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Chaotic convection in a viscoelastic fluid saturated porous layer, heated from below, is studied by using Oldroyd’s type constituting
relation and in the presence of an internal heat source. A modified Darcy law is used in the momentum equation, and a heat
source term has been considered in energy equation. An autonomous system of fourth-order differential equations has been
deduced by using a truncated Fourier series. Effect of internal heat generation on chaotic convection has been investigated. The
asymptotic behavior can be stationary, periodic, or chaotic, depending upon the flow parameters. Construction of four-scroll, or
“two-butterfly,” and chaotic attractor has been examined.

1. Introduction

Transport phenomenon in a fluid saturated porousmedium is
of great practical importance in many areas such as geother-
mal energy utilization, oil reservoirs, solar energy storage sys-
tems, passive cooling of nuclear reactors, pollutant transport
in ground water, and storage of chemical and agricultural
products, to mention a few. The problem of convection in a
fluid saturated porous medium has been studied during the
past few decades due to its applications in thermal and engi-
neering sciences. An interesting problemwas studied byHor-
ton and Rogers [1] and independently by Lapwood [2], who
addressed the Rayleigh-Bénard convection in porous media.
Katto and Masuoka [3] employed Darcy’s law to express
the fluid characteristics in porous layer and experimentally
showed the effect of Darcy’s number on the onset conditions
of buoyancy-driven convection. Important reviews of most
of the findings on convection in porous medium are given by
Ingham and Pop [4], Vafai [5], and Nield and Bejan [6].

The concept of chaos was first introduced by Poincaré [7,
8], who investigated orbits in celestial mechanics and realized
that the dynamical system generated by the three-body
problem is quite sensitive to the initial conditions exhibit-
ing chaotic behavior. Since the introduction of the chaotic

attractors by Lorenz [9] to study atmospheric convection,
many chaotic systems have been introduced, such as Rössler
[10], Chen and Ueta [11] systems. Because of their potential
applications in engineering, the study of chaotic systems has
attracted the interest of many researchers. Recently Vadász
et al. [12] have investigated the effect of vertical vibrations
on chaotic convection in porous medium employing Darcy
model.Their results show that periodic solutions and chaotic
solutions alternate as the value of the scaled Rayleigh number
varies, when forced vibrations are present. Very recently
Kiran and Bhadauria [13] have studied chaotic convection
in a Newtonian fluid saturated porous medium under tem-
perature modulation at the boundaries. They found that the
effect of temperature modulation is to enhance the behavior
of chaotic motion. Very recently Bhadauria et al. [14] and
Bhadauria andKiran [15] have studied the chaotic convection
using different models.

Although viscoelastic fluid in porous media has been
considered many years before by Marshall and Metzner [16]
and James and McLaren [17], it is only recently that attention
has been given to convection in viscoelastic fluid saturated
porous media. Kim et al. [18] studied thermal instability
of viscoelastic fluid in porous media by making linear and
nonlinear stability analyses and obtained the stability criteria
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for convective flow. Later on Yoon et al. [19] studied the
onset of oscillatory convection in a horizontal porous layer
saturated with viscoelastic fluid by using linear theory. The
linear stability of a viscoelastic fluid saturated densely packed
horizontal porous layer heated from below and cooled from
above was investigated by Malashetty et al. [20], using the
Oldroyd-B type fluid. Since linear stability analysis cannot
provide the information about the values of convection
amplitudes nor about the aperiodic or chaotic motions,
nonlinear analysis has to be performed. Kumar and Bhadau-
ria [21–23] studied nonlinear double diffusive convection
in a rotating porous layer saturated with viscoelastic fluid.
Recently Bhadauria and Kiran [24, 25] studied oscillatory
nonlinear thermal instability in viscoelastic fluids under the
effect of temperature and gravity modulations.

Lorenz [9] studied nonlinear analysis of Rayleigh-Bénard
convection in a fluid layer considering a truncated repre-
sentation of Fourier series involving only two terms. Later
on Khayat [26–28] and Abu-Ramadan et al. [29] followed
Lorenz’s work to derive the fourth-order system in Maxwell
fluid and Oldroyd’s fluid layers. Akhatov and Chemberisova
[30] studied Rayleigh-Bénard convection in Oldroyd’s fluid
saturated porous layer with negligible Darcy effect and
deduced a three-order autonomous chaotic system. Chaotic
Rayleigh-Bénard convection in Oldroyd’s fluid saturated
porous medium using a thermal equilibrium model was
investigated by Sheu et al. [31]. Recently Bhadauria and
Kiran [15] studied double diffusive chaotic and oscillatory
magnetoconvection in a viscoelastic fluid under G-jitter and
found that modulated gravity field can be used either to delay
or enhance the heat and mass transfer in the system.

