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We construct a continuous function𝑓 : [0, 1] → R such that𝑓 possesses𝑁−1-property, but𝑓 does not have approximate derivative
on a set of full Lebesgue measure. This shows that Banach’s Theorem concerning differentiability of continuous functions with
Lusin’s property (𝑁) does not hold for𝑁−1-property. Some relevant properties are presented.

1. Introduction

First we will specify some basic notations. By |𝐸| we denote
the Lebesgue measure of 𝐸 ⊂ R. For any 𝑓 : 𝐼 → R, where 𝐼
is an interval, by𝑓 ↾ 𝐸we denote the restriction of𝑓 to 𝐸 ⊂ 𝐼
and the symbol 𝑓ap(𝑥) stands for approximate derivative of 𝑓
at 𝑥.

Definition 1 (see [1]). Let 𝐷 ⊂ R be measurable. We say that
𝑓 : 𝐷 → R has Lusin’s property (𝑁), if the image 𝑓(𝐸) of
every set𝐸 ⊂ 𝐷 of Lebesguemeasure 0 has Lebesguemeasure
0.

This condition was studied exhaustively; some of results
can be found in [1]. For the present paper the most important
is the following.

Theorem 2 (Third Banach Theorem, [1] Theorem 7.3). If 𝑓 :
[0, 1] → R is continuous and has Lusin’s property (𝑁), then 𝑓
is differentiable on a set of positive Lebesgue measure.

In the present paper we will study a similar property.

Definition 3 (see [2, 3]). We say that 𝑓 : 𝐷 → R, defined
on a measurable set 𝐷 ⊂ R, has 𝑁−1-property, if the inverse
image 𝑓−1(𝐸) of every set 𝐸 ⊂ R of Lebesgue measure 0 has
Lebesgue measure 0.

Some of results concerning 𝑁−1-property are presented
in [2, 3]. In [2] a systematic study of 𝑁−1-property for
smooth and almost everywhere differentiable functions can
be found. Some applications of 𝑁−1-property in functional

equation and geometric function theory can be found in
[4–6].

2. Main Results

Our goal is to construct a continuous function 𝑓 : [0, 1] →
[0, 1]with𝑁−1-property which is not approximately differen-
tiable on a set of fullmeasure.We startwith the basic theorem.

Theorem 4. Let 𝐵
1

= {(2𝑘 − 1)/2

𝑛

: 𝑘 ∈ {1, 2, . . . , 2

𝑛−1

}, 𝑛 ∈

N}, 𝐵
2

= {(2𝑘−1)/2

𝑛

+1/(3 ⋅ 2

𝑛

) : 𝑘 ∈ {1, 2, . . . , 2

𝑛−1

}, 𝑛 ∈ N},
and 𝐴 = (0, 1) \ (𝐵

1

∪ 𝐵

2

). There exists a homeomorphism
𝑓 : 𝐴 → 𝐴 such that

(a1) 𝑓 = 𝑓−1,
(a2) 𝑓 has Lusin’s property (𝑁) and𝑁−1-property,
(a3) 𝑓 has no approximate derivative (finite or not) at any

𝑥 ∈ 𝐴.

Proof. Let 𝑥 = 0.𝑖
1

𝑖

2

⋅ ⋅ ⋅ 𝑖

𝑛

⋅ ⋅ ⋅ denote a binary decomposition
of 𝑥 ∈ (0, 1). It is easily seen that (2𝑘 − 1)/2𝑛 + 1/(3 ⋅
2

𝑛

) = 0.𝑖

1

𝑖

2

⋅ ⋅ ⋅ 𝑖

𝑛−1

101010 ⋅ ⋅ ⋅. Therefore, 𝑥 ∈ (0, 1) and
𝑥 = 0.𝑖

1

𝑖

2

⋅ ⋅ ⋅ 𝑖

𝑛

⋅ ⋅ ⋅ belongs to 𝐴 if and only if it has a binary
decomposition 𝑥 = 0.𝑖

1

𝑖

2

⋅ ⋅ ⋅ 𝑖

𝑛

⋅ ⋅ ⋅ such that

{𝑛 ∈ N : 𝑖
2𝑛

= 0} = ℵ

0

= {𝑛 ∈ N : 𝑖
2𝑛

= 1} or

{𝑛 ∈ N : 𝑖
2𝑛−1

= 0} = ℵ

0

= {𝑛 ∈ N : 𝑖
2𝑛−1

= 1}

(1)
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(in other words 𝑥 has infinitely many 0s and infinitely many
1s at even places or infinitelymany 0s and infinitelymany 1s at
odd places). Let Δ𝑘

𝑛

= (𝑘/2

𝑛

, (𝑘 + 1)/2

𝑛

) for 𝑘 ∈ {0, 1, . . . , 2𝑛 −
1} and 𝑛 ∈ N. Obviously, 𝐴 ⊂ ⋃

2

𝑛

−1

𝑘=0

Δ

𝑘

𝑛

for every 𝑛 ∈ N.
Moreover,

𝐴 ∩ Δ

𝑘

𝑛

=

{

{

{

𝑥 ∈ 𝐴 : 𝑥 = 0.𝑖

1

𝑖

2

⋅ ⋅ ⋅ 𝑖

𝑛

⋅ ⋅ ⋅ where
𝑛

∑

𝑗=1

2

𝑛−𝑗

𝑖

𝑗

= 𝑘

}

}

}

.

