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We consider the nonself-adjoint Sturm-Liouville operator with 𝑞 ∈ 𝐿
1
[0, 1] and either periodic or antiperiodic boundary

conditions. We obtain necessary and sufficient conditions for systems of root functions of these operators to be a Riesz basis in
𝐿
2
[0, 1] in terms of the Fourier coefficients of 𝑞.

1. Introduction

Let 𝐿 be Sturm-Liouville operator generated in 𝐿
2
[0, 1] by the

expression

𝑦

+ (𝜆 − 𝑞) 𝑦 = 0, (1)

either with the periodic boundary conditions

𝑦 (1) = 𝑦 (0) , 𝑦

(1) = 𝑦


(0) , (2)

or with the antiperiodic boundary conditions

𝑦 (1) = −𝑦 (0) , 𝑦

(1) = −𝑦


(0) , (3)

where 𝑞 is a complex-valued summable function on [0, 1].
We will consider only the periodic problem.The antiperiodic
problem is completely similar. The operator 𝐿 is regular, but
not strongly regular. It is well known [1, 2] that the system
of root functions of an ordinary differential operator with
strongly regular boundary conditions forms a Riesz basis
in 𝐿
2
[0, 1]. Generally, the normalized eigenfunctions and

associated functions, that is, the root functions of the operator
with only regular boundary conditions, do not form a Riesz
basis. Nevertheless, Shkalikov [3, 4] showed that the system
of root functions of an ordinary differential operator with
regular boundary conditions forms a basis with parentheses.
In [5], they proved that under the conditions

𝑞 (1) ̸= 𝑞 (0) , 𝑞 ∈ 𝐶
(4)

[0, 1] (4)

the system of root functions of 𝐿 forms a Riesz basis in
𝐿
2
[0, 1]. A new approach in terms of the Fourier coefficients

of 𝑞 is due to Dernek and Veliev [6]. They proved that if the
following conditions

𝑞
2𝑚

∼ 𝑞
−2𝑚

, lim
𝑚→∞

ln |𝑚|

𝑚𝑞
2𝑚

= 0, (5)

hold, then the root functions of 𝐿 form a Riesz basis in
𝐿
2
[0, 1], where

𝑞
𝑚

=: (𝑞 , 𝑒
𝑖2𝑚𝜋𝑥

) =: ∫

1

0

𝑞 (𝑥) 𝑒
−𝑖2𝑚𝜋𝑥

𝑑𝑥 (6)

is the Fourier coefficient of 𝑞 andwithout loss of generality we
always suppose that 𝑞

0
= 0 and the notation 𝑎

𝑚
∼ 𝑏
𝑚
means

that there exist constants 𝑐
1
and 𝑐
2
such that 0 < 𝑐

1
< 𝑐
2
and

𝑐
1

< |𝑎
𝑚
/𝑏
𝑚
| < 𝑐
2
for all large 𝑚. Makin [7] extended this

result as follows.
Let the first condition in (5) hold. But the second condition

in (5) is replaced by a less restrictive one: 𝑞 ∈ 𝑊
𝑠

1
[0, 1],

𝑞
(𝑘)

(1) = 𝑞
(𝑘)

(0) , ∀𝑘 = 0, 1, . . . , 𝑠 − 1 (7)

holds and |𝑞
2𝑚

| > 𝑐𝑚
−𝑠−1 with some 𝑐 > 0 for large𝑚, where 𝑠

is a nonnegative integer.Then the root functions of the operator
𝐿 form a Riesz basis in 𝐿

2
[0, 1].

In addition, some conditions which imply that the system
of root functions does not form a Riesz basis of 𝐿

2
[0, 1] were
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established in [7] (see also [8–10]). In [11], we proved that
the Riesz basis property is valid if the first condition in (4)
holds, but the second is replaced by 𝑞 ∈ 𝑊

1

1
[0, 1]. The results

of Veliev and Shkalikov [12] are more general and inclusive.
The assertions in various forms concerning the Riesz basis
property were proved. One of the basic results in [12] is the
following statement.

Let 𝑝 ≥ 0 be an arbitrary integer, 𝑞 ∈ 𝑊
𝑝

1
[0, 1] and (7)

holds with some 𝑠 ≤ 𝑝, and let one of the following conditions
hold:

𝑞2𝑚
 > 𝜀𝑚

−𝑠−1 or 𝑞−2𝑚
 > 𝜀𝑚

−𝑠−1
∀large 𝑚 (8)

with some 𝜀 > 0. Then a normal system of root functions of the
operator 𝐿 forms a Riesz basis if and only if 𝑞

2𝑚
∼ 𝑞
−2𝑚

.
Here, for large 𝑚, by Ψ

𝑚,𝑗
(𝑥) for 𝑗 = 1, 2 denote

the normalized eigenfunctions corresponding to the simple
eigenvalues 𝜆

𝑚,𝑗
. If the multiplicities of these eigenvalues are

equal to 2, then the root subspace consists either of two
eigenfunctions or of Jordan chains comprising one eigen-
function and one associated function. First, if the multiple
eigenvalue 𝜆

𝑚,1
= 𝜆
𝑚,2

has geometric multiplicity 2, we take
the normalized eigenfunctions Ψ

𝑚,1
(𝑥), Ψ

𝑚,2
(𝑥). Secondly,

if there is one eigenfunction Ψ
𝑚,1

(𝑥) corresponding to the
multiple eigenvalue 𝜆

𝑚,1
= 𝜆
𝑚,2

, then we take the Jordan
chain consisting of a normalized eigenfunction Ψ

𝑚,1
(𝑥) and

corresponding associated function denoted again by Ψ
𝑚,2

(𝑥)

and orthogonal toΨ
𝑚,1

(𝑥). Thus the system of root functions
obtained in this way will be called a normal system.

