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This paper aims to study the influence of thermal radiation on unsteady magnetohyrdodynamic (MHD) natural convection flow of
an optically thick fluid over a vertical plate embedded in a porous medium with arbitrary shear stress. Combined phenomenon of
heat andmass transfer is considered. Closed-form solutions in general form are obtained by using the Laplace transform technique.
They are expressed in terms of exponential and complementary error functions. Velocity is expressed as a sum of thermal and
mechanical parts. Corresponding limiting solutions are also reduced from the general solutions. It is found that the obtained
solutions satisfy all imposed initial and boundary conditions and reduce to some known solutions from the literature as special
cases. Analytical results for the pertinent flow parameters are drawn graphically and discussed in detail. It is found that the velocity
profiles of fluid decrease with increasing shear stress. The magnetic parameter develops shear resistance which reduces the fluid
motion whereas the inverse permeability parameter increases the fluid flow.

1. Introduction

Heat andmass transfer process is observed in lots of practical
situations, for example, evaporation and chemical reactions
as well as condensation. The industrial applications include
many transport processes where the simultaneous heat and
mass transfer occurs as a result of combined buoyancy effects
of thermal diffusion and diffusion of chemical species. Possi-
bly, this is because of the fact that, inmany numbers of techni-
cal transfer processes, the study ofmixed heat andmass trans-
fer is helpful. Few attempts in this direction aremade by Singh
[1], Narahari [2], Narahari andNayan [3], Narahari and Ishak
[4], Chaudhary and Jain [5], Das et al. [6], Soundalgekar et al.
[7], andMuthucumaraswamy et al. [8, 9]. A few late efforts in
the same area of research are presented in [4–9]. Significant
concern has been originated in the study of magnetic field
and the electrically conducting fluids flow, while medium is
porous [10]. The unsteady free convection fluid flows which

are incompressible and viscous near a porous infinite plate
with arbitrary time dependent heating plate are investigated
by Toki and Tokis [11].The results of chemical reaction of vis-
cous fluid which are electrically conducting through a porous
medium in two-dimensional steady free convection flow past
a vertical surface with slip flow region have been presented by
Senapati et al. [12]. MHD free convection flow of an incom-
pressible viscous fluid near an oscillating plate embedded in
a porous medium has been presented by Khan et al. [13].
Therefore, many researchers have studied free convection
flow past a vertical plate with thermal radiation [14–16].

Moreover, several research papers on free convection
fluid flows with different thermal conditions at the bounding
plate which are continuous and well-defined at the wall are
found. However, a number of problems seem with different
conditions at the wall. Therefore, its investigation under
step change in wall temperature is meaningful. The physical
significance of this thought can be seen in the fabrication of
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Figure 1: Physical configuration of the problem.

thin-film photovoltaic devices [17]. Whenever the conven-
tional supposition of periodic outdoor conditions may lead
to substantial errors in the case of a significant temporary
deviation of the temperature from periodicity, such as in
air conditioning, periodic step changes in temperature are
important [18]. Here some of recent and important contri-
butions [18–24] are presented.

Fluid flow past an infinite plate is of much importance
due to its large practical applications. Such motion is due to
many effects such asmotions due to wall shear stress. Closed-
form results of the problems with shear stress on the wall
are difficult; therefore a very rare research is found in the
literature. Slip velocity depends on the shear stress linearly;
this idea was presented by Navier [25]. Free convection flow
near a vertical plate that applies arbitrary shear stress to the
fluid was investigated by Fetecau et al. [26]. However, as yet
no research has been presented earlier in the literature which
mainly focuses on the free convection conjugate flow with
thermal diffusion, while taking arbitrary shear stress along
ramped wall temperature.

Therefore, exact solutions for MHD conjugate flow of a
viscous fluid past a vertical plate that applies arbitrary shear
stress to the fluid are presented in this paper. Exact solutions
of the initial and boundary value problems that govern the
flow are obtained by using Laplace transform technique.
From general solutions some of special and limiting cases are
derived. The results for velocity field, the temperature field,
and concentration field are shown graphically and discussed
for different embedded parameters.

2. Mathematical Formulation

Consider the unsteady MHD free convection flow of an
incompressible viscous fluid over an infinite vertical plate.
The geometry of the problem is presented in Figure 1. The
plate is along the 𝑥-axis and the 𝑦-axis is assumed normal to
it. The plate and the fluid are at stationary positions with the
constant temperature 𝑇

∞
and concentration 𝐶

∞
. The fluid

experiences shear stress 𝑓(𝑡) by the plate after 𝑡 = 0+. In the
meantime, the plate temperature is aroused or let down to
𝑇
∞
+(𝑇
𝑤
−𝑇
∞
)(𝑡/𝑡0), when 𝑡 ≤ 𝑡0, and thereafter, for 𝑡 > 𝑡0, is

kept at constant temperature𝑇
𝑤
and concentration is aroused

to𝐶
𝑤
.The radiation is taken in the energy equation.However,

the radiative heat flux is assumed negligible in 𝑥-direction.
We suppose that the fluid flow is laminar, grey absorbing-
emitting radiation but the medium is with no scattering. Fur-
thermore, we suppose that the fluid is electrically conducting.
Hence, we take the following Maxwell equations:

divB = 0,

CurlE = − 𝜕B
𝜕𝑡

,

CurlB = 𝜇
𝑒
J.

(1)

In the above equations, B, E, and 𝜇
𝑒
are the magnetic field,

electric field intensity, and the magnetic permeability of the
fluid, respectively. By using Ohm’s law, the current density J
is given as

J = 𝜎 (E+V×B) , (2)
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where 𝜎 is the electrical conductivity of the fluid. Further we
make the following assumptions.

(i) 𝜎, 𝜌, 𝜇
𝑒
are constants throughout the flow field.

(ii) B is perpendicular to V.

(iii) The induced magnetic field b is negligible compared
with the imposed magnetic field B0.

(iv) The magnetic Reynolds number is small.

(v) The electric field is zero.

Therefore, the linearized form of the electromagnetic
body force [27] is

1
𝜌

J×B = 𝜎
𝜌

[(V×B0) ×B0] = −
𝜎𝐵

2
0V
𝜌

. (3)

Using Boussinesq’s approximation and neglecting the viscous
dissipation, the equations governing the flow are given by [2]

𝜕𝑢

𝜕𝑡

= ]
𝜕
2
𝑢

𝜕𝑦
2 +𝑔𝛽𝑇 (𝑇 −𝑇∞) + 𝑔𝛽𝐶 (𝐶 −𝐶∞)

−

]
𝐾

𝑢−

𝜎𝐵
2
0
𝜌

𝑢; 𝑦, 𝑡 > 0,

(4)

𝜌𝐶
𝑝

𝜕𝑇

𝜕𝑡

= 𝑘

𝜕
2
𝑇

𝜕𝑦
2 −

𝜕𝑞
𝑟

𝜕𝑦

𝑦, 𝑡 > 0, (5)

𝜕𝐶

𝜕𝑡

= 𝐷

𝜕
2
𝐶

𝜕𝑦
2 +𝐷1

𝜕
2
𝑇

𝜕𝑦
2 𝑦, 𝑡 > 0, (6)

where 𝑢, 𝐶, 𝑇, ], 𝑔, 𝜌, 𝛽
𝐶
, 𝛽
𝑇
, 𝜎, 𝐶

𝑝
, 𝐵0, 𝑘, 𝑞𝑟, 𝐷,

𝐷1, and 𝐾 are the fluid velocity in 𝑥-direction, the fluid
concentration, the fluid temperature, its kinematic viscosity,
the gravitational acceleration, the constant density, the mass
transfer coefficient, the heat transfer coefficient, the fluid
electric conductivity, the heat capacity, the applied magnetic
field, the thermal conductivity, the radiative heat flux, mass
diffusivity, thermal diffusivity, and the permeability of the
porous medium.