(2)

Define 𝑓 : 𝐴 → 𝐴 by

𝑓 (𝑥) = 0.𝑖

1

𝑖



2

𝑖

3

𝑖



4

⋅ ⋅ ⋅ 𝑖

2𝑛−1

𝑖



2𝑛

⋅ ⋅ ⋅,

(3)

where𝑥 = 0.𝑖
1

𝑖

2

⋅ ⋅ ⋅ 𝑖

𝑛

⋅ ⋅ ⋅ and 𝑖
𝑗

= 1−𝑖

𝑗

. In otherwords,𝑓(𝑥) =
0.𝑚

1

𝑚

2

⋅ ⋅ ⋅ 𝑚

𝑛

⋅ ⋅ ⋅, where 𝑚
𝑗

= 𝑖

𝑗

for odd 𝑗 and 𝑚
𝑗

= 1 − 𝑖

𝑗

for even 𝑗. By (1), 𝑓(𝑥) ∈ 𝐴 for 𝑥 ∈ 𝐴 and 𝑓 is well-defined.
Moreover, directly from the definition of𝑓, it follows that𝑓 is
a bijection and the composition 𝑓∘𝑓 is the identity function,
whence 𝑓−1 = 𝑓. Moreover, by (2), for each 𝑛 ∈ N and 𝑘 ∈
{0, 1, . . . , 2

𝑛

− 1}, 𝑘 = ∑𝑛
𝑗=1

2

𝑛−𝑗

𝑖

𝑗

, 𝑖
𝑗

∈ {0, 1}, we have

𝑓 (𝐴 ∩ Δ

𝑘

𝑛

) = 𝐴 ∩ Δ

𝑘



𝑛

,

(4)

where 𝑘 = ∑𝑛
𝑗=1

2

𝑛−𝑗

𝑚

𝑗

.
We claim that 𝑓 is continuous. Fix 𝑥

0

∈ 𝐴 and 𝜀 > 0.
Choose 𝑛

0

∈ N such that 1/2𝑛0 < 𝜀. There exists 𝑘
0

≤ 2

𝑛

0
− 1

for which 𝑥
0

∈ Δ

𝑘

0

𝑛

0

. By (4), 𝑓(𝐴 ∩ Δ𝑘0
𝑛

0

) = 𝐴 ∩ Δ

𝑘



0

𝑛

0

. Since
𝐴∩Δ

𝑘

0

𝑛

0

is a neighborhood of 𝑥
0

and |𝑦
1

− 𝑦

2

| ≤ 1/2

𝑛

0
< 𝜀 for

all 𝑦
1

, 𝑦

2

∈ Δ

𝑘



0

𝑛

0

, we conclude that 𝑓 is continuous at 𝑥
0

. Thus,
𝑓 is continuous, because 𝑥

0

was arbitrary. By the equality𝑓 =
𝑓

−1, 𝑓 is a homeomorphism.
Now we will show condition (a2). Let 𝐻 ⊂ 𝐴 be any set

of Lebesgue measure zero. Fix any 𝜀 > 0.There exists an open
in 𝐴 set 𝑈 ⊂ 𝐴 such that𝐻 ⊂ 𝑈 and |𝑈| < 𝜀. Let

B = {Δ

𝑘

𝑛

∩ 𝐴 : 𝑘 ∈ {0, 1, . . . , 2

𝑛

− 1} , 𝑛 ∈ N} . (5)

Clearly,B is a base of the natural topology in 𝐴. Since either
any two sets fromB are disjoint or one of them is contained
in the other, it is easy to see that any open subset of 𝐴 can be
represented as a union of some subfamily of pairwise disjoint
sets from B. Thus, 𝑈 = ⋃

𝑗∈𝐽

(Δ

𝑘

𝑗

𝑛

𝑗

∩ 𝐴), where 𝐽 is at most

countable and Δ𝑘𝑗1
𝑛

𝑗
1

∩ Δ

𝑘

𝑗
1

𝑛

𝑗
2

= 0 for 𝑗
1

, 𝑗

2

∈ 𝐽, 𝑗
1

̸= 𝑗

2

. Then,

by (4), ⋃
𝑗∈𝐽

𝑓(Δ

𝑘

𝑗

𝑛

𝑗

∩ 𝐴) = ⋃

𝑗∈𝐽

(Δ

𝑘



𝑗

𝑛

𝑗

∩ 𝐴) is an open in 𝐴 set
containing 𝑓(𝐻) and

∑

𝑗∈𝐽















Δ

𝑘



𝑗

𝑛

𝑗

∩ 𝐴















= ∑

𝑗∈𝐽













Δ

𝑘

𝑗

𝑛

𝑗

∩ 𝐴













= |𝑈| < 𝜀. (6)

Since 𝜀 > 0 was arbitrary, |𝑓(𝐻)| = 0 and 𝑓 has Lusin’s
property (𝑁). Since 𝑓 = 𝑓−1, 𝑓 has also𝑁−1-property.

Finally, wewill show that𝑓 has no approximate derivative
at any 𝑥 ∈ 𝐴. Fix 𝑥 ∈ 𝐴 and an even 𝑛 ∈ N. Then 𝑥 ∈ Δ𝑘

𝑛

for some 𝑘 ≤ 2𝑛 − 1. Let 𝑖
1

, 𝑖

2

, . . . , 𝑖

𝑛

∈ {0, 1} be such that
𝑘 = ∑

𝑛

𝑗=1

2

𝑛−𝑗

𝑖

𝑗

. Moreover, let 𝑘 be understood as before. It
is clear that

𝐴 ∩ Δ

𝑘

𝑛

= (𝐴 ∩ Δ

4𝑘

𝑛+2

) ∪ (𝐴 ∩ Δ

4𝑘+1

𝑛+2

)

∪ (𝐴 ∩ Δ

4𝑘+2

𝑛+2

) ∪ (𝐴 ∩ Δ

4𝑘+3

𝑛+2

) ,

𝑓 (𝐴 ∩ Δ

4𝑘

𝑛+2

) = 𝐴 ∩ Δ

4𝑘



+1

𝑛+2

,

𝑓 (𝐴 ∩ Δ

4𝑘+1

𝑛+2

) = 𝐴 ∩ Δ

4𝑘



𝑛+2

,

𝑓 (𝐴 ∩ Δ

4𝑘+2

𝑛+2

) = 𝐴 ∩ Δ

4𝑘



+3

𝑛+2

,

𝑓 (𝐴 ∩ Δ

4𝑘+3

𝑛+2

) = 𝐴 ∩ Δ

4𝑘



+2

𝑛+2

(7)

