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This paper deals with numerical analysis and computing of spread option pricing problem described by a two-spatial variables
partial differential equation. Both European and American cases are treated. Taking advantage of a cross derivative removing
technique, an explicit difference scheme is developed retaining the benefits of the one-dimensional finite difference method,
preserving positivity, accuracy, and computational time efficiency. Numerical results illustrate the interest of the approach.

1. Introduction

Multiasset option pricing problem has two main challenges
arising from their high dimensions and the correlations
between assets. This is a type of option that derives its
value from the difference between the prices of two or more
assets. Spread options can be written on all types of financial
products including equities, bonds, and currencies. Spread
options are frequently traded in the energy market [1]. Two
examples are as follows.

Crack Spreads. Crack spreads are the options on the spread
between refined petroleum products and crude oil. The
spread represents the refinement margin made by the oil
refinery by “cracking” the crude oil into a refined petroleum
product.

Spark Spreads. Spark spreads are the options on the spread
between electricity and some type of fuel. The spread repre-
sents the margin of the power plant, which takes fuel to run
its generator to produce electricity.

Since the closed form solution is not available for such
problems, many numerical methods are employed. Probably
the most popular methods of solving multiasset option
pricing problems are those around Monte Carlo method and
its modifications [2, 3]. However, their simulation are usually
time consuming and slow convergent [4].

Analytical-numerical methods are also existing in the
literature as it occurs in the one asset case. So, Kirk and Aron
[5] provide an approximation method to price a bivariate
spread option problem, but it is inaccurate when the strike
prices are high [1, 6, 7]. Alexander and Venkatramanan
improve Kirk’s approach in [6] based on the hypothesis that
the spread option price is the sum of the prices of two
compound exchange options which avoids any strike conven-
tion.

Fourier Transform approach and numerical integration
techniques are used by Chiarella and Ziveyi in [8, 9] for
numerical evaluation of American options written on two
underlying assets.

Among the numerical methods we mention the so-called
lattice methods [10, 11]. Recently authors in [4] improve the
results of [10, 11] and give fast and accurate results although it
requires some minor correlation restrictions.

Dealing with pure finite difference methods the existence
of the cross derivative term in the partial differential equation
(PDE) problem due to asset correlation introduces additional
challenges in the numerical solution due to the existence of
negative coefficient terms in the numerical scheme as well as
involving expensive stencil schemes. Both facts may produce
numerical drawbacks coming from the dominance of the
convection versus the diffusion as well as more expensive
computational cost [12–15].
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In order to overcome these difficulties the authors have
recently proposed several strategies dealing with finite dif-
ference approach: high order compact schemes are proposed
in [16] using central difference approximations for stochastic
volatility Hestonmodel.The authors in [17] use ADImethods
and clever discretizations to obtain stable numerical schemes
under minor coefficients restrictions in the PDE.The authors
of [14, 18] use special finite difference approximations of the
cross derivative term based on a seven-point stencil instead of
the nine-point stencil scheme resulting from the central finite
difference approach.

In this paper we continue removing cross derivative
approach based on the transformation of the PDE problem
initiated in [12] for the case of one asset stochastic volatility
Heston model and applied to the Bates stochastic volatility
jump diffusion model in [19]. Apart from avoiding negative
coefficients in the proposed scheme, it has the additional
computational advantage that uses only a five-point stencil.

Herewe consider spread option pricing problems for both
European and American cases. The paper is organized as
follows.The first part of the paper deals with European spread
call option with payoff 𝑔(𝑆1, 𝑆2) = (𝑆1 − 𝑆2 − 𝐸)+, depending
on two assets 𝑆1 and 𝑆2 and strike price 𝐸 ≥ 0. In Section 2
the PDE with the boundary conditions is established for the
spread option pricing problem. In Section 3 we remove the
cross derivative term of the PDE using the canonical form
transformation method [20]. In that section we also develop
the discretization of the continuous European spread call
option problem achieving an explicit finite difference scheme.
Section 4 is devoted to the study of the properties of the
method like consistence and conditional stability and posi-
tivity. In Section 5 we extend the study of previous sections
to the European spread put option summarizing the main
results including the treatment of the boundary conditions.
Section 6 deals withAmerican spread option pricing problem
using the LCP technique based on the proposed difference
scheme. Finally, in Section 7 we illustrate the numerical
results computing, simulating, and comparing accuracy and
CPU time with other well acknowledge methods.

Throughout the paper, we use the following notation:‖𝐴‖∞ = max {|𝑎𝑖𝑗| : 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑀} will denote a
supremum norm for a given matrix 𝐴 = (𝑎𝑖𝑗) ∈ R𝑁×𝑀.
2. Spread Option Pricing Problem and
Boundary Conditions

The price 𝑈(𝑆1, 𝑆2, 𝜏) of a spread option is the solution of the
PDE

𝜕𝑈𝜕𝜏 = 12𝜎21𝑆21 𝜕
2𝑈𝜕𝑆21 +

12𝜎22𝑆22 𝜕
2𝑈𝜕𝑆22 + 𝜌𝜎1𝜎2𝑆1𝑆2

𝜕2𝑈𝜕𝑆1𝜕𝑆2
+ (𝑟 − 𝑞1) 𝑆1 𝜕𝑈𝜕𝑆1 + (𝑟 − 𝑞2) 𝑆2

𝜕𝑈𝜕𝑆2 − 𝑟𝑈,
0 < 𝑆1 < ∞, 0 < 𝑆2 < ∞, 0 < 𝜏 ≤ 𝑇,

(1)

where 𝜏 = 𝑇−𝑡 is the time to maturity 𝑇, 𝑟 is the interest rate,𝜎𝑖 is the volatility of the asset 𝑆𝑖, 𝑞𝑖 is the dividend yield of

asset 𝑆𝑖, and 𝜌 is the correlation parameter; see [1]. Since we
consider backwards time, it changes the signs of the coeffi-
cients of (1) and instead of a terminal condition the following
initial condition is considered:

𝑈(𝑆1, 𝑆2, 0) = 𝑔 (𝑆1, 𝑆2) = max (𝑆1 − 𝑆2 − 𝐸, 0)
= (𝑆1 − 𝑆2 − 𝐸)+ . (2)

The case 𝐸 = 0 corresponds to exchange options that can
be reduced to 1D problem by the change of variables 𝑥1 =𝑆1/𝑆2, 𝑐(𝑥1, 𝜏) = 𝑈(𝑆1, 𝑆2, 𝜏)/𝑆2.

Since the numerical solution of European multiasset
options requires the selection of a bounded numerical
domain and the translation of the boundary conditions to
the boundary of the domain, it is important to pay attention
to such conditions. For the initial problem (1)-(2) suitable
boundary conditions areas follows.

