𝐷)

+ (1 + 𝛽) 𝜉
𝑚
,

(30)
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and thus

𝑝 − 𝐺𝑚𝑝


2

≤
1

𝛽
[(1 + 𝛽) 𝜇

𝑚
𝜙 (𝐷) + (1 + 𝛽) 𝜉

𝑚
] → 0

as 𝑚 → ∞.

(31)

It follows that

𝑝 − 𝑇
𝑚
𝑝
 ≤

𝑝 − 𝐺𝑚𝑝
 +

𝐺𝑚𝑝 − 𝑇
𝑚
𝑝


≤
𝑝 − 𝐺𝑚𝑝

 + L𝛽 𝑝 − 𝑇
𝑚
𝑝
 ,

(32)

and hence

𝑝 − 𝑇
𝑚
𝑝
 ≤

1

(1 − 𝛽𝐿)

𝑝 − 𝐺𝑚𝑝
 → 0

as 𝑚 → ∞.

(33)

It now follows that 𝑇𝑚𝑝 → 𝑝 as 𝑚 → ∞. Since 𝑇 is
continuous, we have that 𝑇𝑚+1𝑝 → 𝑇𝑝 as 𝑚 → ∞, and
hence 𝑇𝑝 = 𝑝.

(ii) Let {𝑝
𝑛
}
∞

𝑛=1
⊆ 𝐹(𝑇) be such that 𝑝

𝑛
→ 𝑝. We prove

that 𝑝 ∈ 𝐹(𝑇). Consider

𝑝 − 𝑇𝑝
 ≤

𝑝 − 𝑝𝑛
 +

𝑝𝑛 − 𝑇𝑝


=
𝑝 − 𝑝𝑛

 +
𝑇𝑝𝑛 − 𝑇𝑝



≤ (1 + 𝐿)
𝑝𝑛 − 𝑝

 → 0 as 𝑛 → ∞.

(34)

Hence 𝑝 ∈ 𝐹(𝑇), and 𝐹(𝑇) is closed.
Let 𝑝
1
, 𝑝
2
∈ 𝐹(𝑇) and let 𝜆 ∈ [0, 1] be arbitrary. Set 𝑝 fl

𝜆𝑝
1
+ (1 − 𝜆)𝑝

2
. We prove that 𝑝 ∈ 𝐹(𝑇). Observe that ‖𝑝 −

𝑝
1
‖ = (1 − 𝜆)‖𝑝

1
− 𝑝
2
‖ and ‖𝑝 − 𝑝

2
‖ = 𝜆‖𝑝

1
− 𝑝
2
‖. Set

𝐺
𝑛
𝑥 fl 𝑇

𝑛
((1 − 𝛽) 𝑥 + 𝛽𝑇

𝑛
𝑥) , (35)

where 𝛽 ∈ (0, 2/(1+√1 + 4𝐿2)).Then𝐺
𝑛
𝑝
1
= 𝑝
1
, and𝐺

𝑛
𝑝
2
=

𝑝
2
. Observe that

𝑝 − 𝐺𝑛𝑝


2

=
𝜆 (𝑝1 − 𝐺𝑛𝑝) + (1 − 𝜆) (𝑝2 − 𝐺𝑛𝑝)



2

= 𝜆
𝑝1 − 𝐺𝑛𝑝



2

+ (1 − 𝜆)
𝑝2 − 𝐺𝑛𝑝



2

− 𝜆 (1 − 𝜆)
𝑝1 − 𝑝2



2

.

(36)

Observe that

𝐺𝑛𝑝 − 𝑝1


2

=
𝑇
𝑛
((1 − 𝛽) 𝑝 + 𝛽𝑇

𝑛
𝑝) − 𝑝

1



2

=
𝑇
𝑛
((1 − 𝛽) 𝑝 + 𝛽𝑇

𝑛
𝑝)

− 𝑇
𝑛
((1 − 𝛽) 𝑝

1
+ 𝛽𝑇
𝑛
𝑝
1
)


2

≤
(1 − 𝛽) (𝑝 − 𝑝1)

+ 𝛽 (𝑇
𝑛
𝑝 − 𝑇

𝑛
𝑝
1
)


2

+
(1 − 𝛽) 𝑝 + 𝛽𝑇

𝑛
𝑝 − 𝐺

𝑛
𝑝

− ((1 − 𝛽) 𝑝
1
+ 𝛽𝑇
𝑛
𝑝
1
− 𝐺
𝑛
𝑝
1
)


2

+ 𝜇
𝑛
𝜙 (
(1 − 𝛽) (𝑝 − 𝑝1) + 𝛽 (𝑇

𝑛
𝑝 − 𝑇

𝑛
𝑝
1
)
) + 𝜉𝑛

= (1 − 𝛽)
𝑝 − 𝑝1



2

+ 𝛽
𝑇
𝑛
𝑝 − 𝑇

𝑛
𝑝
1



2

− 𝛽 (1

− 𝛽)
𝑝 − 𝑇

𝑛
𝑝


2

+
(1 − 𝛽) (𝑝 − 𝐺𝑛𝑝)

+ 𝛽 (𝑇
𝑛
𝑝 − 𝐺

𝑛
𝑝)


2

+ 𝜇
𝑛
𝜙 ([1 − 𝛽 + 𝛽𝐿]

𝑝 − 𝑝1
)

+ 𝜉
𝑛
≤ (1 − 𝛽)

𝑝 − 𝑝1


2

+ 𝛽
𝑝 − 𝑝1



2

+ 𝛽
𝑝

− 𝑇
𝑛
𝑝


2

+ 𝛽𝜇
𝑛
𝜙 (
𝑝 − 𝑝1

) + 𝛽𝜉𝑛 − 𝛽 (1 − 𝛽)
𝑝

− 𝑇
𝑛
𝑝


2

+ (1 − 𝛽)
𝑝 − 𝐺𝑛𝑝



2

+ 𝛽
𝑇
𝑛
𝑝 − 𝐺

𝑛
𝑝


2

− 𝛽 (1 − 𝛽)
𝑝 − 𝑇

𝑛
𝑝


2

+ 𝜇
𝑛
𝜙 ([1 − 𝛽 + 𝛽𝐿]