Moreover, for the other interesting results about the
Riesz basis property of root functions of the periodic and
antiperiodic problems, we refer in particular to [13–18].

In this paper, we prove the following main result.

Theorem 1. Let 𝑞 ∈ 𝐿
1
[0, 1] be arbitrary complex-valued

function and suppose that at least one of the conditions

lim
𝑚→∞

𝜌 (𝑚)

𝑚𝑞
2𝑚

= 0, lim
𝑚→∞

𝜌 (𝑚)

𝑚𝑞
−2𝑚

= 0 (9)

is satisfied, where 𝜌(𝑚), defined in (40), is a common order of
the Fourier coefficients 𝑞

2𝑚
and 𝑞
−2𝑚

of 𝑞.
Then a normal system of root functions of the operator 𝐿

forms a Riesz basis if and only if

𝑞
2𝑚

∼ 𝑞
−2𝑚

. (10)

This form of Theorem 1 is not novel (see, e.g., [12]).
The novelty is in the term 𝜌(𝑚) defined in (40) (see also
Lemma 4). Indeed, if we take 𝑝 = 0 in the Sobolev space
𝑊
𝑝

1
[0, 1] given above in [12], that is, if 𝑞 ∈ 𝐿

1
[0, 1], then

the nonnegative integer 𝑠 in the conditions in (8) must be
zero and the assertion on the Riesz basis property remains
valid with a less restrictive condition in (9) instead of (8). For
example, let 𝜌(𝑚) = 𝑜(𝑚

−1/2
). If instead of (9) we suppose

that at least one of the following conditions holds

𝑞2𝑚
 > 𝜀𝑚

−3/2 or 𝑞−2𝑚
 > 𝜀𝑚

−3/2
∀large 𝑚 (11)

with some 𝜀, then the assertion of Theorem 1 is obvious.

It is well known (see, e.g., [19], Theorem 2 in page 64)
that the periodic eigenvalues 𝜆

𝑚,1
, 𝜆
𝑚,2

are located in pairs
satisfying the following asymptotic formula:

𝜆
𝑚,1

= 𝜆
𝑚,2

+ 𝑂 (𝑚
1/2

) = (2𝑚𝜋)
2
+ 𝑂 (𝑚

1/2
) , (12)

for 𝑚 ≥ 𝑁. Here, by 𝑁 ≫ 1 we denote large enough
positive integer. From this formula, the pair of the eigenvalues
{𝜆
𝑚,1

, 𝜆
𝑚,2

} is close to the number (2𝑚𝜋)
2 and is isolated from

the remaining eigenvalues of 𝐿 by a distance 𝑚. That is, we
have, for 𝑗 = 1, 2,


𝜆
𝑚,𝑗

− (2 (𝑚 − 𝑘) 𝜋)
2

> |𝑘| |2𝑚 − 𝑘| > 𝐶𝑚, (13)

for all 𝑘 ̸= 0, 2𝑚 and 𝑘 ∈ Z, where 𝑚 ≥ 𝑁 and, here and
in subsequent relations, 𝐶 is some positive constant whose
exact value is not essential. For the potential 𝑞 = 0 and
𝑚 ≥ 1, clearly, the system {𝑒

−𝑖2𝑚𝜋𝑥
, 𝑒
𝑖2𝑚𝜋𝑥

} is a basis of the
eigenspace corresponding to the eigenvalue (2𝑚𝜋)

2 of the
periodic boundary value problems.

Finally, let us state the following relevant theorem which
will be used in the proof of Theorem 1.

Theorem 2 (see [12]). The following assertions are equivalent.
(i) A normal system of root functions of the operator 𝐿

forms a Riesz basis in the space 𝐿
2
[0, 1].

(ii) The number of Jordan chains is finite and the relation
𝑢
𝑚,𝑗

∼ V
𝑚,𝑗 (14)

holds for all indices 𝑚 and 𝑗 corresponding only to the simple
eigenvalues 𝜆

𝑚,𝑗
for 𝑗 = 1, 2, where 𝑢

𝑚,𝑗
, V
𝑚,𝑗

are the Fourier
coefficients defined in (21).

(iii) The number of Jordan chains is finite and the relation
(14) for either 𝑗 = 1 or 𝑗 = 2 holds.