(1) For 𝑆1 = 0 the payoff (𝑆1−𝑆2−𝐸)+ suggests Dirichlet’s
condition

𝑈 (0, 𝑆2, 𝜏) = 0, 0 < 𝑆2 < ∞, 0 < 𝜏 ≤ 𝑇, (3)

as one-dimensional call option.
(2) Taking the ideas developed by some authors, for

instance, Duffy for the case of basket option (see [21],
p. 270), for 𝑆2 = 0we take the value of the closed form
solution of the basic Black-Scholes equation of a call
for 𝑆1 with given strike 𝐸,
𝑈 (𝑆1, 0, 𝜏) = 𝑒−𝑟𝜏 (𝐹𝑁 (𝜙1) − 𝐸𝑁 (𝜙2)) , (4)

where

𝐹 = 𝑆1𝑒(𝑟−𝑞1)𝜏,
𝜙1 = 1𝜎1√𝜏 [log

𝐹𝐸 + 12𝜎21𝜏] ,
𝜙2 = 𝜙1 − 𝜎1√𝜏,

(5)

where𝑁(𝑥) is the standard normal cumulative distri-
bution function.

(3) As 𝑆1 is large versus 𝑆2 + 𝐸, then the behaviour of
the solution looks like the asymptotic value of a one-
dimensional vanilla call option with the strike (𝑆2+𝐸)
for 𝑆1 ≫ 𝑆2 + 𝐸 (see [22], p. 157),

𝑈 (𝑆1, 𝑆2, 𝜏) ≈ 𝑒−𝑞1𝜏𝑆1 − 𝑒−𝑟𝜏 (𝑆2 + 𝐸) , 𝑆1 ≫ 𝑆2 + 𝐸. (6)

(4) For large values of 𝑆2 we assume that the values are
almost constants when 𝑆2 changes; therefore we can
use Neuman’s boundary condition:

𝜕𝑈𝜕𝑆2 = 0. (7)

These boundary conditions will be validated with the
numerical examples.
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3. Removing the Correlation Term and
Problem Discretization

Webegin this section by transforming the PDE problem (1) in
order to remove the cross derivative term. Firstlywe eliminate
the reaction term 𝑟𝑈 by means of the substitution

𝑉 = 𝑒𝑟𝜏𝑈, (8)

obtaining

𝜕𝑉𝜕𝑡 = 12𝜎21𝑆21 𝜕
2𝑉𝜕𝑆21 +

12𝜎22𝑆22 𝜕
2𝑉𝜕𝑆22 + 𝜌𝜎1𝜎2𝑆1𝑆2

𝜕2𝑉𝜕𝑆1𝜕𝑆2
+ (𝑟 − 𝑞1) 𝑆1 𝜕𝑉𝜕𝑆1 + (𝑟 − 𝑞2) 𝑆2

𝜕𝑉𝜕𝑆2 .
(9)

In order to remove the cross derivative term, note that
the right-hand side of (9) is a linear differential operator of
two variables and classical techniques to obtain the canonical
form of second-order linear PDEs can be applied; see, for
instance, chapter 3 of [20]. Under the assumption of corre-
lated variables with −1 < 𝜌 < 1 the sign of the discriminant
is

𝑎212 − 4𝑎11𝑎22 = 𝜎21𝜎22𝑆21𝑆22 (𝜌2 − 1) < 0, (10)

where

𝑎11 = 12𝜎21𝑆21;
𝑎12 = 𝜌𝜎1𝜎2𝑆1𝑆2;
𝑎22 = 12𝜎22𝑆22.

(11)

Therefore, right-hand side of (9) becomes of elliptic type
and a convenient substitution to obtain the canonical form is
given by solving the ordinary differential equation

𝑑𝑆2𝑑𝑆1 +
𝜎2𝑆2𝜎1𝑆1 (−𝜌 ± 𝑖�̃�) = 0, (12)

where

�̃� = √1 − 𝜌2, (13)

and (𝜎2𝑆2/𝜎1𝑆1)(−𝜌 ± 𝑖�̃�) are the conjugate roots of 𝑎11𝑥2 +𝑎12𝑥 + 𝑎22 = 0. Solving (12) one gets
1𝜎2 log 𝑆2 +

−𝜌 ± 𝑖�̃�𝜎1 log 𝑆1 = 𝐶0, (14)

where one can relate the integration constant 𝐶0 to the new
variables by

𝑥 = Im (𝐶0) ,
𝑦 = −Re (𝐶0) . (15)

From (14) and (15) it follows the expression of the new
variables

𝑥 = �̃�𝜎1 log 𝑆1;
𝑦 = 𝜌𝜎1 log 𝑆1 −

1𝜎2 log 𝑆2.
(16)

Note that

𝑦 − 𝑚𝑥 = − 1𝜎2 log 𝑆2, 𝑚 = �̃�𝜌 . (17)

By denoting

𝑊(𝑥, 𝑦, 𝜏) = 𝑉 (𝑆1, 𝑆2, 𝜏) , (18)

(9) takes the following form without cross derivative term

𝜕𝑊𝜕𝜏 = �̃�
2

2 (𝜕
2𝑊𝜕𝑥2 + 𝜕

2𝑊𝜕𝑦2 ) + �̃�𝜎1 (𝑟 − 𝑞1 −
𝜎212 ) 𝜕𝑊𝜕𝑥

+ ( 𝜌𝜎1 (𝑟 − 𝑞1 −
𝜎212 ) − 1𝜎2 (𝑟 − 𝑞2 −

𝜎222 )) 𝜕𝑊𝜕𝑦 ,
(𝑥, 𝑦) ∈ R2, 0 < 𝜏 ≤ 𝑇.

(19)

In accordance with [23, 24] and (6) we choose the
rectangular domain (𝑆1, 𝑆2) ∈ [𝑎1, 𝑏1] × [𝑎2, 𝑏2] = Ω, where𝑎𝑖 > 0, 𝑖 = 1, 2, are small positive values; 𝑏2 about 3𝐸 and 𝑏1
about 3(𝑏2+𝐸). For the transformed problem (19) due to (16),
the rectangular domainΩ becomes a rhomboid with vertices𝐴𝐵𝐶𝐷 (see Figure 1). From (16) let us denote

𝑐1 = �̃�𝜎1 log 𝑎1,
𝑐2 = log 𝑎2𝜎2 ,
𝑑1 = �̃�𝜎1 log 𝑏1,
𝑑2 = log 𝑏2𝜎2 .