𝑝 − 𝑝1
) + 𝜉𝑛 ≤

𝑝 − 𝑝1


2

+ (1 − 𝛽)
𝑝 − 𝐺𝑛𝑝



2

− 𝛽 [1 − 2𝛽 − 𝛽
2
𝐿
2
]
𝑝

− 𝑇
𝑛
𝑝


2

+ 𝜇
𝑛
[𝜙 ([1 − 𝛽 + 𝛽𝐿]

𝑝 − 𝑝1
)

+ 𝛽𝜙 (
𝑝 − 𝑝1

)] + (1 + 𝛽) 𝜉𝑛 =
𝑝 − 𝑝1



2

+ (1

− 𝛽)
𝑝 − 𝐺𝑛𝑝



2

− 𝛽 [1 − 2𝛽 − 𝛽
2
𝐿
2
]
𝑝 − 𝑇

𝑛
𝑝


2

+ 𝜎
𝑛
,

(37)

where𝜎
𝑛
= 𝜇
𝑛
[𝜙([1−𝛽+𝛽𝐿]‖𝑝−𝑝

1
‖)+𝛽𝜙(‖𝑝−𝑝

1
‖)]+(1+𝛽)𝜉

𝑛
.

Similarly,

𝐺𝑛𝑝 − 𝑝2


2

≤
𝑝 − 𝑝2



2

+ (1 − 𝛽)
𝑝 − 𝐺𝑛𝑝



2

− 𝛽 [1 − 2𝛽 − 𝛽
2
𝐿
2
]
𝑝 − 𝑇

𝑛
𝑝


2

+ 𝜎
𝑛
.

(38)

Thus

𝑝 − 𝐺𝑛𝑝


2

≤ 𝜆
𝑝 − 𝑝1



2

+ 𝜆 (1 − 𝛽)
𝑝 − 𝐺𝑛𝑝



2

− 𝜆𝛽 [1 − 2𝛽 − 𝛽
2
𝐿
2
]
𝑝 − 𝑇

𝑛
𝑝


2

+ 𝜆𝜎
𝑛

+ (1 − 𝜆)
𝑝 − 𝑝2



2

+ (1 − 𝜆) (1 − 𝛽)
𝑝 − 𝐺𝑛𝑝



2
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− (1 − 𝜆) 𝛽 [1 − 2𝛽 − 𝛽
2
𝐿
2
]
𝑝 − 𝑇

𝑛
𝑝


2

+ (1 − 𝜆) 𝜎
𝑛
− 𝜆 (1 − 𝜆)

𝑝1 − 𝑝2


2

,

(39)

and it follows that

𝛽
𝑝 − 𝐺𝑛𝑝



2

≤ 𝜎
𝑛
→ 0 as 𝑛 → ∞. (40)

Hence 𝐺
𝑛
𝑝 → 𝑝 as 𝑛 → ∞. Observe that

𝑝 − 𝑇
𝑛
𝑝


2

≤
𝑝 − 𝐺𝑛𝑝

 +
𝐺𝑛𝑝 − 𝑇

𝑛
𝑝


≤
𝑝 − 𝐺𝑛𝑝

 + 𝐿𝛽
𝑝 − 𝑇

𝑛
𝑝
 .

(41)

Thus

(1 − 𝐿𝛽)
𝑝 − 𝑇

𝑛
𝑝
 ≤

𝑝 − 𝐺𝑛𝑝
 → 0

as 𝑛 → ∞,

(42)

and hence 𝑇𝑛𝑝 → 𝑝 as 𝑛 → ∞. Since 𝑇 is continuous we
have

𝑇
𝑛+1

𝑝 → 𝑇𝑝 as 𝑛 → ∞. (43)

Thus 𝑇𝑝 = 𝑝.

We now introduce our algorithm and prove weak and
strong convergence theorems for solving the split common
fixed point problem for a class of total asymptotically pseu-
docontractive mappings in real Hilbert spaces.

Let 𝐻
1
and 𝐻

2
be two real Hilbert spaces, 𝐴 : 𝐻

1
→

𝐻
2
a bounded linear operator, 𝑆 : 𝐻

1
→ 𝐻

1
a uniformly

𝐿
1
-Lipschitzian ({𝜇

1

𝑛
}, {𝜉
1

𝑛
}, 𝜙
1
)-total asymptotically pseudo-

contractive mapping, with 𝐾 fl 𝐹(𝑆) ̸= 0, and 𝑇 :

𝐻
2

→ 𝐻
2
a uniformly 𝐿

2
-Lipschitzian ({𝜇

2

𝑛
}, {𝜉
2

𝑛
}, 𝜙
2
)-

total asymptotically pseudocontractive mapping, with 𝑄 fl
𝐹(𝑇) ̸= 0.We now introduce the following iterative algorithm
for approximating solutions of split common fixed point
problem: 𝑥 ∈ 𝐻

1
such that 𝑥 ∈ 𝐹(𝑆) and 𝐴𝑥 ∈ 𝐹(𝑇) (i.e.,

𝑥 ∈ Γ = {𝑥 ∈ 𝐻
1
: 𝑥 ∈ 𝐹(𝑆) and 𝐴𝑥 ∈ 𝐹(𝑇)}.

For arbitrary 𝑥
1
∈ 𝐻
1
, the sequence {𝑥

𝑛
}
∞

𝑛=1
is given by

𝑢
𝑛
= 𝑥
𝑛
+ 𝛾𝐴
∗
[𝑇
𝑛
((1 − 𝛽) 𝐼 + 𝛽𝑇

𝑛
) − 𝐼]𝐴𝑥

𝑛
,

𝑛 ≥ 1,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑢
𝑛
+ 𝛽
𝑛
𝑆
𝑛
𝑢
𝑛
, 𝑛 ≥ 1,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑢
𝑛
+ 𝛼
𝑛
𝑆
𝑛
𝑦
𝑛
, 𝑛 ≥ 1,

(44)

where {𝛼
𝑛
} and {𝛽

𝑛
} are suitable sequences in (0, 1) and 𝛽 is a

suitable parameter in (0, 1). We prove the following.