2. Preliminaries

The following well-known relation will be used to obtain,
for large 𝑚, the asymptotic formulas for periodic eigenval-
ues 𝜆

𝑚,𝑗
corresponding to the normalized eigenfunctions

Ψ
𝑚,𝑗

(𝑥):

Λ
𝑚−𝑘,𝑗

(Ψ
𝑚,𝑗

, 𝑒
𝑖2(𝑚−𝑘)𝜋𝑥

) = (𝑞 Ψ
𝑚,𝑗

, 𝑒
𝑖2(𝑚−𝑘)𝜋𝑥

) , (15)

where Λ
𝑚−𝑘,𝑗

= 𝜆
𝑚,𝑗

− (2(𝑚 − 𝑘)𝜋)
2, 𝑗 = 1, 2. From Lemma 1

in [20], we iterate (15) by using the following relations:

(𝑞Ψ
𝑚,𝑗

, 𝑒
𝑖2𝑚𝜋𝑥

) =

∞

∑

𝑚
1
=−∞

𝑞
𝑚
1

(Ψ
𝑚,𝑗

, 𝑒
𝑖2(𝑚−𝑚

1
)𝜋𝑥

) , (16)


(𝑞Ψ
𝑚,𝑗

, 𝑒
𝑖2(𝑚−𝑚

1
)𝜋𝑥

)


< 3𝑀, (17)

where for all 𝑚 ≥ 𝑁, 𝑚
1

∈ Z and 𝑗 = 1, 2, where 𝑀 =

sup
𝑚∈Z|𝑞

𝑚
|.

Hence, substituting (16) in (15) for 𝑘 = 0 and then
isolating the terms with indices 𝑚

1
= 0, 2𝑚, we deduce, in

view of 𝑞
0
= 0, that

Λ
𝑚,𝑗

(Ψ
𝑚,𝑗

, 𝑒
𝑖2𝑚𝜋𝑥

) = 𝑞
2𝑚

(Ψ
𝑚,𝑗

, 𝑒
−𝑖2𝑚𝜋𝑥

)

+ ∑

𝑚
1
̸=0,2𝑚

𝑞
𝑚
1

(Ψ
𝑚,𝑗

, 𝑒
𝑖2(𝑚−𝑚

1
)𝜋𝑥

) .
(18)
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First, we use (15) for 𝑘 = 𝑚
1
in the right-hand side of (18).

Then, considering (16) with the indices 𝑚
2
and isolating the

terms with indices𝑚
1
+ 𝑚
2
= 0, 2𝑚, we get

[Λ
𝑚,𝑗

− 𝑎
1
(𝜆
𝑚,𝑗

)] 𝑢
𝑚,𝑗

= [𝑞
2𝑚

+ 𝑏
1
(𝜆
𝑚,𝑗

)] V
𝑚,𝑗

+ 𝑅
1
(𝑚) ,

(19)

by repeating this procedure once again, and

[Λ
𝑚,𝑗

− 𝑎
1
(𝜆
𝑚,𝑗

) − 𝑎
2
(𝜆
𝑚,𝑗

)] 𝑢
𝑚,𝑗

= [𝑞
2𝑚

+ 𝑏
1
(𝜆
𝑚,𝑗

) + 𝑏
2
(𝜆
𝑚,𝑗

)] V
𝑚,𝑗

+ 𝑅
2
(𝑚) ,

(20)

where 𝑗 = 1, 2,

𝑢
𝑚,𝑗

= (Ψ
𝑚,𝑗

, 𝑒
𝑖2𝑚𝜋𝑥

) , V
𝑚,𝑗

= (Ψ
𝑚,𝑗

, 𝑒
−𝑖2𝑚𝜋𝑥

) , (21)

𝑎
1
(𝜆
𝑚,𝑗

) = ∑

𝑚
1

𝑞
𝑚
1

𝑞
−𝑚
1

Λ
𝑚−𝑚
1
,𝑗

,

𝑎
2
(𝜆
𝑚,𝑗

) = ∑

𝑚
1
,𝑚
2

𝑞
𝑚
1

𝑞
𝑚
2

𝑞
−𝑚
1
−𝑚
2

Λ
𝑚−𝑚
1
,𝑗

Λ
𝑚−𝑚
1
−𝑚
2
,𝑗

,

(22)

𝑏
1
(𝜆
𝑚,𝑗

) = ∑

𝑚
1

𝑞
𝑚
1

𝑞
2𝑚−𝑚

1

Λ
𝑚−𝑚
1
,𝑗

,

𝑏
2
(𝜆
𝑚,𝑗

) = ∑

𝑚
1
,𝑚
2

𝑞
𝑚
1

𝑞
𝑚
2

𝑞
2𝑚−𝑚

1
−𝑚
2

Λ
𝑚−𝑚
1
,𝑗

Λ
𝑚−𝑚
1
−𝑚
2
,𝑗

,

(23)

𝑅
1
(𝑚) = ∑

𝑚
1
,𝑚
2

𝑞
𝑚
1

𝑞
𝑚
2

(𝑞 Ψ
𝑚,𝑗

, 𝑒
𝑖2(𝑚−𝑚

1
−𝑚
2
)𝜋𝑥

)

Λ
𝑚−𝑚
1
,𝑗

Λ
𝑚−𝑚
1
−𝑚
2
,𝑗

, (24)

𝑅
2
(𝑚)

= ∑

𝑚
1
,𝑚
2
,𝑚
3

𝑞
𝑚
1

𝑞
𝑚
2

𝑞
𝑚
3

(𝑞 Ψ
𝑚,𝑗

, 𝑒
𝑖2(𝑚−𝑚

1
−𝑚
2
−𝑚
3
)𝜋𝑥

)