(20)

By (17) the rhomboid domain has the sides:

𝐴𝐷 = {(𝑥, 𝑦) : 𝑥 = 𝑐1, 𝑚𝑐1 − 𝑑2 ≤ 𝑦 ≤ 𝑚𝑐1 − 𝑐2} ,
𝐴𝐵 = {(𝑥, 𝑦) : 𝑐1 ≤ 𝑥 ≤ 𝑑1, 𝑦 = 𝑚𝑥 − 𝑑2} ,
𝐵𝐶 = {(𝑥, 𝑦) : 𝑥 = 𝑑1, 𝑚𝑑1 − 𝑑2 ≤ 𝑦 ≤ 𝑚𝑑1 − 𝑐2} ,
𝐷𝐶 = {(𝑥, 𝑦) : 𝑐1 ≤ 𝑥 ≤ 𝑑1, 𝑦 = 𝑚𝑥 − 𝑐2} .

(21)
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Figure 1: Transformed numerical domain.

Themesh points in the rhomboid domain are (𝑥𝑖, 𝑦𝑗) such
that

𝑥𝑖 = 𝑐1 + 𝑖ℎ, 𝑥𝑖 ∈ [𝑐1, 𝑑1] , 0 ≤ 𝑖 ≤ 𝑁𝑥,
Δ 𝑥 = ℎ = 𝑑1 − 𝑐1𝑁𝑥 ,
Δ 𝑦 = |𝑚| ℎ,
𝑁𝑦 = 𝑑2 − 𝑐2|𝑚| ℎ ,
𝑦𝑗 = 𝑚𝑥𝑖 − 𝑑2 + (𝑗 − 𝑖) |𝑚| ℎ, 𝑖 ≤ 𝑗 ≤ 𝑁𝑦 + 𝑖.

(22)

The approximations of the derivatives appearing in (19) at
the point (𝑥𝑖, 𝑦𝑗, 𝜏𝑛) are as follows:

𝜕𝑊𝜕𝑥 ∼ 𝑤𝑛𝑖+1,𝑗 − 𝑤𝑛𝑖−1,𝑗2ℎ ,
𝜕𝑊𝜕𝑦 ∼ 𝑤𝑛𝑖,𝑗+1 − 𝑤𝑛𝑖,𝑗−12 |𝑚| ℎ ,
𝜕2𝑊𝜕𝑥2 ∼

𝑤𝑛𝑖+1,𝑗 − 2𝑤𝑛𝑖,𝑗 + 𝑤𝑛𝑖−1,𝑗ℎ2 ,
𝜕2𝑊𝜕𝑦2 ∼

𝑤𝑛𝑖,𝑗+1 − 2𝑤𝑛𝑖,𝑗 + 𝑤𝑛𝑖,𝑗−1𝑚2ℎ2 ,
𝜕𝑊𝜕𝜏 ∼

𝑤𝑛+1𝑖,𝑗 − 𝑤𝑛𝑖,𝑗𝑘 ,

(23)

where 𝑤𝑛𝑖,𝑗 ∼ 𝑊(𝑥𝑖, 𝑦𝑗, 𝜏𝑛), 𝜏𝑛 = 𝑛𝑘.
Substituting these finite difference approximations of the

derivatives into (19) is approximated by the explicit difference
scheme with five-point stencil

𝑤𝑛+1𝑖,𝑗 = 𝛼1𝑤𝑛𝑖−1,𝑗 + 𝛼2𝑤𝑛𝑖+1,𝑗 + 𝛼3𝑤𝑛𝑖,𝑗 + 𝛼4𝑤𝑛𝑖,𝑗−1
+ 𝛼5𝑤𝑛𝑖,𝑗+1, (24)

where

𝛼1,2 = �̃�22 𝑘ℎ2 ∓ �̃�𝜎1 (𝑟 − 𝑞1 −
𝜎212 ) 𝑘2ℎ , (25)

𝛼3 = 1 − �̃�2 𝑘ℎ2 (1 + 1𝑚2 ) , (26)

𝛼4,5
= �̃�2𝑘2𝑚2ℎ2
∓ [�̃� (𝑟 − 𝑞1 − 𝜎21/2)𝜎1 − 𝑟 − 𝑞2 − 𝜎22/2𝜎2 ] 𝑘2 |𝑚| ℎ .

(27)

The discretization of the spatial boundary is given by

𝑃 (𝐴𝐷) = {(𝑥0, 𝑦𝑗) : 0 ≤ 𝑗 ≤ 𝑁𝑦} ,
𝑃 (𝐴𝐵) = {(𝑥𝑖, 𝑦𝑖) : 0 ≤ 𝑖 ≤ 𝑁𝑥} ,
𝑃 (𝐵𝐶) = {(𝑥𝑁𝑥 , 𝑦𝑗) : 𝑁𝑥 ≤ 𝑗 ≤ 𝑁𝑥 + 𝑁𝑦} ,
𝑃 (𝐷𝐶) = {(𝑥𝑖, 𝑦𝑁𝑦+𝑖) : 0 ≤ 𝑖 ≤ 𝑁𝑥} .

(28)

Both initial and boundary conditions (2), (3), (4), (6), and
(7) are transformed throughout (8), (16), (18). For the initial
condition we have

𝑤0𝑖,𝑗 = (𝑒𝜎1𝑥𝑖/�̃� − 𝑒−𝜎2(𝑦𝑗−𝑚𝑥𝑖) − 𝐸)+ ,
0 ≤ 𝑖 ≤ 𝑁𝑥, 𝑖 ≤ 𝑗 ≤ 𝑖 + 𝑁𝑦. (29)

Boundary condition for side 𝐴𝐷 is as follows:

𝑤𝑛0,𝑗 = 0, 0 ≤ 𝑗 ≤ 𝑁𝑦, 1 ≤ 𝑛 ≤ 𝑁𝜏. (30)

For 𝐷C with small value of 𝑆2, we have transformed
Black-Scholes solution, so

𝑤𝑛𝑖,𝑁𝑦+𝑖 = 𝐹𝑛𝑖 𝑁(𝜙𝑛1,𝑖) − 𝐸𝑁(𝜙𝑛2,𝑖) ,
0 < 𝑖 < 𝑁𝑥, 1 ≤ 𝑛 ≤ 𝑁𝜏,

(31)

where

𝐹𝑛𝑖 = exp(𝜎1�̃� 𝑥𝑖 + (𝑟 − 𝑞1) 𝜏𝑛) ,
𝜙𝑛1,𝑖 = 1

𝜎1√𝜏𝑛 [log
𝐹𝑖𝐸 + 12𝜎21𝜏𝑛] ,

𝜙𝑛2,𝑖 = 𝜙𝑛1,𝑖 − 𝜎1√𝜏𝑛.
(32)

Side 𝐵𝐶 corresponds to large values of 𝑆1, so behaviour of
the option there leads to