(remember that 𝑛 is even).
Note that

𝑓 (𝑦) − 𝑓 (𝑥)

𝑦 − 𝑥

< 0
(8)

if 𝑥 ∈ Δ4𝑘
𝑛+2

and 𝑦 ∈ 𝐴∩Δ4𝑘+1
𝑛+2

or 𝑥 ∈ Δ4𝑘+2
𝑛+2

and 𝑦 ∈ 𝐴∩Δ4𝑘+3
𝑛+2

.
Moreover,

𝑓 (𝑦) − 𝑓 (𝑥)

𝑦 − 𝑥

>

2

𝑛

3 ⋅ 2

𝑛

=

1

3

(9)

if 𝑥 ∈ Δ4𝑘
𝑛+2

and 𝑦 ∈ 𝐴∩Δ4𝑘+2
𝑛+2

or 𝑥 ∈ Δ4𝑘+1
𝑛+2

and 𝑦 ∈ 𝐴∩Δ4𝑘+3
𝑛+2

.
Thus, if 𝑛 ∈ N is even and 𝑥 ∈ 𝐴 ∩ Δ𝑘

𝑛

, we can find 𝐵, 𝐶 ⊂
Δ

𝑘

𝑛

∩ 𝐴 such that

|𝐵| = |𝐶| =

1

4











Δ

𝑘

𝑛











,
(10)

𝑓 (𝑥) − 𝑓 (𝑦)

𝑥 − 𝑦

< 0 ∀𝑦 ∈ 𝐵,
(11)

𝑓 (𝑥) − 𝑓 (𝑦)

𝑥 − 𝑦

>

1

3

∀𝑦 ∈ 𝐶.
(12)

Since this is true for every even 𝑛 and |Δ𝑘
𝑛

| = 1/2

𝑛, we
conclude that 𝑓 has no approximate derivative (finite or not)
at 𝑥. The proof is completed.

From Banach’s Theorem 2, we easily get the following.

Corollary 5. Any function 𝑓, defined on an interval, which
possesses Lusin’s condition (𝑁) such that the set of discontinuity
points of 𝑓 is finite, is derivable at every point of some set of
positive Lebesgue measure.

Meanwhile, by Theorem 4, we have the following.

Theorem 6. There exists a bijection 𝑔 : [0, 1] → [0, 1] such
that

(b1) 𝑔 has Lusin’s property (𝑁) and𝑁−1-property,
(b2) the set of discontinuity points of 𝑔 is countable,
(b3) 𝑔 has no approximate derivative at any point.
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Proof. Let 𝐵
1

, 𝐵
2

, 𝐴, and 𝑓 be the same as in Theorem 4.
It is easily seen that every member of 𝐵

2

is of the form
0.𝑖

1

⋅ ⋅ ⋅ 𝑖

𝑛

001010 ⋅ ⋅ ⋅ or 0.𝑖
1

⋅ ⋅ ⋅ 𝑖

𝑛

1101010 ⋅ ⋅ ⋅ for some 𝑛 ∈ N,
except 1/6, 1/3, 2/3, 5/6. Define 𝜑 : {0, 1} ∪ 𝐵

1

∪ 𝐵

2

→

{0, 1} ∪ 𝐵

1

∪ 𝐵

2

by

𝜑 (𝑥)

=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

𝑥 for 𝑥 ∈ {0, 1, 1
6

,

1

3

,

2

3

,

5

6

} ,

0.𝑗

1

𝑗

2

⋅ ⋅ ⋅ 𝑗

𝑛

001010 ⋅ ⋅ ⋅ for 𝑥 = 0.𝑖
1

⋅ ⋅ ⋅ 𝑖

𝑛

001010 ⋅ ⋅ ⋅,

0.𝑗

1

𝑗

2

⋅ ⋅ ⋅ 𝑗

𝑛

110101 ⋅ ⋅ ⋅ for 𝑥 = 0.𝑖
1

⋅ ⋅ ⋅ 𝑖

𝑛

110101 ⋅ ⋅ ⋅,

0.𝑗

1

𝑗

2

⋅ ⋅ ⋅ 𝑗

𝑛−1

1 for 𝑥 = 0.𝑖
1

⋅ ⋅ ⋅ 𝑖

𝑛

1,

(13)

where 𝑗
2𝑚−1

= 𝑖

2𝑚−1

and 𝑗
2𝑚

= 1 − 𝑖

2𝑚

. It is easy to see that 𝜑
is a bijection. Let 𝑔 : [0, 1] → [0, 1] be defined by

𝑔 (𝑥) =

{

{

{

𝑓 (𝑥) for 𝑥 ∈ 𝐴,

𝜑 (𝑥) for 𝑥 ∈ {0, 1} ∪ 𝐵
1

∪ 𝐵

2

.

(14)

Fix 𝑥 ∈ (0, 1) \ (𝐵
1

∪ 𝐵

2

), 𝑥 = 0.𝑖
1

𝑖

2

⋅ ⋅ ⋅ 𝑖

𝑛

⋅ ⋅ ⋅, and 𝜀 > 0. Let𝑚
be a positive integer such that 1/2𝑚 < 𝜀. The set

𝐶 = {0, 1,

1

6

,

1

3

,

2

3

,

5

6

}

∪ {

2𝑘 − 1

2

𝑛

: 𝑘 ∈ {1, 2, . . . , 2

𝑛−1

} , 𝑛 ≤ 𝑚}

∪ {0.𝑙

1

⋅ ⋅ ⋅ 𝑙

𝑛

001010 ⋅ ⋅ ⋅ : 𝑛 ≤ 𝑚}

∪ {0.𝑙

1

⋅ ⋅ ⋅ 𝑙

𝑛

1101010 ⋅ ⋅ ⋅ : 𝑛 ≤ 𝑚}

(15)

