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We investigate the convergence analysis of the following general inexact algorithm for approximating a zero of the sum of a
cocoercive operator 𝐴 and maximal monotone operators 𝐵 with𝐷(𝐵) ⊂ 𝐻: 𝑥

𝑛+1
= 𝛼
𝑛
𝑓(𝑥
𝑛
) + 𝛾
𝑛
𝑥
𝑛
+ 𝛿
𝑛
(𝐼 + 𝑟
𝑛
𝐵)
−1

(𝐼 − 𝑟
𝑛
𝐴)𝑥
𝑛
+ 𝑒
𝑛
,

for 𝑛 = 1, 2, . . . , for given 𝑥
1
in a real Hilbert space𝐻, where (𝛼

𝑛
), (𝛾
𝑛
), and (𝛿

𝑛
) are sequences in (0, 1) with 𝛼

𝑛
+ 𝛾
𝑛
+ 𝛿
𝑛
= 1 for all

𝑛 ≥ 1, (𝑒
𝑛
) denotes the error sequence, and 𝑓 : 𝐻 → 𝐻 is a contraction. The algorithm is known to converge under the following

assumptions on 𝛿
𝑛
and 𝑒
𝑛
: (i) (𝛿

𝑛
) is bounded below away from 0 and above away from 1 and (ii) (𝑒

𝑛
) is summable in norm. In this

paper, we show that these conditions can further be relaxed to, respectively, the following: (i) (𝛿
𝑛
) is bounded below away from 0

and above away from 3/2 and (ii) (𝑒
𝑛
) is square summable in norm; and we still obtain strong convergence results.

1. Introduction

Let𝐻 be a real Hilbert space endowed with the inner product
⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖. Let us consider the problem

find a point 𝑥 ∈ 𝐻 such that 0 ∈ 𝐴𝑥 + 𝐵𝑥, (1)

where 𝐴 and 𝐵 are maximal monotone operators. The
literature on problem (1) exists (see [1–5] and the references
therein). Note that two possibilities exist here: either 𝐴 + 𝐵

is maximal monotone or 𝐴 + 𝐵 is not maximal monotone.
(For conditions that ensure that𝐴+𝐵 is maximal monotone,
we refer the reader to [6].) One of the iterative procedures
used to solve problem (1), in the absence of the maximality of
𝐴+𝐵, is by using splittingmethods,which have receivedmuch
attention in the recent past due to their applications in image
recovery, signal processing, andmachine learning. One of the
popular iterative methods used for solving problem (1) is the
forward-backward method introduced by Passty [7] in 1979
which defines a sequence (𝑥

𝑛
) by

𝑥
𝑛+1

= (𝐼 + 𝑟
𝑛
𝐵)
−1

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
, for 𝑛 = 1, 2, . . . , (2)

where (𝑟
𝑛
) is a sequence of positive numbers, 𝐴 and 𝐵 are

maximal monotone operators with 𝐷(𝐵) ⊂ 𝐷(𝐴), and 𝐴 is

single valued. Since its inception, the splitting method (2)
has received much attention from several authors including
Tseng [8], Mercier [9], Gabay [10], and Chen [11]. The
projected gradient method is in fact a special case of scheme
(2). In this case, 𝐴 is taken as the gradient of a function and
𝐵 as the subdifferential of the indicator function of a closed
and convex subset of a real Hilbert space.

In the case when 𝑇 fl 𝐴 + 𝐵 is maximal monotone, the
most popular iterative method for solving (1) is the proximal
point algorithm (PPA) which was first introduced by Mar-
tinet [12] in 1970 and later developed by Rockafellar [13]. Due
to the failure of Rockafellar’s PPA to converge strongly [14] for
arbitrary maximal monotone operators, several authors [15–
23] have presented modified versions of the PPA that always
converge strongly. Recently, Yao and Noor [22] proposed the
contraction proximal point algorithm

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + 𝛾
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝐽
𝐵

𝑟
𝑛

𝑥
𝑛
+ 𝑒
𝑛
, for 𝑛 = 1, 2, . . . , (3)

where 𝐵 is a maximal monotone operator, (𝛼
𝑛
), (𝛾
𝑛
), and

(𝛿
𝑛
) are sequences in (0, 1) with 𝛼

𝑛
+ 𝛾
𝑛
+ 𝛿
𝑛
= 1 for all

𝑛 ≥ 1, 𝐽𝐵
𝑟
𝑛

fl (𝐼 + 𝑟
𝑛
𝐵)
−1, (𝑒
𝑛
) is a sequence of computational

errors, 𝑢 ∈ 𝐻 is given, and 𝑟
𝑛
> 0. Algorithm (3) was used
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to find zeros of maximal monotone operators. The viscosity
approximationmethod which is also used for finding zeros of
maximal monotone operators was introduced by Takahashi
[19] as a scheme that generates sequences (𝑥

𝑛
) by

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝐽
𝐵

𝑟
𝑛

𝑥
𝑛
, for 𝑛 = 1, 2, . . . , (4)

where𝑓 is a contraction from a closed and convex subset𝐶 of
a reflexive Banach space 𝑋, 𝐵 is an accretive operator (hence
monotone if 𝑋 is a Hilbert space) with the range condition
𝐷(𝐵) ⊂ 𝐶 ⊂ ∩

𝑟>0
𝑅(𝐼 + 𝑟𝐵), (𝛼

𝑛
) is a sequence in (0, 1), 𝐽𝐵

𝑟
𝑛

fl
(𝐼 + 𝑟
𝑛
𝐵)
−1, and 𝑟

𝑛
> 0. Under appropriate conditions, strong

convergence of scheme (4) is obtained.
Recently, the forward-backward splitting method (2), the

contraction proximal point algorithm (3), and the viscosity
approximation method (4) were combined to obtain the
algorithm

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛾
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
+ 𝑒
𝑛
,

for 𝑛 = 1, 2, . . . ,
(5)

where 𝐴 : 𝐷(𝐴) = 𝐻 → 𝐻 is a 𝛽-cocoercive operator, 𝐵 :

𝐷(𝐵) ⊂ 𝐻 → 𝐻 is a maximal monotone operator, (𝛼
𝑛
), (𝛾
𝑛
),

and (𝛿
𝑛
) are sequences in (0, 1) with 𝛼

𝑛
+ 𝛾
𝑛
+ 𝛿
𝑛
= 1 for all

𝑛 ≥ 1, 𝐽𝐵
𝑟
𝑛

fl (𝐼 + 𝑟
𝑛
𝐵)
−1, (𝑒
𝑛
) is a sequence of computational

errors,𝑢 ∈ 𝐻 is given,𝑓 : 𝐻 → 𝐻 is a contraction, and 𝑟
𝑛
> 0.