𝑤𝑛𝑁𝑥,𝑗 = exp(𝜎1�̃� 𝑥𝑁𝑥 + (𝑟 − 𝑞1) 𝜏𝑛)
− (exp (𝜎2 (𝑚𝑥𝑁𝑥 − 𝑦𝑗)) + 𝐸) ,

𝑁𝑥 + 1 ≤ 𝑗 ≤ 𝑁𝑥 + 𝑁𝑦, 1 ≤ 𝑛 ≤ 𝑁𝜏.
(33)
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Boundary 𝐴𝐵 corresponds with the boundary for large
values of 𝑆2. Condition (7) means that component 𝑆2 is
constant and the null first derivative is approximated by the
forward difference (𝑤𝑛𝑖,𝑖+1 − 𝑤𝑛𝑖,𝑖)/|𝑚|ℎ = 0,

𝑤𝑛𝑖,𝑖 = 𝑤𝑛𝑖,𝑖+1, 1 ≤ 𝑖 ≤ 𝑁𝑥, 1 ≤ 𝑛 ≤ 𝑁𝜏. (34)

4. Positivity, Stability, and Consistency

In this section we show that the proposed numerical scheme
(24)–(27) presents suitable qualitative and computational
properties, such as consistency and conditional positivity and
stability.

In order to guarantee positivity of the numerical solution
let us check the positivity of the coefficients 𝛼𝑖.

From (25) and (27) it is easy to check that coefficients𝛼1, 𝛼2, 𝛼4, and 𝛼5 of the scheme (24) are positive under the
condition

ℎ < min{ �̃�𝜎1𝑟 − 𝑞1 − 𝜎21/2 ;
�̃�2𝑚 [�̃� (𝑟 − 𝑞1 − 𝜎21/2) /𝜎1 − (𝑟 − 𝑞2 − 𝜎22/2) /𝜎2]} .

(35)

Coefficient 𝛼3 is positive, if
𝑘 < 𝑚2ℎ2

�̃�2 (𝑚2 + 1) . (36)

Under conditions (35) and (36), values in interior points
of the numerical domain 𝑤𝑛+1𝑖,𝑗 , 1 ≤ 𝑖 ≤ 𝑁𝑥 − 1; 𝑖 + 1 ≤𝑗 ≤ 𝑁𝑦 + 𝑖 − 1, calculated by the scheme (24), preserve
nonnegativity from the previous time level 𝑛 at all interior and
boundary points 𝑤𝑛𝑖,𝑗 ≥ 0, 0 ≤ 𝑖 ≤ 𝑁𝑥; 𝑖 ≤ 𝑗 ≤ 𝑁𝑦 + 𝑖.

Let us pay attention now to the positivity of the numerical
solution at the boundary of the numerical domain. On
the boundary 𝐴𝐷 from (30) we have zero values. On the
boundary 𝐷𝐶 formula (31) is used preserving the positivity
since it is the transformed Black-Scholes formula through-
out expression (16). Along the line 𝐴𝐵 we use Neumann
boundary condition (34). Therefore, the positivity at the
neighbour interior point guarantees the positivity at the
boundary. Finally, on the line 𝐵𝐶 boundary conditions are
determined by formula (33). This is transformed expression
for the asymptotic behaviour of the call option (6) that is
positive under the condition

𝑆1max
> (𝑆2max

+ 𝐸) exp ((𝑞1 − 𝑟) 𝜏𝑛) , 1 ≤ 𝑛 ≤ 𝑁𝜏. (37)

Following the ideas of Kangro and Nicolaides [24], the
computational domain has to be large enough to translate the
boundary conditions; therefore

𝑆1max

≥ max {(𝑆2max
+ 𝐸) exp ((𝑞1 − 𝑟) 𝑇) , 3 (𝑆2max

+ 𝐸)} . (38)

Therefore, choosing 𝑆1max
according to (38) for the trans-

formed problem𝑤𝑛𝑁𝑥 ,𝑗 ≥ 0 for any𝑁𝑥+1 ≤ 𝑗 ≤ 𝑁𝑥+𝑁𝑦, 1 ≤𝑛 ≤ 𝑁𝜏.
In summary, the nonnegativity of the numerical solution

follows from the nonnegativity of the initial values and
positivity preservation under the scheme and boundary
conditions.

As authors manage several stability criteria in literature,
we recall the concept of stability used in this paper.

Definition 1. Let 𝑤𝑛 ∈ R(𝑁𝑥+1)×(𝑁𝑦+1) be the matrix involving
the numerical solution {𝑤𝑛𝑖,𝑗} of PDE problem (19) computed
by scheme (24), (29), (30), (31), (33), and (34),

𝑤𝑛 = (𝑤𝑛𝑖,𝑗)0≤𝑖≤𝑁𝑥 ,𝑖≤𝑗≤𝑁𝑦+𝑖 , 0 ≤ 𝑛 ≤ 𝑁𝜏. (39)

The numerical scheme (24), (29), (30), (31), (33), and (34) is
said to be uniformly ‖ ⋅ ‖∞-stable in the domain [𝑐1, 𝑑1] ×[𝑐2, 𝑑2]×[0, 𝑇], if for every partitionwith 𝑘,ℎ as defined above,
condition 𝑤𝑛∞ ≤ 𝐴, 0 ≤ 𝑛 ≤ 𝑁𝜏, (40)

holds true, where𝐴 is independent of ℎ, 𝑘. When the scheme
is uniformly stable under a condition imposed to the step
size discretization, then the scheme is said to be conditionally
uniformly stable.

Let us find the maximum value of the 𝑤𝑛𝑖,𝑗 with respect to𝑖, 𝑗 for each fixed 𝑛. For 𝑛 = 0 the values𝑤𝑛𝑖,𝑗 are defined by the
initial condition (29). Let us consider the following function:

𝑓 (𝑥, 𝑦) = exp(𝜎1�̃� 𝑥) − exp (−𝜎2 (𝑦 − 𝑚𝑥)) − 𝐸 (41)

and find the maximum value on the domain [𝑐1, 𝑑1]× [𝑐2, 𝑑2].
The first derivatives are
𝜕𝑓𝜕𝑥 = 𝜎1�̃� exp(𝜎1�̃� 𝑥) + 𝜎2𝑚 exp (−𝜎2 (𝑦 − 𝑚𝑥)) > 0,
𝜕𝑓𝜕𝑦 = 𝜎2exp (−𝜎2 (𝑦 − 𝑚𝑥)) > 0.

(42)

Analysing (42) one concludes that the function 𝑓(𝑥, 𝑦) is
increasing with respect to 𝑥 and 𝑦. Therefore, the maximum
value is reached at the point (𝑑1, 𝑑2):

max
(𝑥,𝑦)∈[𝑐1 ,𝑑1]×[𝑐2 ,𝑑2]

𝑓 (𝑥, 𝑦) = 𝑓 (𝑑1, 𝑑2)
= exp(𝜎1�̃� 𝑑1) − exp (−𝜎2 (𝑑2 − 𝑚𝑑1)) − 𝐸 = 𝐶
= const.