Theorem 10. Let 𝐻
1
and 𝐻

2
be two real Hilbert spaces, 𝐴 :

𝐻
1
→ 𝐻

2
a bounded linear operator, 𝑆 : 𝐻

1
→ 𝐻

1
a

uniformly 𝐿
1
-Lipschitzian ({𝜇

(1)

𝑛
}, {𝜉
(1)

𝑛
}, 𝜙
1
)-total asymptoti-

cally pseudocontractive mapping, with 𝐾 fl 𝐹(𝑆) ̸= 0, and
𝑇 : 𝐻

2
→ 𝐻
2
a uniformly 𝐿

2
-Lipschitzian ({𝜇(2)

𝑛
}, {𝜉
(2)

𝑛
}, 𝜙
2
)-

total asymptotically pseudocontractive mapping, with 𝑄 fl

𝐹(𝑇) ̸= 0; let 𝜇
𝑛
= max{𝜇(1)

𝑛
, 𝜇
(2)

𝑛
}, 𝜉
𝑛
= max{𝜉(1)

𝑛
, 𝜉
(2)

𝑛
},

𝐿 = max{𝐿
1
, 𝐿
2
}, and 𝜙(𝑡) = max{𝜙

1
(𝑡), 𝜙
2
(𝑡)} such that

there exist two positive real constants 𝑀 and 𝑀
∗ such that

𝜙(𝑡) ≤ 𝑀
∗
𝑡
2, ∀𝑡 ≥ 𝑀. Let ∑∞

𝑛=1
𝜇
𝑛
< ∞ and ∑∞

𝑛=1
𝜉
𝑛
< ∞;

let {𝛼
𝑛
} and {𝛽

𝑛
} be sequences of real numbers satisfying the

condition:

0 < 𝛿 ≤ 𝛼
𝑛
≤ 𝛽
𝑛
≤ 𝛽

<
2

(2 + 𝜇𝑀∗) + √4𝐿2 + (2 + 𝜇𝑀∗)
2

,
(45)

where 𝜇 = sup
𝑛≥1

𝜇
𝑛
and 𝛾 ∈ (0, 𝛽/‖𝐴‖

2
). Let Γ = {𝑥 ∈ 𝐻

1
:

𝑥 ∈ 𝐹(𝑆) 𝑎𝑛𝑑 𝐴𝑥 ∈ 𝐹(𝑇)} ̸= 0. Then for arbitrary 𝑥
1
∈ 𝐻
1
,

the sequence {𝑥
𝑛
} generated from 𝑥

1
by (44) converges weakly

to a point in Γ.
If in addition 𝑆 is semicompact, then {𝑥

𝑛
} and {𝑢

𝑛
} converge

strongly to a point in Γ.

Proof. We will divide the proof into four steps.

Step 1. We prove that, for each 𝑝 ∈ Γ, the following limits exist
and

lim
𝑛→∞

𝑥𝑛 − 𝑝
 = lim
𝑛→∞

𝑢𝑛 − 𝑝
 . (46)

Since 𝜙 is a continuous and an increasing function, it follows
that 𝜙(𝜆) ≤ 𝜙(𝑀) ∀𝜆 ≤ 𝑀, and by hypothesis 𝜙(𝜆) ≤

𝑀
∗
𝜆
2
∀𝜆 ≥ 𝑀. In either case, we can obtain that

𝜙 (𝜆) ≤ 𝜙 (𝑀) +𝑀
∗
𝜆
2
, ∀𝜆 ≥ 0. (47)

Let𝐺
𝑛
𝑢
𝑛
= 𝑆
𝑛
((1−𝛽

𝑛
)𝑢
𝑛
+𝛽
𝑛
𝑆
𝑛
𝑢
𝑛
), 𝑛 ≥ 1.Then, for arbitrary

𝑝 ∈ 𝐹(𝑆), we obtain

𝐺𝑛𝑢𝑛 − 𝑝


2

=
𝑆
𝑛
((1 − 𝛽

𝑛
) 𝑢
𝑛
+ 𝛽
𝑛
𝑆
𝑛
𝑢
𝑛
) − 𝑆
𝑛
𝑝


2

≤
(1 − 𝛽𝑛) 𝑢𝑛 + 𝛽𝑛𝑆

𝑛
𝑢
𝑛
− 𝑝



2

+
(1 − 𝛽𝑛) 𝑢𝑛

+ 𝛽
𝑛
𝑆
𝑛
𝑢
𝑛
− 𝐺
𝑛
𝑢
𝑛



2

+ 𝜇
𝑛
𝜙 (
(1 − 𝛽𝑛) 𝑢𝑛 + 𝛽𝑛𝑆

𝑛
𝑢
𝑛

− 𝑝
) + 𝜉𝑛 ≤

(1 − 𝛽𝑛) (𝑢𝑛 − 𝑝) + 𝛽𝑛 (𝑆
𝑛
𝑢
𝑛
− 𝑝)



2

+
(1 − 𝛽𝑛) (𝑢𝑛 − 𝐺𝑛𝑢𝑛) + 𝛽𝑛 (𝑆

𝑛
𝑢
𝑛
− 𝐺
𝑛
𝑢
𝑛
)


2

+ 𝜇
𝑛
[𝜙 (𝑀) +𝑀

∗ (1 − 𝛽𝑛) (𝑢𝑛 − 𝑝)

+ 𝛽
𝑛
(𝑆
𝑛
𝑢
𝑛
− 𝑝)



2

] + 𝜉
𝑛
= (1 − 𝛽

𝑛
)
𝑢𝑛 − 𝑝



2

+ 𝛽
𝑛

𝑆
𝑛
𝑢
𝑛
− 𝑝



2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛



2

+ (1

− 𝛽
𝑛
)
𝑢𝑛 − 𝐺𝑛𝑢𝑛



2

+ 𝛽
𝑛

𝑆
𝑛
𝑢
𝑛
− 𝐺
𝑛
𝑢
𝑛



2

− 𝛽
𝑛
(1

− 𝛽
𝑛
)
𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛



2

+ 𝜇
𝑛
𝜙 (𝑀) + 𝜇

𝑛
𝑀
∗
[(1 − 𝛽

𝑛
)
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⋅
𝑢𝑛 − 𝑝



2

+ 𝛽
𝑛

𝑆
𝑛
𝑢
𝑛
− 𝑝



2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑢𝑛

− 𝑆
𝑛
𝑢
𝑛



2

] + 𝜉
𝑛
≤ (1 − 𝛽

𝑛
)
𝑢𝑛 − 𝑝



2

+ 𝛽
𝑛
[
𝑢𝑛

− 𝑝


2

+
𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛



2

+ 𝜇
𝑛
𝜙 (𝑀) + 𝜇

𝑛
𝑀
∗ 𝑢𝑛

− 𝑝


2

+ 𝜉
𝑛
] − 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛



2

+ (1 − 𝛽
𝑛
)