They were able to prove that the sequence generated by (5)
converges strongly to the unique fixed point of the operator
𝑃
𝑆
𝑓, where 𝑆 fl (𝐴 + 𝐵)

−1

0. Note that when 𝑒
𝑛
= 0 for all

𝑛 ≥ 1, then it suffices to derive strong convergence of (5)when
𝑓 : 𝐶 → 𝐶, where 𝐶 is a closed and convex subset of𝐻, and
𝐵 : 𝐷(𝐵) ⊂ 𝐶 → 𝐻. Note that, in the case when 𝑒

𝑛
̸= 0, if

𝑥
𝑛
∈ 𝐶 for a given 𝑛 ≥ 1, the (𝑛 + 1)th iterate 𝑥

𝑛+1
may fail to

be in𝐶.That is, algorithm (5) is not well defined if𝑓 : 𝐶 → 𝐶.
It is worthy of note that Noor’s algorithm (3) excludes the

important case 𝛿
𝑛
∈ [1, 2), the overrelaxed case. However,

the overrelaxed factor may indeed speed up the rate of
the algorithm (see [24]). That is why Wang and Cui [25]
investigated the convergence of sequences generated by

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + 𝛾
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝐽
𝐵

𝑟
𝑛

𝑥
𝑛
+ 𝑒
𝑛
, for 𝑛 = 1, 2, . . . , (6)

for (𝛼
𝑛
) ⊂ (0, 1), (𝛾

𝑛
) ⊂ (−1, 1), and (𝛿

𝑛
) ⊂ (0, 2) with

𝛼
𝑛
+ 𝛾
𝑛
+ 𝛿
𝑛
= 1 for all 𝑛 ≥ 1. A natural question thus

arises: is it possible to relax the conditions on (𝛾
𝑛
) and (𝛿

𝑛
)

used in algorithm (5) further? Our purpose in this paper is to
affirmatively answer this question. Furthermore, we prove a
strong convergence result associated with algorithm

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛾
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
+ 𝑒
𝑛
,

for 𝑛 = 1, 2, . . . ,
(7)

for (𝛼
𝑛
) ⊂ (0, 1), (𝛾

𝑛
) ⊂ (−3/2, 1), and (𝛿

𝑛
) ⊂ (0, 3/2) with

𝛼
𝑛
+ 𝛾
𝑛
+ 𝛿
𝑛
= 1 for all 𝑛 ≥ 1, for the case when the sequence

of error terms is square summable in norm. Our main result
improves and refines similar results in the literature by using
fewer conditions to derive strong convergence of (7). In
addition, our results generalize many results in the literature
such as [25, Theorem 1], [26, Theorem 1], and [27, Theorem
1].

2. Preliminary Results

Let𝐻 be a real Hilbert space endowed with the inner product
⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖. A map 𝑇 : 𝐻 → 𝐻 is called a Lipschitz
mapping if there exists 𝐿 ≥ 0 such that ‖𝑇(𝑥)−𝑇(𝑦)‖ ≤ 𝐿‖𝑥−
𝑦‖ for all 𝑥, 𝑦 ∈ 𝐻.The number 𝐿 associated with𝑇 is called a
Lipschitz constant. If 𝐿 < 1, we say that𝑇 is a contraction, and
𝑇 is called nonexpansive if 𝐿 = 1. The set of fixed points of 𝑇
is given by 𝐹(𝑇) = {𝑥 ∈ 𝐶 : 𝑇(𝑥) = 𝑥}. It is well known that if
𝑇 is nonexpansive, then 𝐼 − 𝑇 is demiclosed at zero and 𝐹(𝑇)
is closed and convex; see [28]. Given an operator 𝑇 : 𝐻 → 𝐻,
we say that 𝐼 − 𝑇 is demiclosed at zero if, for any sequence
(𝑥
𝑛
) in𝐻, the following implication holds:

𝑥
𝑛
⇀ 𝑥

(𝐼 − 𝑇) 𝑥
𝑛
󳨀→ 0

} 󳨐⇒ 𝑥 ∈ Fix (𝑇) . (8)

Here, 𝑥
𝑛
⇀ 𝑥 means that (𝑥

𝑛
) converges weakly to 𝑥 and

𝑥
𝑛
→ 𝑥 is used to indicate that (𝑥

𝑛
) converges strongly to 𝑥.

These notations will be used in the sequel.
For a nonempty closed and convex subset 𝐹 of 𝐻, the

metric projection (nearest point mapping) 𝑃
𝐹
: 𝐻 → 𝐹 is

defined as follows: given 𝑥 ∈ 𝐻, 𝑃
𝐹
𝑥 is the unique point in 𝐹

having the property
󵄩󵄩󵄩󵄩𝑥 − 𝑃𝐹𝑥

󵄩󵄩󵄩󵄩 = inf
𝑦∈𝐹

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 . (9)

Note that the projection operator is firmly nonexpansive and
has the following characterization which will be used in this
paper: for any 𝑥 ∈ 𝐻,

⟨𝑥 − 𝑃
𝐹
𝑥, 𝑧 − 𝑃

𝐹
𝑥⟩ ≤ 0, ∀𝑧 ∈ 𝐹. (10)

Recall that an operator 𝑇 : 𝐻 → 𝐻 is said to be firmly
nonexpansive if for every 𝑥, 𝑦 ∈ 𝐻

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦

󵄩󵄩󵄩󵄩

2

. (11)

It is clear that every firmly nonexpansive map is nonexpan-
sive. A single-valued operator 𝐴 : 𝐷(𝐴) ⊂ 𝐻 → 𝐻 is called
𝛽-inverse strongly monotone (𝛽-cocoercive) for a positive
number 𝛽 if

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝛽
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

2

∀𝑥, 𝑦 ∈ 𝐷 (𝐴) . (12)

It is known that, for a 𝛽-inverse strongly monotone mapping
𝐴, the map 𝑇 fl 𝐼 − 𝑟𝐴 is nonexpansive for all 𝑟 ∈ (0, 2𝛽). A
(possibly set-valued) nonlinear operator𝐴 : 𝐷(𝐴) ⊂ 𝐻 → 𝐻

is said to be monotone if

⟨𝑥
󸀠

− 𝑦
󸀠

, 𝑥 − 𝑦⟩ ≥ 0

∀𝑥, 𝑦 ∈ 𝐷 (𝐴) , 𝑥
󸀠

∈ 𝐴𝑥, 𝑦
󸀠

∈ 𝐴𝑦.

(13)

In other words, 𝐴 is monotone if its graph, 𝐺(𝐴) = {(𝑥, 𝑦) ∈

𝐻 × 𝐻 : 𝑥 ∈ 𝐷(𝐴), 𝑦 ∈ 𝐴𝑥}, is a monotone subset of
𝐻×𝐻. A monotone operator 𝐴 is called maximal monotone
if it is monotone and its graph is not properly contained in
the graph of any other monotone operator. Note that a 𝛽-
cocoercive operator ismonotone.We know that𝐴 is maximal
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monotone if and only if the range of 𝐼 + 𝐴 is equal to 𝐻

(i.e., 𝑅(𝐼 + 𝐴) = 𝐻). If 𝐴 is maximal monotone and 𝜇 is a
positive number, then the resolvent of 𝐴 is a single-valued
and firmly nonexpansive operator 𝐽𝐴

𝜇
: 𝐻 → 𝐻 defined by

𝐽
𝐴

𝜇
(𝑥) = (𝐼+𝜇𝐴)

−1

(𝑥). We note that 𝐽𝐴
𝜇
is everywhere defined

on𝐻. For more information, refer to [29].
Finally, we recall some elementary inequalities in real

Hilbert spaces. For every 𝑥, 𝑦 ∈ 𝐻, the inequality

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2

≤ ‖𝑥‖
2

+ 2 ⟨𝑦, 𝑥 + 𝑦⟩ (14)

holds. If 𝛼, 𝛽 are any real numbers in (0, 1) with 𝛼 + 𝛽 = 1,
then, for any 𝑥, 𝑦 ∈ 𝐻,

󵄩󵄩󵄩󵄩𝛼𝑥 + 𝛽𝑦
󵄩󵄩󵄩󵄩

2

= 𝛼 ‖𝑥‖
2

+ 𝛽
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

− 𝛼𝛽
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

. (15)

Moreover, for any 𝑎, 𝑏 ∈ 𝐻, the inequality

2 ‖𝑎‖ ‖𝑏‖ ≤
1

2
‖𝑎‖
2

+ 2 ‖𝑏‖
2 (16)

can also be proved easily.
Now, we establish two lemmas that will enable us to prove

our main result.