Λ
𝑚−𝑚
1
,𝑗

Λ
𝑚−𝑚
1
−𝑚
2
,𝑗

Λ
𝑚−𝑚
1
−𝑚
2
−𝑚
3
,𝑗

,

(25)

𝑚
𝑖

̸= 0, ∀𝑖;

𝑘

∑

𝑖=1

𝑚
𝑖

̸= 0, 2𝑚, ∀𝑘 = 1, 2, 3. (26)

Using (13), (17), and the relation

∑

𝑚
1
̸=0,2𝑚

1
𝑚1


2𝑚 − 𝑚

1



= 𝑂(
ln |𝑚|

𝑚
) (27)

one can prove the estimates

𝑅
𝑖
(𝑚) = 𝑂((

ln |𝑚|

𝑚
)

𝑖+1

) , 𝑖 = 1, 2. (28)

In the same way, by using the eigenfunction 𝑒
−𝑖2𝑚𝜋𝑥 of the

operator 𝐿 for 𝑞 = 0, we can obtain the relations

[Λ
𝑚,𝑗

− 𝑎

(𝜆
𝑚,𝑗

)] V
𝑚,𝑗

= [𝑞
−2𝑚

+ 𝑏


1
(𝜆
𝑚,𝑗

)] 𝑢
𝑚,𝑗

+ 𝑅


1
(𝑚) ,

(29)

[Λ
𝑚,𝑗

− 𝑎


1
(𝜆
𝑚,𝑗

) − 𝑎


2
(𝜆
𝑚,𝑗

)] V
𝑚,𝑗

= [𝑞
2𝑚

+ 𝑏


1
(𝜆
𝑚,𝑗

) + 𝑏


2
(𝜆
𝑚,𝑗

)] 𝑢
𝑚,𝑗

+ 𝑅


2
(𝑚) ,

(30)

where

𝑎


1
(𝜆
𝑚,𝑗

) = ∑

𝑚
1

𝑞
𝑚
1

𝑞
−𝑚
1

Λ
𝑚+𝑚
1
,𝑗

,

𝑎


2
(𝜆
𝑚,𝑗

) = ∑

𝑚
1
,𝑚
2

𝑞
𝑚
1

𝑞
𝑚
2

𝑞
−𝑚
1
−𝑚
2

Λ
𝑚+𝑚
1
,𝑗

Λ
𝑚+𝑚
1
+𝑚
2
,𝑗

,

(31)

𝑏


1
(𝜆
𝑚,𝑗

) = ∑

𝑚
1

𝑞
𝑚
1

𝑞
−2𝑚−𝑚

1

Λ
𝑚+𝑚
1
,𝑗

,

𝑏


2
(𝜆
𝑚,𝑗

) = ∑

𝑚
1
,𝑚
2

𝑞
𝑚
1

𝑞
𝑚
2

𝑞
−2𝑚−𝑚

1
−𝑚
2

Λ
𝑚+𝑚
1
,𝑗

Λ
𝑚+𝑚
1
+𝑚
2
,𝑗

,

(32)

𝑅


1
(𝑚) = ∑

𝑚
1
,𝑚
2

𝑞
𝑚
1

𝑞
𝑚
2

(𝑞Ψ
𝑚,𝑗

, 𝑒
𝑖2(𝑚+𝑚

1
+𝑚
2
)𝜋𝑥

)

Λ
𝑚+𝑚
1
,𝑗

Λ
𝑚+𝑚
1
+𝑚
2
,𝑗

, (33)

𝑅


2
(𝑚) = ∑

𝑚
1
,𝑚
2
,𝑚
3

𝑞
𝑚
1

𝑞
𝑚
2

𝑞
𝑚
3

(𝑞Ψ
𝑚,𝑗

, 𝑒
𝑖2(𝑚+𝑚

1
+𝑚
2
+𝑚
3
)𝜋𝑥

)

Λ
𝑚+𝑚
1
,𝑗

Λ
𝑚+𝑚
1
+𝑚
2
,𝑗

Λ
𝑚+𝑚
1
+𝑚
2
+𝑚
3
,𝑗

,

(34)

𝑚
𝑖

̸= 0,

𝑘

∑

𝑖=1

𝑚
𝑖

̸= 0, −2𝑚, ∀𝑘 = 1, 2, 3. (35)

Here the similar estimates as in (28) are valid for 𝑅
𝑖
(𝑚), 𝑖 =

1, 2.
In addition, by using (13), (15), and (17), we get

∑

𝑘∈Z;𝑘 ̸=±𝑚


(Ψ
𝑚,𝑗

, 𝑒
𝑖2𝑘𝜋𝑥

)


2

= 𝑂(
1

𝑚2
) . (36)

Thus, we obtain that the normalized eigenfunction Ψ
𝑚,𝑗

(𝑥)

by the basis {𝑒
𝑖2𝑘𝜋𝑥

: 𝑘 ∈ Z} on [0, 1] has the following
expansion:

Ψ
𝑚,𝑗

(𝑥) = 𝑢
𝑚,𝑗

𝑒
𝑖2𝑚𝜋𝑥

+ V
𝑚,𝑗

𝑒
−𝑖2𝑚𝜋𝑥

+ ℎ
𝑚
(𝑥) , (37)

where

(ℎ
𝑚
, 𝑒
∓𝑖2𝑚𝜋𝑥

) = 0,
ℎ𝑚 (𝑥)

