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To make effective use of model-based control system design techniques, one needs a good model which captures system’s dynamic
properties in the range of interest. Here an analytical model of pneumatic muscle actuator with two pneumatic artificial muscles
driving a rotational joint is developed. Use of analytical model makes it possible to retain the physical interpretation of the model
and the model is validated using open-loop responses. Since it was considered important to design a robust controller based on this
model, the effect of changed moment of inertia (as a representation of uncertain parameter) was taken into account and compared
with nominal case. To improve the accuracy of the model, these effects are treated as a disturbance modeled using the recurrent
(Elman) neural network. Recurrent neural network was preferred over feedforward type due to its better long-term prediction
capabilities well suited for simulation use of the model. The results confirm that this method improves the model performance
(tested for five of themeasured variables: joint angle,muscle pressures, andmuscle forces) while retaining its physical interpretation.

1. Introduction

Pneumatic artificial muscle (PAM) is a special type of actua-
tor that converts energy of pressurized air within the muscle
into mechanical energy in the form of its contraction. The
actuator has some interesting properties that make it attrac-
tive for certain specific applications, which might require
powerful actuators with clean operation. As such, it remains
one of the few nonconventional actuators that were trans-
formed from a laboratory prototype into fully fledged reliable
and viable commercial product (e.g., FESTOfluidicmuscles).
The issue of PAM modeling was pivotal in its research since
the very beginning and it resulted in several different model
types which, more or less, characterize the modeling
approaches in all works regarding PAMs, namely, geometrical
model, empirical model, and phenomenological model [1].
The geometrical model represents a traditional approach
to PAM modeling, which relies on geometrical parameters
that can be difficult to measure accurately. This modeling
approach was used in enhanced form in [2, 3], where the
dependence of fiber length on muscle pressure and the
friction between fibers themselves were taken into account.
Researchers in [4] presented a detailed analytical model of

PAMderived using its geometrical andmechanical properties
without need for any experimentally determined parameters.
A different approach was chosen in [5], where a dynamic
phenomenologicalmodel of PAMwas derived using the anal-
ogy with Hill’s model of biological muscle. In [6] a combined
empirical-geometric model of PAM based on the nonlinear
spring-damper analogy intended for a robotic application
was developed. Solely empirical model was derived in [7] and
this was used in [8] for the analysis of mechanical properties
of PAM in mechatronic systems. Some works included the
development of PAM model within the task of model-based
control design where the particular approach selected for
PAM modeling differed based on the application needs and
experiment conditions. In [9] an empirical PAM model with
improved force modeling was presented as a part of work on
cascaded control concept for two degrees of freedom pneu-
matic muscle robot. Similar problem of model-based control
design for PAM-based manipulator control was dealt with
in [10], where researchers used feedforward compensation of
actuator hysteresis based on the Preisach hysteresis model.
Based on the empirical model of PAM, researchers in [11]
developed a state-space model used for a model-based non-
linear control algorithm design. An interesting approach is
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presented in [12], where a novel model based on Bouc-Wen
differential equation was used to describe the hysteretic
behavior of PAM actuator and, on the basis of this model, a
new cascaded control concept was tested.

Our previous research concentrated on developing a
dynamic model of pneumatic artificial muscle with applica-
tion to PAM-based actuator modeling with one degree of
freedom (one rotational joint) driven by a pair of FESTO
fluidic muscles. The basic dynamic model of this system
intended for industrial applications was developed in [13],
where preliminary experiments in open-loopmode were car-
ried out. In addition to this, works [14, 15] were dedicated to
the analysis of fundamental static and dynamic properties of
PAM-based actuator and its operating modes. In [16], the
analytical model of PAM-based actuator developed in [13]
was used formodel-based adaptive fuzzy control design using
genetic algorithms. Also in [17], the properties of pneumatic
artificial muscle were analyzed from mathematical point of
view with their description given in the form of nonlinear
differential equations.

Our enhanced dynamic model is based on the analytical
model derived in [13], where mechanical part of the PAM
model is treated as a parallel combination of nonlinear spring
and nonlinear damper in accordancewith [6]. It is shown that
the model itself, in general, is capable of capturing the nature
of actuator’s dynamics, yet its accuracy suffers from quite a
number of simplifications made in the description of rather
complex physical phenomena. For the comparison of model
and actuator responses, we selected five variables for which
appropriate sensors were available and which were consid-
ered important in view of the further research: joint angle,
muscle pressures, and muscle forces. It was also considered
important to take into account the effect of varying moment
of inertia which is, in general, unpredictable and proposed
control system should be robust enough to provide satisfac-
tory performance under this condition. Results of open-loop
modemodel validation helped to uncover deviations between
the actuator and model performance originating from the
unmodeled effects in physical description of the system with
the magnitude of their manifestation (at least in terms of
oscillations detected in the measured responses) being pro-
portional to the moment of inertia represented by a load
weight attached to the actuator arm. In view of these effects’
nature, it was proposed here to use powerful approximation
capabilities of neural networks to tackle the issue of complex
physical phenomena description. It has to be noted that even
though it might have been possible to abandon analytical
approach to PAM-based actuatormodeling completely, it was
deemed advantageous to retain it and onlymake use of neural
network in combination with primary (analytical) model. In
this way, the physical interpretation of the model was pre-
served and unmodeled effects whichwere to be approximated
by neural network were treated as external disturbance. As
to the neural network type, recurrent network was preferred
over the series-parallel (nonlinear autoregressive model with
exogenous input, NARX) configuration due to its better
suitability for simulation tasks.Themodel was intended to be
used for control system design, where no input in the form
of actual variable value (as in series-parallel configuration

without feedback) was expected. The results confirmed use-
fulness of this approach in predicting actuator’s dynamic
characteristics even in closed-loop mode, where unmodeled
effects caused larger deviations of the model performance
compared to the actuator performance.

2. Materials and Methods

The main object of interest was pneumatic muscle-based
actuator with a pair of pneumatic artificial muscles in antag-
onistic connection joined with a chain led through a sprocket
(Figure 1).Themuscles themselves were fixed to a metal plate
forming a rigid base at the upper part of the actuator. The
sprocket was welded to a steel shaft (visible in the side view of
the actuator in Figure 1), which passed through supporting
columns with bearings. A rotating arm was attached to one
end of the shaft to which a load weight (representing varying
moment of inertia) could be fixed.