Lemma 1. Let 𝐴 be a 𝛽-cocoercive operator and let 𝑟 be a
positive real number satisfying 𝑟 ≤ 𝛽. Then, 𝑇 fl 𝐼 − 𝑟𝐴 is
firmly nonexpansive.

Proof. We have to show that

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

− 𝑟
2 󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

2

.

(17)

Using the definition of 𝑇, we have

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(𝑥 − 𝑦) − 𝑟 (𝐴𝑥 − 𝐴𝑦)

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ 𝑟
2 󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

2

− 2𝑟 ⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

+ 𝑟
2 󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

2

− 2𝑟𝛽
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

2

,

(18)

where the inequality follows from the fact that 𝐴 is 𝛽-
cocoercive. Since 𝑟 ≤ 𝛽, it follows that −𝑟𝛽 ≤ −𝑟

2 and
inequality (17) follows at once.

Lemma 2. Let 𝑇 and 𝑆 be firmly nonexpansive mappings.
Then,

󵄩󵄩󵄩󵄩𝑇𝑆𝑥 − 𝑇𝑆𝑦
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

−
1

2

󵄩󵄩󵄩󵄩(𝐼 − 𝑇𝑆) 𝑥 − (𝐼 − 𝑇𝑆) 𝑦
󵄩󵄩󵄩󵄩

2

.

(19)

In particular, 𝑇𝑆 is nonexpansive.

Proof. From the firmly nonexpansive property of 𝑇, we get

󵄩󵄩󵄩󵄩𝑇𝑆𝑥 − 𝑇𝑆𝑦
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑆𝑥 − 𝑆𝑦

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(𝐼 − 𝑇) 𝑆𝑥

− (𝐼 − 𝑇) 𝑆𝑦
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(𝐼 − 𝑆) 𝑥

− (𝐼 − 𝑆) 𝑦
󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩[(𝐼 − 𝑇𝑆) 𝑥 − (𝐼 − 𝑇𝑆) 𝑦]

− [(𝐼 − 𝑆) 𝑥 − (𝐼 − 𝑆) 𝑦]
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(𝐼 − 𝑇𝑆) 𝑥 − (𝐼 − 𝑇𝑆) 𝑦

󵄩󵄩󵄩󵄩

2

− 2
󵄩󵄩󵄩󵄩(𝐼 − 𝑆) 𝑥

− (𝐼 − 𝑆) 𝑦
󵄩󵄩󵄩󵄩

2

+ 2 ⟨(𝐼 − 𝑇𝑆) 𝑥

− (𝐼 − 𝑇𝑆) 𝑦, (𝐼 − 𝑆) 𝑥 − (𝐼 − 𝑆) 𝑦⟩ ,

(20)

where the second inequality follows from the fact that 𝑆 is
firmly nonexpansive. Using (16) with 𝑎 = (𝐼−𝑇𝑆)𝑥−(𝐼−𝑇𝑆)𝑦
and 𝑏 = (𝐼 − 𝑆)𝑥 − (𝐼 − 𝑆)𝑦, we get

󵄩󵄩󵄩󵄩𝑇𝑆𝑥 − 𝑇𝑆𝑦
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩(𝐼 − 𝑇𝑆) 𝑥 − (𝐼 − 𝑇𝑆) 𝑦

󵄩󵄩󵄩󵄩

2

− 2
󵄩󵄩󵄩󵄩(𝐼 − 𝑆) 𝑥 − (𝐼 − 𝑆) 𝑦

󵄩󵄩󵄩󵄩

2

+
1

2

󵄩󵄩󵄩󵄩(𝐼 − 𝑇𝑆) 𝑥 − (𝐼 − 𝑇𝑆) 𝑦
󵄩󵄩󵄩󵄩

2

+ 2
󵄩󵄩󵄩󵄩(𝐼 − 𝑆) 𝑥 − (𝐼 − 𝑆) 𝑦

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

−
1

2

󵄩󵄩󵄩󵄩(𝐼 − 𝑇𝑆) 𝑥 − (𝐼 − 𝑇𝑆) 𝑦
󵄩󵄩󵄩󵄩

2

.

(21)

The proof is complete.

Remark 3. Let 𝐵 be maximal monotone and let 𝐴 be a 𝛽-
cocoercive mapping with 𝛽 > 0. Taking 𝑈 = 𝐽

𝐵

𝑟
and 𝑉 =

(𝐼−𝑟𝐴) for some 𝑟 ≤ 𝛽, both𝑈 and𝑉 are firmly nonexpansive
(see Lemma 1). In addition, if 𝑆 fl Fix(𝐽𝐵

𝑟
(𝐼 − 𝑟𝐴)) ̸= 0, then,

for any 𝑧 ∈ 𝑆 and 𝑥 ∈ 𝐷(𝐴), we obtain from Lemma 2 that

󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵

𝑟
(𝐼 − 𝑟𝐴) 𝑥 − 𝑧

󵄩󵄩󵄩󵄩󵄩

2

≤ ‖𝑥 − 𝑧‖
2

−
1

2

󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝐽
𝐵

𝑟
(𝐼 − 𝑟𝐴) 𝑥

󵄩󵄩󵄩󵄩󵄩

2

.

(22)

We next recall some lemmas that will be useful in proving
our main results. In the next two lemmas, it is assumed that
𝐴 is a 𝛽-cocoercive mapping with 𝛽 > 0 and 𝐵 is maximal
monotone.

Lemma 4. If 𝜆 and 𝜇 are any two positive real numbers, then
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵

𝜆
(𝐼 − 𝜆𝐴) 𝑥 − 𝐽

𝐵

𝜇
(𝐼 − 𝜇𝐴) 𝑥

󵄩󵄩󵄩󵄩󵄩

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 −
𝜆

𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝐽
𝐵

𝜇
(𝐼 − 𝜇𝐴) 𝑥

󵄩󵄩󵄩󵄩󵄩

(23)

holds for any 𝑥 ∈ 𝐻.
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The proof of Lemma 4 can be reproduced easily.

Lemma 5 (see López et al. [3]). If 𝜆 and 𝜇 are two positive real
numbers such that 𝜇 ≥ 𝜆, then

󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝐽
𝐵

𝜆
(𝐼 − 𝜆𝐴) 𝑥

󵄩󵄩󵄩󵄩󵄩
≤ 2

󵄩󵄩󵄩󵄩󵄩
𝑥 − 𝐽
𝐵

𝜇
(𝐼 − 𝜇𝐴) 𝑥

󵄩󵄩󵄩󵄩󵄩
(24)

holds for any 𝑥 ∈ 𝐻.

The next two lemmas are important in showing that
under suitable assumptions our sequence (𝑥

𝑛
) generated by

(7) is bounded. The proofs can be reproduced by following
some ideas of [26].

Lemma 6. Let (𝑠
𝑛
) be a sequence of nonnegative real numbers

satisfying

𝑠
𝑛+1

≤ (1 − 𝛼
𝑛
) (1 + 𝜖

𝑛
) 𝑠
𝑛
+ 𝛼
𝑛
𝐾 + 𝜉
𝑛

(25)

for some 𝐾 > 0, where (𝛼
𝑛
) ⊂ (0, 1) and (𝜖

𝑛
), (𝜉
𝑛
) ∈ ℓ

1 are
sequences of positive real numbers. Then, (𝑠

𝑛
) is bounded.

Lemma 7. Let (𝑠
𝑛
) be a sequence of nonnegative real numbers

satisfying

𝑠
𝑛+1

≤ (1 − 𝛼
𝑛
) (1 + 𝜖

𝑛
) 𝑠
𝑛
+ 𝛼
𝑛
𝐾
1
+ 𝜖
𝑛
𝐾
2
, (26)

where𝐾
1
, 𝐾
2
are positive constants, (𝛼

𝑛
) is a sequence in (0, 1),

and 𝜖
𝑛
∈ [0,∞) with 𝜖

𝑛
(3 − 2𝛼

𝑛
) ≤ 𝛼
𝑛
for all 𝑛 ≥ 0. Then, (𝑠

𝑛
)

is bounded.