(43)

For the next time levels 𝑛 ≥ 1 let us consider the
numerical scheme (24). Under conditions (35) and (36) the
coefficients 𝛼𝑖 > 0, 𝑖 = 1, . . . , 5. Moreover, it is easy to check
that

5∑
𝑖=1

𝛼𝑖 = 1. (44)
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Therefore the values in interior points at the (𝑛+1)th level,𝑛 ≥ 0, can be bounded by the following:

𝑤𝑛+1𝑖,𝑗 ≤ max {𝑤𝑛𝑖−1,𝑗, 𝑤𝑛𝑖+1,𝑗, 𝑤𝑛𝑖,𝑗, 𝑤𝑛𝑖,𝑗−1, 𝑤𝑛𝑖,𝑗+1}
≤ max
𝑖,𝑗
𝑤𝑛𝑖,𝑗. (45)

This maximum can be reached on the boundary. There-
fore, let us study the boundary conditions. From (30) one gets
that

max
𝐴𝐷

𝑤𝑛+1𝑖,𝑗 = 0. (46)

The values on the boundary A𝐵 are equal to the interior
points; therefore the inequality (45) can be applied.

The values on the boundary 𝐵𝐶 are increasing with
respect to the index 𝑗 and reach the maximum at the point(𝑁𝑥, 𝑁𝑥 + 𝑁𝑦 − 1). From the other side, this value can be
bounded by the value at the point (𝑁𝑥, 𝑁𝑥 + 𝑁𝑦) that is
calculated by formula (31). From the theory of option pricing,
the price of European call is increasing with respect to the
asset price 𝑆 and,moreover, it is always greater than its asymp-
totic function (see [25], p. 268, formula (13.1)). The proposed
transformation preserves monotonicity; therefore,

𝑤𝑛+1𝑁𝑥,𝑁𝑥+𝑁𝑦 = 𝐹𝑛+1𝑁𝑥 𝑁(𝛼𝑛+11,𝑁𝑥) − 𝐸𝑁(𝛼𝑛+12,𝑁𝑥)
≥ 𝑒((𝜎1/�̃�)𝑥𝑁𝑥+(𝑟−𝑞1)𝜏𝑛+1)
− (𝑒(𝜎2(𝑚𝑥𝑁𝑥−𝑦𝑁𝑥+𝑁𝑦−1)) + 𝐸)

= 𝑤𝑛+1𝑁𝑥 ,𝑁𝑥+𝑁𝑦−1.
(47)

In summary we can conclude that

max
𝑖,𝑗
𝑤𝑛+1𝑖,𝑗 = 𝑤𝑛+1𝑁𝑥,𝑁𝑥+𝑁𝑦 . (48)

This value is transformed call option price for the asset
price 𝑆1max

, that is, the solution of the 1D Black-Scholes
equation at the fixed point. European call option gives a right
to the option holder to purchase one share stock for a certain
price. The option itself cannot be worth more than the stock.
In other words,

𝑈 (𝑆1, 0, 𝜏) = 𝑒−𝑞1𝜏𝑆1𝑁(𝑑1) − 𝑒−𝑟𝜏𝐸𝑁 (𝑑2)
≤ 𝑒−𝑞𝜏𝑆1𝑁(𝑑1) ≤ 𝑒−𝑞𝜏𝑆1,

𝑤𝑛+1𝑁𝑥,𝑁𝑥+𝑁𝑦 ≤ 𝑒𝑟𝜏𝑛+1𝑒−𝑞1𝜏𝑛+1𝑆1max
≤ 𝑒|𝑟−𝑞1|𝑇𝑆1max

,
0 ≤ 𝑛 ≤ 𝑁𝜏 − 1.

(49)

Then the following result can be stated.

Theorem 2. With previous notations, under conditions (35)
and (36), numerical scheme (24), (29), (30), (31), (33), and
(34) is conditionally uniformly ‖ ⋅ ‖∞-stable with upper bound𝐴 = 𝑒|𝑟−𝑞1|𝑇𝑆1max

.

Now consistency of the numerical scheme (24) with PDE
(19) will be studied [26].

Let 𝐹(𝑤𝑛𝑖,𝑗) = 0 be approximating difference equation
(24). The scheme (24) is consistent with (19) if the local
truncation error 𝑇𝑛𝑖,𝑗 satisfies
𝑇𝑛𝑖,𝑗 = 𝐹 (𝑊𝑛𝑖,𝑗) − 𝐿 (𝑊𝑛𝑖,𝑗) → 0 as ℎ → 0, 𝑘 → 0, (50)

where𝑊𝑛𝑖,𝑗 denotes the theoretical solution of (19) evaluated
at the point (𝑥𝑖, 𝑦𝑗, 𝜏𝑛) and 𝐿 is the operator
𝐿 (𝑊) = 𝜕𝑊𝜕𝜏 − �̃�

2

2 (𝜕
2𝑊𝜕𝑥2 + 𝜕

2𝑊𝜕𝑦2 )
− �̃�𝜎1 (𝑟 − 𝑞1 −

𝜎212 ) 𝜕𝑊𝜕𝑥
− ( 𝜌𝜎1 (𝑟 − 𝑞1 −

𝜎212 ) − 1𝜎2 (𝑟 − 𝑞2 −
𝜎222 )) 𝜕𝑊𝜕𝑦 .

(51)

Assuming that theoretical solution𝑊of the PDEproblem
is four times continuously differentiable with respect to 𝑥 and𝑦 and twice with respect to 𝜏 and using Taylor expansion
about (𝑥𝑖, 𝑦𝑗, 𝜏𝑛) it is easy to check that

𝑊𝑛+1𝑖,𝑗 −𝑊𝑛𝑖−1,𝑗𝑘 = 𝜕𝑊𝜕𝜏 (𝑥𝑖, 𝑦𝑗, 𝜏𝑛) + 𝑘𝐸𝑛𝑖,𝑗 (1) , (52)

where

𝐸𝑛𝑖,𝑗 (1) = 12 𝜕
2𝑊𝜕𝜏2 (𝑥𝑖, 𝑦𝑗, 𝛿) , 𝑛𝑘 < 𝛿 < (𝑛 + 1) 𝑘, (53)

𝐸𝑛𝑖,𝑗 (1) ≤ 12 𝐷𝑛𝑖,𝑗 (1)max

= 12max{
𝜕2𝑊𝜕𝜏2 (𝑥𝑖, 𝑦𝑗, 𝛿)

 ; 0 < 𝛿 < 𝑇} .
(54)