From physical point of view, PAM-based actuator is
a multidomain system consisting of electrical, pneumatic,
and mechanical part (Figure 2). The electrical part of the
system (denoted by EPAM, electropneumatic actionmodule)
represents the power module needed for valve control and
contains four power transistors (BUZ11) together with a
power supply. As the effect of this part on the relevant
dynamic characteristics of the system was considered negli-
gible, it was not included in modeling process.

By neglecting the electrical part, the system model could
be divided into two parts: pneumatic part represented by a
compressor and two 3/3 on-off valves and mechanical part
represented by two parallel connections of nonlinear spring
and nonlinear damper and rotational joint. In Figure 2, all the
variables between which the dependencies expressed in the
form of differential equations had to be determined as a part
ofmodeling process are shown.The interactions among these
variables characterize the physical phenomena taking place
within the system during its operation, from the inflow of
pressurized air into the muscles to the transfer of force action
of the muscles to a load. The principle of operation of the
examined actuator, which is important for developing its
dynamic model, can be clarified using Figure 3.

The operation of actuator always starts from the set-
up position in which both muscles are inflated to the same
pressure (550 kPa in our experiments) and are at the same
initial length denoted by 𝑙

0
. This corresponds to position 1 in

Figure 3, where equilibrium with the highest force occurs.
Starting from this point, only one of themuscles is active (i.e.,
being deflated) in one half of the joint movement range and
the muscles reverse their roles with arm passing through the
zero position. The joint movement is stopped whenever the
force equilibrium is found (corresponding to consecutive
equilibrium points 1, 2, 3, . . .), which happens at different
length of themuscles (longer for activemuscle, up to nominal
length) and different pressures (lower for activemuscle, down
to atmospheric pressure, when it is completely deflated). It is
of note that the actuator operates well below the upper force
limit for both muscles (1200N for muscles with force com-
pensator), due to a relatively large clearance between the
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Figure 1: Mechanical configuration of pneumatic muscle actuator with two muscles in antagonistic connection joined through a chain gear
((a) front view and (b) side view).
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Figure 2: Physical representation of PAM-based actuator with modeled parts being shown in grey color (in the scheme, 𝑃
𝑐
is compressor

pressure [Pa],𝑄
𝑖
is volume flow rate [m3⋅s−1], 𝑃

𝑖
is muscle pressure [Pa],𝑉

𝑖
is muscle volume [m3], 𝑙

𝑖
is muscle length [m], V

𝑖
is muscle velocity

[m⋅s−1], 𝑎
𝑖
is muscle acceleration [m⋅s−2], 𝑖 is muscle index, 𝛽 is joint angle [deg], 𝜔 is joint angular velocity [rad⋅s−1], and 𝜀 is joint angular

acceleration [rad⋅s−2]).
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Figure 3: Static characteristics (force-length relationship) of PAM-
based actuator. Equilibrium points are located at the intersections
of force curves for given muscle pressures. As is shown in the figure,
one of the muscles remains inflated to the initial pressure and is not
active in one half of the operating range of rotational jointmovement
(in the figure, 𝐹 is muscle force, 𝑙 is muscle length, 𝑙

0
is initial muscle

length, Δ𝑙max is maximum range of muscle length change, and 𝑃 is
muscle pressure).

chain and the sprocket in deflated state of both muscles
(giving initial contraction of approximately 14%).

2.1. Derivation of Analytical Model of Pneumatic Muscle Actu-
ator. As was mentioned above, a dynamic model of pneu-
matic muscle actuator consists of mechanical and pneumatic
part. The former one is based on the mechanical model of
pneumatic artificial muscle, represented as a parallel connec-
tion of nonlinear spring and nonlinear damper [6]. Accord-
ing to this model, PAM can be modeled as a nonlinear mass-
spring-damper system described by the following nonlinear
differential equation:

̈𝜉 = (
1

𝑚
) [𝐹
𝐸
− 𝐹
𝑛𝑑
( ̇𝜒, 𝑃) − 𝐹

𝑛𝑠
(𝜒, 𝑃)] , (1)

where 𝜉 is muscle displacement [m], 𝑚 is moved mass [kg],
𝐹
𝐸
is external force [N],𝐹

𝑛𝑑
is nonlinear damper force [N],𝐹

𝑛𝑠

is nonlinear spring force [N], 𝜒 is muscle contraction [-], and
𝑃 is absolute muscle pressure [Pa].

Nonlinear spring force term (𝐹
𝑛𝑠
) depends on both,

muscle contraction andmuscle pressure, and its approximate
shape can be estimated from Figure 3.This termwas approxi-
mated using the fifth-order polynomial (using Surface Fitting
Tool in Matlab) based on the data read from the force-length
relationship given in [18] (shown in Figure 4).

The approximation equation could be expressed in the
following form:

𝐹
𝑛𝑠
(𝑃, 𝜒) =

𝑙

∑

𝑘=0

𝑛

∑

𝑚=0

𝑎
𝑘𝑚
𝑃
𝑘
𝜒
𝑚
, (2)

where 𝑎
𝑘𝑚

is polynomial coefficients. Totally 329 points
(blue dots in Figure 4), taken from the experimental force-
length curves, were used for the function approximation with
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Figure 4: Muscle force function approximation using fifth-order
polynomial. Blue circles correspond to experimental data given
in [18]. Even though it is not shown in the figure, the force
approximator used saturation function at its output to limit the force
into (0, 1200)N interval.

Table 1: Values of polynomial coefficients used for approximation
of nonlinear spring term (all other coefficients were equal to zero).