The last two lemmas will be vital in deducing strong
convergence of the sequence generated by (7).

Lemma 8 (see Xu [20]). Let (𝑠
𝑛
) be a sequence of nonnegative

real numbers satisfying

𝑠
𝑛+1

≤ (1 − 𝑎
𝑛
) 𝑠
𝑛
+ 𝑎
𝑛
𝑏
𝑛
+ 𝑐
𝑛
, 𝑛 ≥ 0, (27)

where (𝑎
𝑛
), (𝑏
𝑛
), and (𝑐

𝑛
) satisfy the following conditions: (i)

(𝑎
𝑛
) ⊂ [0, 1], with ∑∞

𝑛=0
𝑎
𝑛
= ∞, (ii) 𝑐

𝑛
≥ 0 for all 𝑛 ≥ 0 with

∑
∞

𝑛=0
𝑐
𝑛
< ∞, and (iii) lim sup

𝑛→∞
𝑏
𝑛
≤ 0. Then, lim

𝑛→∞
𝑠
𝑛
=

0.

Lemma 9 (see Maingé [30]). Let (𝑠
𝑘
) be a sequence of real

numbers that does not decrease at infinity, in the sense that
there exists a subsequence (𝑠

𝑘
𝑗

) of (𝑠
𝑘
) such that 𝑠

𝑘
𝑗

< 𝑠
𝑘
𝑗
+1

for all 𝑗 ≥ 0. Define an integer sequence (𝑚
𝑘
)
𝑘≥𝑘
0

as

𝑚
𝑘
= max {𝑘

0
≤ 𝑙 ≤ 𝑘 : 𝑠

𝑙
< 𝑠
𝑙+1
} . (28)

Then,𝑚
𝑘
→∞ as 𝑘 → ∞ and for all 𝑘 ≥ 𝑘

0

max {𝑠
𝑚
𝑘

, 𝑠
𝑘
} ≤ 𝑠
𝑚
𝑘
+1
. (29)

3. Main Results

For any 𝑟 ∈ (0, 𝛽], the map 𝐽𝐵
𝑟
(𝐼 − 𝑟𝐴), being the composition

of nonexpansive maps, is nonexpansive. Since the fixed point
set (if it is not empty) of a nonexpansive map is closed and

convex, it follows that if 𝑆 fl (𝐴 + 𝐵)
−1

(0) ̸= 0, then 𝑆 is
closed and convex. Therefore, the map 𝑃

𝑆
is well defined and

nonexpansive. Also, for any closed and convex set𝐶, the map
𝑃
𝑆
𝑓 : 𝐶 → 𝑆 is a 𝜅-contraction whenever 𝑓 : 𝐶 → 𝐶 is a

𝜅-contraction. This information will be used in this section.

Theorem 10. Let𝐻 be a real Hilbert space and let 𝑓 : 𝐻 → 𝐻

be a 𝜅-contraction with 𝜅 < 1/2. Assume that 𝐴 : 𝐷(𝐴) =

𝐻 → 𝐻 is a 𝛽-cocoercive operator and 𝐵 : 𝐷(𝐵) ⊂ 𝐻 → 𝐻 is
a maximal monotone operator with 𝑆 fl (𝐴 + 𝐵)

−1

(0) ̸= 0. For
𝑥
0
∈ 𝐻, let (𝑥

𝑛
) be a sequence generated by (7) with𝛼

𝑛
∈ (0, 1),

𝛾
𝑛
∈ (−3/2, 1), and 𝛿

𝑛
∈ (0, 3/2) satisfying 𝛼

𝑛
+ 𝛾
𝑛
+ 𝛿
𝑛
= 1,

𝑟
𝑛
∈ (0, 𝛽], and (𝑒

𝑛
) is a sequence of errors in 𝐻. Then, (𝑥

𝑛
)

converges strongly to the unique fixed point 𝑧 of 𝑃
𝑆
𝑓, provided

that

(i) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=0
𝛼
𝑛
= ∞,

(ii) lim inf
𝑛→∞

𝑟
𝑛
> 0,

(iii) 0 < lim inf
𝑛→∞

𝛿
𝑛
≤ lim sup

𝑛→∞
𝛿
𝑛
< 3/2,

(iv) ‖𝑒
𝑛
‖ ≤ 𝜂
𝑛
‖𝑥
𝑛
− 𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)𝑥
𝑛
‖ with ∑∞

𝑛=0
𝜂
2

𝑛
< ∞.

Proof. Let us denote 𝜌
𝑛
fl 𝛿
𝑛
(1 − 𝛼

𝑛
)
−1 and 𝑦

𝑛
fl (1 − 𝜌

𝑛
)𝑥
𝑛
+

𝜌
𝑛
𝐽
𝐵

𝑟
𝑛

(𝐼−𝑟
𝑛
𝐴)𝑥
𝑛
.Then, from (7), 𝑥

𝑛+1
= 𝛼
𝑛
𝑓(𝑥
𝑛
)+(1−𝛼

𝑛
)𝑦
𝑛
+

𝑒
𝑛
. In order to prove that (𝑥

𝑛
) is bounded, we note that, from

the condition 𝛼
𝑛
→ 0 as 𝑛 → ∞, one may assume without

loss of generality that𝛼
𝑛
< 1/2 for all 𝑛. If 𝑧 is the unique fixed

point of 𝑃
𝑆
𝑓, then 𝑧 ∈ 𝑆 and from (15) we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑓 (𝑥𝑛) − 𝑧 + 𝑒𝑛) + (1 − 𝛼𝑛) (𝑦𝑛 − 𝑧 + 𝑒𝑛)

󵄩󵄩󵄩󵄩

2

= 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑧 + 𝑒𝑛
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧 + 𝑒𝑛

󵄩󵄩󵄩󵄩

2

− 𝛼
𝑛
(1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑦𝑛

󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑧 + 𝑒𝑛
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧 + 𝑒𝑛

󵄩󵄩󵄩󵄩

2

.

(30)

To estimate ‖𝑦
𝑛
− 𝑧 + 𝑒

𝑛
‖
2, let us first observe that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
(𝑥
𝑛
− 𝑧) + 𝜌

𝑛
(𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
− 𝑥
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝜌
2

𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

− 𝜌
𝑛
[2 ⟨𝑥
𝑛
− 𝑧, 𝑥

𝑛
− 𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
⟩] =

󵄩󵄩󵄩󵄩𝑥𝑛

− 𝑧
󵄩󵄩󵄩󵄩

2

+ 𝜌
2

𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

− 𝜌
𝑛
[
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
− 𝑧

󵄩󵄩󵄩󵄩󵄩

2

] = (1 − 𝜌
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝜌
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛
− 𝑧

󵄩󵄩󵄩󵄩󵄩

2

− 𝜌
𝑛
(1 − 𝜌

𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

− 𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

.

(31)
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Making use of inequality (22), we obtain

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

− 𝜌
𝑛
(
3

2
− 𝜌
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

.

(32)

Therefore, it follows that
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧 + 𝑒𝑛

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑒𝑛

󵄩󵄩󵄩󵄩

2

+ 2 ⟨𝑦
𝑛
− 𝑧, 𝑒
𝑛
⟩

≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑒𝑛

󵄩󵄩󵄩󵄩

2

+ 𝜌
𝑛
(3 − 2𝜌

𝑛
)

󵄩󵄩󵄩󵄩𝑒𝑛
󵄩󵄩󵄩󵄩

2

4𝜂2
𝑛

+
4𝜂
2

𝑛

𝜌
𝑛
(3 − 2𝜌

𝑛
)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

= (1 +
4𝜂
2

𝑛

𝜌
𝑛
(3 − 2𝜌

𝑛
)
)

⋅ (
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝜌
𝑛
(3 − 2𝜌

𝑛
)

󵄩󵄩󵄩󵄩𝑒𝑛
󵄩󵄩󵄩󵄩

2

4𝜂2
𝑛

) .