The corresponding initial and boundary conditions are

𝑢 (𝑦, 0) = 0,

𝑇 (𝑦, 0) = 𝑇
∞
,

𝐶 (𝑦, 0) = 𝐶
∞
;

∀𝑦 ⩾ 0,

𝜕𝑢 (0, 𝑡)
𝜕𝑦

=

𝑓 (𝑡)

𝜇

,

𝐶 (0, 𝑡) = 𝐶
𝑤
;

𝑡 > 0,

𝑇 (0, 𝑡) = 𝑇
∞
+ (𝑇
𝑤
−𝑇
∞
)

𝑡

𝑡0
, 0 < 𝑡 < 𝑡0,

𝑇 (0, 𝑡) = 𝑇
𝑤
; 𝑡 ≥ 𝑡0,

𝑢 (∞, 𝑡) = 0,

𝑇 (∞, 𝑡) = 𝑇
∞
,

𝐶 (∞, 𝑡) = 𝐶
∞
;

𝑡 > 0.
(7)

The radiation heat flux under Rosseland approximation for
optically thick fluid [28] is given by

𝑞
𝑟
= −

4𝜎∗

3𝑘
𝑅

𝜕𝑇
4

𝜕𝑦

, (8)

where 𝜎∗ and 𝑘
𝑅
are the Stefan-Boltzman constant and the

mean absorption coefficient. We can see from (8) that the
radiation term is nonlinear. Recently David Maxim Gururaj
and Anjali Devi [29] used nonlinear radiation effects and
studied MHD boundary layer flow with forced convection
past a nonlinearly stretching surface with variable tempera-
ture. Therefore, we follow David Maxim Gururaj and Anjali
Devi [29] and assume that the temperature differences within
the flow are sufficiently small; that is, the difference between
the fluid temperature and the free stream temperature is
negligible, so that (8) can be linearized by expanding 𝑇 into
the Taylor series about 𝑇

∞
, which after neglecting higher

order terms takes the form

𝑇
4
≈ 4𝑇3
∞
𝑇− 3𝑇4

∞
. (9)

Introducing (5), (8), and (9), we get

Pr 𝜕𝑇
𝜕𝑡

= ] (1+𝑁
𝑟
)

𝜕
2
𝑇

𝜕𝑦
2 ; 𝑦, 𝑡 > 0, (10)

where Pr, ], and𝑁
𝑟
are defined by

Pr =
𝜇𝐶
𝑝

𝑘

,

] =
𝜇

𝜌

,

𝑁
𝑟
=

16𝜎𝑇3
∞

3𝑘𝑘
𝑅

.

(11)

Taking the nondimensional variables

𝑢
∗

= 𝑢√
𝑡0
]
,

𝑇
∗

=

𝑇 − 𝑇
∞

𝑇
𝑤
− 𝑇
∞

,

𝐶
∗

=

𝐶 − 𝐶
∞

𝐶
𝑤
− 𝐶
∞

,
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𝑦
∗

=

𝑦

√]𝑡0
,

𝑡
∗

=

𝑡

𝑡0
,

𝑓
∗

(𝑡
∗

) =

𝑡
0

𝜇

𝑓 (𝑡) ,

(12)

by eliminating the star notations into (4), (6), and (10), we
obtain

𝜕𝑢

𝜕𝑡

=

𝜕
2
𝑢

𝜕𝑦
2 +Gr𝑇+Gm𝐶−𝐾𝑝𝑢−𝑀𝑢,

Preff
𝜕𝑇

𝜕𝑡

=

𝜕
2
𝑇

𝜕𝑦
2 ,

𝜕𝐶

𝜕𝑡

=

1
Sc
𝜕
2
𝐶

𝜕𝑦
2 + Sr

𝜕
2
𝑇

𝜕𝑦
2 ,

(13)

where Preff = Pr/(1+𝑁
𝑟
) is the effective Prandtl number [28,

Equation (10)] and

Gr =
𝑔𝛽
𝑇
(𝑇
𝑤
− 𝑇
∞
) ]

𝑈
3
0

,

Gm =

𝑔𝛽
𝑐
(𝐶
𝑤
− 𝐶
∞
) ]

𝑈
3
0

,

𝑀 =

𝜎𝐵
2
0𝑡0
𝜌

,

Sc = ]
𝐷

,

𝐾
𝑝
=

]𝑡0
𝐾

,

𝑡0 =
]
𝑈

2
0
,

Sr =
𝐷1 (𝑇𝑤 − 𝑇∞)

(𝐶
𝑤
− 𝐶
∞
) ]

(14)

are theGrashof number,modifiedGrashof number, magnetic
parameter, Schmidt number, the inverse permeability param-
eter for the porousmedium, the characteristic time, and Soret
number, respectively.

The nondimensional initial and boundary conditions are

𝑢 (𝑦, 0) = 0,

𝑇 (𝑦, 0) = 0,

𝐶 (𝑦, 0) = 0;

∀𝑦 ≥ 0,

𝜕𝑢

𝜕𝑦








𝑦=0

= 𝑓 (𝑡) ,

𝑇 (0, 𝑡) = 𝑡;

0 < 𝑡 ≤ 1,

𝑇 (0, 𝑡) = 1; 𝑡 > 1,

𝐶 (0, 𝑡) = 1,

𝐶 (∞, 𝑡) = 0,

𝑇 (∞, 𝑡) = 0,

𝑢 (∞, 𝑡) = 0;

𝑡 > 0.
(15)

3. Solution of the Problem

To solve (13) under conditions (15), by taking Laplace trans-
form technique, we obtained

𝑞𝑢 (𝑦, 𝑞) =

𝜕
2
𝑢 (𝑦, 𝑞)

𝜕𝑦
2 +Gr𝑇 (𝑦, 𝑞) +Gm𝐶 (𝑦, 𝑞)

−𝐾
𝑝
𝑢 (𝑦, 𝑞) −𝑀𝑢 (𝑦, 𝑞) ,

(16)

𝑇 (𝑦, 𝑞) =

1
Preff𝑞

𝜕
2
𝑇 (𝑦, 𝑞)

𝜕𝑦
2 , (17)

𝐶 (𝑦, 𝑞) =

1
Sc𝑞

𝜕
2
𝐶 (𝑦, 𝑞)

𝜕𝑦
2 +

Sr
𝑞

𝜕
2
𝑇 (𝑦, 𝑞)

𝜕𝑦
2 , (18)

with boundary conditions

𝐶 (∞, 𝑞) = 0,

𝐶 (0, 𝑞) = 1
𝑞

,

𝑇 (∞, 𝑞) = 0,

𝑢 (∞, 𝑞) = 0,

𝜕𝑢 (𝑦, 𝑞)

𝜕𝑦









𝑦=0

= 𝐹 (𝑞) ,

𝑇 (0, 𝑞) = 1 − 𝑒−𝑞

𝑞
2 .

(19)

Solving (17) using (19), we get

𝑇 (𝑦, 𝑞) =

1
𝑞
2 𝑒
−𝑦√𝑞Preff

−

𝑒
−𝑞

𝑞
2 𝑒
−𝑦√𝑞Preff

, (20)

by inverse Laplace transform giving

𝑇 (𝑦, 𝑡) = 𝑓 (𝑦, 𝑡) −𝑓 (𝑦, 𝑡 − 1)𝐻 (𝑡 − 1) , (21)
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where

𝑓 (𝑦, 𝑡) = (

Preff𝑦
2

2
+ 𝑡) erf 𝑐 (

√Preff𝑦
2√𝑡

)

−√
Preff 𝑡
𝜋

𝑦 exp(
−Preff𝑦

2

4𝑡
) ,

𝜕𝑇 (𝑦, 𝑡)

𝜕𝑦









𝑦=0

=

2√Preff
√𝜋

(√𝑡 −√𝑡 − 1𝐻(𝑡 − 1)) ,

(22)

which is the Nusselt number. Error complementary error
functions of Gauss [30] are denoted by erf(⋅) and erf𝑐(⋅).

Solution of (18) under boundary conditions (19) yields

𝐶 (𝑦, 𝑞) =

1
𝑞

𝑒
−𝑦√Sc𝑞

+

𝑐18 (1 − 𝑒
−𝑞

)

𝑞
2 𝑒

−𝑦√Sc√𝑞

−

𝑐18 (1 − 𝑒
−𝑞

)

𝑞
2 𝑒

−𝑦√Preff√𝑞

(23)

by taking inverse Laplace transform giving

𝐶 (𝑦, 𝑡) = erf 𝑐 (
𝑦√Sc
2√𝑡

)+ 𝑐18 ((𝑡 +
Sc𝑦2

2
) erf 𝑐

⋅ (

𝑦√Sc
2√𝑡

)−

𝑦√Sc√𝑡
√𝜋

𝑒
−𝑦

2Sc/4𝑡
)− 𝑐18 ((𝑡

+

Preff𝑦
2

2
) erf𝑐 (

𝑦√Preff
2√𝑡

)−

𝑦√Preff√𝑡
√𝜋

⋅ 𝑒
−𝑦

2Preff /4𝑡
)

+[𝑐18 ((𝑡 − 1+
Preff𝑦

2

2
) erf𝑐 (

𝑦√Preff
2√𝑡 − 1

)

−

𝑦√Preff√𝑡 − 1
√𝜋

𝑒
−𝑦

2Preff /4(𝑡−1)
)]𝐻 (𝑡 − 1)

− [𝑐18 ((𝑡 − 1+
Sc𝑦2

2
) erf𝑐 (

𝑦√Sc
2√𝑡 − 1

)

−

𝑦√Sc√𝑡 − 1
√𝜋

𝑒
−𝑦

2Sc/4(𝑡−1)
)]𝐻 (𝑡 − 1) ,

(24)

𝜕𝐶 (𝑦, 𝑡)

𝜕𝑦









𝑦=0

=

−2√Sc − 3𝑐18√Sc𝑡
√𝜋𝑡

− [

−2√Sc − 3𝑐18√Sc (𝑡 − 1)
√𝜋 (𝑡 − 1)

]𝐻 (𝑡 − 1) ,

(25)

which is the corresponding mass transfer rate also known as
Sherwood number.