⋅
𝑢𝑛 − 𝐺𝑛𝑢𝑛



2

+ 𝛽
3

𝑛
𝐿
2 𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛



2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)

⋅
𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛



2

+ 𝜇
𝑛
𝜙 (𝑀) + 𝜇

𝑛
𝑀
∗
[(1 − 𝛽

𝑛
)
𝑢𝑛

− 𝑝


2

+ 𝛽
𝑛
(
𝑢𝑛 − 𝑝



2

+
𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛



2

+ 𝜇
𝑛
𝜙 (𝑀)

+ 𝜇
𝑛
𝑀
∗ 𝑢𝑛 − 𝑝



2

+ 𝜉
𝑛
) − 𝛽
𝑛
(1 − 𝛽

𝑛
)
𝑢𝑛

− 𝑆
𝑛
𝑢
𝑛



2

] + 𝜉
𝑛
= [1 + 𝜇

𝑛
𝑀
∗
(1

+ 𝛽
𝑛
(1 + 𝜇

𝑛
𝑀
∗
))]

𝑢𝑛 − 𝑝


2

+ (1 − 𝛽
𝑛
)
𝑢𝑛

− 𝐺
𝑛
𝑢
𝑛



2

− 𝛽
𝑛
[1 − 𝛽

𝑛
(2 + 𝜇𝑀

∗
) − 𝛽
2

𝑛
𝐿
2
]
𝑢𝑛

− 𝑆
𝑛
𝑢
𝑛



2

+ (1 + 𝛽
𝑛
(1 + 𝜇

𝑛
𝑀
∗
)) 𝜉
𝑛
+ (1 + 𝛽

𝑛
(1

+ 𝜇
𝑛
𝑀
∗
)) 𝜇
𝑛
𝜙 (𝑀) = [1 + 𝛿

𝑛
]
𝑢𝑛 − 𝑝



2

+ (1

− 𝛽
𝑛
)
𝑢𝑛 − 𝐺𝑛𝑢𝑛



2

− 𝛽
𝑛
[1 − 𝛽

𝑛
(2 + 𝜇𝑀

∗
)

− 𝛽
2

𝑛
𝐿
2
]
𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛



2

+ 𝜎
𝑛
,

(48)

where 𝛿
𝑛
= 𝜇
𝑛
𝑀
∗
(1 + 𝛽

𝑛
(1 + 𝜇

𝑛
𝑀
∗
)) and

𝜎
𝑛
= (1 + 𝛽

𝑛
(1 + 𝜇

𝑛
𝑀
∗
)) 𝜉
𝑛

+ (1 + 𝛽
𝑛
(1 + 𝜇

𝑛
𝑀
∗
)) 𝜇
𝑛
𝜙 (𝑀)

= [1 + 𝛽
𝑛
(1 + 𝜇

𝑛
𝑀
∗
)] [𝜉
𝑛
+ 𝜇
𝑛
𝜙 (𝑀)] .

(49)

Observe that

𝑥𝑛+1 − 𝑝


2

=
(1 − 𝛼𝑛) 𝑢𝑛 + 𝛼𝑛𝑆

𝑛
𝑦
𝑛
− 𝑝



2

=
(1 − 𝛼𝑛) 𝑢𝑛 + 𝛼𝑛𝐺𝑛𝑢𝑛 − 𝑝



2

= (1 − 𝛼
𝑛
)
𝑢𝑛 − 𝑝



2

+ 𝛼
𝑛

𝐺𝑛𝑢𝑛 − 𝑝


2

− 𝛼
𝑛
(1 − 𝛼

𝑛
)
𝑢𝑛 − 𝐺𝑛𝑢𝑛



2

.

(50)

Using (48) in (50) we obtain

𝑥𝑛+1 − 𝑝


2

≤ (1 − 𝛼
𝑛
)
𝑢𝑛 − 𝑝



2

+ 𝛼
𝑛
[(1 + 𝛿

𝑛
)
𝑢𝑛 − 𝑝



2

+ (1 − 𝛽
𝑛
)
𝑢𝑛 − 𝐺𝑛𝑢𝑛



2

− 𝛽
𝑛
(1 − 𝛽

𝑛
(2 + 𝜇

𝑛
𝑀
∗
) − 𝛽
2

𝑛
𝐿
2
)
𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛



2

+ 𝜎
𝑛
] − 𝛼
𝑛
(1 − 𝛼

𝑛
)
𝑢𝑛 − 𝐺𝑛𝑢𝑛



2

≤ [1 + 𝛼
𝑛
𝛿
𝑛
]
𝑢𝑛

− 𝑝


2

− 𝛼
𝑛
(𝛽
𝑛
− 𝛼
𝑛
)
𝑢𝑛 − 𝐺𝑛𝑢𝑛



2

− 𝛼
𝑛
𝛽
𝑛
[1

− 𝛽
𝑛
(2 + 𝜇𝑀

∗
) − 𝛽
2

𝑛
𝐿
2
]
𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛



2

+ 𝛼
𝑛
𝜎
𝑛
.

(51)

Observe also that if we let 𝐹
𝑛
= 𝑇
𝑛
((1 − 𝛽)𝐼 + 𝛽𝑇

𝑛
), then,

𝑢𝑛 − 𝑝


2

=
𝑥𝑛 + 𝛾𝐴

∗
[𝑇
𝑛
((1 − 𝛽) 𝐼 + 𝛽𝑇

𝑛
) − 𝐼]𝐴𝑥

𝑛
− 𝑝



2

=
𝑥𝑛 − 𝑝 + 𝛾𝐴

∗
(𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛



2

=
𝑥𝑛 − 𝑝



2

+ 𝛾
2 𝐴
∗
(𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛



2

+ 2𝛾 ⟨𝑥
𝑛
− 𝑝, 𝐴

∗
(𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛
⟩ .