(33)

Note that condition (iii) of the theorem is equivalent to 0 <

lim inf
𝑛→∞

𝜌
𝑛
≤ lim sup

𝑛→∞
𝜌
𝑛
< 3/2. Then, there exist

positive real numbers 𝜌
1
and 𝜌
2
such that 𝜌

1
≤ 𝜌
𝑛
≤ 𝜌
2
< 3/2.

From this condition, we derive 4/𝜌
𝑛
(3 − 2𝜌

𝑛
) ≤ 𝐶 for some

positive constant 𝐶. Denote 𝜖
𝑛

fl 𝜂
2

𝑛
𝐶. Since (𝜂2

𝑛
) ∈ ℓ

1,
it follows that (𝜖

𝑛
) ∈ ℓ

1 as well. Therefore, from (32) and
condition (iv) of the theorem, we have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧 + 𝑒𝑛
󵄩󵄩󵄩󵄩

2

≤ (1 + 𝜖
𝑛
) (

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

−
𝜌
𝑛
(3 − 2𝜌

𝑛
)

4

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

) .

(34)

On the other hand, by similar arguments as above, we have

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑧 + 𝑒𝑛
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑧

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑒𝑛

󵄩󵄩󵄩󵄩

2

+ 2 ⟨𝑓 (𝑥
𝑛
) − 𝑧, 𝑒

𝑛
⟩ ≤

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑧
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑒𝑛

󵄩󵄩󵄩󵄩

2

+ 𝜌
𝑛
(3 − 2𝜌

𝑛
)

󵄩󵄩󵄩󵄩𝑒𝑛
󵄩󵄩󵄩󵄩

2

4𝜂2
𝑛

+
4𝜂
2

𝑛

𝜌
𝑛
(3 − 2𝜌

𝑛
)

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑧
󵄩󵄩󵄩󵄩

2

= (1 +
4𝜂
2

𝑛

𝜌
𝑛
(3 − 2𝜌

𝑛
)
)

⋅ [
󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝜌
𝑛
(3 − 2𝜌

𝑛
)

󵄩󵄩󵄩󵄩𝑒𝑛
󵄩󵄩󵄩󵄩

2

4𝜂2
𝑛

] ,

(35)

where the inequality follows from (16). Moreover, using the
property that 𝑓 is a 𝜅-contraction, we get

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑧
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑧)

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑓 (𝑧) − 𝑧

󵄩󵄩󵄩󵄩

2

+ 2 ⟨𝑓 (𝑥
𝑛
) − 𝑓 (𝑧) , 𝑓 (𝑧) − 𝑧⟩

≤ 2
󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑧)

󵄩󵄩󵄩󵄩

2

+ 2
󵄩󵄩󵄩󵄩𝑓 (𝑧) − 𝑧

󵄩󵄩󵄩󵄩

2

≤ 2𝜅
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 2
󵄩󵄩󵄩󵄩𝑓 (𝑧) − 𝑧

󵄩󵄩󵄩󵄩

2

.

(36)

Since ‖𝑒
𝑛
‖ ≤ 𝜂
𝑛
‖𝑥
𝑛
− 𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)𝑥
𝑛
‖, it follows that

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑧 + 𝑒𝑛
󵄩󵄩󵄩󵄩

2

≤ (1 + 𝜖
𝑛
) [2𝜅

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 2
󵄩󵄩󵄩󵄩𝑓 (𝑧) − 𝑧

󵄩󵄩󵄩󵄩

2

]

+ (1 + 𝜖
𝑛
)
𝜌
𝑛
(3 − 2𝜌

𝑛
)

4

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

.

(37)

Combining this last inequality with (34), it follows from (30)
that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
(1 − 2𝜅)) (1 + 𝜖

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝐾 + 𝜖
𝑛
𝐾 − (1 − 2𝛼

𝑛
) (1 + 𝜖

𝑛
)

⋅
𝜌
𝑛
(3 − 2𝜌

𝑛
)

4

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

,

(38)

where 𝐾 = 2‖𝑓(𝑧) − 𝑧‖
2. Since 𝛼

𝑛
< 1/2 for very large 𝑛, by

our assumption, the inequality above reduces to
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
(1 − 2𝜅)) (1 + 𝜖

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝐾 + 𝜖
𝑛
𝐾.

(39)

Applying Lemma 6 with 𝑠
𝑛
fl ‖𝑥
𝑛
− 𝑧‖
2 and 𝜉

𝑛
fl 𝜖
𝑛
𝐾, we

derive that the sequence (𝑥
𝑛
− 𝑧) is bounded. Therefore, (𝑥

𝑛
)

is bounded.
We next show that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
(1 − 2𝜅))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝑑
𝑛

+ 𝜖
𝑛
𝑀

− 𝐿 (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

(40)

holds for some positive constants 𝐿 and𝑀, where 𝑑
𝑛
denotes

𝑑
𝑛
fl 2 ⟨𝑓 (𝑧) − 𝑧 + 𝑒

𝑛
, 𝑥
𝑛+1

− 𝑧⟩ + (𝛼
𝑛
+
󵄩󵄩󵄩󵄩𝑒𝑛

󵄩󵄩󵄩󵄩)𝑀. (41)

To this end, we first note that the condition 𝜌
𝑛
< 3/2 and (32)

imply that
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩 . (42)

Therefore, from the equality 𝑥
𝑛+1

= 𝛼
𝑛
𝑓(𝑥
𝑛
) + (1 − 𝛼

𝑛
)𝑦
𝑛
+ 𝑒
𝑛

and using the fact that 𝑓 is a 𝜅-contraction, we obtain
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧

󵄩󵄩󵄩󵄩 ≤ 𝛼𝑛
󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑧

󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑒𝑛

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
[
󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑧)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑓 (𝑧) − 𝑧

󵄩󵄩󵄩󵄩]

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑒𝑛

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
[𝜅
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑓 (𝑧) − 𝑧

󵄩󵄩󵄩󵄩]

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑒𝑛

󵄩󵄩󵄩󵄩

= (1 − 𝛼
𝑛
(1 − 𝜅))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑧) − 𝑧
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑒𝑛
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑓 (𝑧) − 𝑧

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑒𝑛

󵄩󵄩󵄩󵄩 .

(43)
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On the other hand, it follows from (14) that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(1 − 𝛼𝑛) (𝑦𝑛 − 𝑧 + 𝑒𝑛) + 𝛼𝑛 (𝑓 (𝑥𝑛) − 𝑧 + 𝑒𝑛)

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧 + 𝑒𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑥
𝑛
) − 𝑧 + 𝑒

𝑛
, 𝑥
𝑛+1

− 𝑧⟩

= (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧 + 𝑒𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑧) − 𝑧 + 𝑒

𝑛
, 𝑥
𝑛+1

− 𝑧⟩

+ 2𝛼
𝑛
⟨𝑓 (𝑥
𝑛
) − 𝑓 (𝑧) , 𝑥

𝑛+1
− 𝑧⟩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧 + 𝑒𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑧) − 𝑧 + 𝑒

𝑛
, 𝑥
𝑛+1

− 𝑧⟩

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑧)
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧

󵄩󵄩󵄩󵄩 .