is finite and 𝐶 ⊂ {0, 1} ∪ 𝐵

1

∪ 𝐵

2

. Hence, we can find
𝛿 ∈ (0, 1/2

𝑚+3

) for which (𝑥 − 𝛿, 𝑥 + 𝛿) ∩ 𝐶 = 0. Take any
𝑦 ∈ (𝑥 − 𝛿, 𝑥 + 𝛿) ∩ (𝐵

1

∪ 𝐵

2

). Since |𝑥 − 𝑦| < 1/2

𝑚+3

and 𝑦 ∈ 𝐵
1

∪ 𝐵

2

, we conclude 𝑦 = 0.𝑖
1

𝑖

2

⋅ ⋅ ⋅ 𝑖

𝑚

⋅ ⋅ ⋅ 001010 ⋅ ⋅ ⋅

or 𝑦 = 0.𝑖

1

𝑖

2

⋅ ⋅ ⋅ 𝑖

𝑚

⋅ ⋅ ⋅ 110101 ⋅ ⋅ ⋅ or 𝑦 = 0.𝑖

1

𝑖

2

⋅ ⋅ ⋅ 𝑖

𝑚

⋅ ⋅ ⋅ 1.
Hence, 𝑔(𝑥) = 𝑓(𝑥) = 0.𝑗

1

𝑗

2

⋅ ⋅ ⋅ 𝑗

𝑚

⋅ ⋅ ⋅ and 𝑔(𝑦) = 𝜑(𝑦) =
0.𝑗

1

𝑗

2

⋅ ⋅ ⋅ 𝑗

𝑚

⋅ ⋅ ⋅ or 𝑔(𝑦) = 𝜑(𝑦) = 0.𝑗
1

𝑗

2

⋅ ⋅ ⋅ 𝑗

𝑚

⋅ ⋅ ⋅ 1. Therefore,
|𝑔(𝑥) − 𝑔(𝑦)| < 1/2

𝑚

< 𝜀. Since 𝑓 is continuous, 𝑔 is
continuous at 𝑥. Thus, we have proved that the set of all
discontinuity points of 𝑔 is contained in {0, 1} ∪ 𝐵

1

∪ 𝐵

2

.
Therefore, 𝑔 satisfies (b1), (b2), and (b3).

Theorem 7. For each 𝜀 ∈ (0, 1) there exist a closed nowhere
dense set 𝐹 ⊂ (0, 1) and a homeomorphism ℎ : 𝐹 → 𝐹 such
that

(c1) |𝐹| > 1 − 𝜀,
(c2) ℎ = ℎ−1,
(c3) ℎ has Lusin’s property (𝑁) and𝑁−1-property,
(c4) ℎ has no approximate derivative (finite or not) at any

𝑥 ∈ 𝐹 (more precisely, if ̃ℎ : [0, 1] → [0, 1] is any
extension of ℎ then ̃ℎ has no approximate derivative
(finite or not) at any 𝑥 ∈ 𝐹).

Proof. Let 𝐵
1

, 𝐵
2

, 𝐴, and 𝑓 be the same as in Theorem 4. Let
{𝑥

𝑛

}

∞

𝑛=1

= 𝐵

1

∪ 𝐵

2

. Fix 𝜀 > 0 and choose a sequence (𝑚
𝑛

)

𝑛≥0

of even natural numbers satisfying

4

∞

∑

𝑛=0

1

2

𝑚

𝑛

< 𝜀, (16)

4

∞

∑

𝑗=𝑛+1

1

2

𝑚

𝑗

<

1

8

⋅

1

2

𝑚

𝑛

∀𝑛 ≥ 0. (17)

For each 𝑛 ≥ 1 there exists 𝑘
𝑛

∈ {1, . . . , 2

𝑚

𝑛
− 1} such that

𝑥

𝑛

∈ ((𝑘

𝑛

− 1)/2

𝑚

𝑛
, (𝑘

𝑛

+ 1)/2

𝑚

𝑛
). Let

𝐵 = (Δ

0

𝑚

0

∪ {0} ∪ Δ

2

𝑚
0
−1

𝑚

0

∪ {1})

∪

∞

⋃

𝑛=1

(Δ

𝑘

𝑛
−1

𝑚

𝑛

∪ {

𝑘

𝑛

2

𝑚

𝑛

} ∪ Δ

𝑘

𝑛

𝑚

𝑛

) .

(18)

Since

Δ

𝑘

𝑛
−1

𝑚

𝑛

∪ {

𝑘

𝑛

2

𝑚

𝑛

} ∪ Δ

𝑘

𝑛

𝑚

𝑛

= (

𝑘

𝑛

− 1

2

𝑚

𝑛

,

𝑘

𝑛

+ 1

2

𝑚

𝑛

) , (19)

𝐵 is an open subset of [0, 1]. Moreover, 𝐵
1

∪ 𝐵

2

∪ {0, 1} ⊂ 𝐵

and, by (16),

|𝐵| ≤

2

2

𝑚

0

+

∞

∑

𝑛=1

2

2

𝑚

𝑛

<

𝜀

2

. (20)

By (4), in the proof of Theorem 4, for each 𝑛 ≥ 1 there
exist 𝑢

𝑛

, V
𝑛

∈ {1, . . . , 2

𝑚

𝑛
} such that

𝑓 (Δ

𝑘

𝑛
−1

𝑚

𝑛

∩ 𝐴) = Δ

𝑢

𝑛

𝑚

𝑛

∩ 𝐴,

𝑓 (Δ

𝑘

𝑛

𝑚

𝑛

∩ 𝐴) = Δ

V
𝑛

𝑚

𝑛

∩ 𝐴.