(52)

But

𝛾
2 𝐴
∗
(𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛



2

= 𝛾
2
⟨𝐴
∗
(𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛
, 𝐴
∗
(𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛
⟩

= 𝛾
2
⟨𝐴𝐴
∗
(𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛
, (𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛
⟩

≤ 𝛾
2
‖𝐴‖
2 (𝐹𝑛 − 𝐼)𝐴𝑥𝑛



2

.

(53)

Furthermore,

2𝛾 ⟨𝑥
𝑛
− 𝑝,𝐴

∗
(𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛
⟩ = 2𝛾 ⟨𝐴𝑥

𝑛

− 𝐴𝑝, (𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛
⟩ = 2𝛾 ⟨(𝐴𝑥

𝑛
− 𝐴𝑝)

+ (𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛
− (𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛
, (𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛
⟩

= 2𝛾 {⟨𝐹
𝑛
𝐴𝑥
𝑛
− 𝐴𝑝, 𝐹

𝑛
𝐴𝑥
𝑛
− 𝐴𝑥
𝑛
⟩

−
(𝐹𝑛 − 𝐼)𝐴𝑥𝑛



2

} .

(54)

Since𝐴𝑝 ∈ 𝐹(𝑇), we set 𝑥 = 𝐴𝑥
𝑛
and 𝑞 = 𝐴𝑝 in (19) to obtain

⟨𝐹
𝑛
𝐴𝑥
𝑛
− 𝐴𝑝, 𝐹

𝑛
𝐴𝑥
𝑛
− 𝐴𝑥
𝑛
⟩ −

(𝐹𝑛 − 𝐼)𝐴𝑥𝑛


2

≤ (
2 − 𝛽

2
)
(𝐹𝑛 − 𝐼)𝐴𝑥𝑛



2

+
1 + 𝛽

2
𝜇
𝑛
𝜙 (
𝐴𝑥𝑛 − 𝐴𝑝

) +
1 + 𝛽

2
𝜉
𝑛

−
(𝐹𝑛 − 𝐼)𝐴𝑥𝑛



2

≤ −(
𝛽

2
)
𝐹𝑛𝐴𝑥𝑛 − 𝐴𝑥𝑛



2

+ (
1 + 𝛽

2
)𝜇
𝑛
𝜙 (
𝐴𝑥𝑛 − 𝐴𝑝

) + (
1 + 𝛽

2
) 𝜉
𝑛



8 Journal of Applied Mathematics

≤ −(
𝛽

2
)
𝐹𝑛𝐴𝑥𝑛 − 𝐴𝑥𝑛



2

+ (
1 + 𝛽

2
)𝜇
𝑛
(𝑀
∗
‖𝐴‖
2 𝑥𝑛 − 𝑝



2

+ 𝜙 (𝑀))

+ (
1 + 𝛽

2
) 𝜉
𝑛
.

(55)

Substituting (55) into (54) yields

2𝛾 ⟨𝑥
𝑛
− 𝑝, 𝐴

∗
(𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛
⟩

≤ 2𝛾 [
−𝛽

2

𝐹𝑛𝐴𝑥𝑛 − 𝐴𝑥𝑛


2

+
(1 + 𝛽)

2
𝜇
𝑛
𝑀
∗
‖𝐴‖
2 𝑥𝑛 − 𝑝



2

+
(1 + 𝛽)

2
𝜇
𝑛
𝜙 (𝑀) +

(1 + 𝛽)

2
𝜉
𝑛
] ;

(56)

and it follows from (52) that

𝑢𝑛 − 𝑝


2

≤
𝑥𝑛 − 𝑝



2

+ 𝛾
2
‖𝐴‖
2 𝐹𝑛𝐴𝑥𝑛 − 𝐴𝑥𝑛



2

− 𝛾𝛽
𝐹𝑛𝐴𝑥𝑛 − 𝐴𝑥𝑛



2

+ (1 + 𝛽) 𝛾𝜇
𝑛
(𝑀
∗
‖𝐴‖
2 𝑥𝑛 − 𝑝



2

+ 𝜙 (𝑀))

+ (1 + 𝛽) 𝛾𝜉
𝑛

= [1 + (1 + 𝛽) 𝛾𝜇
𝑛
𝑀
∗
‖𝐴‖
2
]
𝑥𝑛 − 𝑝



2

− 𝛾 (𝛽 − 𝛾 ‖𝐴‖
2
)
𝐹𝑛𝐴𝑥𝑛 − 𝐴𝑥𝑛



2

+ (1 + 𝛽) 𝛾𝜇
𝑛
𝜙 (𝑀) + (1 + 𝛽) 𝛾𝜉

𝑛

= [1 + 𝜔
𝑛
]
𝑥𝑛 − 𝑝



2

− 𝛾 (𝛽 − 𝛾 ‖𝐴‖
2
)
𝐹𝑛𝐴𝑥𝑛 − 𝐴𝑥𝑛



2

+ ]
𝑛
,

(57)

where 𝜔
𝑛
= (1 + 𝛽)𝛾𝜇

𝑛
𝑀
∗
‖𝐴‖
2 and ]

𝑛
= (1 + 𝛽)𝛾𝜇

𝑛
𝜙(𝑀) +

(1 + 𝛽)𝛾𝜉
𝑛
.

Substituting (57) in (51) we obtain

𝑥𝑛+1 − 𝑝


2

≤ (1 + 𝛼
𝑛
𝛿
𝑛
) [(1 + 𝜔

𝑛
)
𝑥𝑛 − 𝑝



2

− 𝛾 (𝛽 − 𝛾 ‖𝐴‖
2
)
𝐹𝑛𝐴𝑥𝑛 − 𝐴𝑥𝑛



2

+ ]
𝑛
] − 𝛼
𝑛
(𝛽
𝑛

− 𝛼
𝑛
)
𝑢𝑛 − 𝐺𝑛𝑢𝑛



2

− 𝛼
𝑛
𝛽
𝑛
[1 − 𝛽

𝑛
(2 + 𝜇𝑀

∗
)

− 𝛽
2

𝑛
𝐿
2
]
𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛



2

+ 𝛼
𝑛
𝜎
𝑛
≤ [1 + 𝜔

𝑛

+ (1 + 𝜔
𝑛
) 𝛼
𝑛
𝛿
𝑛
]
𝑥𝑛 − 𝑝



2

− 𝛾 (𝛽 − 𝛾 ‖𝐴‖
2
)