For the spatial discretization one gets

𝑊𝑛𝑖+1,𝑗 −𝑊𝑛𝑖−1,𝑗2ℎ = 𝜕𝑊𝜕𝑥 (𝑥𝑖, 𝑦𝑗, 𝜏𝑛) + ℎ2𝐸𝑛𝑖,𝑗 (2) , (55)

where

𝐸𝑛𝑖,𝑗 (2) = 16 𝜕
3𝑊𝜕𝑥3 (𝜉, 𝑦𝑗, 𝜏𝑛) , 𝑥𝑖−1 < 𝜉 < 𝑥𝑖+1, (56)

𝐸𝑛𝑖,𝑗 (2) ≤ 16 𝐷𝑛𝑖,𝑗 (2)max

= 16 max{
𝜕3𝑊𝜕𝑥3 (𝜉, 𝑦𝑗, 𝜏𝑛)

 ; 𝑐1 < 𝜉 < 𝑑1} .
(57)

Analogously,

𝑊𝑛𝑖,𝑗+1 −𝑊𝑛𝑖,𝑗−12 |𝑚| ℎ = 𝜕𝑊𝜕𝑦 (𝑥𝑖, 𝑦𝑗, 𝜏𝑛) + ℎ2𝐸𝑛𝑖,𝑗 (3) , (58)
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where

𝐸𝑛𝑖,𝑗 (2) = 𝑚26 𝜕
3𝑊𝜕𝑦3 (𝑥𝑖, 𝜂, 𝜏𝑛) , 𝑦𝑗−1 < 𝜂 < 𝑦𝑗+1; (59)

thus𝐸𝑛𝑖,𝑗 (3)
≤ 𝑚26 max{

𝜕3𝑊𝜕𝑦3 (𝑥𝑖, 𝜂, 𝜏𝑛)
 ; 𝑐2 < 𝜂 < 𝑑2} .

(60)

The discretization of the second spatial derivatives is as
follows:

𝑊𝑛𝑖+1,𝑗 − 2𝑊𝑛𝑖,𝑗 +𝑊𝑛𝑖−1,𝑗ℎ2
= 𝜕2𝑊𝜕𝑥2 (𝑥𝑖, 𝑦𝑗, 𝜏𝑛) + ℎ4𝐸𝑛𝑖,𝑗 (4) ,

(61)

where

𝐸𝑛𝑖,𝑗 (4) = 112 𝜕
4𝑊𝜕𝑥4 (𝜉, 𝑦𝑗, 𝜏𝑛) , 𝑥𝑖−1 < 𝜉 < 𝑥𝑖+1, (62)

𝐸𝑛𝑖,𝑗 (4)
≤ 112 max{

𝜕4𝑊𝜕𝑥4 (𝜉, 𝑦𝑗, 𝜏𝑛)
 ; 𝑐1 < 𝜉 < 𝑑1} .

(63)

Analogously,

𝑤𝑛𝑖,𝑗+1 − 2𝑤𝑛𝑖,𝑗 + 𝑤𝑛𝑖,𝑗−1𝑚2ℎ2
= 𝜕2𝑊𝜕𝑦2 (𝑥𝑖, 𝑦𝑗, 𝜏𝑛) + ℎ4𝐸𝑛𝑖,𝑗 (5) ,

(64)

where

𝐸𝑛𝑖,𝑗 (5) = 𝑚412 𝜕
4𝑊𝜕𝑦4 (𝑥𝑖, 𝜂, 𝜏𝑛) , 𝑦𝑗−1 < 𝜂 < 𝑦𝑗+1, (65)

𝐸𝑛𝑖,𝑗 (5)
≤ 𝑚412 max{

𝜕3𝑊𝜕𝑦3 (𝑥𝑖, 𝜂, 𝜏𝑛)
 ; 𝑐2 < 𝜂 < 𝑑2} .

(66)

Then the local truncation error takes the following form:

𝑇𝑛𝑖,𝑗 = 𝐹 (𝑊𝑛𝑖,𝑗) − 𝐿 (𝑊𝑛𝑖,𝑗) = 𝑘𝐸𝑛𝑖,𝑗 (1) − �̃�
2

2
⋅ ℎ4 (𝐸𝑛𝑖,𝑗 (4) + 𝐸𝑛𝑖,𝑗 (5)) − �̃�𝜎1 (𝑟 − 𝑞1 −

𝜎212 )
⋅ ℎ2𝐸𝑛𝑖,𝑗 (2)
− ( 𝜌𝜎1 (𝑟 − 𝑞1 −

𝜎212 ) − 1𝜎2 (𝑟 − 𝑞2 −
𝜎222 ))

⋅ ℎ2𝐸𝑛𝑖,𝑗 (3) .

(67)

From (54), (57), (60), (63), and (66) one gets
𝑇𝑛𝑖,𝑗 = 𝑂 (𝑘) + 𝑂 (ℎ2) . (68)

Theorem 3. Assuming that the solution of the PDE (19) admits
two times continuous partial derivativewith respect to time and
up to order four with respect to each of space directions solution,
the numerical solution computed by scheme (24) is consistent
with (19).

5. European Spread Put Option Case

For the sake of brevity and in order to avoid repetition of
proofs we summarize in this section the results proved in
previous sections for the call option case.

Let us consider a European spread put option with payoff

𝑈 (𝑆1, 𝑆2, 0) = ((𝑆2 + 𝐸) − 𝑆1)+ , 𝐸 > 0. (69)

Equation (1) and all the transformed versions of it do not
change for the put option. Like in the study of the previous
call option case, due to different nature of the put option, we
need to establish the boundary conditions and translate them
to the boundary of the numerical domain.

(1) If 𝑆2 = 0 the problem is reduced to the European put
option on asset 𝑆1 and strike 𝐸. Therefore, the option
value on this boundary is

𝑈 (𝑆1, 0, 𝜏) = 𝐸𝑒−𝑟𝜏𝑁(−𝜙2) − 𝑆1𝑒𝑞1𝜏𝑁(−𝜙1) , (70)

where 𝜙1 and 𝜙2 are defined by (5).
(2) If 𝑆1 = 0, we consider 𝑈(0, 𝑆2, 𝜏) as a put option price

on asset 𝑆1 = 0 with the strike 𝑆2 + 𝐸:
𝑈 (0, 𝑆2, 𝜏) = (𝑆2 + 𝐸) 𝑒−𝑟𝜏. (71)

(3) For large values of 𝑆2 we suppose that the slope of the
curve tends to 1; that is,

𝜕𝑈𝜕𝑆2 (𝑆1, 𝑆2 → ∞, 𝜏) = 𝑒−𝑞2𝜏. (72)

(4) For 𝑆1 ≫ 𝑆2 + 𝐸 we consider 𝑈(𝑆1, 𝑆2, 𝜏) as a put
option price with large values of 𝑆1, and therefore

