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Positive semidefinite matrix completion (PSDMC) aims to recover positive semidefinite and low-rank matrices from a subset of
entries of a matrix. It is widely applicable in many fields, such as statistic analysis and system control. This task can be conducted
by solving the nuclear norm regularized linear least squares model with positive semidefinite constraints. We apply the widely used
alternating directionmethod of multipliers to solve the model and get a novel algorithm.The applicability and efficiency of the new
algorithm are demonstrated in numerical experiments. Recovery results show that our algorithm is helpful.

1. Introduction

Matrix completion (MC) is the process of recovering the
unknown or missing elements of a matrix. Under certain
assumptions on thematrix, for example, low-rank or approxi-
mately low-rank, the incomplete matrix can be reconstructed
very well [1, 2]. Matrix completion is widely applicable in
many fields, such as machine learning, statistic analysis,
system control, and image and video processing [3], where
matrices with low-rank or approximately low-rank are widely
used in the model construction.

Recently, there have been extensive research on the prob-
lems of low-rankmatrix completion (LRMC).The affine rank
minimization problem consists of finding a matrix of mini-
mum rank that satisfies a given system of linear constraints.
However, it is NP-hard (nondeterministic polynomial-time
hard) due to the combinatorial nature of the rank function.
References [1, 2] showed that the solution of LRMC could
be found by solving a nuclear norm minimization prob-
lem under some reasonable conditions. The singular value
thresholding (SVT) method [4] and fixed point continuation
method using approximate singular value decomposition
(FPCA) [5] are two well-known algorithms because of their
good recoverability, fast speed, and robustness. SVT applied
the linearized Bregman iterations to solve the unconstrained
nuclear norm regularized linear least squares problem. FPCA
used iterations based on an iterative shrinkage-thresholding
algorithm and used the continuation technique together with

an approximate singular value decomposition procedure to
accelerate the algorithm. Reference [6] proposed an accel-
erated proximal gradient singular value thresholding algo-
rithm.A completely differentmodel was developed in LMaFit
[7], which was a nonlinear successive overrelaxation algo-
rithm that only requires solving a linear least squares problem
per iteration.More details on LRMC can be found in [1, 8–10]
and references therein.

In practice, the completed matrix is often required to be
positive semidefinite. For example, covariance matrix and its
inverse: precisionmatrix of statistic analysis, are both positive
semidefinite. Recently, there have been extensive research
on high-dimensional covariance matrix estimation. They all
motivate the development of positive semidefinite matrix
completion (PSDMC). Reference [11] accomplished the
matrix completion task in some special conditions and used
the alternating direction method of multipliers (ADMM)
[12–15] to solve the model. References [16, 17] proposed new
models for nonnegative matrix completion and also used
ADMM to solve them.

Ourmain contribution in this work is the development of
an efficient algorithm for PSDMC. First of all, we present the
nuclear norm regularized linear least squaresmodelwith pos-
itive semidefinite constraints. Because of its robustness, we
choose it as the model of PSDMC in this paper.The structure
of the model suggests an alternating minimization scheme,
which is very suitable for solving large-scale problems. We
give an exact ADMM-based algorithm, whose subproblems
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are solved exactly. We test the new ADMM-based algo-
rithm on two kinds of problems: random matrix completion
problems and random low-rank approximation problems.
Numerical experiments show that all our proposed algorithm
outputs have satisfactory results. The paper is organized
as follows. Section 2 presents models and algorithms of
PSDMC. Some numerical results are given in Section 3.