 = 𝑂 (𝑚
−1
) , (38)


𝑢
𝑚,𝑗



2

+

V
𝑚,𝑗



2

= 1 + 𝑂 (𝑚
−2
) . (39)

Now, let us consider the following form of the Riemann-
Lebesgue lemma. By this we set

𝜌 (𝑚) =: max{ sup
0≤𝑥≤1


∫

𝑥

0

𝑞 (𝑡) 𝑒
−𝑖2(2𝑚)𝜋𝑡

𝑑𝑡


,

sup
0≤𝑥≤1


∫

𝑥

0

𝑞 (𝑡) 𝑒
𝑖2(2𝑚)𝜋𝑡

𝑑𝑡


} ,

(40)

and clearly 𝜌(𝑚) → 0 as𝑚 → ∞. As the proof of lemma is
similar to that of Lemma 6 in [21], we pass to the proof.

Lemma 3. If 𝑞 ∈ 𝐿
1
[0, 1] then ∫

𝑥

0
𝑞(𝑡) 𝑒

𝑖2𝑚𝜋𝑡
𝑑𝑡 → 0 as

|𝑚| → ∞ uniformly in 𝑥.
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3. Main Results

To prove the main results of the paper we need the following
lemmas.

Lemma 4. The eigenvalues 𝜆
𝑚,𝑗

of the operator 𝐿 for 𝑚 ≥ 𝑁

and 𝑗 = 1, 2 satisfy

𝜆
𝑚,𝑗

= (2𝑚𝜋)
2
+ 𝑂 (𝜌 (𝑚)) , (41)

where 𝜌(𝑚) is defined in (40).

Proof. For the proof we have to estimate the terms of (19) and
(29). It is easily seen that

∑

𝑚
1
̸=0,±2𝑚



1

Λ
𝑚∓𝑚
1
,𝑗

−
1

Λ0
𝑚∓𝑚
1



= 𝑂(
Λ
𝑚,𝑗

𝑚2
) , (42)

where Λ0
𝑚∓𝑚
1

= (2𝑚𝜋)
2
− (2(𝑚 ∓ 𝑚

1
)𝜋)
2. Thus, we get

𝑎
1
(𝜆
𝑚,𝑗

) =
1

4𝜋2
∑

𝑚
1
̸=0,2𝑚

𝑞
𝑚
1

𝑞
−𝑚
1

𝑚
1
(2𝑚 − 𝑚

1
)
+ 𝑂(

Λ
𝑚,𝑗

𝑚2
) . (43)

From the argument in Lemma 2(a) of [18] we deduce, with
our notations,

𝑎
1
(𝜆
𝑚,𝑗

)

=
1

2𝜋2
∑

𝑚
1
>0,𝑚
1
̸=2𝑚

𝑞
𝑚
1

𝑞
−𝑚
1

(2𝑚 + 𝑚
1
) (2𝑚 − 𝑚

1
)
+ 𝑂(

Λ
𝑚,𝑗

𝑚2
)

= ∫

1

0

(𝐺 (𝑥,𝑚) − 𝐺
0
(𝑚))
2

𝑒
𝑖2(4𝑚)𝜋𝑥

𝑑𝑥 + 𝑂(
Λ
𝑚,𝑗

𝑚2
) ,

(44)

where

𝐺 (𝑥,𝑚) = ∫

𝑥

0

𝑞 (𝑡) 𝑒
−𝑖2(2𝑚)𝜋𝑡

𝑑𝑡 − 𝑞
2𝑚

𝑥, (45)

𝐺
𝑚
1
(𝑚) =: (𝐺 (𝑥,𝑚) , 𝑒

𝑖2𝑚
1
𝜋𝑥

) =
𝑞
2𝑚+𝑚

1

𝑖2𝜋𝑚
1

(46)

for𝑚
1

̸= 0 and

𝐺 (𝑥,𝑚) − 𝐺
0
(𝑚) = ∑

𝑚
1
̸=2𝑚

𝑞
𝑚
1

𝑖2𝜋 (𝑚
1
− 2𝑚)

𝑒
𝑖2(𝑚
1
−2𝑚)𝜋𝑥

.

(47)

Thus, from the equalities

𝐺 (𝑥,𝑚) − 𝐺
0
(𝑚) = 𝑂 (𝜌 (𝑚)) , 𝐺 (1,𝑚) = 𝐺 (0,𝑚) = 0

(48)

(see (40) and (45)) and since 𝑞 ∈ 𝐿
1
[0, 𝑎], integration by parts

gives for the integral in (44) the estimate

𝑎
1
(𝜆
𝑚,𝑗

) = 𝑂(
𝜌 (𝑚)

𝑚
) + 𝑂(

Λ
𝑚,𝑗

𝑚2
) (49)

for large 𝑚. It is easily seen by substituting 𝑚
1
= −𝑘 into the

relation for 𝑎
1
(𝜆
𝑚,𝑗

) (see (29)) that

𝑎
1
(𝜆
𝑚,𝑗

) = 𝑎


1
(𝜆
𝑚,𝑗

) . (50)