The solution of (16) under boundary conditions (19)
results in

𝑢 (𝑦, 𝑞) =

𝑐2√𝑞 (1 − 𝑒
−𝑞

)

𝑞
2
(𝑞 − 𝑐1)√𝑞 + 𝐻1

𝑒
−𝑦√𝑞+𝐻1

+

𝑐4√𝑞

𝑞 (𝑞 − 𝑐3)√𝑞 + 𝐻1
𝑒
−𝑦√𝑞+𝐻1

−

𝐹 (𝑞)

√𝑞 + 𝐻1
𝑒
−𝑦√𝑞+𝐻1

+

𝑐6√𝑞 (1 − 𝑒
−𝑞

)

𝑞
2
(𝑞 − 𝑐5)√𝑞 + 𝐻1

𝑒
−𝑦√𝑞+𝐻1

−

𝑐7√𝑞 (1 − 𝑒
−𝑞

)

𝑞
2
(𝑞 − 𝑐1)√𝑞 + 𝐻1

𝑒
−𝑦√𝑞+𝐻1

−

𝑐8 (1 − 𝑒
−𝑞

)

𝑞
2
(𝑞 − 𝑐1)

𝑒
−𝑦√𝑞Preff

+

𝑐11 (1 − 𝑒
−𝑞

)

𝑞
2
(𝑞 − 𝑐1)

𝑒
−𝑦√𝑞Preff

−

𝑐10 (1 − 𝑒
−𝑞

)

𝑞
2
(𝑞 − 𝑐5)

𝑒
−𝑦√𝑞Sc

−

𝑐9
𝑞 (𝑞 − 𝑐3)

𝑒
−𝑦√𝑞Sc

,

(26)

which upon inverse Laplace transform results in

𝑢 (𝑦, 𝑡) = 𝑢
𝑐
(𝑦, 𝑡) + 𝑢

𝑚
(𝑦, 𝑡) , (27)

where 𝑢
𝑐
(𝑦, 𝑡) corresponds to convective part of velocity

which is defined as

𝑢
𝑐
(𝑦, 𝑡) = 𝑉1 +𝑉2, (28)

𝑉1 = 𝑐2 ∫
𝑡

0
(

𝑒
𝑐1(𝑡−𝑠) erf (√𝑐1 (𝑡 − 𝑠))

(𝑐1)
3/2 −

2√𝑡 − 𝑠
√𝜋𝑐1

)

⋅

𝑒
−𝐻1𝑠−𝑦

2
/4𝑠

√𝜋𝑠

𝑑𝑠 −
[

[

𝑐2

(𝑐1)
3/2
√𝜋

⋅∫

𝑡−1

0

𝑒
𝑐1(𝑡−1−𝑠)−𝐻1𝑠−𝑦2/4𝑠 erf (√𝑐1 (𝑡 − 1 − 𝑠))

√𝑠

𝑑𝑠
]

]

⋅𝐻 (𝑡 − 1) +[

[

𝑐2
𝑐1𝜋

⋅ ∫

𝑡−1

0

(2√𝑡 − 1 − 𝑠) 𝑒−𝐻1𝑠−𝑦
2
/4𝑠

√𝑠

𝑑𝑠
]

]

𝐻 (𝑡 − 1)
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− 𝑐7 ∫
𝑡

0
(

𝑒
𝑐1(𝑡−𝑠) erf (√𝑐1 (𝑡 − 𝑠))

(𝑐1)
3/2 −

2√𝑡 − 𝑠
√𝜋𝑐1

)

⋅

𝑒
−𝐻1𝑠−𝑦

2
/4𝑠

√𝜋𝑠

𝑑𝑠 +
[

[

𝑐7

(𝑐1)
3/2
√𝜋

⋅∫

𝑡−1

0

𝑒
𝑐1(𝑡−1−𝑠)−𝐻1𝑠−𝑦2/4𝑠 erf (√𝑐1 (𝑡 − 1 − 𝑠))

√𝑠

𝑑𝑠
]

]

⋅𝐻 (𝑡 − 1) −[

[

𝑐7
𝑐1𝜋

⋅ ∫

𝑡−1

0

(2√𝑡 − 1 − 𝑠) 𝑒−𝐻1𝑠−𝑦
2
/4𝑠

√𝑠

𝑑𝑠
]

]

𝐻 (𝑡 − 1)

+ 𝑐6 ∫
𝑡

0
(

𝑒
𝑐3(𝑡−𝑠) erf (√𝑐3 (𝑡 − 𝑠))

(𝑐3)
3/2 −

2√𝑡 − 𝑠
√𝜋𝑐3

)

⋅

𝑒
−𝐻1𝑠−𝑦

2
/4s

√𝜋𝑠

𝑑𝑠 −
[

[

𝑐6

(𝑐3)
3/2
√𝜋

⋅∫

𝑡−1

0

𝑒
𝑐3(𝑡−1−𝑠)−𝐻1𝑠−𝑦2/4𝑠 erf (√𝑐3 (𝑡 − 1 − 𝑠))

√𝑠

𝑑𝑠
]

]

⋅𝐻 (𝑡 − 1) +[

[

𝑐6
𝑐3𝜋

⋅ ∫

𝑡−1

0

(2√𝑡 − 1 − 𝑠) 𝑒−𝐻1𝑠−𝑦
2
/4𝑠

√𝑠

𝑑𝑠
]

]

𝐻 (𝑡 − 1)

+ 𝑐4 ∫
𝑡

0
(𝑒
𝑐3(𝑡−𝑠) erf (√𝑐3 (𝑡 − 𝑠)))

𝑒
−𝐻1𝑠−𝑦

2
/4𝑠

√𝑐3𝜋𝑠
𝑑𝑠

+

𝑐8
𝑐1
(𝑡 +

Preff𝑦
2

2
) erf 𝑐 (

𝑦√Preff
2√𝑡

)

−[

𝑐8
𝑐1
(𝑡 − 1+

Preff𝑦
2

2
) erf 𝑐 (

𝑦√Preff
2√𝑡 − 1

)]𝐻 (𝑡

− 1) + [
𝑐8
𝑐1

𝑦√Preff√𝑡 − 1
√𝜋

𝑒
−𝑦

2Preff /4(𝑡−1)
]𝐻 (𝑡 − 1)

−

𝑐9𝑒
𝑐3𝑡−𝑦√𝑐3Sc

2𝑐3
erf 𝑐 (

𝑦√Sc
2√𝑡

−√𝑐3𝑡) +
𝑐9
𝑐3

⋅ erf 𝑐 (
𝑦√Sc
2√𝑡

)−

𝑐10𝑒
𝑐3𝑡−𝑦√Sc𝑐3

2𝑐23

⋅ erf 𝑐 (
𝑦√Sc
2√𝑡

−√𝑐3𝑡) −
𝑐9𝑒
𝑐3𝑡+𝑦√𝑐3Sc

2𝑐3

⋅ erf 𝑐 (
𝑦√Sc
2√𝑡

+√𝑐3𝑡) ,

(29)

𝑉2 =
𝑐10
𝑐3
(𝑡 +

Sc𝑦2

2
) erf 𝑐 (

𝑦√Sc
2√𝑡

)−[

𝑐10
𝑐
2
3

⋅ erf 𝑐 (
𝑦√Sc
2√𝑡 − 1

)]𝐻 (𝑡 − 1)

−

(𝑐8 − 𝑐11) 𝑒
𝑐1𝑡−𝑦√Preff 𝑐1

2𝑐21
erf 𝑐 (

𝑦√Preff
2√𝑡

−√𝑐1𝑡)

−

(𝑐8 − 𝑐11) 𝑒
𝑐1𝑡+𝑦√Preff 𝑐1

2𝑐21
erf 𝑐 (

𝑦√Preff
2√𝑡

+√𝑐1𝑡)

+[

𝑐10
𝑐3

𝑦√Sc√𝑡 − 1
√𝜋

𝑒
−𝑦

2Sc/4(𝑡−1)
]𝐻 (𝑡 − 1) −

𝑐10
𝑐3

⋅

𝑦√Sc√𝑡
√𝜋

𝑒
−𝑦

2Sc/4𝑡
+

𝑐10
𝑐
2
3
erf 𝑐 (

𝑦√Sc
2√𝑡

)

−

(𝑐8 − 𝑐11)

𝑐1

𝑦√Preff√𝑡
√𝜋

𝑒
−𝑦

2Preff /4𝑡
+

(𝑐8 − 𝑐11)