(44)

Again, using the fact that 𝑓 is a 𝜅-contraction with 𝜅 < 1/2,
we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧 + 𝑒𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑧) − 𝑧 + 𝑒

𝑛
, 𝑥
𝑛+1

− 𝑧⟩

+ 2𝛼
𝑛
𝜅
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧

󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧 + 𝑒𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑧) − 𝑧 + 𝑒

𝑛
, 𝑥
𝑛+1

− 𝑧⟩

+ 2𝛼
𝑛
𝜅
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩 [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑓 (𝑧) − 𝑧

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑒𝑛

󵄩󵄩󵄩󵄩]

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧 + 𝑒𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑧) − 𝑧 + 𝑒

𝑛
, 𝑥
𝑛+1

− 𝑧⟩ + 2𝛼
𝑛
𝜅
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
(𝛼
𝑛
+
󵄩󵄩󵄩󵄩𝑒𝑛

󵄩󵄩󵄩󵄩)𝑀,

(45)

where 𝑀 = (1 + ‖𝑓(𝑧) − 𝑧‖)sup
𝑛
‖𝑥
𝑛
− 𝑧‖. Combining this

inequality with (34), we obtain

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
(1 − 2𝜅)) (1 + 𝜖

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
(𝛼
𝑛
+
󵄩󵄩󵄩󵄩𝑒𝑛

󵄩󵄩󵄩󵄩)𝑀 − (1 − 𝛼
𝑛
) (1 + 𝜖

𝑛
)

⋅
𝜌
𝑛
(3 − 2𝜌

𝑛
)

4

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑧) − 𝑧 + 𝑒

𝑛
, 𝑥
𝑛+1

− 𝑧⟩ .

(46)

Using condition (iii) of the theorem and the boundedness of
(𝑥
𝑛
), we readily get (40).
Now, from (𝜖

𝑛
) ∈ ℓ
1, we can find ] > 0 such that

] fl lim
𝑛→∞

𝑛

∑

𝑘=1

𝜖
𝑘
. (47)

Therefore, if we denote 𝑠
𝑛
fl ‖𝑥
𝑛
− 𝑧‖
2

+ 𝑡
𝑛
𝑀, where (𝑡

𝑛
) is

a nonnegative sequence that converges to zero and is defined
by

𝑡
𝑛
= ] −

𝑛−1

∑

𝑘=1

𝜖
𝑘
, (48)

then (𝑠
𝑛
) converges to zero strongly if and only if (‖𝑥

𝑛
− 𝑧‖)

does. In addition, we rewrite inequality (40) in the form

𝑠
𝑛+1

≤ (1 − 𝛼
𝑛
(1 − 2𝜅)) 𝑠

𝑛
+ 𝛼
𝑛
𝑏
𝑛

− 𝐿 (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

,

(49)

where 𝑏
𝑛
denotes

𝑏
𝑛
fl 2 ⟨𝑓 (𝑧) − 𝑧 + 𝑒

𝑛
, 𝑥
𝑛+1

− 𝑧⟩

+ (𝛼
𝑛
+ 𝑡
𝑛
+
󵄩󵄩󵄩󵄩𝑒𝑛

󵄩󵄩󵄩󵄩)𝑀.

(50)

The next step is to show that (𝑠
𝑛
) converges strongly to zero.

We achieve this by considering two possible cases on the
sequence (𝑠

𝑛
).

Case 1.We assume that (𝑠
𝑛
) is eventually decreasing (i.e., there

exists 𝑛
0
≥ 1 such that (𝑠

𝑛
) is decreasing for all 𝑛 ≥ 𝑛

0
). Then,

(𝑠
𝑛
) converges and rearranging terms in (49) we obtain

𝐿 (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
(1 − 2𝜅)) 𝑠

𝑛
− 𝑠
𝑛+1

+ 𝛼
𝑛
𝑏
𝑛
.

(51)

Since (𝑥
𝑛
) is bounded, we pass to the limit in the above

inequality to get

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (52)

Take a subsequence (𝑥
𝑛
𝑘

) of (𝑥
𝑛
) converging weakly to 𝑥̂ such

that

lim sup
𝑛→∞

⟨𝑓 (𝑧) − 𝑧, 𝑥
𝑛
− 𝑧⟩

= lim
𝑘→∞

⟨𝑓 (𝑧) − 𝑧, 𝑥
𝑛
𝑘

− 𝑧⟩ = ⟨𝑓 (𝑧) − 𝑧, 𝑥̂ − 𝑧⟩ .

(53)

Note that, from (7), we derive the inequality
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 ≤ 𝛼𝑛
󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑥𝑛

󵄩󵄩󵄩󵄩

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑒𝑛

󵄩󵄩󵄩󵄩 ,

(54)

which together with (52), the boundedness of (𝑥
𝑛
), and

‖𝑒
𝑛
‖ → 0 as 𝑛 → ∞ implies that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (55)

The above limit implies that

lim sup
𝑛→∞

⟨𝑓 (𝑧) − 𝑧 + 𝑒
𝑛
, 𝑥
𝑛+1

− 𝑧⟩

= ⟨𝑓 (𝑧) − 𝑧, 𝑥̂ − 𝑧⟩ .

(56)
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If 𝑟 > 0 is the lower bound of (𝑟
𝑛
), then we have from

Lemma 5
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝐵

𝑟
(𝐼 − 𝑟𝐴) 𝑥

𝑛

󵄩󵄩󵄩󵄩󵄩
≤ 2

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
, (57)

which together with (52) implies that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝐵

𝑟
(𝐼 − 𝑟𝐴) 𝑥

𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (58)

Since 𝑆 = Fix(𝐽𝐵
𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴)) = Fix(𝐽𝐵

𝑟
(𝐼 − 𝑟𝐴)) for all 𝑛 ≥ 1

and 𝐽𝐵
𝑟
(𝐼 − 𝑟𝐴) is nonexpansive, it follows that 𝐼 − 𝐽𝐵

𝑟
(𝐼 − 𝑟𝐴)

is demiclosed at zero; see [29, page 20]. Therefore, from (58)
and the property that 𝐼 − 𝐽

𝐵

𝑟
(𝐼 − 𝑟𝐴) is demiclosed at zero,

we conclude that 𝑥̂ ∈ 𝑆. Hence, from the characterization of
projections, we conclude that

lim sup
𝑛→∞

⟨𝑓 (𝑧) − 𝑧 + 𝑒
𝑛
, 𝑥
𝑛+1

− 𝑧⟩ ≤ 0. (59)

By conditions (i) and (iv) of the theorem and the fact that
𝑡
𝑛
→ 0 as 𝑛 → ∞, it follows that

lim sup
𝑛→∞

𝑏
𝑛
≤ 0. (60)

Finally, we derive from inequality (49) that

𝑠
𝑛+1

≤ (1 − 𝛼
𝑛
(1 − 2𝜅)) 𝑠

𝑛
+ 𝛼
𝑛
𝑏
𝑛
. (61)

The conclusion that 𝑠
𝑛
→ 0 follows from Lemma 8.

Case 2. The sequence (𝑠
𝑘
) is not eventually decreasing; that is,

there is a subsequence (𝑠
𝑘
𝑗

) of (𝑠
𝑘
) such that 𝑠

𝑘
𝑗

< 𝑠
𝑘
𝑗
+1

for
all 𝑗 ≥ 0. In this case, we define an integer sequence (𝑚

𝑘
)
𝑘≥𝑘
0

as in Lemma 9. Note that the subsequence (𝑠
𝑚
𝑘

) satisfies the
condition 𝑠

𝑚
𝑘

≤ 𝑠
𝑚
𝑘
+1

for all 𝑘 ≥ 𝑛
0
. It then follows from (49)

that

𝛼
𝑚
𝑘

(1 − 2𝜅) 𝑠
𝑚
𝑘
+1

+ 𝐿 (1 − 𝛼
𝑚
𝑘

)
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚
𝑘

− 𝐽
𝐵

𝑟
𝑚
𝑘

(𝐼 − 𝑟
𝑚
𝑘

𝐴)𝑥
𝑚
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑚
𝑘

𝑏
𝑚
𝑘

.