In a similar way, by (42), and so forth, we get

𝑏
1
(𝜆
𝑚,𝑗

) =
1

4𝜋2
∑

𝑚
1
̸=0,2𝑚

𝑞
𝑚
1

𝑞
2𝑚−𝑚

1

𝑚
1
(2𝑚 − 𝑚

1
)
+ 𝑂(

Λ
𝑚,𝑗

𝑚2
)

= −∫

1

0

(𝑄 (𝑥) − 𝑄
0
)
2

𝑒
−𝑖2(2𝑚)𝜋𝑥

𝑑𝑥 + 𝑂(
Λ
𝑚,𝑗

𝑚2
)

=
−1

𝑖2𝜋 (2𝑚)
∫

1

0

2 (𝑄 (𝑥) − 𝑄
0
) 𝑞 (𝑥) 𝑒

−𝑖2(2𝑚)𝜋𝑥
𝑑𝑥

+ 𝑂(
Λ
𝑚,𝑗

𝑚2
) ,

(51)

where 𝑄(𝑥) = ∫
𝑥

0
𝑞(𝑡)𝑑𝑡, 𝑄

𝑚
1

=: (𝑄(𝑥), 𝑒
𝑖2𝑚
1
𝜋𝑥

) = 𝑞
𝑚
1

/

𝑖2𝜋𝑚
1
if 𝑚
1

̸= 0,

𝑄 (𝑥) − 𝑄
0
= ∑

𝑚
1
̸=0

𝑄
𝑚
1

𝑒
𝑖2𝑚
1
𝜋𝑥

. (52)

Thus, by using 𝑄(1) = 𝑞
0
= 0 and (40), integration by parts

again gives for the integral in (51) the following estimate:

𝑏
1
(𝜆
𝑚,𝑗

) = 𝑂(
𝜌 (𝑚)

𝑚
) + 𝑂(

Λ
𝑚,𝑗

𝑚2
) . (53)

Similarly

𝑏


1
(𝜆
𝑚,𝑗

) = 𝑂(
𝜌 (𝑚)

𝑚
) + 𝑂(

Λ
𝑚,𝑗

𝑚2
) . (54)

To estimate 𝑅
1
(𝑚) = 𝑜(𝜌(𝑚)) (see (24)), let us show that

𝜌 (𝑚) > 𝐶𝑚
−1 (55)

for 𝑚 ≥ 𝑁 and some 𝐶 > 0. Since 𝑞(𝑥) ̸= 0 is summable
function on [0, 1], there exists 𝑥 ∈ [0, 1] such that

∫

𝑥

0

𝑞 (𝑡) 𝑑𝑡 ̸= 0 (56)

and the integral (56) is bounded for all 𝑥 ∈ [0, 1]. Hence,
multiplying the integrand of (56) by 𝑒

−𝑖2(2𝑚)𝜋𝑥
𝑒
𝑖2(2𝑚)𝜋𝑥 and

then using integration by parts, we get

sup
0≤𝑥≤1


∫

𝑥

0

𝑞 (𝑡) 𝑑𝑡


≤ 𝐶 (𝜌 (𝑚) + 𝑚𝜌 (𝑚)) ≤ 𝐶𝑚𝜌 (𝑚) (57)

which implies (55).
Thus by (13), (17), and relation (27), we deduce that

𝑅1 (𝑚)
 ≤ 𝐶

(ln |𝑚|)
2

𝑚2
= 𝑜 (𝜌 (𝑚)) . (58)

Also 𝑅


1
(𝑚) = 𝑜(𝜌(𝑚)).
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From relation (39), for large 𝑚, it follows that either
|𝑢
𝑚,𝑗

| > 1/2 or |V
𝑚,𝑗

| > 1/2. We first consider the case
when |𝑢

𝑚,𝑗
| > 1/2. Hence, by using (19), (49), and (53) with

𝑅
1
(𝑚) = 𝑜(𝜌(𝑚)) we obtain

Λ
𝑚,𝑗

(1 + 𝑂 (𝑚
−2
)) = 𝑞

2𝑚

V
𝑚,𝑗

𝑢
𝑚,𝑗

+ 𝑜 (𝜌 (𝑚)) . (59)

This with definition (40) gives Λ
𝑚,𝑗

= 𝑂(𝜌(𝑚)). Similarly,
for the other case |V

𝑚,𝑗
| > 1/2, by using (29), (49), (54), and

𝑅


1
(𝑚) = 𝑜(𝜌(𝑚)), we get (41). The lemma is proved.

Lemma5. For all large𝑚, we have the following estimates (see,
resp., (23), (32) and (25), (34)):

𝑏
2
(𝜆
𝑚,𝑗

) , 𝑏


2
(𝜆
𝑚,𝑗

) = 𝑂 (𝜌 (𝑚)𝑚
−2
) ,

𝑅
2
(𝑚) , 𝑅



2
(𝑚) = 𝑂 (𝜌 (𝑚)𝑚

−1
) .

(60)

Proof. Let us estimate the sum 𝑅
2
(𝑚). By using estimate (28)

and inequality (55) for large𝑚, we deduce that

𝑅2 (𝑚)
 ≤ 𝐶

(ln |𝑚|)
3

𝑚3
= 𝑂 (𝜌 (𝑚)𝑚

−1
) . (61)

In the same way 𝑅


2
(𝑚) = 𝑂(𝜌(𝑚)𝑚

−1
).