(21)

Moreover,
𝑓 (Δ

0

𝑚

0

∩ 𝐴) = Δ

𝑖

0

𝑚

0

∩ 𝐴,

𝑓 (Δ

2

𝑚
0
−1

𝑚

0

∩ 𝐴) = Δ

𝑖

1

𝑚

0

∩ 𝐴

(22)

for some 𝑖
0

, 𝑖

1

∈ {0, 1, . . . , 2

𝑚

0
}. Hence,

𝐶 = 𝑓 (𝐵 ∩ 𝐴) = 𝑓(((Δ

0

𝑚

0

∩ 𝐴) ∪ (Δ

2

𝑚
0
−1

𝑚

0

∩ 𝐴))

∪

∞

⋃

𝑛=1

((Δ

𝑘

𝑛
−1

𝑚

𝑛

∩ 𝐴) ∪ (Δ

𝑘

𝑛

𝑚

𝑛

∩ 𝐴))) = (Δ

𝑖

0

𝑚

0

∩ 𝐴)

∪ (Δ

𝑖

1

𝑚

0

∩ 𝐴) ∪

∞

⋃

𝑛=1

((Δ

𝑢

𝑛

𝑚

𝑛

∩ 𝐴) ∪ (Δ

V
𝑛

𝑚

𝑛

∩ 𝐴))

= (Δ

𝑖

0

𝑚

0

∪ Δ

𝑖

1

𝑚

0

∪

∞

⋃

𝑛=1

(Δ

𝑢

𝑛

𝑚

𝑛

∪ Δ

V
𝑛

𝑚

𝑛

)) ∩ 𝐴.

(23)

Again, applying (16), we have |𝐶| = |𝐵| < 𝜀/2.Moreover, since
[0, 1] \ 𝐴 ⊂ Int𝐵, the set

𝐵 ∪ 𝐶 = ([0, 1] \ 𝐴) ∪ 𝐵

∪ (Δ

𝑖

0

𝑚

0

∪ Δ

𝑖

1

𝑚

0

∪

∞

⋃

𝑛=1

(Δ

𝑢

𝑛

𝑚

𝑛

∪ Δ

V
𝑛

𝑚

𝑛

))

(24)

is open in [0, 1].
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Finally, put𝐻 = [0, 1] \ (𝐵 ∪𝐶). It is clear that𝐻 ⊂ 𝐴,𝐻
is a closed subset of [0, 1], and |𝐻| > 1 − 2(𝜀/2) = 1 − 𝜀. Since
𝑓 is a bijection and 𝑓 = 𝑓−1, we have

𝑓 ((𝐵 ∪ 𝐶) ∩ 𝐴) = 𝑓 (𝐵 ∩ 𝐴) ∪ 𝑓 (𝐶 ∩ 𝐴)

= 𝐶 ∪ (𝐵 ∩ 𝐴) = (𝐵 ∪ 𝐶) ∩ 𝐴.

(25)

It follows that 𝑓(𝐻) = 𝐻 and ℎ = 𝑓 ↾ 𝐻 is a homeomor-
phism.

Fix 𝑥
0

∈ 𝐻 and 𝑛 ∈ N. There exists 𝑘 ∈ {0, 1, . . . , 2𝑛 − 1}
such that 𝑥

0

∈ Δ

𝑘

𝑚

𝑛

. Certainly, Δ𝑘
𝑚

𝑛

̸⊂ 𝐵 ∪ 𝐶. Therefore, by
(17), |(𝐵 ∪ 𝐶) ∩ Δ𝑘

𝑚

𝑛

| < (1/8)|Δ

𝑘

𝑚

𝑛

|. By (10), (11), and (12),



















{𝑥 ∈ Δ

𝑘

𝑚

𝑛

:

𝑓 (𝑥) − 𝑓 (𝑥

0

)

𝑥 − 𝑥

0

< 0}



















>

1

4

⋅

1

8











Δ

𝑘

𝑚

𝑛











,



















{𝑥 ∈ Δ

𝑘

𝑚

𝑛

:

𝑓 (𝑥) − 𝑓 (𝑥

0

)

𝑥 − 𝑥

0

>

1

3

}



















>

1

4

⋅

1

8











Δ

𝑘

𝑚

𝑛











.

(26)

Therefore, any extension ̃ℎ : [0, 1] → [0, 1] of ℎ has no
approximate derivative at 𝑥

0

.

Lemma 8. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ R, 𝑎 < 𝑏, and 𝑐 < 𝑑. For every
𝜀 ∈ (0, 1) there exist a closed nowhere dense set𝐻 ⊂ (𝑎, 𝑏) and
a continuous injection 𝑔 : 𝐻 → [𝑐, 𝑑] such that

(d1) |𝐻| > (1/2)(𝑏 − 𝑎),
(d2) 𝑔−1 : 𝑔(𝐻) → 𝐻 is continuous,
(d3) 𝑔 has Lusin’s property (𝑁) and𝑁−1-property,
(d4) if �̃� : [𝑎, 𝑏] → [𝑐, 𝑑] is any extension of 𝑔, then �̃� has

no approximate derivative (finite or not) at any 𝑥 ∈ 𝐻,
(d5) |𝑔(min𝐻) − 𝑐| < 𝜀, |𝑑 − 𝑔(max𝐻)| < 𝜀, and |𝑔(𝑏

𝑛

) −

𝑔(𝑎

𝑛

)| < 𝜀 for all 𝑛 ∈ N, where {(𝑎
𝑛

, 𝑏

𝑛

) : 𝑛 ∈ N} is the
set of all connected components of (𝑎, 𝑏) \ 𝐻.