𝑐
2
1

⋅ erf 𝑐 (
𝑦√Preff
2√𝑡

)−[

(𝑐8 − 𝑐11)

𝑐
2
1

erf 𝑐 (
𝑦√Preff
2√𝑡 − 1

)]

⋅𝐻 (𝑡 − 1) + [
𝑐10𝑒
𝑐3(𝑡−1)−𝑦√Sc𝑐3

2𝑐23

⋅ erf 𝑐 (
𝑦√Sc

2√(𝑡 − 1)
−√𝑐3 (𝑡 − 1))]𝐻 (𝑡 − 1)

−

𝑐10𝑒
𝑐3𝑡+𝑦√Sc𝑐3

2𝑐23
erf 𝑐 (

𝑦√Sc
2√𝑡

+√𝑐3𝑡)

−[

𝑐10
𝑐3
(𝑡 − 1+

Sc𝑦2

2
) erf 𝑐 (

𝑦√Sc
2√𝑡 − 1

)]𝐻 (𝑡

− 1) + [
(𝑐8 − 𝑐11) 𝑒

𝑐1(𝑡−1)−𝑦√Preff 𝑐1

2𝑐21

⋅ erf 𝑐 (
𝑦√Preff
2√(𝑡 − 1)

−√𝑐1 (𝑡 − 1))]𝐻 (𝑡 − 1)

+ [

(𝑐8 − 𝑐11) 𝑒
𝑐1(𝑡−1)+𝑦√Preff 𝑐1

2𝑐21

⋅ erf 𝑐 (
𝑦√Preff
2√(𝑡 − 1)

+√𝑐1 (𝑡 − 1))]𝐻 (𝑡 − 1)

(30)
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and 𝑢
𝑚
(𝑦, 𝑡) is mechanical part of velocity defined as

𝑢
𝑚
(𝑦, 𝑡) = −

1
√𝜋

∫

𝑡

0

𝑓 (𝑡 − 𝑠) 𝑒
−𝐻1𝑠−𝑦

2
/4𝑠

√𝑠

, (31)

where

𝑐1 =
𝐻1

Preff − 1
,

𝑐2 =
Gr√Preff
Preff − 1

,

𝑐3 =
𝐻1

Sc − 1
,

𝑐4 =
Gm√Sc
Sc − 1

,

𝑐6 =
GmScSrPreff√Sc

Sc − 1
,

𝑐7 =
GmScSrPreff√Preff

Preff − 1
,

𝑐8 =
Gr

Preff − 1
,

𝑐9 =
Gm
Sc − 1

,

𝑐10 =
GmScSrPreff

Sc − 1
,

𝑐11 =
GmScSrPreff
Preff − 1

,

𝑐12 =
𝑀

Preff − 1
,

𝑐13 =
𝑀

Sc − 1
,

𝑐15 =
𝐾
𝑝

Preff − 1
,

𝑐16 =
𝐾
𝑝

Sc − 1
,

𝑐18 = SrScPreff ,

𝐻1 = 𝐾𝑝 +𝑀,

𝑐19 =
GmSc3/2SrPreff

(Preff − Sc) (Sc − 1)
,

𝑐20 =
GmPr3/2eff SrSc

(Preff − Sc) (Sc − 1)
,

𝑐21 =
GmPreffSrSc

(Preff − Sc) (Sc − 1)
.

(32)

4. Plate with Constant Temperature

The solution of (17) under boundary conditions (19) for
constant temperature yields

𝑇 (𝑦, 𝑡) = erf 𝑐 (
𝑦√Preff
2√𝑡

) ,

𝜕𝑇 (0, 𝑡)
𝜕𝑦

= −

√Preff
√𝜋𝑡

.

(33)

The solution of (16) under boundary conditions (19) for
constant temperature is

𝑢 (𝑦, 𝑞) =

𝑐2√𝑞

𝑞 (𝑞 − 𝑐1)√𝑞 + 𝐻1
𝑒
−𝑦√𝑞+𝐻1

+

𝑐4√𝑞

𝑞 (𝑞 − 𝑐3)√𝑞 + 𝐻1
𝑒
−𝑦√𝑞+𝐻1

−

𝐹 (𝑞)

√𝑞 + 𝐻1
𝑒
−𝑦√𝑞+𝐻1

+

𝑐19√𝑞

𝑞 (𝑞 − 𝑐3)√𝑞 + 𝐻1
𝑒
−𝑦√𝑞+𝐻1

−

𝑐8
𝑞 (𝑞 − 𝑐1)

𝑒
−𝑦√𝑞Preff

−

𝑐20√𝑞

𝑞 (𝑞 − 𝑐1)√𝑞 + 𝐻1
𝑒
−𝑦√𝑞+𝐻1

−

𝑐21
𝑞 (𝑞 − 𝑐3)

𝑒
−𝑦√𝑞Sc

+

𝑐21
𝑞 (𝑞 − 𝑐1)

𝑒
−𝑦√𝑞Preff

−

𝑐9
𝑞 (𝑞 − 𝑐3)

𝑒
−𝑦√𝑞Sc

,

(34)

upon inverse Laplace transform

𝑢 (𝑦, 𝑡) = 𝑢
𝑐
(𝑦, 𝑡) + 𝑢

𝑚
(𝑦, 𝑡) , (35)

where

𝑢
𝑐
(𝑦, 𝑡) = 𝑉3 +𝑉4, (36)

𝑉3

= 𝑐2 ∫
𝑡

0
(𝑒
𝑐1(𝑡−𝑠) erf (√𝑐1 (𝑡 − 𝑠)))

𝑒
−𝐻1𝑠−𝑦

2
/4𝑠

√𝑐1𝜋𝑠
𝑑𝑠

+ 𝑐4 ∫
𝑡

0
(𝑒
𝑐3(𝑡−𝑠) erf (√𝑐3 (𝑡 − 𝑠)))

𝑒
−𝐻1𝑠−𝑦

2
/4𝑠

√𝑐3𝜋𝑠
𝑑𝑠



8 Abstract and Applied Analysis

+ 𝑐19 ∫
𝑡

0
(𝑒
𝑐3(𝑡−𝑠) erf (√𝑐3 (𝑡 − 𝑠)))

𝑒
−𝐻1𝑠−𝑦

2
/4𝑠

√𝑐3𝜋𝑠
𝑑𝑠

− 𝑐20 ∫
𝑡

0
(𝑒
𝑐1(𝑡−𝑠) erf (√𝑐1 (𝑡 − 𝑠)))

𝑒
−𝐻1𝑠−𝑦

2
/4𝑠

√𝑐1𝜋𝑠
𝑑𝑠

−

𝑐21𝑒
𝑐3𝑡−𝑦√𝑐3Sc

2𝑐3
erf 𝑐 (

𝑦√Sc
2√𝑡

−√𝑐3𝑡)

+

𝑐21
𝑐3

erf 𝑐 (
𝑦√Sc
2√𝑡

)

−

𝑐21𝑒
𝑐3𝑡+𝑦√𝑐3Sc

2𝑐3
erf 𝑐 (

𝑦√Sc
2√𝑡

+√𝑐3𝑡) ,

(37)

𝑉4

=

𝑐21𝑒
𝑐1𝑡−𝑦√𝑐1Preff

2𝑐1
erf 𝑐 (

𝑦√Preff
2√𝑡

−√𝑐1𝑡)

−

𝑐21
𝑐1

erf 𝑐 (
𝑦√Preff
2√𝑡

)

+

𝑐21𝑒
𝑐1𝑡+𝑦√𝑐1Preff

2𝑐1
erf 𝑐 (

𝑦√Preff
2√𝑡

+√𝑐1𝑡)

−

𝑐8𝑒
𝑐1𝑡−𝑦√𝑐1Preff

2𝑐1
erf 𝑐 (

𝑦√Preff
2√𝑡

−√𝑐1𝑡)

+

𝑐8
𝑐1
erf 𝑐 (

𝑦√Preff
2√𝑡

)

−

𝑐8𝑒
𝑐1𝑡+𝑦√𝑐1Preff

2𝑐1
erf 𝑐 (

𝑦√Preff
2√𝑡

+√𝑐1𝑡)

−

𝑐9𝑒
𝑐3𝑡−𝑦√𝑐3Sc

2𝑐3
erf 𝑐 (

𝑦√Sc
2√𝑡

−√𝑐3𝑡)

+

𝑐9
𝑐3
erf 𝑐 (

𝑦√Sc
2√𝑡

)

−

𝑐9𝑒
𝑐3𝑡+𝑦√𝑐3Sc

2𝑐3
erf 𝑐 (

𝑦√Sc
2√𝑡

+√𝑐3𝑡) .

(38)

5. Limiting Cases

Here some limiting cases are presented.