Further, there can be a large number of practically
important situations, where the porous material offers its
own source of heat, thus setting up the convective flow in a
different way, through the local heat generation within the
porous media. This situation may occur through radioactive
decay or through, in the present perspective, a relatively
weak exothermic reaction which can take place within the
porous material. It is well known that internal heating is the
main source of energy for celestial bodies, which keeps the
celestial objects warm and active. It is due to the internal
heating of the earth that there exists a thermal gradient
between the interior and the exterior of the earth’s crust,
saturated by multicomponents fluids, which helps convective
flow, thereby transferring the thermal energy towards the
surface of the earth. Therefore, the role of internal heat
generation becomes very important in several applications
that include geophysics, reactor safety analyses, metal waste
form development for spent nuclear fuel, fire and combustion
studies, and storage of radioactive materials. However, there
are relatively very few studies avaliable in which the effect
of internal heating on convective flow has been investigated.
Some of these studies are Bhattacharyya and Jena [32],
Haajizadeh et al. [33], Rionero and Straughan [34], Rao and
Wang [35], Parthiban and Patil [36], Herron [37], Khalili and
Huettel [38], Joshi et al. [39], Bhadauria et al. [40], Bhadauria
[41], and Bhadauria et al. [42].

The motive for the present work is to study the effect
of internal heat source on dynamics of convection in a
viscoelastic fluid saturated porous medium. In the momen-
tum equation, the viscoelastic model of the Oldroyd type
is considered by a modified Darcy law. To deduce four-
dimensional system, the Fourier series expansion has been
applied to the governing equations of the thermal convection
in a viscoelastic fluid saturated porousmedium.The effects of
internal heat source, relaxation, and retardation parameters
on the dynamics of the system have been examined in detail.
Further, the present system has been reduced to some famous
systems provided in the literature.

2. Mathematical Formulation

An infinitely extended horizontal viscoelastic fluid saturated
porous layer, confined between two impermeable boundaries
at 𝑧 = 0 and 𝑧 = 𝑑, heated frombelow and cooled from above,
has been considered. ACartesian frame of reference is chosen
in such a way that the origin lies on the lower plane and
the 𝑧-axis as vertical upward. Adverse temperature gradient
is applied across the porous layer and the lower and upper
planes are kept at temperatures 𝑇

0
+ Δ𝑇 and 𝑇

0
, respectively.

Oberbeck-Boussinesq approximation is applied to account
the effect of density variations. Under these postulates the
governing equations for thermal convection in a viscoelastic
fluid saturated porous medium are given by

∇ ⋅ q = 0, (1)

(1 + 𝜆
1

𝜕

𝜕𝑡

) [

𝜌
0

𝜙

𝜕q
𝜕𝑡

+ ∇𝑝 + 𝜌g] + 𝜇

𝐾

(1 + 𝜆
2

𝜕

𝜕𝑡

) q

= 0,

(2)

(

𝜕

𝜕𝑡

+ q ⋅ ∇)𝑇 = 𝜅
𝑇
∇
2
𝑇 + 𝑄 (𝑇 − 𝑇

0
) , (3)

𝜌 = 𝜌
0
[1 − 𝛼

𝑇
(𝑇 − 𝑇

0
)] , (4)

where q is velocity (𝑢, V, 𝑤), 𝜇 is the dynamic viscosity, 𝐾 is
permeability, 𝜅

𝑇
is the thermal diffusivity, 𝑇 is temperature,

𝛼
𝑇
is thermal expansion coefficient, and 𝜌 is the density,

while 𝜌
0
and 𝑇

0
are the reference density and temperature,

respectively.
The externally imposed thermal boundary conditions are

given by

𝑇 = 𝑇
0
+ Δ𝑇, at 𝑧 = 0,

𝑇 = 𝑇
0
, at 𝑧 = 𝑑,

(5)

where Δ𝑇 is the temperature difference across the porous
medium.
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3. Basic State

The basic state is assumed to be quiescent, and the quantities
in this state are given by

q
𝑏
= 0,

𝑝 = 𝑝
𝑏
(𝑧) ,

𝑇 = 𝑇
𝑏 (𝑧) ,

𝜌 = 𝜌
𝑏
(𝑧) .

(6)

Substituting (6) in (1)–(4), we get the following relations,
which helps us to define basic state pressure and temperature:

𝑑𝑝
𝑏

𝑑𝑧

= −𝜌
𝑏
𝑔, (7)

𝜅
𝑇

𝑑
2
(𝑇
𝑏
− 𝑇
0
)

𝑑𝑧
2

+ 𝑄 (𝑇
𝑏
− 𝑇
0
) = 0, (8)

𝜌
𝑏
= 𝜌
0
[1 − 𝛼

𝑇
(𝑇
𝑏
− 𝑇
0
)] . (9)

The solution of (8), subject to the boundary conditions (5), is
given by

𝑇
𝑏
= 𝑇
0
+ Δ𝑇

sin√(𝑄/𝜅
𝑇
) (1 − 𝑧/𝑑)

sin√(𝑄/𝜅
𝑇
)

. (10)

The finite amplitude perturbations on the basic state are
superposed in the following form:

q = q
𝑏
+ q󸀠,

𝜌 = 𝜌
𝑏
+ 𝜌
󸀠
,

𝑝 = 𝑝
𝑏
+ 𝑝
󸀠
,

𝑇 = 𝑇
𝑏
+ 𝑇
󸀠
.

