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Network reconfiguration is an effective approach to reduce the power losses in distribution system. Recent studies have shown that
the reconfiguration problem considering load profiles can give a significant improvement on the distribution network performance.
This work proposes a novel method to determine the optimal daily configuration based on variable photovoltaic (PV) generation
output and the load profile data. A good combination and coordination between these two varying data may give the lowest
power loss in the system. Gravitational Search Algorithm (GSA) is applied to determine the optimum tie switches positions for
33-Bus distribution system. GSA based proposed method is also compared with Evolutionary Programming (EP) to examine the
effectiveness of GSA algorithm. Obtained results show that the proposed optimal daily configuration method is able to improve
the distribution network performance in term of its power loss reduction, number of switching minimization and voltage profile
improvement.

1. Introduction

Over the last few decades, the power loss of distribution
system has raised attention of researchers to increase the
efficiency of the existing network. Different researchers have
proposed different approaches for minimization of power
system losses [1]. One of the common approaches is through
network reconfiguration.

Network reconfiguration is defined as altering the topo-
logical structures of the distribution feeders, by changing the
position of tie and sectionalizing switches; however, under
normal operation, medium voltage distribution networks
operate in radial manner [2, 3]. During normal condition,
network reconfiguration is used to improve the power quality,
maintain the voltage stability, and reduce power loss, while
for fault condition it is used for service restoration. Once
the source of fault is removed by opening all the switches
surrounding the affected portions, the service can be restored
within a very short time.

In the past, various algorithms have been proposed for
network reconfiguration. Merlin and Back were the pioneers
in proposing network reconfiguration as a tool for power loss
reduction [4] in 1975. The network reconfiguration problem
was solved by closing all tie switches in the system (resulting
in mesh network); then the switches are successively opened,
one at a time until a new radial networkwithminimumpower
losses is obtained. Later on, Shirmohammadi and Hong
improved the Merlin method by avoiding the approximation
made in [4]. Shirmohammadi theorem starts by closing
all tie switches which are then opened by anther based
on optimum power flow results [5]. This method was also
found efficient in terms of computation time as compared
to Merlin method. Reference [2] introduced the “feeder
exchange approach” and calculated the loss reduction due to
load transfer between two feeders. A year later, Baran and
Wu improved the branch exchange method [2] by proposing
two approximated power flow equations and solved the
problem of lossminimization and loss reduction as an integer
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programming problem [6]. In the same year, Lin and Chin
[7] have considered service restoration, in addition to loss
minimization in solving network reconfiguration problem.
Zhu et al. performed the network reconfiguration based on
modified heuristic solution and experience system operation
rules [8]. In a latest research, Mohd Zin et al. in [9] have used
the heuristic search algorithm to find the minimum power
losses as an objective function, introduced by the author
in [6]. The update principle of heuristic search is made by
finding the branch having minimal current, till the optimum
solution is obtained.

Most of the methods discussed above require exhaustive
search mechanism by considering all possible solutions from
a predetermined set and subsequently pick the best one.
However, such methods are considered as nonefficient in
terms of computation time and space requirement. Intelli-
gent, greedy, and nature observed heuristic techniques have
also been proposed in the literature and they are commonly
known as Artificial Intelligent (AI) methods [10]. Artificial
Intelligent methods are a special class of heuristic search
methods [10]. Intelligent based optimization methods have
also been utilized in finding optimum tie switch combina-
tions in network reconfiguration problem. Authors have used
Genetic Algorithms (GA) [11], fuzzy [12–14], neural network
[15, 16], fuzzy-GA [17], Particle Swarm Optimization (PSO)
[18], Matroid Theory [19], Hybrid Evolutionary algorithm
[20], Ant Colony Search (ACS) algorithm [21, 22], Harmony
Search Algorithm [23], and Bacterial Foraging Algorithm
[24]. Das [12] and Savier and Das [25] have proposed
fuzzy based multiobjective approach for loss reduction and
considered voltage limit and line limits as well in fuzzy
set. Penalty based multiobjective-single-fitness approaches
have been utilized in [21], to combine power losses with
system constraints including voltage limits and line limit.The
multiobjective problem is solved using ACS algorithm.

Besides network reconfiguration, Distributed Generation
(DG) such as minihydro, photovoltaic, and wind is installed
in distribution system to solve the power loss problem due
to voltage drop. However, the placement and size of DG
are essential as they have a great impact on the power loss
[26]. Many researchers have proposed different methods
for optimum DG location and size separately [26–28] or
simultaneously [29, 30]. However, all the aforementioned
works have considered a constant load and fixed DG output.
In practical, load pattern and DG generation output dynam-
ically change with time. Therefore, some studies have also
considered a variable load pattern in their researches. For
example, a gradual approaching method is proposed in [31]
to solve dynamic reconfiguration. In [32], researchers solved
the network reconfiguration problemwith daily variable load
implementation as well. These studies have proven that the
network performance was improved when the time-varying
load profiles were taken into consideration.

Apart from that, there are few works on network recon-
figuration with the presence of DG considering variable
load profile. For example, network reconfiguration with the
presence of wind and photovoltaic generation for total daily
power loss reduction using improved genetic algorithm is
proposed in [33]. Network reconfiguration with photovoltaic

generation for power loss reduction considering the DG
penetration and three different load levels is presented in [34].