Coefficient Value
𝑎
00

−90.84

𝑎
10

−79.63

𝑎
01

6.508

𝑎
20

23.5

𝑎
11

−23.1

𝑎
02

115

𝑎
30

−1.883

𝑎
21

−0.7284

𝑎
12

3.715

𝑎
03

−22.82

𝑎
40

0.062

𝑎
31

0.081

𝑎
22

−0.145

𝑎
13

−0.185

𝑎
04

2.088

𝑎
50

−73.5𝑒 − 5

𝑎
41

−96.8𝑒 − 5

𝑎
32

−31.1𝑒 − 4

𝑎
23

19.9𝑒 − 3

𝑎
14

−17.4𝑒 − 3

𝑎
05

−67.2𝑒 − 3

the values of polynomial coefficients shown in Table 1. The
resulting RMSE obtained for the spring force predictor using
(2) was 44.416 and coefficient of determination (𝑅2) was
0.9912.

The second term in brackets on the right side of (2)
corresponds to the force of (nonlinear) damper. This term is
commonly proportional to the velocity of mass-spring-
damper system through the damping coefficient. In our
model we use a nonlinear damper, the force of which depends
not only on the velocity but also on muscle pressure (as was
presented in [6]). This can be expressed as follows:

𝐹
𝑛𝑑
(𝑃, ̇𝜒) = −𝛾𝑃 ̇𝜒, (3)
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where 𝛾 is modified damping coefficient [m⋅s], 𝑃 is muscle
pressure [Pa], and ̇𝜒 is muscle velocity [m⋅s−1]. Due to the
antagonistic connection of the muscles, one muscle can be
considered an agonist and the other one an antagonist, which
helps to explain the role of external force term in (2) (𝐹

𝐸
) as

being equal to the force of opposing muscle.
Derivation of the pneumatic part of the model was based

on a simplified description of the dynamics of fluid flow
within the system. The differential equation describing the
dynamics of muscle pressure can be derived from Boyle-
Mariotte’s ideal gas law [6, 19]:

𝑃
0
𝑉
0
= 𝑃𝑉
𝑚
, (4)

𝑑

𝑑𝑡
(
𝑃
0
𝑉
0

𝑉
𝑚

) = 𝑃
0
(
𝑉̇
0
𝑉
𝑚
− 𝑉̇
𝑚
𝑉
0

𝑉2
𝑚

) = 𝑃
0

𝑉̇
0

𝑉
𝑚

− 𝑃
𝑚

𝑉̇
𝑚

𝑉
𝑚

, (5)

where 𝑃
0
is atmospheric pressure [Pa], 𝑉

0
is volume of pres-

surized air within themuscle [m3],𝑉
𝑚
ismuscle volume [m3],

and 𝑃 is muscle pressure [Pa]. In order to use (5) in actuator
model, one has to define the terms 𝑉

𝑚
, 𝑉̇
𝑚
, and 𝑉̇

0
. The last

term actually represents the volume flow of pressurized air
through the valve, which can be modeled using a standard
equation given, for example, in [19]:

𝑉̇
0
=

{{{{{{

{{{{{{

{

𝑃
1
𝐶√

𝑇
0

𝑇
1

√1 − (
𝑃
2
/𝑃
1
− 𝜓

1 − 𝜓
)

2

, if 𝑃2
𝑃
1

> 𝜓

𝑃
1
𝐶√

𝑇
0

𝑇
1

, if 𝑃2
𝑃
1

≤ 𝜓,

(6)

where 𝑃
1
is absolute upstream pressure [Pa], 𝐶 is sonic con-

ductance [m3⋅s−1⋅Pa−1], 𝑃
2
is absolute downstream pressure

[Pa], 𝑇
0
is ambient air temperature at reference conditions

[K], 𝑇
1
is upstream pressure [K], and 𝜓 is critical ratio [-].

The muscle volume generally depends on geometrical
parameters of the muscle, but it can be approximated using
a polynomial in the following form:

𝑉
𝑚
(𝜒) =

𝑚

∑

𝑘=0

𝑏
𝑘
𝜒
𝑘
, (7)

where 𝑏
𝑘
is 𝑘th coefficient of the approximation polynomial.

In our case 𝑚 = 3 (third-order polynomial approximation)
with the following values of polynomial coefficients: 𝑏

3
=

−11×10
−4, 𝑏
2
= −18×10

−6, 𝑏
1
= 48×10

−5, and 𝑏
0
= 79×10

−6.
After taking time derivative of (7) for𝑚 = 3, we get

𝑉̇
𝑚
(𝜒, ̇𝜒) = 3𝑏

3
𝜒
2
̇𝜒 + 2𝑏
2
𝜒 ̇𝜒 + 𝑏

1
̇𝜒. (8)

Up to this point, only the model of one pneumatic artificial
muscle has been derived. The actuator itself uses two pneu-
matic muscles working as an opposing pair. From the kine-
matic point of view, actuator consists of one degree of free-
dom in the form of a rotational joint and it was therefore nec-
essary to develop themodel of joint dynamics driven by a pair
of muscles described previously. Of note is also the fact that
the actuator frame was placed in horizontal direction, allow-
ing for a simpler model with neglected effect of gravity.

To develop the joint dynamics model, Lagrangian
mechanics approach can be used. Hence, the following
equation holds [20]:

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕 ̇𝑞
𝑖

) −
𝜕𝐿

𝜕𝑞
𝑖

= 𝜏
𝑖
, (9)

where 𝐿 is Lagrangian and 𝐿 = 𝐾
𝐸
− 𝑃
𝐸
,𝐾
𝐸
is kinetic energy,

𝑃
𝐸
is potential energy, 𝑞

𝑖
is 𝑖th generalized variable, and 𝜏

𝑖
is

𝑖th generalized force. In case we are dealing with a rotational
joint, generalized variable corresponds to a joint angle (𝛽) and
generalized force corresponds to a torque (𝑇) developed by a
joint actuator (in our case a pair of muscles). Thus, we get

𝑞 = [𝛽] , ̇𝑞 = [ ̇𝛽] , 𝜏 = [𝑇] , 𝐾 =
1

2
𝐽 ̇𝛽
2
. (10)

Having the actuator placed in horizontal direction resulted in
the fact that potential energy term in Lagrangian could be set
to zero because the reference point can be chosen arbitrarily
and only changes in 𝑃

𝐸
are relevant [21]. Taking this fact into

account, we can write the following:

𝑑

𝑑𝑡
(
𝜕 ((1/2) 𝐽 ̇𝛽

2
)

𝜕 ̇𝛽
) −

𝜕 ((1/2) 𝐽 ̇𝛽
2
)

𝜕𝛽
= 𝑇 (11)

𝐽 ̈𝛽 = 𝑇 − 𝑇
𝐿
, where 𝑇 = (𝐹

1
− 𝐹
2
) 𝑟, (12)

where𝐹
1
,𝐹
2
aremuscle forces [N], 𝑟 is sprocket diameter [m],

and 𝑇
𝐿
is load torque [N⋅m]. It is also of note that the friction

term in (12) was neglected.