Arguing as in [12] (see the proof of Lemma 6), let us
now estimate the sum 𝑏

2
(𝜆
𝑚,𝑗

). Taking into account (42) and
Lemma 4, we have

𝑏
2
(𝜆
𝑚,𝑗

) =
1

(2𝜋)
4
𝐼 (𝑚) + 𝑂(

𝜌 (𝑚)

𝑚3
) , (62)

where

𝐼 (𝑚)

= ∑

𝑚
1
,𝑚
2

𝑞
𝑚
1

𝑞
𝑚
2

𝑞
2𝑚−𝑚

1
−𝑚
2

𝑚
1
(2𝑚 − 𝑚

1
) (𝑚
1
+ 𝑚
2
) (2𝑚 − 𝑚

1
− 𝑚
2
)
.
(63)

By using the identity

1

𝑘 (2𝑚 − 𝑘)
=

1

2𝑚
(
1

𝑘
+

1

2𝑚 − 𝑘
) (64)

and the substitutions 𝑘
1

= 𝑚
1
, 𝑘
2

= 2𝑚 − 𝑚
1
− 𝑚
2
in the

formula 𝐼(𝑚), we obtain 𝐼(𝑚) with the indices 𝑚
1
, 𝑚
2
in the

following form:

𝐼 (𝑚) =
1

(2𝑚)
2
(𝐼
1
+ 2𝐼
2
+ 𝐼
3
) , (65)

where

𝐼
1
= ∑

𝑚
1
,𝑚
2

𝑞
𝑚
1

𝑞
𝑚
2

𝑞
2𝑚−𝑚

1
−𝑚
2

𝑚
1
𝑚
2

,

𝐼
2
= ∑

𝑚
1
,𝑚
2

𝑞
𝑚
1

𝑞
𝑚
2

𝑞
2𝑚−𝑚

1
−𝑚
2

𝑚
2
(2𝑚 − 𝑚

1
)

,

𝐼
3
= ∑

𝑚
1
,𝑚
2

𝑞
𝑚
1

𝑞
𝑚
2

𝑞
2𝑚−𝑚

1
−𝑚
2

(2𝑚 − 𝑚
1
) (2𝑚 − 𝑚

2
)
.

(66)

From (46)–(48), (52), and 2𝐼
2
(𝑚) = 𝐼

1
(𝑚) and using

integration by parts only in 𝐼
1
, we obtain the following

estimates:

𝐼
1
= −4𝜋

2
∫

1

0

(𝑄 (𝑥) − 𝑄
0
)
2

𝑞 (𝑥) 𝑒
−𝑖2(2𝑚)𝜋𝑥

𝑑𝑥 = 𝑂 (𝜌 (𝑚)) ,

𝐼
3
= −4𝜋

2
∫

1

0

(𝐺 (𝑥,𝑚) − 𝐺
0
(𝑚))
2

𝑞 (𝑥) 𝑒
𝑖2(2𝑚)𝜋𝑥

𝑑𝑥

= 𝑂 (𝜌 (𝑚)) .

(67)

Then, in view of (65) and (67), 𝐼(𝑚) = 𝑂(𝜌(𝑚)𝑚
−2
).This with

equality (62) implies that 𝑏
2
(𝜆
𝑚,𝑗

) = 𝑂(𝜌(𝑚)𝑚
−2
). In the same

way 𝑏
2
(𝜆
𝑚,𝑗

) satisfies the same estimate.The lemma is proved.

Thus by using Lemmas 4 and 5, Theorem 2, and an
argument similar to that of Theorem 2 in [12] under the
conditions in (9), let us prove the following main result.

Proof of Theorem 1. In view of Lemma 4, substituting the
values of

𝑏
1
(𝜆
𝑚,𝑗

) , 𝑏


1
(𝜆
𝑚,𝑗

) = 𝑂 (𝜌 (𝑚)𝑚
−1
) ,

𝑏
2
(𝜆
𝑚,𝑗

) , 𝑏


2
(𝜆
𝑚,𝑗

) 𝑅
2
(𝑚) , 𝑅



2
(𝑚) = 𝑂 (𝜌 (𝑚)𝑚

−2
)

(68)

given by (53), (54), and (60) in relations (20) and (30), we get
the following reversion of the relations

[Λ
𝑚,𝑗

− 𝑎
1
(𝜆
𝑚,𝑗

) − 𝑎
2
(𝜆
𝑚,𝑗

)] 𝑢
𝑚,𝑗

= [𝑞
2𝑚

+ 𝑂 (𝜌 (𝑚)𝑚
−1
)] V
𝑚,𝑗

+ 𝑂 (𝜌 (𝑚)𝑚
−2
) ,

(69)

[Λ
𝑚,𝑗

− 𝑎


1
(𝜆
𝑚,𝑗

) − 𝑎


2
(𝜆
𝑚,𝑗

)] V
𝑚,𝑗

= [𝑞
−2𝑚

+ 𝑂 (𝜌 (𝑚)𝑚
−1
)] 𝑢
𝑚,𝑗

+ 𝑂 (𝜌 (𝑚)𝑚
−2
)