(11)

We introduce (11) and the basic state temperature field
given by (10) in (1)–(4). The resulting equations are then
nondimensionalized using the following transformations:

(𝑥, 𝑦, 𝑧) = (𝑥
∗
, 𝑦
∗
, 𝑧
∗
) 𝑑,

𝑡 =

𝑑
2

𝜅
𝑇

𝑡
∗
,

q󸀠 = 𝜅
𝑇

𝑑

𝑞
∗
,

𝑇
󸀠
= (Δ𝑇) 𝑇

∗
,

𝑝
󸀠
=

𝜇𝜅
𝑇

𝐾

𝑝
∗
,

𝜆
1
=

𝑑
2

𝜅
𝑇

𝜆
∗

1
,

𝜆
2
=

𝑑
2

𝜅
𝑇

𝜆
∗

2
.

(12)

Introducing the stream function 𝜓 such that 𝑢∗ = −𝜕𝜓/𝜕𝑧
∗

and 𝑤∗ = 𝜕𝜓/𝜕𝑥
∗ in the resulting momentum equation (1)

and then eliminating the pressure 𝑝 by operating curl on it,
we get the following momentum and energy equations in
nondimensionalized form (dropping the asterisks) as

[

1

Va
(1 + 𝜆

1

𝜕

𝜕𝑡

)

𝜕

𝜕𝑡

+ (1 + 𝜆
2

𝜕

𝜕𝑡

)](

𝜕
2
𝜓

𝜕𝑥
2
+

𝜕
2
𝜓

𝜕𝑧
2
)

= −Ra(1 + 𝜆
1

𝜕

𝜕𝑡

)

𝜕𝑇

𝜕𝑥

,

(13)

𝜕𝑇

𝜕𝑡

−

𝜕𝜓

𝜕𝑥

𝜕𝑇

𝜕𝑧

+

𝜕𝜓

𝜕𝑧

𝜕𝑇

𝜕𝑥

− 𝑅
𝑖
𝑇

= (

𝜕
2

𝜕𝑥
2
+

𝜕
2

𝜕𝑧
2
)𝑇 +

𝜕𝜓

𝜕𝑥

𝑑𝑇
𝑏

𝑑𝑧

,

(14)

where Va = 𝜙Pr/Da is the Vadasz number, Ra =

𝛼
𝑇
𝑔𝐾(Δ𝑇)𝑑/]𝜅

𝑇
is the Rayleigh number, 𝑅

𝑖
= 𝑄𝑑
2
/𝜅
𝑇
is the

internal Rayleigh number, Da = 𝐾/𝑑
2 is the Darcy number,

and Pr = ]/𝜅
𝑇
is the Prandtl number.

The nondimensional basic temperature field 𝑇
𝑏
, which

appears in (14), can be obtained from the expression (10) as

𝑑𝑇
𝑏

𝑑𝑧

= −

√𝑅
𝑖
cos√𝑅

𝑖
(1 − 𝑧)

sin√𝑅
𝑖

. (15)

4. Mathematical Solution

To obtain the solution of the nonlinear coupled system
of partial differential equations (13)-(14), we represent the
stream function and temperature in the following Fourier
series expressions [12, 13, 15]:

𝜓 = 𝐴
11 (𝑡) sin (𝑎𝑥) sin (𝜋𝑧) ,

𝑇 = 𝐵
11
(𝑡) cos (𝑎𝑥) sin (𝜋𝑧) + 𝐵

02
(𝑡) sin (2𝜋𝑧) .

(16)

Substituting expressions (16) in (13)-(14), using the
orthogonality condition with the eigenfunctions associated
with expressions (16), and integrating over the domain, we get
a set of ordinary differential equations for the time evolution
of the amplitudes, in the form

𝛿
2
[(1 + Γ

𝜕

𝜕𝜏

) + Va(1 + ΓΛ 𝜕

𝜕𝜏

)]𝐴
11
(𝜏)

= 𝑎VaRa(1 + Γ 𝜕

𝜕𝜏

)𝐵
11 (𝜏) ,

𝑑𝐵
11
(𝜏)

𝑑𝜏

= 2𝑎𝐹𝐴
11
(𝜏) + (𝑅

𝑖
− 𝛿
2
) 𝐵
11
(𝜏)

− 𝜋𝑎𝐴
11
(𝜏) 𝐵
02
(𝜏) ,

𝑑𝐵
02
(𝜏)

𝑑𝜏

= (𝑅
𝑖
− 4𝜋
2
) 𝐵
02
(𝜏) +

𝜋𝑎

2

𝐴
11
(𝜏) 𝐵
11
(𝜏) ,

(17)
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where Γ is nondimensional relaxation time, Λ is ratio of
retardation time to relaxation time, and 𝛿2 = (𝜋2 + 𝑎2). Also

𝐹 = −

√𝑅
𝑖

sin√𝑅
𝑖

∫

1

0

cos√𝑅
𝑖 (1 − 𝑧) sin

2
𝜋𝑧 𝑑𝑧. (18)

In (17) above, time 𝑡 has been rescaled as 𝜏 = (𝜋
2
+ 𝑎
2
)𝑡. The

above low-order spectral model may qualitatively reproduce
convective phenomenon observed in the full system. Further,
the solution of the system can be used as initial values in
studying the fully nonlinear convection problem.

Now, for our convenience, we use the following notations:

𝑅 =

𝑎
2Ra
𝛿
4
,

𝜎 =

Va
𝛿
2
,

𝑏 =

𝑅
𝑖
− 𝛿
2

𝛿
2

,

𝑐 =

𝑅
𝑖
− 4𝜋
2

𝛿
2

,

𝑑 = 2𝑅𝐹.