2.2. Calculation of Moment of Inertia for Given Loads. As was
mentioned in the introduction, the effect of varying moment
of inertia was supposed to be taken into account when
designing a controller for actuator. Different moment of
inertia was represented by a detachable weight that could be
fixed to the actuator arm.The moment of inertia for the load
weights was calculated using the following formula for
compound objects:

𝐽tot =
𝑚

∑

𝑘=1

𝐽
𝑘
, (13)

where 𝐽tot is total moment of inertia and 𝐽
𝑘
is moment of

inertia for 𝑘th object. This formula can be used on the condi-
tion that all particular objects have the same rotational axis.
In our case, the compound object consists of a steel shaft with
length 𝐿

𝑆
, diameter 𝐷

𝑆
, and mass 𝑀

𝑆
and a steel arm with

length 𝐿
𝐴
, diameter 𝐷

𝐴
, and mass 𝑀

𝐴
and both objects

rotate around the shaft’s longitudinal axis. All three particular
objects (shaft, arm, and load weight) were treated as solid
cylinders for which moments of inertia can be calculated
using standard formulas (as in, e.g., [22]):

𝐽
𝑆
=
1

2
𝑀
𝑆
𝑅
2

𝑆
𝐽
𝐴
=
1

4
𝑀
𝐴
𝑅
2

𝐴
+
1

3
𝑀
𝐴
𝐿
2

𝐴
, (14)

where 𝐽
𝑆
is shaft moment of inertia [kg⋅m2],𝑀

𝑆
is shaft mass

[kg], 𝑅
𝑆
is shaft radius [m], 𝐽

𝐴
is arm moment of inertia

[kg⋅m2], 𝑅
𝐴
is arm radius [m], and 𝐿

𝐴
is arm length [m].
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Figure 5: Arm and shaft dimensions for moment of inertia calculations (in the scheme, 𝐿
𝑆
is shaft length [m],𝐷

𝑆
is shaft diameter [m],𝑀

𝑆
is

shaft mass [kg], 𝐿
𝐴
is arm length [m],𝐷

𝐴
is arm diameter [m],𝑀

𝐴
is armmass [kg], 𝐽

𝑆
is shaft moment of inertia [kg⋅m2], 𝐽

𝐴
is armmoment

of inertia [kg⋅m2],𝑀
𝐿
is load weight [kg], and 𝑑PAR is parallel axis distance [m]).

Table 2: Mechanical parameters of actuator used for moment of
inertia calculation. In the table, 𝜌 is steel density, 𝐽

𝑛
is calculated

moment of inertia for no load, and 𝑀
𝐿
is load weight (all other

variables as described in Figure 5).

Parameter Value Unit
𝜌 7850 kg⋅m−3

𝐷
𝑆

37.5 mm
𝐿
𝑆

285 mm
𝑀
𝑆

2.47 kg
𝐷
𝐴

18.13 mm
𝐿
𝐴

272 mm
𝑀
𝐴

0.55 kg
𝑑PAR 201.1 mm
𝑀
𝐿

3.34 kg
𝐽
𝑛

0.014 kg⋅m2

𝐽
1

0.155 kg⋅m2

To calculate the moment of inertia of the actuator with
the load weight attached, the parallel axis theorem in the
following form was used:

𝐽PAR = 𝐽 +𝑀𝑑
2

PAR, (15)

where 𝐽 is moment of inertia calculated for rotation axis pass-
ing through the centre of gravity and 𝑑PAR is parallel distance
between the actual rotation axis and rotation axis passing
through the centre of gravity. All dimensions relevant to
the calculations of moment of inertia (together with the
illustration of a parallel axis distance for the load weight) are
shown in Figure 5. Values of given parameters and calculated
moment of inertia can be found in Table 2.

2.3. Elman Network for Unmodeled Dynamics Identification.
Themodel presented above neglects the description of a num-
ber of effects associated with complex phenomena that occur
in the system. This resulted in deviations of the model

responses from the actuator responses, whether in steady-
state parts (more significant for nominal moment of inertia)
or transient parts (more significant for increased moment of
inertia). To improve the model performance, it is proposed
here to use the powerful approximation capabilities of neural
networks.The network itself should act as a disturbance term
identifier, where disturbance term incorporates all the effects
of unmodeled dynamics that cause the deviation of model
performance from the performance of the actuator. To put it
mathematically, one can resort to the expression of basic
equation for the dynamics of 𝑛-link serial manipulator [23]:

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝑞) ̈𝑞
𝑗
+

𝑛

∑

𝑘=1

𝑛

∑

𝑚=1

𝐻
𝑖𝑘𝑚

̇𝑞
𝑘
̇𝑞
𝑚
+ 𝐺
𝑖
= 𝑄
𝑖
,

𝐻
𝑖𝑗𝑘
=

𝑛

∑

𝑗=1

𝑛

∑

𝑘=1

(
𝜕𝐷
𝑖𝑗

𝜕𝑞
𝑘

−
1

2

𝜕𝐷
𝑗𝑘

𝜕𝑞
𝑖

) ,

(16)

where 𝑞 is generalized variable, 𝐷
𝑖𝑗
is elements of inertial

matrix, 𝐻
𝑖𝑘𝑚

is velocity coupling vector, 𝐺
𝑖
is gravity vector,

and 𝑄
𝑖
is generalized force vector. This equation can be

rewritten in the more compact vector form as follows:

D (q) q̈ +H (q, q̇) + G (q) = Q. (17)

According to [21], this equation can be extended with the
disturbance term denoted by 𝜏

𝑃
which includes, for instance,

the effects of unmodeled dynamics. Thus, the extended form
of (17) can be expressed as follows:

D (q) q̈ +H (q, q̇) + F (q̇) + G (q) + 𝜏P = Q, (18)

where F(q̇) is friction term and 𝜏P is disturbance term. The
basic principle behind the use of neural network for distur-
bance term identification is shown in Figure 6. The scheme
depicted in the figure consists of the actuator in open-loop
mode, the analytical model of the actuator, and a neural
network. The difference between measured actuator output
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Figure 6: Proposed identification scheme for the estimation of
disturbance term 𝜏

𝑃
using a neural network. In the scheme, V is

valve control signal vector, 𝑦𝑖
𝑎
is 𝑖th actuator output variable, 𝑦𝑖

𝑚
is

𝑖th model output variable, 𝜏
𝑃
is disturbance term, 𝜏

𝑃
is disturbance

term estimation, 𝑒
𝜏
is disturbance term estimation error, and Um is

neural network input vector.

variable (𝑦
𝑎
) and model output variable (𝑦

𝑚
) corresponds to

the magnitude of model error caused by unknown distur-
bance effects, expressed in the formof disturbance term (𝜏

𝑃
—

wedrop the vector denomination in bold becausewe treat this
variable as scalar).Themain role of the neural network was to
estimate this term based on the information from the model
fed as an input vectorUm. This estimation is denoted by 𝜏

𝑃
in

the scheme, and the difference between the measured distur-
bance term and its estimation (𝑒

𝜏
) was used as an error signal,

which should have been minimized by the network learning
algorithm.

It was decided to prefer recurrent neural network over the
purely feedforward type due to its better long-term memory
capabilities [24]. These capabilities mainly stem from its
internal memory representation through the delay feedback
from the hidden layer back to the input (Elman neural
network, Figure 7(b)). The input into the context layer is
actually one-step prediction of the state vector x(𝑘+1), which
is further processed by the output linear layer to obtain one-
step output vector prediction y(𝑘+1) (Figure 7(a)). To express
the relevant relationships mathematically, one can first define
state and output equations for Elman network:

x (𝑘 + 1) = f (CWx (𝑘) + IWu (𝑘) + b(1))

𝑦 (𝑘) = LWx (𝑘) + 𝑏(2),
(19)

where x(𝑘) is 𝑛-dimensional state vector, u(𝑘) is 𝑚-
dimensional input vector, b(1) is hidden layer bias vector, 𝑏(2)
is output layer bias (only one neuron was used in the output
layer), CW is context layer weight matrix, LW is hidden
layer weight matrix, IW is input layer weight matrix, f is
nonlinear activation function vector in hidden layer, and 𝑘 is
𝑘th sample.

All the hidden layer neurons used the same activation
function (hyperbolic tangent) in the following form:

𝑓 (𝑥) = tanh (𝑥) = 𝑒
𝑥
− 𝑒
−𝑥

𝑒𝑥 + 𝑒−𝑥
. (20)

By using (19), we can express the disturbance term estimation
using Elman network as

𝜏
𝑃
= LW𝑓 (CWx (𝑘) + IWu (𝑘) + b(1)) + 𝑏(2) + 𝑒

𝜏
, (21)

where 𝑒
𝜏
is disturbance term estimation error.

Since we assumed offline identification task, the strategy
used for network learning was epochwise training with
weight updates after the presentation of the whole sample
set. In order to use conventional backpropagationmethod for
network training, it is necessary to unfold the network in time
so that a new layer with updated state is added for each time
step. Then, the network is trained in two passes, forward and
backward, to obtain the input, state, and output data and to
calculate local gradients using the following formula [25]:

𝛿
𝑗
(𝑘) = −

𝜕𝐸tot (𝑘0, 𝑘1)

𝜕𝑙
𝑗 (𝑘)

(22)

for all 𝑗 ∈ I and 𝑘
0
< 𝑘 ≤ 𝑘

1
. In this formula, 𝑗 is index of

neuron for which desired response is computed, 𝐸tot(𝑘0, 𝑘1)
is total error function for time period from 𝑘

0
to 𝑘
1
, and 𝑙

𝑗
(𝑘)

is induced local field for 𝑗th neuron. The local gradients are
calculated backwards, starting from the last time step 𝑘

1
and

then using this value in computation of local gradient(s) in
previous time step using the following formula:

𝛿
𝑗
(𝑘)

=

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝑓
󸀠
(𝑙
𝑗
(𝑘)) 𝑒
𝑗
(𝑘) for 𝑘 = 𝑘

1

𝑓
󸀠
(𝑙
𝑗 (𝑘))

[

[

𝑒
𝑗 (𝑘) + ∑

𝑗∈I

𝑤
𝑗𝑚
𝛿
𝑘

⋅ (𝑘 + 1)]

]

for 𝑘
0
< 𝑘 < 𝑘

1
,

(23)

where 𝑓󸀠(𝑙
𝑗
(𝑘)) is derivation of activation function of 𝑗th

neuron and 𝑤
𝑗𝑘
is weight between 𝑗th and 𝑚th neuron. The

weights are then updated as follows:

Δ𝑤
𝑗𝑖
= −𝜂

𝜕𝐸tot (𝑘0, 𝑘1)

𝜕𝑤
𝑗𝑖

= 𝜂

𝑘
1

∑

𝑘=𝑘
0
+1

𝛿
𝑗 (𝑘) 𝑥𝑖 (𝑘 − 1) , (24)

where 𝜂 is learning rate and 𝑥
𝑖
(𝑘 − 1) is input applied to 𝑖th

synapse of 𝑗th neuron in time step 𝑘.
Actual network training was carried out using the

Levenberg-Marquardt algorithm with Bayesian regulariza-
tion to improve the generalization properties of resulting
neural model. Thus, the update of whole parameter vector
𝜃 (containing all weights and biases) had the following form
[26, 27]:

𝜃new = 𝜃current − [J
𝑇J + 𝜇I]