The following notations will be used throughout this
paper. Uppercase (lowercase) letters are used for matrices
(column vectors). All vectors are column vectors; the sub-
script (⋅)𝑇 denotes matrix and vector transposition. Diag(𝑥)
denotes a diagonal matrix with 𝑥 on its main diagonal. 0 is a
matrix of all zeros of proper dimension; 𝐼𝑛 stands for the 𝑛×𝑛
identity matrix.The trace of𝑋 ∈ R𝑚×𝑛, that is, the sum of the
diagonal elements of 𝑋, is denoted by tr(𝑋). The Frobenius
norm of 𝑋 ∈ R𝑚×𝑛 is defined as ‖𝑋‖𝐹 = √∑𝑖,𝑗 |𝑋𝑖,𝑗|2. The
Euclidean inner product between twomatrices𝑋 ∈ R𝑚×𝑛 and
𝑍 ∈ R𝑚×𝑛 is defined as ⟨𝑋, 𝑍⟩ = ∑𝑖,𝑗(𝑋𝑖,𝑗𝑍𝑖,𝑗) = tr(𝑋⊤𝑍).
The inequality 𝑋 ⪰ 0 means that 𝑋 is semidefinite positive.
The equality𝑋 = 𝑍means that𝑋𝑖𝑗 = 𝑍𝑖𝑗 for all entries (𝑖, 𝑗).

2. ADMM-Based Methods for PSDMC

2.1. The Model of PSDMC. The matrix completion problem
of recovering a positive semidefinite low-rank matrix from a
subset of its entries is

min rank (𝑋)
s.t. 𝑋𝑖𝑗 = 𝑀𝑖𝑗, ∀ (𝑖, 𝑗) ∈ Ω

𝑋 ⪰ 0,
(1)

where 𝑋 ∈ R𝑚×𝑛 is the decision variable and Ω is the index
set of 𝑝 known elements of𝑋.

Let P be the projection onto the subspace of sparse
matrices with nonzeros restricted to the index set Ω; that is,

PΩ (𝑋)𝑖𝑗 = {{{
𝑋𝑖𝑗, if (𝑖, 𝑗) ∈ Ω,
0, otherwise. (2)

From the definition of PΩ, we can reformulate the
equality constraint in model (1) in terms of PΩ(𝑋) =
PΩ(𝑀). Due to the combinational property of the objective
function rank(⋅), model (1) is NP-hard in general. Inspired
by the success of matrix completion under nuclear norm in
[1, 2, 10], we use the nuclear norm as an approximation to
rank(𝑋) to estimate the optimal solution 𝑋∗ of model (1)
from the following model:

min ‖𝑋‖∗
s.t. PΩ (𝑋) = PΩ (𝑀)

𝑋 ⪰ 0,
(3)

where the nuclear norm ‖𝑋‖∗ of 𝑋 is defined as the summa-
tion of the singular values of𝑋; that is,

‖𝑋‖∗ =
min(𝑚,𝑛)
∑
𝑖=1

𝜎𝑖 (𝑋) , (4)

where 𝜎𝑖(𝑋) is the 𝑖th largest singular value. Moreover, for a
positive semidefinite matrix, ‖𝑋‖∗ = ⟨𝐼, 𝑋⟩ = tr(𝑋).

If the known elements of the matrix𝑋 are noise-free, that
is to say, PΩ(𝑀) is reliable, we will directly solve model (3)
to conduct SDPMC. On the contrary, if the vector of known
elements PΩ(𝑀) is contaminated by noise, the constraints
PΩ(𝑋) = PΩ(𝑀)must be relaxed, resulting in the following
problem:

min
𝑋

tr (𝑋) ,
s.t. PΩ (𝑋) −PΩ (𝑀)𝐹 ⩽ 𝛿,

𝑋 ⪰ 0,
(5)

or the nuclear norm regularized linear least squares model
with positive semidefinite constraints:

min
𝑋

𝜇 tr (𝑋) + 12
PΩ (𝑋) −PΩ (𝑀)2𝐹 ,

s.t. 𝑋 ⪰ 0.
(6)

Here, 𝛿 and 𝜇 are given parameters, whose values should be
set according to the noise level.When the values of𝜇 and 𝛿 are
set properly, (5) and (6) are equivalent. Model (6) is usually
preferred over (5) for the case of noisy observations.Our algo-
rithms can be extended to treat (5) withminormodifications.

Actually, model (6) is especially useful in practice. The
reason is that the known information is usually gotten from
large surveys and contaminated by sampling error inevitably.
In this paper, we choose model (6) as the model to conduct
NMC.