5.1. Solution in the Absence of Porous Effects (𝐾
𝑝
→ 0).

From (21) and (24), it is seen that the temperature fields
and concentration fields are not affected by the inverse
permeability parameter for the porous medium 𝐾

𝑝
. Hence,

the velocities for both case of the plate are as

𝑢 (𝑦, 𝑡) = 𝑢
𝑐
(𝑦, 𝑡) + 𝑢

𝑚
(𝑦, 𝑡) , (39)

where

𝑢
𝑐
(𝑦, 𝑡) = 𝑉5 +𝑉6,

𝑉5 = 𝑐2 ∫
𝑡

0
(

𝑒
𝑐12(𝑡−𝑠) erf (√𝑐12 (𝑡 − 𝑠))

(𝑐12)
3/2 −

2√𝑡 − 𝑠
√𝜋𝑐12

)

⋅

𝑒
−𝑀𝑠−𝑦

2
/4𝑠

√𝜋𝑠

𝑑𝑠 −
[

[

𝑐2

(𝑐12)
3/2
√𝜋

⋅∫

𝑡−1

0

𝑒
𝑐12(𝑡−1−𝑠)−𝑀𝑠−𝑦2/4𝑠 erf (√𝑐12 (𝑡 − 1 − 𝑠))

√𝑠

𝑑𝑠
]

]

⋅𝐻 (𝑡 − 1) +[

[

𝑐2
𝑐12𝜋

⋅ ∫

𝑡−1

0

(2√𝑡 − 1 − 𝑠) 𝑒−𝑀𝑠−𝑦
2
/4𝑠

√𝑠

𝑑𝑠
]

]

𝐻 (𝑡 − 1)

− 𝑐7 ∫
𝑡

0
(

𝑒
𝑐12(𝑡−𝑠) erf (√𝑐12 (𝑡 − 𝑠))

(𝑐12)
3/2 −

2√𝑡 − 𝑠
√𝜋𝑐12

)

⋅

𝑒
−𝑀𝑠−𝑦

2
/4𝑠

√𝜋𝑠

𝑑𝑠 +
[

[

𝑐7

(𝑐12)
3/2
√𝜋

⋅∫

𝑡−1

0

𝑒
𝑐12(𝑡−1−𝑠)−𝑀𝑠−𝑦2/4𝑠 erf (√𝑐12 (𝑡 − 1 − 𝑠))

√𝑠

𝑑𝑠
]

]

⋅𝐻 (𝑡 − 1) −[

[

𝑐7
𝑐12𝜋

⋅ ∫

𝑡−1

0

(2√𝑡 − 1 − 𝑠) 𝑒−𝑀𝑠−𝑦
2
/4𝑠

√𝑠

𝑑𝑠
]

]

𝐻 (𝑡 − 1)

+ 𝑐6 ∫
𝑡

0
(

𝑒
𝑐13(𝑡−𝑠) erf (√𝑐13 (𝑡 − 𝑠))

(𝑐13)
3/2 −

2√𝑡 − 𝑠
√𝜋𝑐13

)

⋅

𝑒
−𝑀𝑠−𝑦

2
/4𝑠

√𝜋𝑠

𝑑𝑠 −
[

[

𝑐6

(𝑐13)
3/2
√𝜋

⋅∫

𝑡−1

0

𝑒
𝑐13(𝑡−1−𝑠)−𝑀𝑠−𝑦2/4𝑠 erf (√𝑐13 (𝑡 − 1 − 𝑠))

√𝑠

𝑑𝑠
]

]

⋅𝐻 (𝑡 − 1) +[

[

𝑐6
𝑐13𝜋

⋅ ∫

𝑡−1

0

(2√𝑡 − 1 − 𝑠) 𝑒−𝑀𝑠−𝑦
2
/4𝑠

√𝑠

𝑑𝑠
]

]

𝐻 (𝑡 − 1)
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+ 𝑐4 ∫
𝑡

0
(𝑒
𝑐13(𝑡−𝑠) erf (√𝑐13 (𝑡 − 𝑠)))

𝑒
−𝑀𝑠−𝑦

2
/4𝑠

√𝑐13𝜋𝑠
𝑑𝑠

+

𝑐8
𝑐12
(𝑡 +

Preff𝑦
2

2
) erf 𝑐 (

𝑦√Preff
2√𝑡

)

−[

𝑐8
𝑐12
(𝑡 − 1+

Preff𝑦
2

2
) erf 𝑐 (

𝑦√Preff
2√𝑡 − 1

)]𝐻 (𝑡

− 1) + [
𝑐8
𝑐12

𝑦√Preff√𝑡 − 1
√𝜋

𝑒
−𝑦

2Preff /4(𝑡−1)
]𝐻 (𝑡 − 1)

−

𝑐9𝑒
𝑐13𝑡−𝑦√𝑐13Sc

2𝑐3
erf 𝑐 (

𝑦√Sc
2√𝑡

−√𝑐13𝑡) +
𝑐9
𝑐13

⋅ erf 𝑐 (
𝑦√Sc
2√𝑡

)−

𝑐10𝑒
𝑐13𝑡−𝑦√Sc𝑐3

2𝑐23

⋅ erf 𝑐 (
𝑦√Sc
2√𝑡

−√𝑐13𝑡) −
𝑐9𝑒
𝑐13𝑡+𝑦√𝑐13Sc

2𝑐13

⋅ erf 𝑐 (
𝑦√Sc
2√𝑡

+√𝑐13𝑡) ,

𝑉6 =
𝑐10
𝑐13
(𝑡 +

Sc𝑦2

2
) erf 𝑐 (

𝑦√Sc
2√𝑡

)−[

𝑐10
𝑐
2
13

⋅ erf 𝑐 (
𝑦√Sc
2√𝑡 − 1

)]𝐻 (𝑡 − 1)

−

(𝑐8 − 𝑐11) 𝑒
𝑐12𝑡−𝑦√Preff 𝑐12

2𝑐212
erf 𝑐 (

𝑦√Preff
2√𝑡

−√𝑐12𝑡)

−

(𝑐8 − 𝑐11) 𝑒
𝑐12𝑡+𝑦√Preff 𝑐12

2𝑐212
erf 𝑐 (

𝑦√Preff
2√𝑡

+√𝑐12𝑡)

+[

𝑐10
𝑐13

𝑦√Sc√𝑡 − 1
√𝜋

𝑒
−𝑦

2Sc/4(𝑡−1)
]𝐻 (𝑡 − 1) −

𝑐10
𝑐13

⋅

𝑦√Sc√𝑡
√𝜋

𝑒
−𝑦

2Sc/4𝑡
+

𝑐10
𝑐
2
13

erf 𝑐 (
𝑦√Sc
2√𝑡

)

−

(𝑐8 − 𝑐11)

𝑐12

𝑦√Preff√𝑡
√𝜋

𝑒
−𝑦

2Preff /4𝑡
+

(𝑐8 − 𝑐11)

𝑐
2
12

⋅ erf 𝑐 (
𝑦√Preff
2√𝑡

)−[

(𝑐8 − 𝑐11)

𝑐
2
12

erf 𝑐 (
𝑦√Preff
2√𝑡 − 1

)]

⋅𝐻 (𝑡 − 1) + [
𝑐10𝑒
𝑐13(𝑡−1)−𝑦√Sc𝑐3

2𝑐213

⋅ erf 𝑐 (
𝑦√Sc

2√(𝑡 − 1)
−√𝑐13 (𝑡 − 1))]𝐻 (𝑡 − 1)

−

𝑐10𝑒
𝑐13𝑡+𝑦√Sc𝑐3

2𝑐213
erf 𝑐 (

𝑦√Sc
2√𝑡

+√𝑐13𝑡)

−[

𝑐10
𝑐13
(𝑡 − 1+

Sc𝑦2

2
) erf 𝑐 (

𝑦√Sc
2√𝑡 − 1

)]𝐻 (𝑡

− 1) + [
(𝑐8 − 𝑐11) 𝑒

𝑐12(𝑡−1)−𝑦√Preff 𝑐12

2𝑐212

⋅ erf 𝑐 (
𝑦√Preff
2√(𝑡 − 1)

−√𝑐12 (𝑡 − 1))]𝐻 (𝑡 − 1)

+ [

(𝑐8 − 𝑐11) 𝑒
𝑐12(𝑡−1)+𝑦√Preff 𝑐12

2𝑐212

⋅ erf 𝑐 (
𝑦√Preff
2√(𝑡 − 1)

+√𝑐12 (𝑡 − 1))]𝐻 (𝑡 − 1) ,

(40)

and for isothermal

𝑢
𝑐
(𝑦, 𝑡) = 𝑉7 +𝑉8,

𝑉7

= 𝑐2 ∫
𝑡

0
(𝑒
𝑐12(𝑡−𝑠) erf (√𝑐12 (𝑡 − 𝑠)))