(19)

Then after rescaling the amplitudes in the form

𝑋 =

𝜋𝑎𝐴
11

𝛿
2√2

,

𝑌 =

𝜋𝑅𝐵
11

√2

,

𝑍 = −𝜋𝑅𝐵
02

(20)

we get the following set of equations:

𝑋̇ = 𝑊,

𝑌̇ = −𝑑𝑋 + 𝑏𝑌 − 𝑋𝑍,

̇
𝑍 = 𝑐𝑍 + 𝑋𝑌,

𝑊̇ = 𝜎 [− (𝑑 + Γ
−1
)𝑋 + (𝑏 + Γ

−1
) 𝑌 − 𝑋𝑍

− (Λ +

1

𝜎Γ

)𝑊] ,

(21)

where “⋅” denotes the derivative with respect to the scaled
time 𝜏.

Some Special Cases

(1) For noninternal heat generation case, we have𝑅
𝑖
→ 0;

then 𝑑 → −𝑅 or 𝐹 → −1/2, 𝑏 = −1, and 𝑐 = −4𝛾,
where 𝛾 = 𝜋2/(𝜋2 + 𝑎2), and we get

𝑋̇ = 𝑊,

𝑌̇ = 𝑅𝑋 − 𝑌 − 𝑋𝑍,

̇
𝑍 = 𝑋𝑌 − 4𝛾𝑍,

𝑊̇ = 𝜎 [(𝑅 − Γ
−1
)𝑋 + (Γ

−1
− 1)𝑌 − 𝑋𝑍

− (Λ +

1

𝜎Γ

)𝑊]

(22)

which is similar to Sheu et al. [31] though with
different coefficients.

(2) If we let

𝑃 = 𝑌 − Λ𝑋 −

𝑊

𝜎

(23)

then the above system takes the form

𝑋̇ = 𝜎 (𝑌 − Λ𝑋 − 𝑃) ,

𝑌̇ = 𝑅𝑋 − 𝑌 − 𝑋𝑍,

̇
𝑍 = 𝑋𝑌 − 4𝛾𝑍,

𝑃̇ = Γ
−1
[(1 − Λ)𝑋 − 𝑃]

(24)

which is identical to Khayat’s [26–28] system with the
assumption of the parameters: 𝜎 → Pr, 𝑅 → 𝑟, Λ →

𝛼𝑅], Γ−1 → 𝛿, and 4𝛾 → 𝑏.
(3) If, in system (21), we consider the case of Newtonian

fluid by taking Γ → 0, Λ → 0, we obtain

𝑋̇ = 𝜎 (𝑌 − 𝑋) ,

𝑌̇ = −𝑑𝑋 + 𝑏𝑌 − 𝑋𝑍,

̇
𝑍 = 𝑋𝑌 + 𝑐𝑍.

(25)

(4) If, in the above system (25), we consider 𝑅
𝑖
→ 0, then

we get 𝑑 → −𝑅 or 𝐹(𝑧) → −1/2, 𝑏 = −1, and 𝑐 = −4𝛾,
where 𝛾 = 𝜋2/(𝜋2 + 𝑎2),

𝑋̇ = 𝜎 (𝑌 − 𝑋) ,

𝑌̇ = 𝑅𝑋 − 𝑌 − 𝑋𝑍,

̇
𝑍 = 𝑋𝑌 − 4𝛾𝑍

(26)

which are famous Lorenz [9] equations.
(5) In the limit case 𝜎 → ∞, that is, Darcy number Da →

0, the above system (26) reduces to

𝑋̇ =

1

Λ

[(𝑅 − Γ
−1
)𝑋 + (Γ

−1
− 1)𝑌 − 𝑋𝑍]

= −

𝜆
1

𝜆
2

𝑋𝑍 −

1 − 𝑅𝜆
1

𝜆
2

𝑋 +

1 − 𝜆
1

𝜆
2

𝑌,

𝑌̇ = 𝑅𝑋 − 𝑌 − 𝑋𝑍,

̇
𝑍 = 𝑋𝑌 − 4𝛾

(27)

which is identical to the system given by Akhatov and
Chembarisova [30].
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5. Stability Analysis

5.1. Equilibrium Points. Setting the time derivatives of system
(21) to vanish, we obtain the equilibrium points for velocity
and temperature fields as

𝑊 = 0,

𝑑𝑋 − 𝑏𝑌 + 𝑋𝑍 = 0,

𝑐𝑍 + 𝑋𝑌 = 0,

𝜎 [− (𝑑 + Γ
−1
)𝑋 + (𝑏 + Γ

−1
) 𝑌 − 𝑋𝑍

− (Λ +

1

𝜎Γ

)𝑊] = 0.

(28)

Solving the above algebraic equations, we get the trivial
solution

𝑋
1
= 𝑌
1
= 𝑍
1
= 𝑊
1
= 0, (29)

which corresponds to pure heat conduction solution. This is
known to be a possible solution though it is unstable when
𝑅(Ra) is sufficiently large. The other two equilibrium points
are

[𝑋
2,3
, 𝑌
2,3
, 𝑍
2,3
,𝑊
2,3
]

= [±√𝑐 (𝑑 − 𝑏), ±√𝑐 (𝑑 − 𝑏), (𝑏 − 𝑑) , 0] ;

(30)

the solutions (𝑋
2,3
, 𝑌
2,3
, 𝑍
2,3
,𝑊
2,3
) characterize the onset of

finite amplitude steady motions, where 𝑅 > 𝑏/𝑎𝐹.