2.2. An ADMM-Based Method for Model (6). In this subsec-
tion, we present an algorithm developed for model (6). To
facilitate an efficient use of ADMM, we introduce one new
matrix (splitting) variable 𝑌 and consider an equivalent form
of model (6):

min
𝑋,𝑌

𝜇 tr (𝑋) + 12
PΩ (𝑌) −PΩ (𝑀)2𝐹 ,

s.t. 𝑋 = 𝑌,
𝑋 ⪰ 0,

(7)

where 𝑋, 𝑌 ∈ R𝑛×𝑛. The augmented Lagrangian function of
model (7) is

L (𝑋, 𝑌,Π) = 𝜇 tr (𝑋) + 12
PΩ (𝑌) −PΩ (𝑀)2𝐹

+ ⟨Π,𝑋 − 𝑌⟩ + 𝜌2 ‖𝑋 − 𝑌‖2𝐹 ,
(8)

whereΠ ∈ R𝑛×𝑛 is a Lagrangian multiplier. 𝜌 > 0 is a penalty
parameter.
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(1) InputPΩ(𝑀), 𝐼𝑚 ≥ 0, and tol ≥ 0.
(2) Set 𝜇, 𝛾, and 𝜌 ≥ 0. Set𝑋0 and 𝑌0 as random matrices, and Π0 as zero matrices of appropriate sizes.
(3) while 𝑛𝑜𝑡 𝑐𝑜𝑛V𝑒𝑟𝑔𝑒 do
(4) update𝑋𝑘, 𝑌𝑘, Π𝑘 by the formulas (16a), (16b) and (16c).

Algorithm 1: An exact ADMM-based algorithm of PSDMC.

The alternating directionmethod ofmultipliers formodel
(7) is derived by successively minimizing L with respect to
𝑋 and 𝑌 in an alternating fashion; namely,

𝑋𝑘+1 fl argmin
𝑋⪰0

L (𝑋, 𝑌𝑘, Π𝑘) , (9a)

𝑌𝑘+1 fl argmin
𝑌

L (𝑋𝑘+1, 𝑌, Π𝑘) , (9b)

Π𝑘+1 fl Π𝑘 + 𝛾𝜌 (𝑋𝑘+1 − 𝑌𝑘+1) , (9c)

where 𝛾 ∈ (0, 1.618).
By rearranging the terms of (9a), it is equivalent to

min
𝑋⪰0

𝜇tr (𝑋) + 𝜌2
𝑋 − 𝐺𝑘2𝐹 , (10)

where𝐺𝑘 = 𝑌𝑘−(1/𝜌)Π𝑘. Let its Eigenvalue Value Decompo-
sition (EVD) be 𝐺𝑘 = 𝑈𝑘Diag(𝑤𝑘)𝑈𝑇𝑘 , where 𝑈𝑘 ∈ R𝑛×𝑛 and
𝑤𝑘 ∈ 𝑅𝑛. Define the shrinkage operator 𝑆](⋅) as

𝑆] (𝑤) = 𝑤, with 𝑤𝑖 = {{{
𝑤𝑖 − ], if 𝑤𝑖 − ] > 0,
0, otherwise. (11)

Then

𝑋𝑘+1 fl 𝑈𝑘Diag (𝑆𝜇/𝜌 (𝑤𝑘))𝑈𝑇𝑘 (12)

is an optimal solution of problem (9a).
By rearranging the terms of (9b), it is equivalent to

min
𝑌∈R𝑛×𝑛

1
2
PΩ (𝑌) −PΩ (𝑀)2𝐹

+ 𝜌2
𝑌 − (𝑋𝑘 +

1
𝜌Π𝑘)


2

𝐹

.
(13)

Model (13) can be split into two subproblems:

min 1
2
PΩ (𝑌) −PΩ (𝑀)2𝐹

+ 𝜌2
PΩ (𝑌) −PΩ (𝑋𝑘 + 1𝜌Π𝑘)


2

𝐹

,

min
PΩ̂ (𝑌) −PΩ̂ (𝑋𝑘 + 1𝜌Π𝑘)


2

𝐹

,

(14)

where Ω̂ is the complement of Ω. Finally, we can get the
solution of (13) by solving the above two subproblems.