𝑒
−𝑀𝑠−𝑦

2
/4𝑠

√𝑐1𝜋𝑠
𝑑𝑠

+ 𝑐4 ∫
𝑡

0
(𝑒
𝑐13(𝑡−𝑠) erf (√𝑐13 (𝑡 − 𝑠)))

𝑒
−𝑀𝑠−𝑦

2
/4𝑠

√𝑐13𝜋𝑠
𝑑𝑠

+ 𝑐19 ∫
𝑡

0
(𝑒
𝑐13(𝑡−𝑠)erf (√𝑐13 (𝑡 − 𝑠)))

𝑒
−𝑀𝑠−𝑦

2
/4𝑠

√𝑐13𝜋𝑠
𝑑𝑠

− 𝑐20 ∫
𝑡

0
(𝑒
𝑐12(𝑡−𝑠) erf (√𝑐12 (𝑡 − 𝑠)))

𝑒
−𝑀𝑠−𝑦

2
/4𝑠

√𝑐12𝜋𝑠
𝑑𝑠

−

𝑐21𝑒
𝑐13𝑡−𝑦√𝑐13Sc

2𝑐13
erf 𝑐 (

𝑦√Sc
2√𝑡

−√𝑐13𝑡)

+

𝑐21
𝑐13

erf 𝑐 (
𝑦√Sc
2√𝑡

)

−

𝑐21𝑒
𝑐13𝑡+𝑦√𝑐13Sc

2𝑐13
erf 𝑐 (

𝑦√Sc
2√𝑡

+√𝑐13𝑡) ,

𝑉8

=

𝑐21𝑒
𝑐12𝑡−𝑦√𝑐12Preff

2𝑐12
erf 𝑐 (

𝑦√Preff
2√𝑡

−√𝑐12𝑡)

−

𝑐21
𝑐12

erf 𝑐 (
𝑦√Preff
2√𝑡

)

+

𝑐21𝑒
𝑐12𝑡+𝑦√𝑐12Preff

2𝑐12
erf 𝑐 (

𝑦√Preff
2√𝑡

+√𝑐12𝑡)

−

𝑐8𝑒
𝑐12𝑡−𝑦√𝑐12Preff

2𝑐12
erf 𝑐 (

𝑦√Preff
2√𝑡

−√𝑐12𝑡)
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+

𝑐8
𝑐12

erf 𝑐 (
𝑦√Preff
2√𝑡

)

−

𝑐8𝑒
𝑐12𝑡+𝑦√𝑐12Preff

2𝑐12
erf 𝑐 (

𝑦√Preff
2√𝑡

+√𝑐12𝑡)

−

𝑐9𝑒
𝑐13𝑡−𝑦√𝑐13Sc

2𝑐13
erf 𝑐 (

𝑦√Sc
2√𝑡

−√𝑐13𝑡)

+

𝑐9
𝑐13

erf 𝑐 (
𝑦√Sc
2√𝑡

)

−

𝑐9𝑒
𝑐13𝑡+𝑦√𝑐13Sc

2𝑐13
erf 𝑐 (

𝑦√Sc
2√𝑡

+√𝑐13𝑡) .

(41)

5.2. Solutions in theAbsence of Free Convection. Consider that
the fluid flow is due to bounding plate and the corresponding
Gr and Gm are zero. In this case, the fluid motion is only by
the mechanical part of velocities given by (31).

5.3. Solutions in the Absence of Mechanical Effects. Let us
suppose that the infinite plate ismotionless at every time; that
is, 𝑓(𝑡) is zero for all values of 𝑡. Mechanical parts are
equivalently zero in both cases of the plates. Therefore, the
motion in the fluid is a result of the free convection which is
caused due to the buoyancy forces. Hence, the fluid velocities
are only represented by their convective parts obtained in (28)
and (36).

5.4. Solution in the Absence of Magnetic Parameter (𝑀 → 0).
From (21) and (24), the temperature fields and concentration
fields are not affected by𝑀, and the velocities in the absence
of𝑀 are given by

𝑢 (𝑦, 𝑡) = 𝑢
𝑐
(𝑦, 𝑡) + 𝑢

𝑚
(𝑦, 𝑡) , (42)

where

𝑢
𝑐
(𝑦, 𝑡) = 𝑉9 +𝑉10,

𝑉9 = 𝑐2 ∫
𝑡

0
(

𝑒
𝑐15(𝑡−𝑠) erf (√𝑐15 (𝑡 − 𝑠))

(𝑐15)
3/2 −

2√𝑡 − 𝑠
√𝜋𝑐15

)

⋅

𝑒
−𝐾𝑝𝑠−𝑦

2
/4𝑠

√𝜋𝑠

𝑑𝑠 −
[

[

𝑐2

(𝑐15)
3/2
√𝜋

⋅∫

𝑡−1

0

𝑒
𝑐15(𝑡−1−𝑠)−𝐾𝑝𝑠−𝑦2/4𝑠 erf (√𝑐15 (𝑡 − 1 − 𝑠))

√𝑠

𝑑𝑠
]

]

⋅𝐻 (𝑡 − 1) +[

[

𝑐2
𝑐15𝜋

⋅ ∫

𝑡−1

0

(2√𝑡 − 1 − 𝑠) 𝑒−𝐾𝑝𝑠−𝑦
2
/4𝑠

√𝑠

𝑑𝑠
]

]

𝐻 (𝑡 − 1)

− 𝑐7 ∫
𝑡

0
(

𝑒
𝑐15(𝑡−𝑠) erf (√𝑐15 (𝑡 − 𝑠))

(𝑐15)
3/2 −

2√𝑡 − 𝑠
√𝜋𝑐15

)

⋅

𝑒
−𝐾𝑝𝑠−𝑦

2
/4𝑠

√𝜋𝑠

𝑑𝑠 +
[

[

𝑐7

(𝑐15)
3/2
√𝜋

⋅∫

𝑡−1

0

𝑒
𝑐15(𝑡−1−𝑠)−𝐾𝑝𝑠−𝑦2/4𝑠 erf (√𝑐15 (𝑡 − 1 − 𝑠))

√𝑠

𝑑𝑠
]

]

⋅𝐻 (𝑡 − 1) −[

[

𝑐7
𝑐15𝜋

⋅ ∫

𝑡−1

0

(2√𝑡 − 1 − 𝑠) 𝑒−𝐾𝑝𝑠−𝑦
2
/4𝑠

√𝑠

𝑑𝑠
]

]

𝐻 (𝑡 − 1)

+ 𝑐6 ∫
𝑡

0
(

𝑒
𝑐16(𝑡−𝑠) erf (√𝑐16 (𝑡 − 𝑠))

(𝑐16)
3/2 −

2√𝑡 − 𝑠
√𝜋𝑐16

)

⋅

𝑒
−𝐾𝑝𝑠−𝑦

2
/4s

√𝜋𝑠

𝑑𝑠 −
[

[

𝑐6

(𝑐16)
3/2
√𝜋

⋅∫

𝑡−1

0

𝑒
𝑐16(𝑡−1−𝑠)−𝐾𝑝𝑠−𝑦2/4𝑠 erf (√𝑐16 (𝑡 − 1 − 𝑠))

√𝑠

𝑑𝑠
]

]

⋅𝐻 (𝑡 − 1) +[

[

𝑐6
𝑐16𝜋

⋅ ∫

𝑡−1

0

(2√𝑡 − 1 − 𝑠) 𝑒−𝐾𝑝𝑠−𝑦
2
/4𝑠

√𝑠

𝑑𝑠
]

]

𝐻 (𝑡 − 1)

+ 𝑐4 ∫
𝑡

0
(𝑒
𝑐16(𝑡−𝑠) erf (√𝑐16 (𝑡 − 𝑠)))

𝑒
−𝐾𝑝𝑠−𝑦

2
/4𝑠

√𝑐16𝜋𝑠
𝑑𝑠

+

𝑐8
𝑐15
(𝑡 +

Preff𝑦
2

2
) erf 𝑐 (

𝑦√Preff
2√𝑡

)

−[

𝑐8
𝑐15
(𝑡 − 1+

Preff𝑦
2

2
) erf 𝑐 (

𝑦√Preff
2√𝑡 − 1

)]𝐻 (𝑡

− 1) + [
𝑐8
𝑐15

𝑦√Preff√𝑡 − 1
√𝜋

𝑒
−𝑦

2Preff /4(𝑡−1)
]𝐻 (𝑡 − 1)