Proof. Fix 𝜀 > 0 and choose 𝑛 ∈ N such that 1/(𝑛 + 1) <
𝜀/2(𝑑 − 𝑐). Let 𝑎 = 𝑦

0

< 𝑥

1

< 𝑦

1

< 𝑥

2

< ⋅ ⋅ ⋅ < 𝑥

𝑛

< 𝑦

𝑛

<

𝑥

𝑛+1

= 𝑏 be a partition of [𝑎, 𝑏] such that 𝑦
𝑖

− 𝑥

𝑖

= (1/(𝑛 +

1))(𝑏 − 𝑎) for 𝑖 ∈ {1, . . . , 𝑛} and 𝑥
𝑗

−𝑦

𝑗−1

= (1/(𝑛 + 1)

2

)(𝑏 − 𝑎)

for 𝑗 ∈ {1, . . . , 𝑛, 𝑛 + 1}. Let 𝜓 : [𝑎, 𝑏] → [𝑐, 𝑑] be a linear
homeomorphism, 𝜓(𝑥) = ((𝑑 − 𝑐)/(𝑏 − 𝑎))(𝑥 − 𝑎) + 𝑐. By
Theorem 7, there exist a closed nowhere dense set 𝐹 ⊂ (0, 1)
and a homeomorphism ℎ : 𝐹 → 𝐹 satisfying conditions (c2)–
(c4) such that |𝐹| > (𝑛 + 1)/2𝑛. For each 𝑘 ∈ {1, . . . , 𝑛} define
linear homeomorphisms 𝜓

𝑘

: [𝑥

𝑘

, 𝑦

𝑘

] → [0, 1],

𝜓

𝑘

(𝑥) =

1

𝑦

𝑘

− 𝑥

𝑘

(𝑥 − 𝑥

𝑘

) , (27)

and 𝜙
𝑘

: [0, 1] → [𝜓(𝑥

𝑘

), 𝜓(𝑦

𝑘

)],

𝜙

𝑘

(𝑥) = (𝜓 (𝑦

𝑘

) − 𝜓 (𝑥

𝑘

)) 𝑥 + 𝜓 (𝑥

𝑘

) . (28)

Moreover, let 𝐹
𝑘

= 𝜓

−1

𝑘

(𝐹) for 𝑘 ≤ 𝑛. Obviously, each 𝐹
𝑘

is a
closed nowhere dense subset of (𝑥

𝑘

, 𝑦

𝑘

). Besides, |𝐹
𝑘

| = |𝐹| ⋅

(𝑦

𝑘

− 𝑥

𝑘

) = |𝐹| ⋅ (𝑏 − 𝑎)/(𝑛 + 1). For each 𝑘 ∈ {1, . . . , 𝑛} define
ℎ

𝑘

: 𝐹

𝑘

→ [𝜓(𝑥

𝑘

), 𝜓(𝑦

𝑘

)] by ℎ
𝑘

= 𝜙

𝑘

∘ ℎ ∘ 𝜓

𝑘

. It is easy to see

that each ℎ
𝑘

is a continuous injection, ℎ
𝑘

has Lusin’s property
(𝑁) and𝑁−1-property, and, moreover, any extension of ℎ

𝑘

to
[𝑥

𝑘

, 𝑦

𝑘

] is not approximately differentiable at any point 𝑥 ∈
𝐹

𝑘

. Finally, let 𝐻 = ⋃

𝑛

𝑘=1

𝐹

𝑘

and define 𝑔 : 𝐻 → [𝑐, 𝑑] by
𝑔(𝑥) = ℎ

𝑘

(𝑥) for 𝑥 ∈ 𝐹
𝑘

, 𝑘 ∈ {1, . . . , 𝑛}.
It is clear that 𝐻 and 𝑔 satisfy conditions (d1)–(d4). Let

(𝛼, 𝛽) be any connected component of (𝑎, 𝑏) \ 𝐻. If (𝛼, 𝛽) ⊂
[𝑥

𝑘

, 𝑦

𝑘

] for some 𝑘 ∈ {1, . . . , 𝑛} then









𝑔 (𝛽) − 𝑔 (𝛼)









≤ 𝜓 (𝑦

𝑘

) − 𝜓 (𝑥

𝑘

) =

𝑏 − 𝑎

𝑛 + 1

⋅

𝑑 − 𝑐

𝑏 − 𝑎

=

𝑑 − 𝑐

𝑛 + 1

< 𝜀.

(29)

If (𝛼, 𝛽) ⊃ [𝑦
𝑘−1

, 𝑥

𝑘

] for some 𝑘 ∈ {2, . . . , 𝑛} then









𝑔 (𝛽) − 𝑔 (𝛼)









≤ 𝜓 (𝑦

𝑘

) − 𝜓 (𝑥

𝑘−1

) = 2

𝑑 − 𝑐

𝑛 + 1

< 𝜀.
(30)

Similarly,









𝑔 (min𝐹) − 𝑐




≤ 𝜓 (𝑦

1

) − 𝑐 =

𝑑 − 𝑐

𝑛 + 1

+

𝑑 − 𝑐

(𝑛 + 1)

2

=

𝑛 + 2

(𝑛 + 1)

2

(𝑑 − 𝑐) <

2 (𝑑 − 𝑐)

𝑛 + 1

< 𝜀.

(31)

Analogously, |𝑑 − 𝑔(max𝐹)| < 𝜀. This completes the proof.

Now, we can prove themain theoremof the present paper.

Theorem 9. There exists a continuous function 𝑓 : [0, 1] →
[0, 1] such that 𝑓 has 𝑁−1-property, but 𝑓

𝑎𝑝

exists almost
nowhere.

Proof. We will construct inductively a sequence (𝐹
𝑛

)

𝑛∈N of
closed subsets of [0, 1] and a sequence (𝑓

𝑛

)

𝑛∈N of continuous
functions 𝑓

𝑛

: [0, 1] → [0, 1] such that

(1) 𝐹
𝑛

⊂ 𝐹

𝑛+1

and |𝐹
𝑛

| > 1 − 1/2

𝑛 for all 𝑛 ≥ 1,
(2) 𝑓
𝑛

↾ 𝐹

𝑘

= 𝑓

𝑘

↾ 𝐹

𝑘

for all 𝑛 > 𝑘,
(3) |𝑓
𝑛

(𝑥) − 𝑓

𝑛+1

(𝑥)| < 1/2

𝑛 for 𝑛 ∈ {1, 2, . . .} and 𝑥 ∈
[0, 1],

(4) every 𝑓
𝑛

restricted to 𝐹
𝑛

has𝑁−1-property,
(5) every extension of 𝑓

𝑛

↾ 𝐹

𝑛

has no approximate
derivative at any 𝑥 ∈ 𝐹

𝑛

.