(62)

Since 2𝜅 < 1, 𝛼
𝑚
𝑘

→ 0 as 𝑘 → ∞, and (𝑏
𝑚
𝑘

) is bounded, we
conclude that

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚
𝑘

− 𝐽
𝐵

𝑟
𝑚
𝑘

(𝐼 − 𝑟
𝑚
𝑘

𝐴)𝑥
𝑚
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩
= 0. (63)

Using similar arguments as in Case 1, we conclude that

lim sup
𝑘→∞

𝑏
𝑚
𝑘

≤ 0. (64)

In view of (62), we have

(1 − 2𝜅) 𝑠
𝑚
𝑘
+1
≤ 𝑏
𝑚
𝑘

, (65)

which implies that 𝑠
𝑚
𝑘
+1
→ 0 as 𝑘 → ∞. Since 𝑠

𝑘
≤ 𝑠
𝑚
𝑘
+1

for
all 𝑘 ≥ 𝑘

0
(see (29)), we also have 𝑠

𝑘
→ 0 as 𝑘 → ∞. Hence,

𝑥
𝑘
→ 𝑧 as 𝑘 → ∞, and the proof is complete.

Remark 11. Observe that if (𝑥
𝑛
) is bounded, then condition

(iv) of Theorem 10 implies that ∑∞
𝑛=0

‖𝑒
𝑛
‖
2

< ∞. The
latter condition is weaker than the condition ∑

∞

𝑛=0
‖𝑒
𝑛
‖ <

∞ used in the existing literature. In addition, we did not
require the conditions 𝛽

𝑛
≥ 1/2, (𝑟

𝑛
) ⊂ (0, 1), and

lim sup
𝑛→∞

𝑟
𝑛
< 1.Therefore,Theorem 10 is an improvement

of the aforementioned theorem.

Remark 12. Theorem 10 also improves and extends many
results that exist in the literature, such as [22, Theorem 2.2],
[27,Theorem 1], and [26,Theorem 1]. To see this, it is enough
to take 𝐴 = 0 and 𝑓(𝑥) = 𝑢 for all 𝑥 ∈ 𝐻, where 𝑢 ∈ 𝐻 is a
given fixed vector.

Theorem 13. Let 𝐶 be a nonempty, closed, and convex subset
of 𝐻 and let 𝑓 : 𝐶 → 𝐶 be a 𝜅-contraction with 𝜅 < 1/2.
Assume that 𝐴 : 𝐷(𝐴) = 𝐶 → 𝐻 is a 𝛽-cocoercive operator
and 𝐵 : 𝐷(𝐵) ⊂ 𝐶 → 𝐻 is a maximal monotone operator with
𝑆 fl (𝐴 + 𝐵)

−1

(0) ̸= 0. For 𝑥
0
∈ 𝐶 and 𝑒

𝑛
= 0 for all 𝑛 ≥ 1,

let (𝑥
𝑛
) be a sequence generated by (7) with 𝛼

𝑛
, 𝛾
𝑛
, 𝛿
𝑛
∈ (0, 1)

satisfying 𝛼
𝑛
+𝛾
𝑛
+𝛿
𝑛
= 1, and 𝑟

𝑛
∈ (0, 𝛽].Then, (𝑥

𝑛
) converges

strongly to the unique fixed point 𝑧 of 𝑃
𝑆
𝑓, provided that

(i) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=0
𝛼
𝑛
= ∞,

(ii) lim inf
𝑛→∞

𝑟
𝑛
> 0,

(iii) 0 < lim inf
𝑛→∞

𝛿
𝑛
.

Proof. In the proof of Theorem 10, we used the condition
lim sup

𝑛→∞
𝛿
𝑛
< 3/2 repeatedly to conclude that (3−2𝜌

𝑛
) > 0

for all 𝑛 ≥ 0, where 𝜌
𝑛
= 𝛿
𝑛
(1 − 𝛼

𝑛
)
−1. So if 𝛿

𝑛
∈ (0, 1), then

automatically (3 − 2𝜌
𝑛
) > 0 for all 𝑛 ≥ 0.

Remark 14. We have dropped the conditions 𝛽
𝑛
≥ 1/2, 𝑟

𝑛
∈

(0, 1), and lim sup
𝑛→∞

𝑟
𝑛
< 1 used in the literature to derive

strong convergence of the sequence generated by (7) under
the conditions of Theorem 13. Therefore, Theorem 13 is an
improvement of the aforementioned results.

Theorem 15. Let𝐻 be a real Hilbert space and let 𝑓 : 𝐻 → 𝐻

be a 𝜅-contraction with 𝜅 < 1/2. Assume that 𝐴 : 𝐷(𝐴) =

𝐻 → 𝐻 is a 𝛽-cocoercive operator and 𝐵 : 𝐷(𝐵) ⊂ 𝐻 → 𝐻 is
a maximal monotone operator with 𝑆 fl (𝐴 + 𝐵)

−1

(0) ̸= 0. For
𝑥
0
∈ 𝐻, let (𝑥

𝑛
) be a sequence generated by (7) with𝛼

𝑛
∈ (0, 1),

𝛾
𝑛
∈ (−3/2, 1), and 𝛿

𝑛
∈ (0, 3/2) satisfying 𝛼

𝑛
+ 𝛾
𝑛
+ 𝛿
𝑛
= 1,

𝑟
𝑛
∈ (0, 𝛽], and (𝑒

𝑛
) is a sequence of errors in 𝐻. Then, (𝑥

𝑛
)

converges strongly to the unique fixed point 𝑧 of 𝑃
𝑆
𝑓, provided

that

(i) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=0
𝛼
𝑛
= ∞,

(ii) lim inf
𝑛→∞

𝑟
𝑛
> 0,

(iii) 0 < lim inf
𝑛→∞

𝛿
𝑛
≤ lim sup

𝑛→∞
𝛿
𝑛
< 3/2,

(iv) ‖𝑒
𝑛
‖ ≤ 𝜂
𝑛
‖𝑥
𝑛
−𝐽
𝐵

𝑟
𝑛

(𝐼−𝑟
𝑛
𝐴)𝑥
𝑛
‖with lim

𝑛→∞
𝜂
2

𝑛
/𝛼
𝑛
= 0.
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Proof. Similar to the proof ofTheorem 10, we assumewithout
loss of generality that 𝛼

𝑛
< 1/2 for all 𝑛. Following similar

steps as in the proof of Theorem 10, we derive
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
(1 − 2𝜅)) (1 + 𝜖

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝐾 + 𝜖
𝑛
𝐾 − (1 − 2𝛼

𝑛
) (1 + 𝜖

𝑛
)

⋅
𝜌
𝑛
(3 − 2𝜌

𝑛
)

4

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

,

(66)

where 𝑧 is the unique fixed point of 𝑃
𝑆
𝑓, 𝐾 fl 2‖𝑓(𝑧) − 𝑧‖

2,
and 𝜖
𝑛
fl 𝐶𝜂

2

𝑛
for some positive constant 𝐶. Since 𝛼

𝑛
≤ 1/2

for all 𝑛, by our assumption, the inequality above reduces to
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
(1 − 2𝜅)) (1 + 𝜖

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝐾 + 𝜖
𝑛
𝐾.