−1

J𝑇e where

J𝑇J ≈ H J𝑇e = g,
(25)
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Figure 7: State diagram of Elman network (a) and network structure (b) where u(𝑘) is input vector, x(𝑘 + 1) is state vector, y(𝑘 + 1) is output
vector, NHL is nonlinear hidden layer, LHL is linear hidden layer, 𝑧−1 is unit delay, IW is input layer weight matrix,CW is context layer weight
matrix, LW is hidden layer weight matrix, 𝑏(𝑘)

𝑙
is 𝑙th neuron bias in 𝑘th layer, and 𝑦 is network output.

where J is Jacobianmatrix for network error with respect to 𝜃,
I is identity matrix,H is Hessian matrix, g is gradient vector,
and

e = 𝑒
𝑖
(𝜃) = 𝑡

𝑖
− 𝑦
𝑖

𝑖 = 1, . . . , 𝑛 (26)

is error vector containing error values for all 𝑛 samples in data
set. The parameter 𝜇 in (25) allows altering the direction of
movement between the steepest descent direction and New-
ton direction and its value is modified in every step according
to the success of this step with regard to the change in
error function value. Its limit value was set to 𝜇 = 1𝑒

10 and
breaching this limit was the main criterion for network
training convergence.

3. Results and Discussion

In the first step, the responses of the model derived in
Section 2.1 were compared to actuator responses as a part of
model validation process. The variables used in this process
were selected based on the availability of sensors for their
measurement. These included joint angle 𝛽 [deg], left muscle
force 𝐹

1
[N], right muscle force 𝐹

2
[N], left muscle pressure

𝑃
1
[kPa], and right muscle pressure 𝑃

2
[kPa].Themuscles are

denoted by left and right when viewed from front in upright
position of the actuator. To estimate how well the model
response matches the response of the actuator, mean squared
error (MSE) criterion was used in the following form:

MSE = 1

𝑛

𝑛

∑

𝑘=1

(𝑦
𝑘
− 𝑦
𝑘
)
2
, (27)

where 𝑛 is number of samples, 𝑦
𝑘
is actuator variable in 𝑘th

time step, and 𝑦
𝑘
is model variable in 𝑘th time step. In order

to decrease the level of noise in analog signals from pressure
and force transducers, a simplemoving average (MA)method
was used:

MA =
∑
𝑚

𝑖=1
𝑦
𝑖

𝑚
, (28)

where 𝑦
𝑖
is 𝑖th component of filtered signal and 𝑚 is time

window for filtering (𝑚 = 21).
To compare how well the model matches the responses

of the actuator, excitation signal shown in Figure 8 was
used. This signal contained several randomly chosen valve
control pulses, which corresponded to random changes of
joint angle within its operating range. It can be observed
that the pulse sequences are paired (thus forming two sets of
distinctive sequences) in order to ensure smooth transition
of the joint angle through the reference (zero) position. Since
it was considered important to take into account the effect
of changing moment of inertia as a representation of varying
system parameter, the test was also carried out for 11-multiple
of nominal moment of inertia calculated in Section 2.2 (𝐽 =
11𝐽
𝑛
). Initial (relative)muscle pressurewas selected to be𝑝

0
=

550 kPa at which the muscles contracted by approximately
14% (these values were also set in the model for simulation).
The results of both tests, expressed in the quantitative form,
are shown in Table 3. In this table, the mean squared error for
given test responses calculated using (27) is shown.

Qualitatively, the results can be evaluated using Figure 9
(𝐽 = 𝐽

𝑛
) and Figure 10 (𝐽 = 11𝐽

𝑛
), where the comparison

of responses between the model and the actuator for all
variables can be seen. If one inspects all the responses, several
aspects can be observed in relation to the performance of
both, model and actuator. At first, the model, in general,
captures the salient points of the actuator’s dynamics in both
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Figure 8: Excitation signal used in model validation. The pulses
shown in figure correspond to logic signals used for actuator control
(0 is closed valve, 1 is open valve, and 𝑉

1
, 𝑉
2
, 𝑉
3
, and 𝑉

4
are valves).

cases. When the joint angle for nominal case is considered
(Figure 9), it can be seen that up to time of 2 seconds the
responses are quite similarwhile from that time on, themodel
predicts higher values of joint angle.This ismore pronounced
in steady-state part of the response with the maximum
difference of 6.78∘ at 6.5 seconds. The situation is similar
for all other variables (muscle forces and muscle pressures),
where the first part of the model response matches the
actuator response quite well with subsequent accumulation
of the prediction error.This should not come as a surprise, as
the dynamics of the joint angle depends on the torque being
determined by the difference in muscle forces, and muscle
forces themselves depend on the muscle pressure (as defined
in Section 2.1). The deviations of the model responses from
the actuator responses expressed through MSE in Table 3
represent the accumulation of errors caused by modeling
inaccuracies and simplifications—compressor pressure drop,
errors in force function approximation, errors caused by
simplifications of modeling equations, and so forth. Still, the
responses of the model might offer usable insight into the
dynamics of the actuator.

In Figure 10, the responses for 11-multiple of nominal
moment of inertia are shown. It is readily observable that, in
contrast to the responses with nominal moment of inertia,
the oscillations are now much more pronounced. Similar to
the previous case, after 2 seconds the model predicts higher
values of joint angle with generally lower amplitude of
oscillations.

The responses of muscle force in actuator are also
markedly oscillatory, with the amplitude of these oscillations
being on average higher than predicted by the model. On the
other hand, muscle pressure responses in actuator do not

Table 3: Results of all the tests for given moments of inertia,
calculated as mean squared error between both the actuator and
the model response (𝛽 is joint angle [deg], 𝑃

1
is left muscle relative

pressure [kPa], 𝑃
2
is right muscle relative pressure, 𝐹

1
is left muscle

force [N], and 𝐹
2
is right muscle force [N]).

Variable MSE
𝐽 = 𝐽
𝑛

MSE
𝐽 = 11𝐽

𝑛

𝛽 10.024 10.2917
𝐹
1 7663.2 5728.6
𝐹
2 4561.8 3003.7
𝑃
1 2298.9 1807.5
𝑃
2 5160.2 3919.9

show significant oscillations; however, it has to be noted that
the pressure sensors were placed approximately 1 meter down
the pressure line from themuscles and this could have caused
more dampened responses. Quantitative evaluation of the
results for 𝐽 = 11𝐽

𝑛
shows that the relative errors for this case

are lower than for 𝐽 = 𝐽
𝑛
, which can be explained by the more

pronounced oscillations and the way in which mean absolute
error is calculated.