−

𝑐9𝑒
𝑐16𝑡−𝑦√𝑐16Sc

2𝑐16
erf 𝑐 (

𝑦√Sc
2√𝑡

−√𝑐16𝑡) +
𝑐9
𝑐16

⋅ erf 𝑐 (
𝑦√Sc
2√𝑡

)−

𝑐10𝑒
𝑐16𝑡−𝑦√Sc𝑐16

2𝑐216

⋅ erf 𝑐 (
𝑦√Sc
2√𝑡

−√𝑐16𝑡) −
𝑐9𝑒
𝑐16𝑡+𝑦√𝑐16Sc

2𝑐16
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⋅ erf 𝑐 (
𝑦√Sc
2√𝑡

+√𝑐16𝑡) ,

𝑉10 =
𝑐10
𝑐16
(𝑡 +

Sc𝑦2

2
) erf 𝑐 (

𝑦√Sc
2√𝑡

)−[

𝑐10
𝑐
2
3

⋅ erf 𝑐 (
𝑦√Sc
2√𝑡 − 1

)]𝐻 (𝑡 − 1)

−

(𝑐8 − 𝑐11) 𝑒
𝑐15𝑡−𝑦√Preff 𝑐15

2𝑐215
erf 𝑐 (

𝑦√Preff
2√𝑡

−√𝑐15𝑡)

−

(𝑐8 − 𝑐11) 𝑒
𝑐1𝑡+𝑦√Preff 𝑐1

2𝑐215
erf 𝑐 (

𝑦√Preff
2√𝑡

+√𝑐1𝑡)

+[

𝑐10
𝑐16

𝑦√Sc√𝑡 − 1
√𝜋

𝑒
−𝑦

2Sc/4(𝑡−1)
]𝐻 (𝑡 − 1) −

𝑐10
𝑐16

⋅

𝑦√Sc√𝑡
√𝜋

𝑒
−𝑦

2Sc/4𝑡
+

𝑐10
𝑐
2
16

erf 𝑐 (
𝑦√Sc
2√𝑡

)

−

(𝑐8 − 𝑐11)

𝑐15

𝑦√Preff√𝑡
√𝜋

𝑒
−𝑦

2Preff /4𝑡
+

(𝑐8 − 𝑐11)

𝑐
2
15

⋅ erf 𝑐 (
𝑦√Preff
2√𝑡

)−[

(𝑐8 − 𝑐11)

𝑐
2
15

erf 𝑐 (
𝑦√Preff
2√𝑡 − 1

)]

⋅𝐻 (𝑡 − 1) + [
𝑐10𝑒
𝑐3(𝑡−1)−𝑦√Sc𝑐3

2𝑐216

⋅ erf 𝑐 (
𝑦√Sc

2√(𝑡 − 1)
−√𝑐3 (𝑡 − 1))]𝐻 (𝑡 − 1)

−

𝑐10𝑒
𝑐16𝑡+𝑦√Sc𝑐16

2𝑐216
erf 𝑐 (

𝑦√Sc
2√𝑡

+√𝑐16𝑡)

−[

𝑐10
𝑐16
(𝑡 − 1+

Sc𝑦2

2
) erf 𝑐 (

𝑦√Sc
2√𝑡 − 1

)]𝐻 (𝑡

− 1) + [
(𝑐8 − 𝑐11) 𝑒

𝑐15(𝑡−1)−𝑦√Preff 𝑐15

2𝑐215

⋅ erf 𝑐 (
𝑦√Preff
2√(𝑡 − 1)

−√𝑐15 (𝑡 − 1))]𝐻 (𝑡 − 1)

+ [

(𝑐8 − 𝑐11) 𝑒
𝑐15(𝑡−1)+𝑦√Preff 𝑐15

2𝑐215

⋅ erf 𝑐 (
𝑦√Preff
2√(𝑡 − 1)

+√𝑐15 (𝑡 − 1))]𝐻 (𝑡 − 1) ,

(43)

and for isothermal
𝑢
𝑐
(𝑦, 𝑡) = 𝑉11 +𝑉12,

𝑉11

= 𝑐2 ∫
𝑡

0
(𝑒
𝑐15(𝑡−𝑠) erf (√𝑐15 (𝑡 − 𝑠)))

𝑒
−𝐾𝑝𝑠−𝑦

2
/4𝑠

√𝑐15𝜋𝑠
𝑑𝑠

+ 𝑐4 ∫
𝑡

0
(𝑒
𝑐16(𝑡−𝑠) erf (√𝑐16 (𝑡 − 𝑠)))

𝑒
−𝐾𝑝𝑠−𝑦

2
/4𝑠

√𝑐16𝜋𝑠
𝑑𝑠

+ 𝑐19 ∫
𝑡

0
(𝑒
𝑐16(𝑡−𝑠) erf (√𝑐16 (𝑡 − 𝑠)))

𝑒
−𝐾𝑝𝑠−𝑦

2
/4𝑠

√𝑐16𝜋𝑠
𝑑𝑠

− 𝑐20 ∫
𝑡

0
(𝑒
𝑐15(𝑡−𝑠) erf (√𝑐15 (𝑡 − 𝑠)))

𝑒
−𝐾𝑝𝑠−𝑦

2
/4𝑠

√𝑐15𝜋𝑠
𝑑𝑠

−

𝑐21𝑒
𝑐16𝑡−𝑦√𝑐16Sc

2𝑐16
erf 𝑐 (

𝑦√Sc
2√𝑡

−√𝑐16𝑡)

+

𝑐21
𝑐16

erf 𝑐 (
𝑦√Sc
2√𝑡

)

−

𝑐21𝑒
𝑐16𝑡+𝑦√𝑐16Sc

2𝑐16
erf 𝑐 (

𝑦√Sc
2√𝑡

+√𝑐16𝑡) ,

𝑉12

=

𝑐21𝑒
𝑐15𝑡−𝑦√𝑐15Preff

2𝑐15
erf 𝑐 (

𝑦√Preff
2√𝑡

−√𝑐15𝑡)

−

𝑐21
𝑐15

erf 𝑐 (
𝑦√Preff
2√𝑡

)

+

𝑐21𝑒
𝑐15𝑡+𝑦√𝑐15Preff

2𝑐15
erf 𝑐 (

𝑦√Preff
2√𝑡

+√𝑐15𝑡)

−

𝑐8𝑒
𝑐15𝑡−𝑦√𝑐15Preff

2𝑐15
erf 𝑐 (

𝑦√Preff
2√𝑡

−√𝑐15𝑡)

+

𝑐8
𝑐15

erf 𝑐 (
𝑦√Preff
2√𝑡

)

−

𝑐8𝑒
𝑐15𝑡+𝑦√𝑐15Preff

2𝑐15
erf 𝑐 (

𝑦√Preff
2√𝑡

+√𝑐15𝑡)

−

𝑐9𝑒
𝑐16𝑡−𝑦√𝑐16Sc

2𝑐16
erf 𝑐 (

𝑦√Sc
2√𝑡

−√𝑐16𝑡)

+

𝑐9
𝑐16

erf 𝑐 (
𝑦√Sc
2√𝑡

)

−

𝑐9𝑒
𝑐16𝑡+𝑦√𝑐16Sc

2𝑐16
erf 𝑐 (

𝑦√Sc
2√𝑡

+√𝑐16𝑡) .

(44)
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6. Special Cases

The obtained velocities in Section 3 are more general. Hence,
some special cases of the present results are presented. In
order to learn much more about the physical importance of
the problem, technical relevance of these cases is found in
literature.

6.1. Case-I: 𝑓(𝑡) = 𝑓𝐻(𝑡). Consider 𝑓(𝑡) = 𝑓𝐻(𝑡), where
𝑓 and 𝐻(⋅) are a dimensionless constant and the unit step
function. The infinite vertical plate applies a constant shear
stress to the fluid which is observed after time 𝑡 = 0. There
is no change seen in convective part of the velocity, while the
mechanical part has been changed as

𝑢
𝑚
(𝑦, 𝑡) = −

𝑓

√𝜋

∫

𝑡

0

𝑒
−𝑦

2
/4𝑠−𝐻1𝑠

√𝑠

𝑑𝑠; (45)

equivalently

𝑢
𝑚
(𝑦, 𝑡) = −

𝑓

√𝐻1
𝑒
−𝑦√𝐻1

+

2𝑓
√𝜋

∫

∞

√𝑡

𝑒
−𝑦

2
/4𝑧2−𝐻1𝑧2

𝑑𝑧, (46)

for 𝐾
𝑝
̸= 0,𝑀 ̸= 0. Moreover, if we take𝑀 = 0, (45) reduces

to the form

𝑢
𝑚
(𝑦, 𝑡) = −

𝑓

√𝐾𝑝

𝑒
−𝑦√𝐾𝑝

+

2𝑓
√𝜋

∫

∞

√𝑡

𝑒
−𝑦

2
/4𝑧2−𝐾𝑝𝑧2

𝑑𝑧, (47)

which is equivalent to [30, Equation (28)] with the correction
of√𝐾

𝑝
.