(67)

It is clear from the condition 𝜂
2

𝑛
/𝛼
𝑛
→ 0 as 𝑛 → 0 that

𝜖
𝑛
/𝛼
𝑛
→ 0 as 𝑛 → 0, and we may therefore assume without

loss of generality that 𝜖
𝑛
(3 − 2𝛼

𝑛
) ≤ 𝛼

𝑛
for all 𝑛 ≥ 0. The

conclusion that (𝑥
𝑛
) is bounded follows on applying Lemma 7

with 𝑠
𝑛
fl ‖𝑥
𝑛
− 𝑧‖
2.

Again, similar to the proof of Theorem 10, we obtain
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
(1 − 2𝜅))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝑏̂
𝑛

− 𝐿 (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

,

(68)

for some positive constant 𝐿, where (𝑏̂
𝑛
) is the sequence

denoted by

𝑏̂
𝑛
fl 2 ⟨𝑓 (𝑧) − 𝑧 + 𝑒

𝑛
, 𝑥
𝑛+1

− 𝑧⟩

+ (𝛼
𝑛
+
󵄩󵄩󵄩󵄩𝑒𝑛

󵄩󵄩󵄩󵄩 +
𝜖
𝑛

𝛼
𝑛

)𝑀

(69)

with an appropriate constant𝑀 > 0. We will show that 𝑠
𝑛
fl

‖𝑥
𝑛
− 𝑧‖
2

→ 0 as 𝑛 → ∞ by considering the following two
cases on the sequence (𝑠

𝑛
).

Case 1. Assume that (𝑠
𝑛
) is eventually decreasing (i.e., there

exists 𝑛
0
≥ 1 such that (𝑠

𝑛
) is decreasing for all 𝑛 ≥ 𝑛

0
). Then,

(𝑠
𝑛
) converges and rearranging terms in (68) yields

𝐿 (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
(1 − 2𝜅) 𝑠

𝑛

≤ (𝑠
𝑛
− 𝑠
𝑛+1

) + 𝛼
𝑛
𝑏̂
𝑛
,

(70)

which implies that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝐵

𝑟
𝑛

(𝐼 − 𝑟
𝑛
𝐴) 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (71)

From this limit and Lemma 5, we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝐵

𝑟
(𝐼 − 𝑟𝐴) 𝑥

𝑛

󵄩󵄩󵄩󵄩󵄩
= 0, (72)

where 𝑟 > 0 is the lower bound of (𝑟
𝑛
).Then, following similar

steps as in the proof of Theorem 10, we obtain

lim sup
𝑛→∞

⟨𝑓 (𝑧) − 𝑧, 𝑥
𝑛+1

− 𝑧⟩ ≤ 0. (73)

As a consequence of 𝜂2
𝑛
/𝛼
𝑛
→ 0 and 𝛼

𝑛
→ 0 as 𝑛 → ∞, we

derive ‖𝑒
𝑛
‖ → 0 as 𝑛 → ∞ and also

lim sup
𝑛→∞

𝑏
𝑛
≤ 0. (74)

Therefore, from (68), we obtain

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
(1 − 2𝜅))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧
󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝑏
𝑛
, (75)

which together with the last limit and Lemma 8 implies that
‖𝑥
𝑛
− 𝑧‖ → 0 as 𝑛 → ∞.

Case 2. The sequence (𝑠
𝑘
) is not eventually decreasing; that is,

there is a subsequence (𝑠
𝑘
𝑗

) of (𝑠
𝑘
) such that 𝑠

𝑘
𝑗

< 𝑠
𝑘
𝑗
+1

for
all 𝑗 ≥ 0. Again in this case we define an integer sequence
(𝑚
𝑘
)
𝑘≥𝑘
0

as in Lemma 9. Note that the subsequence (𝑠
𝑚
𝑘

)

satisfies the condition 𝑠
𝑚
𝑘

≤ 𝑠
𝑚
𝑘
+1

for all 𝑘 ≥ 𝑘
0
. It then

follows from (68) that

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚
𝑘
+1
− 𝑧

󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑚
𝑘

(1 − 2𝜅))
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚
𝑘
+1
− 𝑧

󵄩󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑚
𝑘

𝑏̂
𝑚
𝑘

− 𝐿 (1 − 𝛼
𝑚
𝑘

)
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚
𝑘

− 𝐽
𝐵

𝑟
𝑚
𝑘

(𝐼 − 𝑟
𝑚
𝑘

𝐴)𝑥
𝑚
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩

2

,

(76)

for some positive constant 𝐿, where (𝑏̂
𝑚
𝑘

) is the sequence
denoted by

𝑏̂
𝑚
𝑘

fl 2 ⟨𝑓 (𝑧) − 𝑧 + 𝑒
𝑚
𝑘

, 𝑥
𝑚
𝑘
+1
− 𝑧⟩

+ (𝛼
𝑚
𝑘

+
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑚
𝑘

󵄩󵄩󵄩󵄩󵄩
+

𝜖
𝑚
𝑘

𝛼
𝑚
𝑘

)𝑀

(77)

with an appropriate constant 𝑀 > 0. Note that, from
𝜂
2

𝑚
𝑘

/𝛼
𝑚
𝑘

→ 0 and 𝛼
𝑚
𝑘

→ 0 as 𝑘 → ∞, we derive ‖𝑒
𝑚
𝑘

‖ → 0

as 𝑘 → ∞ and

lim sup
𝑘→∞

𝑏̂
𝑚
𝑘

= lim sup
𝑘→∞

⟨𝑓 (𝑧) − 𝑧 + 𝑒
𝑚
𝑘

, 𝑥
𝑚
𝑘
+1
− 𝑧⟩ . (78)

Rearranging terms in (76), we obtain

𝐿 (1 − 𝛼
𝑚
𝑘

)
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚
𝑘

− 𝐽
𝐵

𝑟
𝑚
𝑘

(𝐼 − 𝑟
𝑚
𝑘

𝐴)𝑥
𝑚
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑚
𝑘

(1 − 2𝜅) 𝑠
𝑚
𝑘
+1
≤ 𝛼
𝑚
𝑘

𝑏
𝑚
𝑘

,

(79)

for 𝑠
𝑚
𝑘
+1

= ‖𝑥
𝑚
𝑘
+1
− 𝑧‖
2. Taking the limit as 𝑘 → ∞ and

noting that (𝑏̂
𝑚
𝑘

) is bounded, we arrive at

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑚
𝑘

− 𝐽
𝐵

𝑟
𝑚
𝑘

(𝐼 − 𝑟
𝑚
𝑘

𝐴)𝑥
𝑚
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩
= 0. (80)

Similar to the proof of Theorem 10, we deduce that

lim sup
𝑘→∞

𝑏
𝑚
𝑘

= lim sup
𝑘→∞

⟨𝑓 (𝑧) − 𝑧 + 𝑒
𝑚
𝑘

, 𝑥
𝑚
𝑘
+1
− 𝑧⟩

≤ 0.

(81)
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From (79), we derive

(1 − 2𝜅) 𝑠
𝑚
𝑘
+1
≤ 𝑏̂
𝑚
𝑘

, (82)

which together with the fact that 2𝜅 < 1 implies that 𝑠
𝑚
𝑘
+1
→

0 as 𝑘 → ∞. Since 𝑠
𝑘
≤ 𝑠
𝑚
𝑘
+1

for all 𝑘 ≥ 𝑛
0
, it follows that

𝑠
𝑘
→ 0 as 𝑘 → ∞. This completes the proof of the theorem.

Remark 16. If we take 𝐴 = 0 and 𝑓(𝑥) = 𝑢 for all 𝑥 ∈ 𝐻

in Theorem 15, where 𝑢 ∈ 𝐻 is a given fixed vector, then
we get an improvement and extension of [26, Theorem 2].
Strong convergence results that extend [22, Theorem 2.2]
and [27, Theorem 1] and many other results associated with
the contraction proximal point algorithm under the accuracy
criterion given in condition (iv) of Theorem 15 can also be
obtained.
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