The responses shown in Figures 9 and 10 reveal the
inaccuracies of derived analytical model, but the information
contained in them is hardly useful for neural network training
and validation due to its lack of excitation richness, which is
very important in experimental modeling. In order to obtain
data better suited for disturbance identification purposes,
pseudobinary random sequences depicted in Figure 11 were
used.

Using the signals shown in Figure 11 as input to both
the actuator and the model, it was possible to obtain suf-
ficiently representative data sets, which could be used in
neural network training process. Each of the training data
sets contained 80000 samples (sampling period was set to
0.003 s), and another 5000 samples not included in these
sets were used as test data for checking the generalization
capabilities of trained networks. The number of neurons was
selected to be 15 and the maximum number of iterations
was limited to 1000. It is of note that not all of the network
trainings necessarily converged to local optimum within this
number of iterations (the training was considered to have
converged if 𝜇 ≥ 1010).

The results of neural network training process can be
evaluated using Table 4. In this table, both normalized and
unnormalized values of MSE criterion are used. The reason
for this distinction is the fact that, in case of the training,
Bayesian regularization was used which performs best when
data are normalized while in case of testing, unnormalized
MSE offers better guess of the overall error in terms of
operating range for a given variable. In addition to the
resulting errors, the table shows also convergence status for all
network trainings. Thus, one can readily see that in four
cases the network training did not converge and the results
probably could have been improved if the training continued.

On the other hand, the number of maximum iterations
(1000) was considered sufficient to give the results close to
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Figure 9: Comparison of model and actuator performance for the excitation signal shown in Figure 8 with nominal moment of inertia ((a)
joint angle response, (b) left muscle force response, (c) right muscle force response, and (d) muscle pressure response for both muscles).

the optimum, and also the final values of training parameters
in nonconverged trainings did not imply that large changes
in resulting MSE could have been anticipated. Moreover, it
should be noted that even for converged trainings the result-
ing MSE was very likely only a local optimum and different
value could have been obtained for a training restarted with
new initial weights.

The composition ofUm vector (the number and selection
of input variables) was found using trial and error approach.
As can be observed from Table 4, it consists of the same input
variables for given type of a variable (e.g., force or pressure),
with the one exception in rightmuscle force (𝐽 = 11𝐽

𝑛
), where

an additional variable (i.e., joint angle) had to be used to
obtain better enhanced model performance. One of the most
important results of the presented approach can be illustrated
through comparison of the resulting MSE on test data set for
enhanced and nonenhanced model (given in the third and
the fourth column of Table 4). These results can be evaluated
also visually using Figures 12 and 13, where the responses
of enhanced and nonenhanced model for 𝐽 = 𝐽

𝑛
and 𝐽 =

11𝐽
𝑛
are shown.This evaluation can be further complemented

by the inspection of error histograms obtained for the test
data set using enhanced model shown in Figure 14. The
addition of error histograms should help to better evaluate the
contribution of neural network to improvement of the model

accuracy as well as pointing to possibly problematic parts of
the identification process.

It can be seen in Figure 12 (𝐽 = 𝐽
𝑛
) that the most sig-

nificant error for joint angle prediction using nonenhanced
model occurs in steady-state parts of the responses. Using the
enhanced model, it was possible to reduce MSE to 1.08% of
its original value. According to the histogram (Figure 14(a)),
the higher number of instances (>300) occurs for errors in the
range of −2∘ to −0.5∘ and most error instances are negative
meaning that the model predicts very slightly higher values
compared to the actuator. The performance of the enhanced
model for the force prediction is comparable (Figures 12(b)
and 12(c)). In these cases, the error reduction for left muscle
and right muscle was to 1.52% and 1.58%, respectively. As can
be seen from the figure, the nonenhancedmodel captures the
nature of the force dynamics in both cases, but its errors are
as high as 150N in some cases. Error histograms reveal that
most error instances also have negative sign, meaning that
the model predicts higher values. This fact may be caused
by the composition of training and test data sets and/or the
results of neural network training. In case of muscle pres-
sure prediction, the error reduction for enhanced model
was to 1.9% (left muscle) and 1.82% (right muscle). The
analytical model generally predicts the higher values of
muscle pressures compared to the actuator. By comparing
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Figure 10: Comparison of model and actuator performance for the excitation signal shown in Figure 8 with 11-multiple of moment of inertia
((a) joint angle response, (b) left muscle force response, (c) right muscle force response, and (d) muscle pressure response in both muscles).
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Figure 11: Excitation (pseudorandom binary sequence) signals used
for training and test data acquisition for neural network training and
validation (different signals were used for nominal and 11-multiple
moments of inertia).

respective error histograms (Figures 14(d) and 14(e)), it can
be concluded that most instances of the error occur in the
range from −3 kPa to 12 kPa for leftmuscle and from −4.5 kPa
to 14 kPa which is very good result given the operating range
of this variable.

As was illustrated in the first part of this section, the
change of nominal moment of inertia affected the actuator’s
dynamics in the way that was not accurately described in the
original analytical model. This can be further demonstrated
using Figure 13, where the responses for test excitation signal
with 𝐽 = 11𝐽

𝑛
are shown. In case of joint angle prediction,

MSE value was reduced to 5.47% of its original value. It can
be observed that the analytical model does not describe less
pronounced oscillations of the transient parts of the response,
which can be significant later in closed-loop tests. The
remaining errors of the enhanced model are (similar to the
nominal case) mostly in the range of −2.5∘ to −0.5∘. The
responses ofmuscle forces for 11-multiple of nominalmoment
of inertia probably show the most complex dynamic patterns
of all measured responses. Even in this case, the networks
reduced MSE to 2.54% (left muscle) and to 5.4% (right mus-
cle).These responses reveal the intricate interplay of muscles’
dynamics and structural dynamics of the actuator, which
give rise to such complex dynamic patterns.When force error
histograms (Figures 14(g) and 14(h)) are checked, one can
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Table 4: The results of neural network training for 𝐽 = 𝐽
𝑛
and 𝐽 = 11𝐽

𝑛
. In the table, MSE

𝑛
is normalized mean squared error, MSE is mean

squared error, EM is enhanced model, M is model, Um is neural network input vector, 𝛽
𝑚
is model joint angle, 𝜔

𝑚
is model angular velocity,

𝜀
𝑚
is model angular acceleration, 𝐹

1𝑚
is left model muscle force, 𝐹

2𝑚
is right model muscle force, 𝑃

1𝑚
is left model muscle pressure, and 𝑃

2𝑚

is right model muscle pressure.