Moreover, in the absence of both𝐾
𝑝
and𝑀, (45) is

𝑢
𝑚
(𝑦, 𝑡) = −

𝑓

√𝜋

∫

𝑡

0

𝑒
−𝑦

2
/4𝑠

√𝑠

𝑑𝑠. (48)

6.2. Case-II: 𝑓(𝑡) = 𝑓sin(𝜔𝑡). We take 𝑓(𝑡) = 𝑓sin(𝜔𝑡) in
which an oscillating shear stress to the fluid is applied by the
plate, where 𝜔 denotes the dimensionless frequency of the
shear stress.The convective part of velocity remains the same
like the first case; however the mechanical part changed and
takes the form

𝑢
𝑚
(𝑦, 𝑡) = −

𝑓

√𝜋

∫

𝑡

0

sin (𝜔𝑡 − 𝜔𝑠) 𝑒−𝑦
2
/4𝑠−𝐻1𝑠

√𝑠

𝑑𝑠. (49)

Furthermore, it can be written as a sum of the steady-state
and transient solutions

𝑢
𝑚
(𝑦, 𝑡) = 𝑢

𝑚𝑠
(𝑦, 𝑡) + 𝑢

𝑚𝑡
(𝑦, 𝑡) , (50)

where

𝑢
𝑚𝑠
(𝑦, 𝑡) = −

𝑓

√𝜋

∫

𝑡

0

sin (𝜔𝑡 − 𝜔𝑠) 𝑒−𝑦
2
/4𝑠−𝐻1𝑠

√𝑠

𝑑𝑠,

𝑢
𝑚𝑡
(𝑦, 𝑡) =

𝑓

√𝜋

∫

∞

𝑡

sin (𝜔𝑡 − 𝜔𝑠) 𝑒−𝑦
2
/4𝑠−𝐻1𝑠

√𝑠

𝑑𝑠.

(51)

By taking𝑀 = 0, the steady-state component reduces to [30,
Equation (35)]

𝑢
𝑚𝑠
(𝑦, 𝑡) = −

𝑓

√𝜋

∫

𝑡

0

sin (𝜔𝑡 − 𝜔𝑠) 𝑒−𝑦
2
/4𝑠−𝐾𝑝𝑠

√𝑠

𝑑𝑠. (52)

In addition, when 𝐾
𝑝
= 0, (52) results in

𝑢
𝑚𝑠
(𝑦, 𝑡) = −

𝑓

√𝜋

∫

𝑡

0

sin (𝜔𝑡 − 𝜔𝑠) 𝑒−𝑦
2
/4𝑠

√𝑠

𝑑𝑠, (53)

which can be written in simplified form as

𝑢
𝑚𝑠
(𝑦, 𝑡)

=

𝑓

√𝜔

exp(−𝑦√𝜔
2
) cos(𝜔𝑡 − 𝑦√𝜔

2
+

𝜋

4
) ,

(54)

equivalent to [26, Equation (33)].

7. Graphical Results and Discussion

In this section the obtained solutions are numerically studied
for determining the effects of several involved parameters
such as magnetic parameter 𝑀, the inverse permeability
parameter for the porous medium 𝐾

𝑝
, effective Prandtl

number Preff , Grashof number Gr, modifiedGrashof number
Gm, Schmidt number Sc, shear stress 𝑓, and Soret number
Sr. It is depicted from Figure 2 that, with increasing values
of Gr, the velocity profiles increase. Physically, this scenario
is important due to the fact that an increase in Gr gives
rise to buoyancy effects which results in more induced
flows. In Figure 3 the velocity profiles for different values of
modified Grashof number Gm are displayed. It can be seen
that the velocity and boundary layer thickness decrease as
with increasing distance from the leading edge. However,
the velocity and boundary layer thickness increase with
increasing values of Gm. In Figure 4 the velocity profiles are
shown for different values of Schmidt number Sc. Here the
values of Sc are chosen as 0.22, 0.60, and 0.96 to represent
the presence of species by hydrogen, water vapor, and carbon
dioxide, respectively. It is observed that the velocity decreases
with increasing Schmidt number. Physically, this refers to the
phenomenon that increasing Schmidt number implies the
dominance of the viscous forces over the diffusional effects.
As a result, the flow will be therefore decelerated with a
rise in Schmidt number. The velocity profiles for different
values of magnetic parameter 𝑀 are presented in Figure 5.
Magnetic field ranges from 0 to 2. Velocity is decreasing
with increasing values of𝑀. Physically, it is true because the
frictional force is directly proportional to𝑀; therefore fluid
flow tends to resist and decrease in velocity is observed. It is
further observed that, in the absence of the magnetic field,
the MHD effect approaches zero and hydrodynamic flow
is observed. The effects of inverse permeability parameter
𝐾
𝑝
on the velocity profiles are presented in Figure 6. It is

found that velocity decreases with increasing 𝐾
𝑝
. This result

is in good agreement with the previous study [30], Figure 3.
The effects of the wall shear stress 𝑓 are shown in Figure 7.
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Figure 2: Velocity profiles for Preff = 0.350 (𝑁
𝑟
= 1, Pr = 0.7), 𝐾

𝑝
= 0.7, 𝑡 = 1.2, and different values of Gr when the plate applies constant

shear stress 𝑓 = −0.25.
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Figure 3: Velocity profiles for Preff = 0.350 (𝑁
𝑟
= 1, Pr = 0.7),

𝐾
𝑝
= 0.7, 𝑡 = 1.2, and different values of Gm when the plate applies

constant shear stress 𝑓 = −0.25.
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Figure 4: Velocity profiles for Preff = 0.350 (𝑁
𝑟
= 1, Pr = 0.7),

𝐾
𝑝
= 0.7, 𝑡 = 1.2, and different values of Sc when the plate applies

constant shear stress 𝑓 = −0.25.

The velocity of fluid is found to decrease with increasing 𝑓.
The influence of the effective Prandtl number Preff on velocity
profiles are presented in Figure 8. It is observed that the
velocity is a decreasing function with respect to Preff . These
graphical results are in accordance with [30], Figure 2. The
velocity profiles for different values of Soret number Sr are
shown in Figure 9. It is noticed that the velocity increaseswith
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,t
)

y

M = 0, 1, 2

Figure 5: Velocity profiles for Preff = 0.350 (𝑁
𝑟
= 1, Pr = 0.7),

𝐾
𝑝
= 0.7, 𝑡 = 1.2, and different values of𝑀 when the plate applies

constant shear stress 𝑓 = −0.25.

increasing values of Sr. The temperature variations against
𝑦 for various values of effective Prandtl number are shown
in Figure 10. The significant decrease of the temperature is
found as a result of an increase of the effective Prandtl
number. The fluid temperature is maximum at the boundary
while it has minimum value as far from the plate. The
concentration profiles for variuos values of Schmidt number
Sc are drawn in Figure 11. It is clear from this figure that the
concentration profiles and the concentration boundary layer
thickness decrease with increasing values of Sc. Physically, it
is valid asmolecular diffusivity decreases while increasing the
value Sc.

8. Conclusions

The aim of this research is to examine the unsteady MHD
free convection flow of an incompressible Newtonian fluid
over an infinite plate. The ramped wall temperature, thermal
diffusion, and wall shear stress to the fluid are taken. Closed-
form solutions for velocity field, temperature field, and
concentration field are obtained using the Laplace transform
technique. The results are shown in terms of the comple-
mentary error function. The initial and boundary conditions
are satisfied by the obtained results and different parameters
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Figure 6: Velocity profiles for Preff = 0.350 (𝑁
𝑟
= 1, Pr = 0.7),

𝑡 = 1.2, and different values of 𝐾
𝑝
when the plate applies constant

shear stress 𝑓 = −0.25.
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Figure 7: Velocity profiles for Preff = 0.350 (𝑁
𝑟
= 1, Pr = 0.7),

𝐾
𝑝
= 0.7, 𝑡 = 1.2, and different values of constant shear stress 𝑓.
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Figure 8: Velocity profiles for𝐾
𝑝
= 0.7, 𝑡 = 0.9, and different values

of Preff when the plate applies constant shear stress 𝑓 = −0.25.

are plotted. The fluid velocity 𝑢(𝑦, 𝑡) is written as a sum of
two components, that is, convective and mechanical. The
velocity solution is further written as a sumof the steady-state
and transient solutions 𝑢

𝑚𝑠
(𝑦, 𝑡), respectively, 𝑢

𝑚𝑡
(𝑦, 𝑡) in the

second special case, in which the plate applies an oscillating
shear stress to the fluid.Magnetic parameter𝑀 slows the fluid
flow.
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Figure 9: Velocity profiles for𝐾
𝑝
= 0.7, 𝑡 = 0.9, and different values

of Sr when the plate applies constant shear stress 𝑓 = −0.25.
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Figure 10: Temperature profile for 𝑡 = 1.2 and different values of
Preff .
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Figure 11: Concentration profiles for 𝑡 = 1.2 and different values of
Sc.
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