⋅
𝐹𝑛𝐴𝑥𝑛 − 𝐴𝑥𝑛



2

+ (1 + 𝛼
𝑛
𝛿
𝑛
) 𝛼
𝑛
]
𝑛
− 𝛼
𝑛
(𝛽
𝑛

− 𝛼
𝑛
)
𝑢𝑛 − 𝐺𝑛𝑢𝑛



2

− 𝛼
𝑛
𝛽
𝑛
[1 − 𝛽

𝑛
(2 + 𝜇𝑀

∗
)

− 𝛽
2

𝑛
𝐿
2
]
𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛



2

+ 𝛼
𝑛
𝜎
𝑛
= [1 + 𝜃

𝑛
]
𝑥𝑛 − 𝑝



2

− 𝛾 (𝛽 − 𝛾 ‖𝐴‖
2
)
𝐹𝑛𝐴𝑥𝑛 − 𝐴𝑥𝑛



2

− 𝛼
𝑛
(𝛽
𝑛
− 𝛼
𝑛
)

⋅
𝑢𝑛 − 𝐺𝑛𝑢𝑛



2

− 𝛼
𝑛
𝛽
𝑛
[1 − 𝛽

𝑛
(2 + 𝜇𝑀

∗
) − 𝛽
2

𝑛
𝐿
2
]

⋅
𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛



2

+ 𝜂
𝑛
,

(58)

where 𝜃
𝑛
= 𝜔
𝑛
+ (1 + 𝜔

𝑛
)𝛼
𝑛
𝛿
𝑛
and 𝜂
𝑛
= ]
𝑛
+ 𝛼
𝑛
(𝛿
𝑛
]
𝑛
+ 𝜎
𝑛
).

It follows from (58) and condition (45) that

𝑥𝑛+1 − 𝑝


2

≤ [1 + 𝜃
𝑛
]
𝑥𝑛 − 𝑝



2

+ 𝜂
𝑛
. (59)

The conditions ∑∞
𝑛=1

𝜇
𝑛
< ∞ and ∑∞

𝑛=1
𝜉
𝑛
< ∞ imply that

∑
∞

𝑛=1
𝜃
𝑛
< ∞ and∑∞

𝑛=1
𝜂
𝑛
< ∞. It now follows from Lemma 7

that lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖ exists. It now follows from (58) that

lim
𝑛→∞

𝑢𝑛 − 𝑆
𝑛
𝑢
𝑛

 = 0; (60)

lim
𝑛→∞

𝐹𝑛𝐴𝑥𝑛 − 𝐴𝑥𝑛
 = 0. (61)

Consequently,

𝑇
𝑛
𝐴𝑥
𝑛
− 𝐴𝑥
𝑛

 =
(𝑇
𝑛
− 𝐼)𝐴𝑥

𝑛



=
𝑇
𝑛
𝐴𝑥
𝑛
− 𝐹
𝑛
𝐴𝑥
𝑛
+ 𝐹
𝑛
𝐴x
𝑛
− 𝐴𝑥
𝑛



≤
𝑇
𝑛
𝐴𝑥
𝑛
− 𝐹
𝑛
𝐴𝑥
𝑛



+
𝐹𝑛𝐴𝑥𝑛 − 𝐴𝑥𝑛



≤ 𝐿𝛽
𝑇
𝑛
𝐴𝑥
𝑛
− 𝐴𝑥
𝑛



+
𝐹𝑛𝐴𝑥𝑛 − 𝐴𝑥𝑛

 .

(62)

Hence

𝑇
𝑛
𝐴𝑥
𝑛
− 𝐴𝑥
𝑛

 ≤
1

1 − 𝐿𝛽

𝐹𝑛𝐴𝑥𝑛 − 𝐴𝑥𝑛
 → 0

as 𝑛 → ∞.

(63)

This together with (61) implies that

lim
𝑛→∞

𝑇
𝑛
𝐴𝑥
𝑛
− 𝐴𝑥
𝑛

 = 0. (64)

Since lim
𝑛→∞

‖𝑥
𝑛
−𝑝‖ exists, it follows from (52) and (64) that

lim
𝑛→∞

‖𝑢
𝑛
− 𝑝‖ exists and

lim
𝑛→∞

𝑢𝑛 − 𝑝
 = lim
𝑛→∞

𝑥𝑛 − 𝑝
 . (65)

Step 2. We prove that

lim
𝑛→∞

𝑥𝑛+1 − 𝑥𝑛
 = 0,

lim
𝑛→∞

𝑢𝑛+1 − 𝑢𝑛
 = 0.

(66)
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From (44) we obtain
𝑥𝑛+1 − 𝑥𝑛

 =
(1 − 𝛼𝑛) 𝑢𝑛 + 𝛼𝑛𝑆

𝑛
𝑦
𝑛
− 𝑥
𝑛



=
(1 − 𝛼𝑛) 𝑢𝑛 + 𝛼𝑛𝐺𝑛𝑢𝑛 − 𝑥𝑛

 =
(1 − 𝛼𝑛)

⋅ (𝑥
𝑛
+ 𝛾𝐴
∗
[𝑇
𝑛
((1 − 𝛽) 𝐼 + 𝛽𝑇

𝑛
) − 𝐼]𝐴𝑥

𝑛
)

+ 𝛼
𝑛
𝐺
𝑛
𝑢
𝑛
− 𝑥
𝑛

 =
(1 − 𝛼𝑛)

⋅ (𝑥
𝑛
+ 𝛾𝐴
∗
(𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛
) + 𝛼
𝑛
𝐺
𝑛
𝑢
𝑛
− 𝑥
𝑛



=
(1 − 𝛼𝑛) (𝛾𝐴

∗
(𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛
) + 𝛼
𝑛
(𝐺
𝑛
𝑢
𝑛
− 𝑢
𝑛
)

+ 𝛼
𝑛
(𝑢
𝑛
− 𝑥
𝑛
)
 =

(1 − 𝛼𝑛) (𝛾𝐴
∗
(𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛
)

+ 𝛼
𝑛
(𝐺
𝑛
𝑢
𝑛
− 𝑢
𝑛
)

+ 𝛼
𝑛
(𝑥
𝑛
+ 𝛾𝐴
∗
(𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛
− 𝑥
𝑛
)


=
𝛾𝐴
∗
(𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛
+ 𝛼
𝑛
(𝐺
𝑛
𝑢
𝑛
− 𝑢
𝑛
)


≤
𝛾𝐴
∗
(𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛

 + 𝛼𝑛
𝐺𝑛𝑢𝑛 − 𝑢𝑛

 .