𝑈(𝑆1, 𝑆2, 𝜏) = 0. (73)

Under transformations (8) and (16) the boundary con-
ditions (70)–(73) are translated to the rhomboid numerical
domain 𝐴𝐵𝐶𝐷 as follows:

𝐷𝐶 : 𝑤𝑛𝑖,𝑁𝑦+𝑖 = 𝐸𝑁 (−𝛼2,𝑖)
+ 𝑒(𝜎1/�̃�)𝑥𝑖−𝑞1𝜏𝑛𝑁(−𝛼1,𝑖) ;

(74)

𝐴𝐷 : 𝑤𝑛0,𝑗 = 𝐸 + 𝑒−𝜎2(𝑦𝑗−𝑚𝑥0); (75)

𝐴𝐵 : 𝑤𝑛𝑖,𝑖 = 𝑤𝑛𝑖,𝑖+1 + |𝑚| ℎ𝜎2𝑒−𝜎2(𝑦𝑖+1−𝑚𝑥𝑖)−𝑟𝜏; (76)

𝐵𝐶 : 𝑤𝑛𝑁𝑥+1,𝑁𝑥+𝑗 = 0. (77)
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Positivity. As the numerical scheme (24) for the interior
points is the same and the new boundary conditions (74)–
(77) are nonnegative, then under conditions (35) and (36)
the numerical solution for the European spread put option
is nonnegative.

Stability. Stability of the scheme is preservedwith newbound-
ary conditions (74)–(77), because analogously to the call
option case the maximum value of the transformed function𝑊(𝑥, 𝑦, 𝜏) is reached at a corner (in this case (𝑐1, 𝑑2), where
we use the boundary condition (75)). At the corresponding
point of the original domain we use boundary condition (71).
In the original coordinates it can be bounded as

𝑈(0, 𝑆2, 𝜏) = (𝑆2 + 𝐸) 𝑒−𝑟𝜏 ≤ 𝑆2max
+ 𝐸 = 4𝐸 = const. (78)

Therefore, the transformed function also can be bounded
as

max
𝑖,𝑗
𝑤𝑛𝑖,𝑗 = 4𝐸𝑒𝑟𝑇. (79)

6. American Spread Options

In the case of American type option the holder has the right
to exercise option at any moment before expiring. It leads
to a free boundary problem [27]. In order to simplify the
computational procedure this problem can be considered as
a linear complementarity problem (LCP):

(𝜕𝑈𝜕𝜏 − 𝐿𝑈) (𝑈 − 𝑔) = 0,
𝜕𝑈𝜕𝜏 − 𝐿𝑈 ≥ 0,

𝑈 − 𝑔 (𝑆1, 𝑆2) ≥ 0,
(80)

where 𝐿 represents the spatial differential operator of (1).
If we rewrite (19) in the form

𝜕𝑊𝜕𝜏 −L𝑊 = 0, (81)

then under transformation (16) LCP (80) has the following
form:

(𝜕𝑊𝜕𝜏 −L𝑊)(𝑊 − 𝑓 (𝑥, 𝑦)) = 0,
𝜕𝑊𝜕𝜏 −L𝑊 ≥ 0;
𝑊 − 𝑓 (𝑥, 𝑦) ≥ 0,

(82)

whereL is the right-hand side of (19) and 𝑓(𝑥, 𝑦) is given by
(41).

Numerical solution for problem (82) can be easily
obtained by a small modification of the calculating procedure
described above in Sections 3 and 4. On each time level

�̃�𝑛𝑖,𝑗 = max {𝑤𝑛𝑖,𝑗, 𝑓 (𝑥𝑖, 𝑦𝑗)} ≥ 0, (83)

where 𝑤𝑛𝑖,𝑗 is defined by the finite difference equation (24).
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Figure 2: Parameters ℎ and 𝑘 satisfy (85).

7. Numerical Examples

In this section we illustrate numerical results for both
European and American spread options.

In Example 1 we show that the stability conditions (35)
and (36) for the European spread option can not be disre-
garded.

Example 1. We tested the algorithm for the European spread
call option pricing problem with the parameters

𝑇 = 1;
𝐸 = 100;
𝜎1 = 0.2;
𝜎2 = 0.1;
𝑟 = 0.1;
𝑞1 = 0.01;
𝑞2 = 0.05;
𝜌 = 0.1;

(84)

and taking 𝑆1 and 𝑆2 large enough, in particular, 𝑆2max
= 400;𝑆1max

= 3(𝑆2max
+ 𝐸) = 1500.

For parameters (84) the stability conditions (35) and (36)
on space and time steps are as follows:

ℎ < min {2.8428; 23.7358} = 2.8428, 𝑘 < 0.0112. (85)

These conditions are crucial for the qualitative properties
such as positivity and stability of the scheme. In Figure 2 the
numerical solution with ℎ and 𝑘 satisfying (85) is presented.
On the other hand, in Figure 3 there is a numerical simulation
with time step 𝑘 = 0.012 > 0.0112. The solution is unstable
and it has negative values.

Example 2 illustrates the computational time aswell as the
comparison with analytical approximation, provided by [6].
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Figure 3: Stability condition is broken.

Example 2. Consider the European spread option with the
data of Example 1 (84) and choosing step sizes satisfying the
stability condition.

The price of European spread option can be expressed
as the price of a compound exchange option (see [6]).
The known derived analytical approximation for the spread
option reads

𝑈 (𝑆1, 𝑆2, 𝑇) = 𝑆1𝑒−𝑞1𝑇𝑁(𝑑1)
− (𝐸𝑒−𝑟𝑇 + 𝑆2) 𝑒−(𝑟−�̃�−�̃�2)𝑇𝑁(𝑑2) , (86)

where

𝑑1 = 1
𝜎√𝑇 (ln

𝑆1𝑆2 + 𝐸𝑒−𝑟𝑇
+ (𝑟 − �̃� + �̃�2 − 𝑞1 + 𝜎22 )𝑇) , 𝑑2 = 𝑑1 − 𝜎√𝑇,

𝜎 = √𝜎21 − 2𝜌𝜎1𝜎2 𝑆2𝑆2 + 𝐸𝑒−𝑟𝑇 + (
𝑆2𝑆2 + 𝐸𝑒−𝑟𝑇)

2 𝜎22 ,
�̃� = 𝑆2𝑆2 + 𝐸𝑒−𝑟𝑇 𝑟,
�̃�2 = 𝑆2𝑆2 + 𝐸𝑒−𝑟𝑇 𝑞2.