First, we give a useful definition. If 𝐸 ⊂ (0, 1) is closed and
𝜑 : 𝐸 → (0, 1), then by the linear extension of 𝑓 we mean 𝜓 :
[0, 1] → [0, 1] such that 𝜓 ↾ 𝐸 = 𝜑, 𝜓(0) = 0, 𝜓(1) = 1, and
𝜓 is linear on every closed interval contiguous to 𝐸∪ {0, 1}. It
is clear that 𝜓 is continuous if and only if 𝜑 is continuous.

By Theorem 7, there exist a closed set 𝐹 ⊂ (0, 1), |𝐹| >
1/2, and a bijection 𝑔

1

: 𝐹 → 𝐹 satisfying conditions (c1)–
(c4). Let 𝐹

1

= 𝐹 and 𝑓
1

: [0, 1] → [0, 1] be the linear
extension of 𝑔

1

. Then 𝑓
1

is continuous, 𝑓
1

has𝑁−1-property,
and every extension of 𝑓

1

↾ 𝐹

1

= 𝑔

1

has no approximate
derivative at any 𝑥 ∈ 𝐹

1

.
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Let ((𝑎1
𝑘

, 𝑏

1

𝑘

))

𝑘≥1

be the family of all connected compo-
nents of [0, 1] \ (𝐹

1

∪ {0, 1}). Moreover, for every 𝑘 ∈ N, let
𝐽

1

𝑘

be an open interval with endpoints 𝑓
1

(𝑎

1

𝑘

) and 𝑓
1

(𝑏

1

𝑘

). By
Lemma 8, for each 𝑘 ∈ N there exist closed 𝐹1

𝑘

⊂ (𝑎

1

𝑘

, 𝑏

1

𝑘

) and
𝑔

1

𝑘

: 𝐹

1

𝑘

→ 𝐽

1

𝑘

satisfying conditions (d1)–(d5) with 𝜀 = 1/2. Let
𝐹

2

= 𝐹

1

∪ ⋃

∞

𝑘=1

𝐹

1

𝑘

and let 𝑔
2

: 𝐹

2

→ 𝐹

1

∪ ⋃

∞

𝑘=1

𝐽

1

𝑘

be defined
by 𝑔
2

(𝑥) = 𝑓

1

(𝑥) for 𝑥 ∈ 𝐹
1

and 𝑔
2

(𝑥) = 𝑔

1

𝑘

(𝑥) for 𝑥 ∈ 𝐹1
𝑘

,
𝑘 ∈ {1, 2, . . .}. We claim that 𝑔

2

is continuous. The continuity
of 𝑔
2

at each point of ⋃∞
𝑘=1

𝐹

1

𝑘

is obvious. Fix 𝑥
0

∈ 𝐹

1

and
𝜀 > 0. If 𝑥

0

is not isolated from the right in 𝐹
2

, then there
exist 𝛿 > 0 such that |𝑔

2

(𝑥) − 𝑔

2

(𝑥

0

)| = |𝑔

1

(𝑥) − 𝑔

1

(𝑥

0

)| < 𝜀

for 𝑥 ∈ 𝐹
1

∩ (𝑥

0

, 𝑥

0

+𝛿] and 𝐹
2

∩ (𝑥

0

, 𝑥

0

+𝛿) = (𝐹

1

∩ (𝑥

0

, 𝑥

0

+

𝛿)) ∪ ⋃

𝑘∈𝐾

𝐹

1

𝑘

for some𝐾 ⊂ N. Since









𝑔

2

(𝑥) − 𝑔

2

(𝑥

0

)









< max {




𝑔

2

(𝑎

1

𝑘

) − 𝑔

2

(𝑥

0

)











,











𝑔

2

(𝑏

1

𝑘

) − 𝑔

2

(𝑥

0

)











}

(32)

for𝑥 ∈ 𝐽1
𝑘

, we have |𝑔
2

(𝑥)−𝑔

2

(𝑥

0

)| < 𝜀 for𝑥 ∈ 𝐹
2

∩(𝑥

0

, 𝑥

0

+𝛿).
Hence, 𝑔

2

is continuous from the right at 𝑥
0

. Similarly, we can
show that 𝑔

2

is continuous from the left at 𝑥
0

. Since 𝑥
0

was
arbitrary, 𝑔

2

is continuous.
Let 𝑓
2

be the linear extension of 𝑔
2

. It is clear that 𝐹
1

⊂

𝐹

2

, |𝐹
2

| > 1 − 1/4, 𝑓
2

↾ 𝐹

1

= 𝑓

1

↾ 𝐹

1

, 𝑓
2

restricted to 𝐹
2

has 𝑁−1-property, and every extension of 𝑓
2

↾ 𝐹

2

= 𝑔

2

has
no approximate derivative at any 𝑥 ∈ 𝐹

2

. Moreover, |𝑓
2

(𝑥) −

𝑓

1

(𝑥)| < 1/2 for 𝑥 ∈ [0, 1].
Assume that closed sets 𝐹

1

, . . . , 𝐹

𝑛

⊂ (0, 1), 𝐹
1

⊂ ⋅ ⋅ ⋅ ⊂ 𝐹

𝑛

,
and continuous functions 𝑓

𝑟

: [0, 1] → [0, 1], 𝑟 ∈ {1, . . . , 𝑛},
are chosen. Moreover, assume that for every 𝑟 ∈ {2, . . . , 𝑛} we
have |𝐹