Variable MSE
𝑛

training
MSE

testing EM
MSE

testing M Convergence Um

Joint angle, 𝐽 = 𝐽
𝑛 0.00522 1.607 148.896 Yes (444 it.) 𝛽

𝑚
, 𝜔
𝑚
, 𝜀
𝑚

Left muscle force, 𝐽 = 𝐽
𝑛 0.004 105.925 6960.1 No 𝐹

1𝑚
, 𝐹
2𝑚
, 𝜔
𝑚
, 𝜀
𝑚

Right muscle force, 𝐽 = 𝐽
𝑛 0.00688 83.412 5278.5 Yes (164 it.) 𝐹

1𝑚
, 𝐹
2𝑚
, 𝜔
𝑚
, 𝜀
𝑚

Left muscle pressure, 𝐽 = 𝐽
𝑛 0.00595 102.757 5401.6 Yes (88 it.) 𝑃

1𝑚
, 𝑃
2𝑚
, 𝜔
𝑚
, 𝜀
𝑚

Right muscle pressure, 𝐽 = 𝐽
𝑛 0.006 113.651 6247.5 Yes (66 it.) 𝑃

1𝑚
, 𝑃
2𝑚
, 𝜔
𝑚
, 𝜀
𝑚

Joint angle, 𝐽 = 11𝐽
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Figure 12: Comparison of model, enhanced model, and actuator generalization performance (test on unseen data with nominal of moment
of inertia ((a) joint angle response, (b) left muscle force response, (c) right muscle force response, and (d) muscle pressure response in both
muscles)).
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Figure 13: Comparison ofmodel, enhancedmodel, and actuator generalization performance (test on unseen data with 11-multiple of nominal
moment of inertia ((a) joint angle response, (b) left muscle force response, (c) right muscle force response, and (d) muscle pressure response
in both muscles)).

see that most error instances are distributed within a similar
range (approximately 15∘ to both sides of the zero errors) with
very low number of instances of larger errors occurring for
right muscle force.

This corresponds with the need for incorporation of
additional variable into Um to achieve similar values of MSE
for right muscle force neural network and corroborates the
asymmetry of actuator’s operation. The error in muscle pres-
sure prediction was reduced to 2.59% (left muscle) and 1.76%
(right muscle). This time, the oscillations are also present in
muscle pressure responses and these are captured very well
for both muscles. Most error instances occur in the range of
−4.5 kPa to 10 kPa for left muscle and −10 kPa to 15 kPa for
right muscle. The results shown in histograms support the
hypothesis of complex dynamic phenomena, which take
placewithin the systemduring its operation since the number
of instances of enhanced model errors in larger ranges is
higher compared to the nonenhanced model. Moreover, the
asymmetry of error distribution for different variables as
well as their different absolute ranges observed in histograms
can be linked to the complexity of actuator behavior, which
further justifies the need for powerful approximators like
neural networks.

It is easily observed that the nonenhanced dynamic
model can be used for the basic description of the actuator’s
operation, yet its accuracy is compromised due to a number
of simplifications made during the model development. This
was even more significant when the moment of inertia was
changed and the effect of unmodeled dynamics was magni-
fied.The results confirm that its combinationwith a recurrent
neural network can be a viable solution to obtain an accurate
dynamic model of the PAM-based actuator with retained
physical interpretation. Since the main purpose of this model
is simulation (in contrast to prediction, where an output from
a real plant allows for themodel output correction), recurrent
neural networks seem to be a better option compared to
network without internal memory.

4. Conclusion

In this work, an enhanced dynamic model of one-DOF
pneumaticmuscle actuator was developed. One of the critical
points of selected approach was to retain the physical inter-
pretation of the resulting model so that it could still offer an
insight into the physics of the system. As a part of this work,
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Figure 14: Continued.
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Figure 14: Error histograms of enhanced model for test data set (5000 samples). In the figure, (a) is joint angle (𝐽 = 𝐽

𝑛
), (b) is left muscle

force (𝐽 = 𝐽
𝑛
), (c) is right muscle force (𝐽 = 𝐽

𝑛
), (d) is left muscle pressure (𝐽 = 𝐽

𝑛
), (e) is right muscle pressure (𝐽 = 𝐽

𝑛
), (f) is joint angle

(𝐽 = 11𝐽
𝑛
), (g) is left muscle force (𝐽 = 11𝐽

𝑛
), (h) is right muscle force (𝐽 = 11𝐽

𝑛
), (i) is left muscle pressure (𝐽 = 11𝐽

𝑛
), and (j) is right muscle

pressure (𝐽 = 11𝐽
𝑛
).

an analytical dynamic model of the actuator based on the
nonlinear mass-spring-damper analogy was derived and ver-
ified using the responses of real actuator. Despite its capability
to capture the salient points of the system’s dynamics, the
accuracy suffered from a number of simplifications that were
made during the development of the analytical model. This
was even more profound for changing the nominal moment
of inertia, which was considered important for the develop-
ment of a robust controller. We proposed to use a recurrent
(Elman) neural network in the role of the identifier of
disturbance term, which included all the effects causing the
deviation of the model performance from the actuator
performance. It was shown that the enhanced model offered
very good improvement of the accuracy of original analytical
model while keeping its physical interpretation.

Some limitations of the method can be linked to standard
limitation of the conventional neural network training, like its
only local optimality. It is therefore possible to concentrate on
the use of global optimization methods (for instance, hybrid
metaheuristic methods) in further research. In addition to
this, it is also important to test the performance of this
approach when used in closed-loop mode since this will
directly affect the results of model-based controller design.
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