(𝑌𝑘+1)Ω = 1
𝜌 + 1PΩ (𝑀 + 𝜌𝐸𝑘) ,

(𝑌𝑘+1)Ω̂ = PΩ̂ (𝐸𝑘) ,
(15)

where 𝐸𝑘 = 𝑋𝑘 + (1/𝜌)Π𝑘.

In short, ADMMapplied tomodel (7) yields the iteration:

𝑋𝑘+1 fl 𝑈𝑘Diag (𝑆𝜇/𝜌 (𝑤𝑘))𝑈𝑇𝑘 , (16a)

(𝑌𝑘+1)Ω fl 1
𝜌 + 1PΩ (𝑀 + 𝜌𝐸𝑘) ,

(𝑌𝑘+1)Ω̂ fl PΩ̂ (𝐸𝑘) ,
(16b)

Π𝑘+1 fl Π𝑘 + 𝛾𝜌 (𝑋𝑘+1 − 𝑌𝑘+1) . (16c)

From the above considerations, we arrive at Algorithm 1.
The convergence of ADMM and its variants for convex

problems has been studied extensively. The interested reader
is referred to [12–15, 18–20], and the references therein. Since
model (6) is convex, the convergence of Algorithm 1 to a
global optimal solution is guaranteed.

3. Numerical Results

In this section, we report on the application of our proposed
ADMM-based algorithm to a series of matrix problems to
demonstrate its ability. To illustrate the performance of our
algorithmic approaches combined with different procedures,
we test the following two solvers.

(1) ADMM-VI; Algorithm 2 in [11].
(2) ADMM-SDP; Algorithm 1, the exact ADMM-based

method for model (6).

We implement our algorithms in MATLAB. All the
experiments are performed on a 2.20GHz Intel Pentium PC
with 6.0GHz of memory and MATLAB 2012b.

3.1. Implementation and Parameters of the Two Solvers. We
test the above two solvers on random positive semidefinite
matrix problems. We do numerical experiments by the
following procedure. Firstly, we create a low-rank positive
semidefinite matrix𝑀 ∈ S𝑛+. Secondly, we select a subset of𝑝 elements uniformly at random from the 𝑛 × 𝑛 elements of
𝑀 and denote their index set asΩ. The index set of unknown
elements is denoted as Ω̂.The ratio 𝑝/𝑛2 between the number
of measurements and the number of entries in the matrix is
denoted as “SR” (sampling ratio).We usePΩ(𝑀) to complete
𝑋; the result is denoted as �̂�. Finally, we will check the
differences between �̂� and its actual value𝑀.

err = �̂� − 𝑀𝐹 . (17)

The most important algorithmic parameters in Algorithm 1
are 𝜇, 𝛾, tol, 𝜌, and the maximal number of iterations 𝐼𝑚.
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Table 1: Numerical results of different values of 𝜇 (𝑛 = 2000, 𝑟 = 20, 𝜎 = 0.01).
SR 𝜇 = 10−2 𝜇 = 10−1 𝜇 = 1 𝜇 = 10

Iter Rank Err Iter Rank Err Iter Rank Err Iter Rank Err
0.25 67 297 6.54𝑒 − 03 57 20 2.93𝑒 − 03 44 20 7.79𝑒 − 03 72 20 8.80𝑒 − 02
0.35 50 274 5.61𝑒 − 03 38 20 2.37𝑒 − 03 32 20 7.17𝑒 − 03 51 20 5.91𝑒 − 02
0.45 39 194 3.90𝑒 − 03 28 20 1.97𝑒 − 03 26 20 5.05𝑒 − 03 39 20 4.62𝑒 − 02
0.55 33 137 2.91𝑒 − 03 22 20 1.77𝑒 − 03 21 20 3.53𝑒 − 03 31 20 3.69𝑒 − 02
0.65 29 97 2.26𝑒 − 03 17 20 1.58𝑒 − 03 17 20 3.15𝑒 − 03 26 20 2.97𝑒 − 02
0.75 26 55 1.71𝑒 − 03 15 20 1.43𝑒 − 03 14 20 2.87𝑒 − 03 22 20 2.62𝑒 − 02
0.85 23 20 1.46𝑒 − 03 12 20 1.37𝑒 − 03 11 20 2.75𝑒 − 03 19 20 2.25𝑒 − 02