𝑟

| > 1 − 1/2

𝑟, 𝑓
𝑟

restricted to 𝐹
𝑟

has 𝑁−1-property,
every extension of 𝑓

𝑟

↾ 𝐹

𝑟

has no approximate derivative at
any 𝑥 ∈ 𝐹

𝑟

, |𝑓
𝑟

(𝑥) − 𝑓

𝑟−1

(𝑥)| < 1/2

𝑟−1 for each 𝑥 ∈ [0, 1], and
𝑓

𝑟

↾ 𝐹

𝑠

= 𝑓

𝑠

↾ 𝐹

𝑠

for every 𝑠 ∈ {1, . . . , 𝑟 − 1}.
Let ((𝑎𝑛

𝑘

, 𝑏

𝑛

𝑘

))

𝑘≥1

be the family of all connected compo-
nents of [0, 1] \ (𝐹

𝑛

∪ {0, 1}). Moreover, for every 𝑘 ∈ N let
𝐽

𝑛

𝑘

be an open interval with endpoints 𝑓
𝑛

(𝑎

𝑛

𝑘

) and 𝑓
𝑛

(𝑏

𝑛

𝑘

). By
Lemma 8, for each 𝑘 ∈ N there exist closed 𝐹𝑛

𝑘

⊂ (𝑎

𝑛

𝑘

, 𝑏

𝑛

𝑘

) and
𝑔

𝑛

𝑘

: 𝐹

𝑛

𝑘

→ 𝐽

𝑛

𝑘

satisfying conditions (d1)–(d5) with 𝜀 = 1/2𝑛.
Let 𝐹
𝑛+1

= 𝐹

𝑛

∪⋃

∞

𝑘=1

𝐹

𝑛

𝑘

and let 𝑔
𝑛+1

: 𝐹

𝑛+1

→ 𝐹

1

∪⋃

∞

𝑘=1

𝐽

𝑛

𝑘

be
defined by 𝑔

𝑛+1

(𝑥) = 𝑓

𝑛

(𝑥) for 𝑥 ∈ 𝐹
𝑛

and 𝑔
𝑛+1

(𝑥) = 𝑔

𝑛

𝑘

(𝑥)

for 𝑥 ∈ 𝐹𝑛
𝑘

, 𝑘 ∈ {1, 2, . . .}. Similarly, as in the case of 𝑔
2

, we
can check that 𝑔

𝑛+1

is continuous.
Let 𝑓
𝑛+1

be the linear extension of 𝑔
𝑛+1

. It is clear that
𝐹

𝑛

⊂ 𝐹

𝑛+1

, |𝐹
𝑛+1

| > 1 − 1/2

𝑛+1, 𝑓
𝑛+1

↾ 𝐹

𝑛

= 𝑓

𝑛

↾ 𝐹

𝑛

, 𝑓
𝑛+1

restricted to 𝐹
𝑛+1

has 𝑁−1-property, and every extension of
𝑓

𝑛+1

↾ 𝐹

𝑛+1

has no approximate derivative at any 𝑥 ∈ 𝐹
𝑛+1

.
Moreover, |𝑓

𝑛+1

(𝑥) − 𝑓

𝑛

(𝑥)| < 1/2

𝑛 for 𝑥 ∈ [0, 1]. Thus, we
have proved inductively that there exist a sequence (𝐹

𝑛

)

𝑛∈N of
closed subsets of [0, 1] and a sequence (𝑓

𝑛

)

𝑛∈N of continuous
functions 𝑓

𝑛

: [0, 1] → [0, 1] satisfying conditions (1)–(5).
Since |𝑓

𝑛+1

(𝑥) − 𝑓

𝑛

(𝑥)| < 1/2

𝑛 for 𝑥 ∈ [0, 1] and 𝑛 ∈
N, the sequence (𝑓

𝑛

)

𝑛∈N is uniformly convergent to some
continuous function 𝑓 : [0, 1] → [0, 1]. Moreover, 𝑓 ↾

𝐹

𝑛

= 𝑓

𝑛

↾ 𝐹

𝑛

for all 𝑛 ∈ N. Therefore, by (5), 𝑓 has no
approximate derivative at any point from ⋃∞

𝑛=1

𝐹

𝑛

. Since, by
(1), | ⋃∞

𝑛=1

𝐹

𝑛

| = 1, 𝑓ap exists almost nowhere.

It remains to prove that𝑓 has𝑁−1-property. Take any𝐸 ⊂
[0, 1] of the Lebesgue measure zero. Then, by (2),

𝑓

−1

(𝐸) ⊂

∞

⋃

𝑛=1

(𝐹

𝑛

∩ 𝑓

−1

(𝐸)) ∪ ([0, 1] \

∞

⋃

𝑛=1

𝐹

𝑛

)

=

∞

⋃

𝑛=1

(𝐹

𝑛

∩ 𝑓

−1

𝑛

(𝐸)) ∪ ([0, 1] \

∞

⋃

𝑛=1

𝐹

𝑛

) .

(33)

Applying (1) and (4), we conclude that |𝑓−1(𝐸)| = 0. Thus, 𝑓
has𝑁−1-property.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] S. Saks,Theory of the Integral, Stechert, NewYork, NY,USA, 2nd
edition, 1937.

[2] S. P. Ponomarev, “Submersions and pre-images of sets of
measure zero,” Sibirskii Matematicheskii Zhurnal, vol. 28, no. 1,
pp. 199–210, 1987.

[3] S. P. Ponomarev, “The N−1-property of maps and Luzin’s
condition (N),”Mathematical Notes, vol. 58, no. 3, pp. 960–965,
1995.

[4] M. Charalambides, “On restricting Cauchy-Pexider functional
equations to submanifolds,” Aequationes Mathematicae, vol. 86,
no. 3, pp. 231–253, 2013.

[5] O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, “Mappings
with finite length distortion,” Journal d’Analyse Mathématique,
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