(67)

Observe that
𝑢𝑛 − 𝐺𝑛𝑢𝑛

 ≤
𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛

 +
𝑆
𝑛
𝑢
𝑛
− 𝐺
𝑛
𝑢
𝑛



≤
𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛

 + 𝐿𝛽𝑛
𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛



= (1 + 𝐿𝛽
𝑛
)
𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛

 .

(68)

Using (68) in (67) we obtain
𝑥𝑛+1 − 𝑥𝑛

 ≤
𝛾𝐴
∗
(𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛



+ 𝛼
𝑛
(1 + 𝐿𝛽

𝑛
)
𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛

 ,

(69)

and it follows from (60) and (61) that

lim
𝑛→∞

𝑥𝑛+1 − 𝑥𝑛
 = 0. (70)

Similarly, it follows from (44), (61), and (70) that
𝑢𝑛+1 − 𝑢𝑛

 =

𝑥
𝑛+1

+ 𝛾𝐴
∗
[𝑇
𝑛+1

((1 − 𝛽) 𝐼 + 𝛽𝑇
𝑛+1

) − 𝐼]𝐴𝑥
𝑛+1

− 𝑥
𝑛

− 𝛾𝐴
∗
[𝑇
𝑛
((1 − 𝛽) 𝐼 + 𝛽𝑇

𝑛
) − 𝐼]𝐴𝑥

𝑛


=
𝑥𝑛+1

+ 𝛾𝐴
∗
(𝐹
𝑛+1

− 𝐼)𝐴𝑥
𝑛+1

− (𝑥
𝑛
+ 𝛾𝐴
∗
(𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛
)
 ≤

𝑥𝑛+1 − 𝑥𝑛


+
𝛾𝐴
∗
(𝐹
𝑛+1

− 𝐼)𝐴𝑥
𝑛+1



+
𝛾𝐴
∗
(𝐹
𝑛
− 𝐼)𝐴𝑥

𝑛

 → 0 as 𝑛 → ∞.

(71)

Step 3. We prove that
𝑢𝑛 − 𝑆𝑢𝑛

 → 0,

𝐴𝑥𝑛 − 𝑇𝐴𝑥𝑛
 → 0

(as 𝑛 → ∞) .

(72)

In fact, from (60), we have

𝑞
𝑛
fl 𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛

 → 0, (as 𝑛 → ∞) . (73)

Since 𝑆 is uniformly 𝐿
1
-Lipschitzian, it follows from (71) and

(73) that
𝑢𝑛 − 𝑆𝑢𝑛

 ≤
𝑢𝑛 − 𝑆

𝑛
𝑢
𝑛

 +
𝑆
𝑛
𝑢
𝑛
− 𝑆𝑢
𝑛



≤ 𝑞
𝑛
+ 𝐿


𝑆
𝑛−1

𝑢
𝑛
− 𝑢
𝑛



≤ 𝑞
𝑛
+ 𝐿 {


𝑆
𝑛−1

𝑢
𝑛
− 𝑆
𝑛−1

𝑢
𝑛−1


+

𝑆
𝑛−1

𝑢
𝑛−1

− 𝑢
𝑛


}

≤ 𝑞
𝑛
+ 𝐿
2 𝑢𝑛 − 𝑢𝑛−1



+ 𝐿

𝑆
𝑛−1

𝑢
𝑛−1

− 𝑢
𝑛−1

+ 𝑢
𝑛−1

− 𝑢
𝑛



≤ 𝑞
𝑛
+ 𝐿 (1 + 𝐿)

𝑢𝑛 − 𝑢𝑛−1
 + 𝐿𝑞𝑛−1 → 0

(as 𝑛 → ∞) .

(74)

Similarly, from (64), we obtain

𝑤
𝑛
fl 𝐴𝑥𝑛 − 𝑇

𝑛
𝐴𝑥
𝑛

 → 0, (as 𝑛 → ∞) . (75)

Since𝑇 is uniformly 𝐿
2
-Lipschitzian, it follows from (70) and

(75) that
𝐴𝑥𝑛 − 𝑇𝐴𝑥𝑛

 ≤
𝐴𝑥𝑛 − 𝑇

𝑛
𝐴𝑥
𝑛

 +
𝑇
𝑛
𝐴𝑥
𝑛
− 𝑇𝐴𝑥

𝑛



≤ 𝑤
𝑛
+ 𝐿


𝑇
𝑛−1

𝐴𝑥
𝑛
− 𝐴𝑥
𝑛


≤ 𝑤
𝑛

+ 𝐿 {

𝑇
𝑛−1

𝐴𝑥
𝑛
− 𝑇
𝑛−1

𝐴𝑥
𝑛−1



+

𝑇
𝑛−1

𝐴𝑥
𝑛−1

− 𝐴𝑥
𝑛


} ≤ 𝑤

𝑛
+ 𝐿
2 𝐴𝑥𝑛 − 𝐴𝑥𝑛−1



+ 𝐿

𝑇
𝑛−1

𝐴𝑥
𝑛−1

− 𝐴𝑥
𝑛−1

+ 𝐴𝑥
𝑛−1

− 𝐴𝑥
𝑛


≤ 𝑤
𝑛

+ 𝐿 (1 + 𝐿)
𝐴𝑥𝑛 − 𝐴𝑥𝑛−1

 + 𝐿𝑤𝑛−1 → 0

(as 𝑛 → ∞) .