Table 2: Numerical results on medium randomly created matrix completion problems.

(𝑛, 𝑟, SR) ADMM-VI ADMM-SDP
Iter Rank Err Iter Rank Err

(500, 10, 0.45) 24 10 2.43𝑒 − 03 29 10 2.62𝑒 − 03
(500, 10, 0.65) 16 10 2.12𝑒 − 03 19 10 2.09𝑒 − 03
(500, 10, 0.85) 10 10 1.90𝑒 − 03 13 10 1.88𝑒 − 03
(2000, 10, 0.45) 27 10 1.86𝑒 − 03 26 10 1.53𝑒 − 03
(2000, 10, 0.65) 18 10 1.19𝑒 − 03 17 10 1.17𝑒 − 03
(2000, 10, 0.85) 11 10 1.24𝑒 − 03 13 10 1.04𝑒 − 03
(2000, 20, 0.45) 27 20 2.12𝑒 − 03 28 20 2.20𝑒 − 03
(2000, 20, 0.65) 16 20 1.84𝑒 − 03 18 20 1.69𝑒 − 03
(2000, 20, 0.85) 11 20 1.46𝑒 − 03 13 20 1.38𝑒 − 03

In our implementation, we set 𝛾 = 1.618, tol = 2 × 10−4,
𝜌 = 2.5/𝑛, and 𝐼𝑚 = 300. However, the value of 𝜇 is very
difficult to set since it can be neither too large nor too small. 𝜇
is usually chosen to be a moderate value. Three sets of results
are computed when 𝜇 is equal to three different values. They
are shown in Table 1.

We can use continuation technique employed in [5, 6] to
accelerate the convergence of ADMM-SDP. If model (6) is to
be solved with the target parameter value 𝜇 = 𝜇, we propose
solving a sequence of model (6) by a decreasing sequence
{𝜇0, 𝜇1, . . .}. When a new problem, associated with 𝜇𝑗+1, is to
be solved, the approximate solution for the current problem
with 𝜇 = 𝜇𝑗 is used as the starting point. In our numerical
experiments in Section 3.2, we set the initial 𝜇0 = 1 and
update 𝜇𝑘 = 𝜇𝑘−1/1.01 at iteration 𝑘. A stopping criterion of
Algorithm 1 ismet as long as all the following three conditions
are satisfied:

𝑋𝑘 − 𝑋𝑘−1𝐹 ≤ tol, (18a)
𝑋𝑘 − 𝑌𝑘𝐹 ≤ tol, (18b)

PΩ (𝑋𝑘) −PΩ (𝑀)𝐹 ≤ tol. (18c)

3.2. Experiments on Random Matrix Completion Problems.
Thematrix𝑀 ∈ S𝑚×𝑛+ with rank 𝑟 in this subsection is created
randomly by the following procedure (see also [5, 7]): two
random matrices 𝑀𝐿 ∈ R𝑛×𝑟 and 𝑀𝑅 ∈ 𝑅𝑛×𝑟 with i.i.d.
standard Gaussian entries are first generated, Σ ∈ R𝑛×𝑛 is the

noisematrix, and 𝜎 > 0.Then𝑀 = 𝑀𝐿𝑀𝑇𝑅+𝜎Σ is assembled.
From the creation process of𝑀, its rank is no larger than 𝑟.

The computational results of positive semidefinite matrix
completion are presented in Table 2. We can observe that our
proposed solver performs as well as ADMM-VI. Both of them
can output satisfactory results.
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