5.2. Stability of the Equilibrium Points. The Jacobian matrix
of system (21) may be written as

𝐽

=

[
[
[
[
[
[

[

0 0 0 1

− (𝑑 + 𝑍) 𝑏 −𝑋 0

𝑌 𝑋 𝑐 0

𝜎 [− (𝑑 + Γ
−1
) − 𝑍] 𝜎 (𝑏 + Γ

−1
) −𝜎𝑋 −𝜎Λ + Γ

−1

]
]
]
]
]
]

]

.

(31)

The stability of the fixed point corresponding to pure
conduction solution (𝑋

1
= 𝑌
1
= 𝑍
1
= 𝑊
1
= 0) is governed by

the roots of the following characteristic polynomial equation
for the eigenvalues, 𝜆

𝑛
(𝑛 = 1–4):

(𝑐 − 𝜆) [𝜆
3
+ {(𝜎Λ + Γ

−1
) − 𝑏} 𝜆

2
+ 𝜎 (𝑑 + Γ

−1
)

− 𝑏 (𝜎Λ + Γ
−1
) 𝜆 + 𝜎 {2𝑏𝑑 + (𝑏 + 𝑑) Γ

−1
}] = 0.

(32)

Stability depends upon the value of Γ; for Γ < (𝜎 −

𝑏)/[𝜎𝑏(Λ − 1)] there is an exchange of stability, and for other
two steady state solutions origin loses its stability. When Γ >
(𝜎 − 𝑏)/[𝜎𝑏(Λ − 1)], there is a pair of pure imaginary roots of
(32). The oscillatory or overstable solutions arise at a critical
value of Rayleigh number given by

𝑅
osc

=

−𝛿
4
(1 + 𝜎ΛΓ) [𝑏 (1 + 𝜎ΛΓ) − 𝜎 (1 + 𝑏Γ) − 𝑏

2
Γ
2
(𝜎Λ − 𝑏)]

2𝑎
2
𝜎𝐹 (𝑧) (1 + 𝑏Γ) (𝜎Λ − 𝑏)

.

(33)

The stability of the fixed point corresponding to convection
solution (𝑋 = 𝑌 = ±√𝑐(𝑑 − 𝑏), 𝑍 = (𝑏 − 𝑑), 𝑊 =

0) is governed by the roots of the following characteristic
polynomial equation for the eigenvalues, 𝜆

𝑛
(𝑛 = 1–4):

𝜆
4
+ [(𝜎Λ + Γ

−1
) − (𝑏 + 𝑐)] 𝜆

3
+ [𝑐𝑑

− (𝑏 + 𝑐) (𝜎Λ + Γ
−1
) + 𝜎 (𝑏 + Γ

−1
)] 𝜆
2

+ [𝑐𝑑 (𝜎Λ + Γ
−1
) − 𝜎 (𝑏 + Γ

−1
) (2𝑏 + 𝑐)

+ 𝜎𝑐 (𝑑 − 𝑏)] 𝜆 + 2𝜎𝑏𝑐 (𝑏 + Γ
−1
) = 0.

(34)

The steady state solutions are useful because they predict
that a finite amplitude solution to the system is possible
for subcritical values of the Rayleigh number and that the
minimum values of Ra for which a steady solution is possible
lie below the critical values for instability to either a marginal
state or an overstable infinitesimal perturbation.

6. Results and Discussions

In the previous section, the set of results were obtained
for supercritical values of 𝑅 with the effect of internal heat
generation. All the calculations were taken over using Math-
ematica’s inbuilt forth-order Runge-Kutta method. Solutions
were obtained using the same initial conditions which were
selected to be in the neighbourhood of the positive convective
fixed point. The common initial conditions, 𝑋(0) = 𝑌(0) =

𝑍(0) = 0.9 and 𝑊(0) = 0.1, have been chosen. The time
domain is taken as 0 ≤ 𝜏 ≤ 100 with a constant time
step, Δ𝜏 = 0.001. In the paper, we demonstrate the effects
of internal heat source and viscoelastic parameters on the
system, in the form of space projections of trajectories onto
the 𝑌-𝑋, 𝑍-𝑋, and 𝑍-𝑌 planes, as the value of 𝑅 increases.