(76)

This implies that
𝐴𝑥𝑛 − 𝑇𝐴𝑥𝑛

 → 0, (as 𝑛 → ∞) . (77)

Step 4. We prove that the sequences {𝑥
𝑛
} and {𝑢

𝑛
} converge

weakly to 𝑥∗ ∈ Γ.
Observe that since {𝑢

𝑛
} is bounded, then there exists a

subsequence {𝑢
𝑛𝑖
} of {𝑢

𝑛
} which converges weakly to a point

𝑥
∗
∈ 𝐻
1
. Since lim

𝑛→∞
‖𝑢
𝑛
− 𝑆𝑢
𝑛
‖ = 0, we obtain

lim
𝑖→∞


𝑢
𝑛𝑖
− 𝑆𝑢
𝑛𝑖


= 0. (78)

It follows from Proposition 9 that 𝑥∗ ∈ 𝐹(𝑆).
Furthermore, from (44) and (61), we obtain

𝑥
𝑛𝑖
= 𝑢
𝑛𝑖
− 𝛾𝐴
∗
(𝐹
𝑛𝑖
− 𝐼)𝐴𝑥

𝑛𝑖
⇀ 𝑥
∗
. (79)

Since 𝐴 is linear and bounded, we obtain 𝐴𝑥
𝑛𝑖
⇀ 𝐴𝑥

∗, and
it follows from (72) that

lim
𝑖→∞


𝐴𝑥
𝑛𝑖
− 𝑇𝐴𝑥

𝑛𝑖


= 0. (80)
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The demiclosedness of 𝑇 at zero now yields that 𝐴𝑥∗ ∈ 𝐹(𝑇),
and thus 𝑥∗ ∈ Γ. Since every Hilbert space is an Opial space
and {𝑢

𝑛
} has a subsequence {𝑢

𝑛𝑖
} which converges weakly to

a point 𝑥∗ ∈ Γ, it follows from a standard argument that {𝑢
𝑛
}

converges weakly to 𝑥∗.
If 𝑆 is semicompact, then since {𝑢

𝑛
} is bounded and

lim
𝑛→∞

‖𝑢
𝑛
−𝑆𝑢
𝑛
‖ = 0, we have that there exists a subsequence

{𝑢
𝑛𝑗
} of {𝑢

𝑛
} which converges strongly to a point 𝑢∗ ∈ 𝐻

1
.

Since {𝑢
𝑛
} converges weakly to 𝑥∗, we have 𝑢∗ = 𝑥

∗. Thus
lim
𝑗→∞

‖𝑢
𝑛𝑗
− 𝑥
∗
‖ = 0 and it follows from Lemma 7 that {𝑢

𝑛
}

(and hence {𝑥
𝑛
}) converges strongly to 𝑥∗ ∈ Γ.

Corollary 11. Let 𝐻
1
and 𝐻

2
be two real Hilbert spaces, 𝐴 :

𝐻
1

→ 𝐻
2
a bounded linear operator, 𝑆 : 𝐻

1
→ 𝐻

1

a uniformly 𝐿
1
-Lipschitzian asymptotically pseudocontractive

mapping with sequence {𝑘(1)
𝑛
}
∞

𝑛=1
such that∑∞

𝑛=1
(𝑘
(1)

𝑛
− 1) < ∞

and 𝐾 fl 𝐹(𝑆) ̸= 0, and 𝑇 : 𝐻
2
→ 𝐻

2
a uniformly 𝐿

2
-

Lipschitzian asymptotically pseudocontractive mapping with
sequence {𝑘(2)

𝑛
}
∞

𝑛=1
such that ∑∞

𝑛=1
(𝑘
(2)

𝑛
− 1) < ∞ and 𝑄 fl

𝐹(𝑇) ̸= 0; let 𝑘
𝑛
= max{𝑘(1)

𝑛
, 𝑘
(2)

𝑛
} and 𝐿 = max{𝐿

1
, 𝐿
2
}.

Let {𝛼
𝑛
} and {𝛽

𝑛
} be sequences of real numbers satisfying the

condition:

0 < 𝛿 ≤ 𝛼
𝑛
≤ 𝛽
𝑛
≤ 𝛽 <

2

(2 + 𝑘) + √4𝐿
2 + (2 + 𝑘)

2

, (81)

where 𝑘 = sup
𝑛≥1

(𝑘
𝑛
− 1) and 𝛾 ∈ (0, 𝛽/‖𝐴‖

2
). Let Γ = {𝑥 ∈

𝐻
1
: 𝑥 ∈ 𝐹(𝑆) 𝑎𝑛𝑑 𝐴𝑥 ∈ 𝐹(𝑇)} ̸= 0. Then for arbitrary

𝑥
1
∈ 𝐻
1
the sequence {𝑥

𝑛
} generated from 𝑥

1
by (44) converges

weakly to a point in Γ.
If in addition 𝑆 is semicompact, then {𝑥

𝑛
} and {𝑢

𝑛
} converge

strongly to a point in Γ.

Example 12. Let 𝐶 and 𝑆 be as in Example 2, and let 𝐷
and 𝑇 be as in Example 3. Then 𝐹(𝑇) = {(0, 0, 0, . . . , 0)} ∪

{(𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
) : ∏
𝑛

𝑗=1
𝑥
𝑗
< 0}, and 𝐹(𝑆) = {(0, 0, 0, . . .)}.

Furthermore, 𝐶 and 𝐷 are nonempty closed convex subsets
of ℓ2 and R𝑛, respectively. Define 𝐴 : 𝐶 → 𝐷 by 𝐴𝑥 =

(𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
) for each 𝑥 = (𝑥

1
, 𝑥
2
, 𝑥
3
, . . .) ∈ 𝐶. Then

𝐴 is a bounded linear operator with adjoint operator 𝐴∗𝑦 =

(𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
, 0, 0, 0, . . .) for 𝑦 = (𝑥

1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
) ∈ 𝐷.

Furthermore, ‖𝐴‖ = ‖𝐴
∗
‖ = 1. Thus using algorithm (44)

with {𝛼
𝑛
}
∞

𝑛=1
and {𝛽

𝑛
}
∞

𝑛=1
satisfying the condition 0 < 𝛿 <

𝛼
𝑛
≤ 𝛽
𝑛
< 𝛽 < 1/(1 + √5) and 𝛾 ∈ (0, 𝛽), it follows from

Theorem 10 that 𝑥
𝑛
⇀ (0, 0, 0, . . .) ∈ 𝐹(𝑆) and𝐴(0, 0, 0, . . .) =

(0, 0, 0, . . . , 0) ∈ 𝐹(𝑇).
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