(87)

The comparison of our proposed numerical method and
the analytical approximation (86) is presented in Table 1.
Analytical approximation is calculated for the same arrays
of 𝑆1 and 𝑆2 using MATLAB-function cdf for calculat-
ing cumulative distribution function that requires a lot of
computational resources, for each point. In the proposed
finite difference method (FDM) cdf is only used for the
boundary conditions. Last row in the Table 1 presents the
CPU time for each method for the same sizes of array. For
approximation method cdf-time is 925.018 sec. It is the main

Table 1: Comparison proposed method (FDM) with analytical
approximation (86).

𝑆2 𝑆1 FDM Approximation

100

400 210.5978 209.7261
200 24.2895 23.4543
100 0.1150 0.0123
50 3.1179𝑒 − 05 −4.7741𝑒 − 10

90

400 220.0678 220.1714
200 29.8745 29.8724
100 0.1691 0.0372
50 5.2150𝑒 − 05 −1.9574𝑒 − 09

CPU time (sec) 106.188 929.467
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Figure 4: European spread put option with parameters (84).

part of computational time. In the case of FDM cdf takes less
than half of computational time - 48.867 sec.

Furthermore, unsuitable negative values appear in ana-
lytical approximation for small 𝑆1 and 𝑆2 while the proposed
method preserves nonnegativity of the solution.

In the next example we confirm that for the spread
put option case the removing technique is fruitful and the
selection of the boundary conditions at the boundary of the
numerical domain is appropriated because the behaviour of
the solution at the boundaries fits the solution at the interior
points as it is shown in Figure 4.

Example 3. With the parameters in (84) of Example 1, but
with payoff (𝑆2+𝐸−𝑆1)+ in Figure 4,we show the simulation of
the numerical solution obtained by the proposed numerical
scheme.

Finally, in Example 4 we compare the numerical solution
obtained with our scheme (83) using LCP approach with
other tested efficient methods presented in [28].
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Table 2: Comparing several methods for American option pricing.

𝐸 Analytic FFT MC FDM
0 8.513201 8.513079 8.516613 8.508198
2 7.542296 7.542242 7.545496 7.534064
4 6.653060 6.652976 6.656364 6.648792

Example 4. Let us consider the American spread call option
problem with parameters:

𝑇 = 1;
𝜎1 = 0.1;
𝜎2 = 0.2;
𝑟 = 0.1;
𝑞1 = 0.05;
𝑞2 = 0.05;
𝜌 = 0.5.

(88)

Table 2 shows the option price at fixed asset prices 𝑆1 = 96
and 𝑆2 = 100 for different values of strike price 𝐸 evaluated
by one-dimensional integration analytic method (Analytic),
Fast Fourier Transform (FFT), Monte Carlo (MC) method,
and our proposed method. The accuracy is competitive with
other methods, such as Fourier Transform with high number
of discretization (4096) andMonte Carlo with big number of
time steps (2000).

Another set of parameters can be considered in order to
compare it with data in [9]:

𝑇 = 0.5;
𝐸 = 100;
𝜎1 = 0.25;
𝜎2 = 0.3;
𝑟 = 0.03;
𝑞1 = 0.06;
𝑞2 = 0.02;
𝜌 = 0.5.

(89)

In [9], three methods are considered to evaluate the
spread option price for data 7.4 and fixed values 𝑆1 = 100
and 𝑆2 = 200: a numerical integration method (NIM), a
method of lines (MOL), and a Monte Carlo approach. NIM
used in [9] is based in the recursive integration techniques
developed byHuang et al. [29]. InNIM the option is treated as
a Bermudan that is an option that can be exercised at discrete
points of time and Simpsons rule is used. For the experiment,
the authors used 1024 spatial nodes; see [8, 9] for more
details. The MOL is implemented by a spatial discretization
of 1438 × 200 mesh points and a three-time level scheme is
used for the integration in time [9]. 50 000 simulations have

Table 3: CPU time in sec (first row) and absolute difference (second
row) for different methods depending on number of time steps for
fixed number of space steps for parameters (89).

𝑁𝜏 NIM MOL Monte Carlo FDM

50 296.598 59.20 47 970 26.547
0.003 0.001 0.1735 0.0036

32 127.069 55.12 19 811 17.911
0.0035 0.006 0.1148 0.0122

16 33.493 51.718 5 149 9.432
0.0012 0.0236 0.132 0.0371

8 10.360 49.01 1 350 4.787
0.0105 0.074 0.1316 0.0907

4 4.117 45.47 355.75 2.815
0.0364 0.2512 0.1351 0.2254

been used in the Monte Carlo method described in [30]. In
our method FDM, the step size discretization considered isℎ = 0.1. To compare FDM with the three previous methods,
absolute errors are computed in Table 3 with respect to a
reference value obtained by the Fourier space time-stepping
approach of Surkov [31] with large number of nodes: 4096
spatial nodes and 300 time steps. From Table 3 we can state
that the proposed method has the same order of accuracy as
MOL, more efficient, and requires less computational time
than Monte Carlo method. It is slightly less efficient than the
NIM, but we prove that it possesses a very highly desirable
qualitative behaviour in finance.
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ference schemes for a partial integro-differential option pricing
model,” Applied Mathematics and Computation, vol. 249, pp.
320–332, 2014.

[20] P. R. Garabedian, Partial Differential Equations, AMS Chelsea
Publishing, Providence, RI, USA, 1998.

[21] D. J. Duffy, Finite Difference Methods in Financial Engineering:
A Partial Differential Equation Approach, John Wiley & Sons,
Chichester, UK, 2006.

[22] R. U. Seydel, Tools for Computational Finance, Springer, 3rd
edition, 2006.

[23] M. Ehrhardt, Discrete artificial boundary conditions [Ph.D.
thesis], Technische Universitat Berlin, Berlin, Germany, 2001.

[24] R. Kangro and R. Nicolaides, “Far field boundary conditions for
Black-Scholes equations,” SIAM Journal on Numerical Analysis,
vol. 38, no. 4, pp. 1357–1368, 2000.

[25] J. C. Hull,Options, Futures andOther Derivatives, Prentice-Hall,
Upper Saddle River, NJ, USA, 2000.

[26] G. D. Smith, Numerical Solution of Partial Differential Equa-
tions: Finite Difference Methods, Clarendon Press, Oxford, UK,
3rd edition, 1985.

[27] P. A. Forsyth and K. R. Vetzal, “Quadratic convergence for
valuing American options using a penalty method,” SIAM
Journal on Scientific Computing, vol. 23, no. 6, pp. 2095–2122,
2002.

[28] M. A. H. Dempster and S. S. G. Hong, Spread Option Valuation
and the Fast Fourier Transform, WP 26/2000, Judge Institute of
Management Studies, University of Cambridge, 2000.

[29] J.-Z. Huang, M. G. Subrahmanyam, and G. G. Yu, “Pricing
and hedging american options: a recursive integrationmethod,”
Review of Financial Studies, vol. 9, no. 1, pp. 277–300, 1996.
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