In Figure 1, the initial supercritical solutions are presented
at fixed value of 𝑅

𝑖
= 0.1[1(𝑎

1
–𝑎
4
)], 𝑅
𝑖
= 2[1(𝑎

5
–𝑎
8
)], and

𝑅
𝑖
= 5[1(𝑎

9
–𝑎
12
)] with Λ = 0.7 and have been projected onto

𝑌-𝑋planes. FromFigure 1, we observed that forweak internal
heating, that is, 𝑅

𝑖
= 0.1 at 𝑅

𝑐
= 0.987361, the motionless

solution loses its stability and the convection solution takes
over. For 𝑅 = 2, trajectories move towards steady convection
stability point on a straight line for a Rayleigh number slightly
above the loss of stability of the motionless solution. From
Figure 1, it is evident that there is phase (spiral) trajectory for
𝑅 = 8, as the flow exhibits an oscillatory decay. In Figure 1,
spiralling approach of the trajectories towards the steady state
fixed point is quite pronounced.This behavior is also inferred
from the roots of (32). The flow undergoes a homoclinic
bifurcation, as shown in Figure 1 for 𝑅 = 9.294, similar to
that predicted by the Lorenz [9] equations. This is known
as a global bifurcation which cannot be detected through
local stability analysis around the fixed point. On further
increasing the value of 𝑅, the flow becomes completely
chaotic as can be depicted from the spatiotemporal structure
of flow. The transition to chaos in this case is similar to that
leading to the Lorenz attractor. It does not follow any of
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Figure 1: Projections and evolution of trajectories over the planes𝑋-𝑌.
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the well known routes to chaos, such as through period dou-
bling, quasiperiodicity, or intermittency [43].The behavior of
the system at 𝑅 = 28 is chaotic which is confirmed by the
broadening of the base in the power spectrum. For the mod-
erate heating, that is, 𝑅

𝑖
= 2 at 𝑅

𝑐
= 0.756963, the motionless

solution loses its stability and the convection solution takes
over. For 𝑅 = 2, trajectories move towards steady convection
stability point on a straight line for a Rayleigh number slightly
above the loss of stability of themotionless solution. At𝑅 = 8,
it shows the spiral approach before it is attracted towards
steady state fixed point. As the value of 𝑅 increased to 𝑅 =

9.294, the flow becomes homoclinic in nature, and, on further
increasing to 𝑅 = 28, a transition to chaos occurs. In the case
of strong heating, for𝑅

𝑖
= 5, at𝑅

𝑐
= 0.430905, themotionless

solution loses its stability and the convection solution takes
over. For 𝑅 = 2, trajectories move towards steady convection
stability point on a straight line for a Rayleigh number slightly
above the loss of stability of the motionless solution. In this
case for 𝑅 = 8 spiralling approach is even more pronounced,
a fact which is consistent with the eigenvalues. From Figure 1
(𝑎
11
), for 𝑅 = 9.294, a homoclinic bifurcation occurs which

is more pronounced in this case. Finally at 𝑅 = 28, transition
to chaos occurs. Figure 2 (𝑏

1
–𝑏
12
) is the plots of 𝑌-𝑋 plane

at 𝑅
𝑖
= 0.1[2(𝑏

1
–𝑏
4
)], 𝑅
𝑖
= 2[2(𝑏

5
–𝑏
8
)], and 𝑅

𝑖
= 5[2(𝑏

9
–𝑏
12
)]

withΛ = 0.9. In Figure 2 (𝑏
1
–𝑏
12
), we findqualitatively similar

results as shown in Figure 1 (𝑎
1
–𝑎
12
), except that amplitudes

take a little bit larger value than for Λ = 0.7.
Figure 3 shows the initial supercritical solutions at fixed

value of 𝑅
𝑖
= 0.1[1(𝑐

1
–𝑐
4
)], 𝑅
𝑖
= 2[1(𝑐

5
–𝑐
8
)], and 𝑅

𝑖
=

5[1(𝑐
9
–𝑐
12
)] with Λ = 0.7, projected onto 𝑍-𝑋 planes. From

Figure 3 (c
1
–c
12
) we observed that for weak heating, that is,

𝑅
𝑖
= 0.1 at 𝑅

𝑐
= 0.987361, the motionless solution loses

stability and the convection solution takes over. For 𝑅 = 2

trajectories move towards steady convection stability point
through a spiral for a Rayleigh number slightly above the
loss of stability of the motionless solution. From Figure 3
(𝑐
2
, 𝑐
6
, 𝑐
10
) it is clear that there is spiral trajectory for 𝑅 = 8 as

the flow exhibits an oscillatory decay. In Figure 3 (c
2
, c
6
, c
10
),

spiralling approach of the trajectories towards the steady state
fixed point is more pronounced. For 𝑅 = 9.19, there is a
homoclinic pattern of flow, as shown in Figure 3 (c

3
, c
7
, c
11
).

Further increasing the value of 𝑅, there occurs a transition to
chaotic convection as can be seen from Figure 3 (c

4
, c
8
, c
12
).

The transition to chaos in this case is similar to that leading
to the Lorenz attractor; one can easily see “two-butterfly”
Figure 3 (𝑐

4
) for 𝑅 = 28. For the case of moderate heating,

that is, 𝑅
𝑖
= 2 at 𝑅

𝑐
= 0.756963, the motionless solution loses

stability and the convection solution takes over. Trajectories
move towards steady convection stability point through a
spiral for a Rayleigh number slightly above the loss of stability
of the motionless solution for 𝑅 = 2. At 𝑅 = 8 trajectories
move via a spiral, before they are attracted to their steady state
fixed points. At 𝑅 = 9.19, the flow becomes homoclinic in
nature and attracted towards a steady state fixed point. On
increasing the value of 𝑅 at 𝑅 = 28, a transition to chaos
occurs and “two-butterfly” Figure 3 (𝑐