(70)

for 𝑗 = 1, 2.
It is easily seen again by substituting 𝑚

1
+ 𝑚
2

= −𝑘
1
,

𝑚
2
= 𝑘
2
, in the sum 𝑎



2
(𝜆
𝑚,𝑗

) (see (29)) and using (50) that
𝑎
𝑖
(𝜆
𝑚,𝑗

) = 𝑎


𝑖
(𝜆
𝑚,𝑗

) for 𝑖 = 1, 2. Hence, multiplying (69) by
V
𝑚,𝑗

and (70) by 𝑢
𝑚,𝑗

and subtracting we obtain the following
equality:

𝑞
2𝑚
V2
𝑚,𝑗

− 𝑞
−2𝑚

𝑢
2

𝑚,𝑗
= 𝑂 (𝜌 (𝑚)𝑚

−1
) . (71)

Suppose, for example, that 𝑞
2𝑚

satisfies the condition in
(9). Then using this equality we get

V2
𝑚,𝑗

− 𝜅
𝑚
𝑢
2

𝑚,𝑗
= 𝑜 (1) , 𝜅

𝑚
=:

𝑞
−2𝑚

𝑞
2𝑚

, (72)

for 𝑗 = 1, 2. In addition, for large 𝑚, the condition in
(9) for 𝑞

2𝑚
implies that the geometric multiplicity of the

eigenvalue 𝜆
𝑚,𝑗

is 1. Arguing as in Lemma 4 of [12], if
there exist mutually orthogonal two eigenfunctions Ψ

𝑚,𝑗
(𝑥)

corresponding to 𝜆
𝑚,1

= 𝜆
𝑚,2

, then one can choose an
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eigenfunction Ψ
𝑚,𝑗

(𝑥) such that 𝑢
𝑚,𝑗

= 0. Thus combining
this with (39) and (71), we get 𝑞

2𝑚
= 𝑂(𝜌(𝑚)𝑚

−1
) which

contradicts (9).
Let the normal system of root functions form a Riesz

basis. To prove 𝜅
𝑚

∼ 1, from (72) it is enough to show that
all the large periodic eigenvalues 𝜆

𝑚,𝑗
are simple, since in this

case we have, by Theorem 2,

𝑢
𝑚,𝑗

∼ V
𝑚,𝑗

∼ 1 (73)

for 𝑗 = 1, 2. For large𝑚, again byTheorem2 and the condition
in (9) for 𝑞

2𝑚
, respectively, the number of Jordan chains and

the eigenvalues of geometric multiplicity 2 are finite; that is,
all large eigenvalues are simple.

Now let 𝑞
2𝑚

∼ 𝑞
−2𝑚

. From (72), we obtain the relation
(73) for 𝑗 = 1which implies that the number of Jordan chains
is finite. In fact, if there exists a Jordan chain consisting of
an eigenfunction Ψ

𝑚,1
(𝑥) and an associated function Ψ

𝑚,2
(𝑥)

corresponding to the eigenvalue 𝜆
𝑚,1

= 𝜆
𝑚,2

, then, for
example, for 𝜆

𝑚,1
, using the eigenfunction Ψ

𝑚,1
(𝑥) of the

adjoint operator 𝐿∗ and the relation

(𝐿 − 𝜆
𝑚,1

) Ψ
𝑚,2

(𝑥) = Ψ
𝑚,1

(𝑥) , (74)

we obtain that (Ψ
𝑚,1

, Ψ
𝑚,1

) = 0.Thus, from expansion (37) for
𝑗 = 1, we get 𝑢

𝑚,1
V
𝑚,1

= 𝑂(𝑚
−2
) which contradicts (73) for

𝑗 = 1. Thus, usingTheorem 2, we prove that a normal system
of root functions of the operator 𝐿 forms a Riesz basis.

Arguing as in the proof ofTheorem 1, we obtain a similar
result established below for the antiperiodic problems.

Theorem 6. Let 𝑞 ∈ 𝐿
1
[0, 1] be arbitrary complex-valued

function and suppose that at least one of the conditions

lim
𝑚→∞

𝜌 (𝑚)

𝑚𝑞
2𝑚+1

= 0, lim
𝑚→∞

𝜌 (𝑚)

𝑚𝑞
−2𝑚−1

= 0 (75)

is satisfied, where 𝜌(𝑚) is obtained from (40) by replacing 2𝑚

with 2𝑚 + 1 and a common order of both Fourier coefficients
𝑞
2𝑚+1

and 𝑞
−2𝑚−1

of 𝑞.
Then a normal system of root functions of the operator 𝐿

with antiperiodic boundary conditions forms a Riesz basis if
and only if 𝑞

2𝑚+1
∼ 𝑞
−2𝑚−1

.

Remark 7. Clearly if instead of (9) we assume that at least one
of the conditions

𝜌 (𝑚) ∼ 𝑞
2𝑚

, 𝜌 (𝑚) ∼ 𝑞
−2𝑚 (76)

holds, then the assertion of Theorem 1 is satisfied. In this
way one can easily write a similar result for the antiperiodic
problem.

In addition to all the above results, we note that if either
the first condition of (9) and (10) or the second condition
of (9) and (10) holds then all the periodic eigenvalues are
asymptotically simple. We can write a similar result for the
antiperiodic problem.
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