4
) are obtained. For the

case of strongheating, namely,𝑅
𝑖
= 5, themotionless solution

loses its stability and the convection solution takes over at
𝑅
𝑐
= 0.430905. For 𝑅 = 2 trajectories move towards steady

convection stability point through a spiral for a Rayleigh
number slightly above the loss of stability of the motionless
solution. In this case for 𝑅 = 8, spiralling approach is
even more pronounced, a fact which is consistent with the
eigenvalues. From Figure 3 (𝑐

11
) for 𝑅 = 9.19, a homoclinic

bifurcation occurs which is more pronounced in this case.
Finally at 𝑅 = 28 transition to chaos occurs and “two-
butterfly” nature occurs. In Figure 4 (𝑑

1
–𝑑
12
), which are for

Λ = 0.9, we found qualitatively similar results to those of
Figure 3 (𝑐

1
–𝑐
12
) with slightly large amplitudes.

The initial supercritical solutions, calculated at 𝑅
𝑖
= 0.1,

2, and 5 with Λ = 0.7, projected onto 𝑍-𝑌 planes have been
presented in Figure 5. From Figure 5 (𝑒

1
–𝑒
4
), we observe

that for the case of weak heating, that is, at 𝑅
𝑖
= 0.1, the

motionless solution loses its stability at 𝑅
𝑐
= 0.987361, and

the convection solution takes over. For 𝑅 = 2 trajectories
move towards steady convection stability point through a
spiral for a Rayleigh number slightly above the loss of stability
of the motionless solution. From Figure 5 (𝑒

6
) it is clear that

there are spiral trajectory for 𝑅 = 8 as the flow exhibits
an oscillatory decay. In Figure 5 (𝑒

5
), spiralical approach of

the trajectories towards the steady state fixed point is more
pronounced. For 𝑅 = 9.45, there is a homoclinic bifurcation,
as shown in Figure 5 (𝑒

7
). Further increasing the value of

𝑅, there occurs a transition to chaotic convection as can be
seen from Figure 5 (𝑒

8
). The transition to chaos in this case

is similar to that leading to the Lorenz attractor, and one
can easily see the transition to chaos for 𝑅 = 28. For the
case of moderate heating, that is, 𝑅

𝑖
= 2 at 𝑅

𝑐
= 0.756963,

the motionless solution loses its stability and the convection
solution takes over; the trajectories move towards steady
convection stability point through a spiral for a Rayleigh
number slightly above the loss of stability of the motionless
solution at 𝑅 = 2. At 𝑅 = 8 trajectories move via a spiral,
before it is attracted to its steady state fixed point. At𝑅 = 9.45,
the flow becomes homoclinic in nature and attracted towards
a steady state fixed point. On increasing the value of 𝑅 at
𝑅 = 28, a transition to chaos occurs. For the case of strong
heating, namely, 𝑅

𝑖
= 5 at 𝑅

𝑐
= 0.430905, the motionless

solution loses its stability and the convection solution takes
over; for 𝑅 = 2 trajectories move towards steady convection
stability point through a spiral for a Rayleigh number slightly
above the loss of stability of the motionless solution. In this
case for 𝑅 = 8, spiralling approach is even more pronounced,
a fact which is consistent with the eigenvalues. From Figure 5
(𝑒
11
) for 𝑅 = 9.45, a homoclinic bifurcation occurs which is

more pronounced in this case. Finally at 𝑅 = 28 there occurs
transition to chaos. Figure 6 (𝑓

1
–𝑓
12
) is the plots of initial

supercritical solutions, and it is found that the results are
qualitatively similar to those obtained in Figure 5 (𝑒

1
–𝑒
12
).

Figure 7 is the plots of three-dimensional chaotic bifur-
cation at different values of 𝑅

𝑖
and Λ. Figures 8(a)–8(f) are

the plots of time history of 𝑋 at different values of 𝑅
𝑖
, at

𝑅 = 20 and 𝑅 = 28 with initial points (7, 7, 19, 0) for 𝑅
𝑖
= 0.1,

(7.3, 7.3, 20, 0) for 𝑅
𝑖
= 2, and (7.6, 7.6, 21.9, 0) for 𝑅

𝑖
= 5. In

Figures 9(a)–9(f), we plot the time history of 𝑌 at different
values of 𝑅

𝑖
, at 𝑅 = 20 and 𝑅 = 28 with initial points

(7, 7, 19, 0) for 𝑅
𝑖
= 0.1, (7.3, 7.3, 20, 0) for 𝑅

𝑖
= 2, and

(7.6, 7.6, 21.9, 0) for𝑅
𝑖
= 5. Figures 10(a)–10(f) are the plots of



8 Journal of Applied Mathematics

0.9
0.95

1
1.05
1.1
1.15
1.2
1.25
1.3
1.35
1.4
1.45
1.5

Y

1 1.1 1.2 1.3 1.4 1.50.9
X

0.9

1

1.1

1.2

1.3

1.4

1.5
1.55

Y

1 1.1 1.2 1.3 1.4 1.50.9
X

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Y

1 1.1 1.2 1.3 1.4 1.5 1.60.9
X

1

2

3

4

5

6

7

8

Y

2 3 4 5 6 7 81
X

1

2

3

4

5

6

7

8

Y

1

2

3

4

5

6

7

8

9

Y

2 3 4 5 6 7 8 91
X

−12
−10
−7.5
−5

−2.5
0

2.5
5

7.5
10
12

Y

−12.5
−10
−7.5
−5

−2.5
0

2.5
5

7.5
10

12.5

Y

1050 15 20−10−15 −5−20
X

1050 15 20−10−15 −5−20
X

−25
20

−15
−10
−5
0
5
10
15
20
25

Y

1050 15 20−10−15 −5−20
X

Ri = 0.1, R = 2
Λ = 0.9

(b1)

Ri = 2, R = 2
Λ = 0.9

(b5)

Ri = 5, R = 2
Λ = 0.9

(b9)

Ri = 0.1, R = 8
Λ = 0.9

(b2)

Ri = 2, R = 8
Λ = 0.9

(b6)

Ri = 5, R = 8
Λ = 0.9

(b10)

Ri = 0.1, R = 12.44
Λ = 0.9

(b3)

Ri = 2, R = 12.44
Λ = 0.9

(b7)

Ri = 5, R = 12.44
Λ = 0.9

(b11)

Ri = 2, R = 28
Λ = 0.9

(b4)

Ri = 2, R = 28

(b8)

Ri = 5, R = 28
Λ = 0.9Λ = 0.9

(b12)

2 3 4 5 6 7 81
X

−5 50 10−10 −5 50 10−10
X X

−12
−10
−8
−6
−4
−2
0
2
4
6
8
10
12
14

Y

−8 −4 0 4 8 12−12
X

−25
−20
−15
−10
−5
0
5
10
15
20
25

Y

−25
−20
−15
−10
−5
0
5
10
15
20
25
30

Y

Figure 2: Projections and evolution of trajectories over the planes𝑋-𝑌.
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Figure 3: Projections and evolution of trajectories over the planes𝑋-𝑍.
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Figure 4: Projections and evolution of trajectories over the planes𝑋-𝑍.
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Figure 5: Projections and evolution of trajectories over the planes 𝑌-𝑍.
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Figure 6: Projections and evolution of trajectories over the planes 𝑌-𝑍.
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Figure 8: The amplitude solution in the time domain 𝑋(𝜏).

timehistory of𝑍 at different values of𝑅
𝑖
, at𝑅 = 20 and𝑅 = 28

with initial points (7, 7, 19, 0) for 𝑅
𝑖
= 0.1, (7.3, 7.3, 20, 0) for

𝑅
𝑖
= 2, and (7.6, 7.6, 21.9, 0) for 𝑅

𝑖
= 5.

7. Conclusions

In this paper, chaotic convection in a viscoelastic fluid
saturated porous medium with internal heat generation is
analyzed. A four-dimensional systemof differential equations
is deduced by a Fourier series expansion.The effects of inter-
nal heat source and viscoelastic parameters are investigated

on dynamics of convection. The following conclusions are
drawn:

(1) An increment in the internal Rayleigh number accel-
erates the chaotic convection.

(2) Effect of increasing retardation time is to increase the
amplitude of convection thus accelerating the chaotic
convection.

(3) Effect of decreasing relaxation time is to accelerate the
chaotic convection.
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Figure 9: The amplitude solution in the time domain 𝑌(𝜏).

(4) As particular case, the present system reduces to the
systems of Lorenz [9], Akhatov and Chembarisova
[30], Sheu et al. [31], and Khayat [26–28].

Nomenclature

Latin Symbols

𝑎 : Wave number
𝑎
𝑐
: Critical wave number

𝑑: Depth of the porous layer

Da: Darcy number,𝐾/𝑑2
Pr: Prandtl number, ]/𝜅

𝑇

Va: Vadasz number, 𝛿Pr/Da
𝐾: Permeability
𝑝: Pressure
q: Velocity (𝑢, V, 𝑤)
𝑄: Internal heat source
Ra: Rayleigh number
𝑅
𝑖
: Internal Rayleigh number, (𝑄𝑑2/𝜅

𝑇
)

𝑡: Time
𝑇: Temperature
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Figure 10: The amplitude solution in the time domain 𝑍(𝜏).

Δ𝑇: Temperature difference between the walls
(𝑥, 𝑦, 𝑧): Space coordinate.

Greek Symbols

𝜆
1
: Relaxation time

𝜆
2
: Retardation time

𝛼
𝑇
: Thermal expansion coefficient

Γ: Nondimensional relaxation time
Λ: Ratio of retardation time to relaxation time, (𝜆

2
/𝜆
1
)

𝜅
𝑇
: Thermal diffusivity

𝜙: Porosity
𝜌: Density
𝜇: Dynamic viscosity
]: Kinematic viscosity, 𝜇/𝜌

0

𝜓: Stream function.

Other Symbols

𝑏: Basic state
𝑐: Critical
0: Reference state
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𝑖̂: Unit normal vector in 𝑥-direction
𝑗̂: Unit normal vector in 𝑦-direction
̂
𝑘: Unit normal vector in 𝑧-direction
∇
2

1
: 𝜕2/𝜕𝑥2 + 𝜕2/𝜕𝑦2, horizontal Laplacian

∇
2: ∇2
1
+ 𝜕
2
/𝜕𝑧
2

𝐷: 𝑑/𝑑𝑧.
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