In this work, a novel method is proposed to solve
the network reconfiguration problem based on daily PV
generation output and variable load profiles. Gravitational
Search Algorithm (GSA) proposed in [35] is used in this
paper to determine the best daily system configuration.
The proposed method can be viewed in two parts. In the
first part, hourly optimal configuration considering the PV
generation and load profile is carried out using GSA. In
the second part, a selective approach is used to determine
the best configuration that gives the lowest power loss for
the whole day (24 hrs) or optimal daily configuration. The
proposed method is implemented on 33-bus distribution
system.The proposed method results are also compared with
Evolutionary Programming (EP) to show the effectiveness of
GSA.

This paper is organized as follows. In Section 2, mathe-
matical model for network reconfiguration is described. The
proposedmethod including application of GSA and selection
approach is provided in Section 3. Selection of PV module
is presented in Section 4 while load modelling and PV
generation are presented in Section 5. In Section 6, analysis
of the performance of the proposed method is discussed.
Finally, the conclusions are presented in Section 7.

2. Mathematical Model for Distribution
Network Reconfiguration Problem

Network reconfiguration is used tominimize the distribution
system power loss. The new configuration selected must
fulfil the constraints and maintain the radial structure of the
distribution system. In this study, themain objective is to gain
minimum power loss of the distribution system. Thus, the
objective function can be formulated as follows:

Min
{
{
{
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, (1)

where𝑁 is total line in the system. 𝐼
𝑓
is real active current of

line 𝑓. 𝑅
𝑓
is resistance of line 𝑓. 𝑓 is line number. 𝑙

𝑓
is the

topology status of line 𝑓 (1 = close, 0 = open).
𝑇 is the total hour considered in the time frame and ℎ

is the current time considered. In this work, (1) is used to
analyse the power loss for every hour (ℎ) of a day with the
load data of hour (ℎ) and PV generation of hour (ℎ).

The power system constraints that are also being consid-
ered in the study are as follows.

(a) Voltage Bus Constraint. The value of the bus voltage 𝑉bus
at each nodemust be within the acceptable limits to maintain
the power quality. For example, in this work, the minimum
voltage (𝑉min) used is 0.95 p.u. and maximum voltage (𝑉max)
is 1.05 p.u.:

𝑉min < 𝑉bus < 𝑉max. (2)
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(b) Radial Configuration Constraint. The radial configuration
of the network must be maintained after the reconfiguration
process. In order to ensure this requirement, graph theory is
used to determine the radiality of the network. In this work, a
MATLAB function is used to check the radiality of a network
as follows:

TF = graphisspantree (𝐺) , (3)

where𝐺 is the distribution system. If the network is radial, TF
equals 1 (true); else it is 0 (false). A radial distribution system
must connect all the buses and it contains no loop. In order
to maintain the radial structure of the distribution system, a
network with loop form, one of the switches from that loop
must be opened to retain the radial structure.

There are several methods for radial power flow analysis
such as backward-forward method. However, in this work
the proposed method uses Newton-Raphson load flow for
power flow analysis to calculate the power loss.This load flow
is selected to avoid fussy requirements on radial structure
and prevent complicated computation [36]. It can handle the
DG in the calculation more effectively as compared to other
distribution load flow methods. Furthermore, this method
provides high convergence with low storage required which
can be easily applied with any metaheuristic optimization
method.

The real power of bus 𝑓, 𝑃
𝑓
, reactive power of bus 𝑓, 𝑄

𝑓
,

the differences in real power, Δ𝑃
𝑓
, the differences in reactive

power, Δ𝑄
𝑓
, rectangular Newton-Raphson, and power loss

can be computed as
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Figure 1: Flowchart of the proposed method.

where 𝑉
𝑓
and 𝑉

𝑘
are voltage magnitude of bus 𝑓 and bus

𝑘, respectively, 𝑌
𝑓𝑘

and 𝜃
𝑓𝑘

are magnitude and angel of 𝑌
𝑓𝑘

element in the bus admittance matrix, respectively, 𝛿
𝑓
and 𝛿
𝑘

are voltage angel of bus 𝑓 and bus 𝑘, respectively, 𝑃sp
𝑓
and𝑄sp

𝑓

are specified real and reactive power at bus 𝑓, respectively, 𝑃
𝑘

and 𝑄
𝑘
are real and reactive power of bus 𝑘, respectively, and

𝑅
𝑓𝑘

is line resistance between bus 𝑓 and bus 𝑘.

3. Proposed Method

The proposed method for finding the best configuration
based on daily PV generation and load profiles is presented
in this section. The proposed algorithm consists of two main
parts, as shown in Figure 1. In the first part, a day is divided
into ℎ hours, where ℎ equals 24 hours in this work. Using
GSA and graph theory, optimal configuration is obtained for
each hour while the distribution network is maintained to be
radial. Hence, a total of ℎ effective configurations are obtained
for the network. In part two, the optimal daily configuration
is obtained with a selective approach.

Part 1: Finding Effective Configuration Using Gravitational
Search Algorithm (GSA). Gravitational Search Algorithm
(GSA) is first introduced by Rashedi et al. in [35]. GSA is
the newest stochastic search algorithm which is based on
Newtonian laws and mass interactions. In this algorithm,
the population individuals are referred to as masses and
their performances are measured by their position masses.
Each mass will have four particulars: its position, its inertial
mass, its active gravitational mass, and passive gravitational
mass. The position of the mass represented a solution while
its gravitational and inertial masses are corresponding to
the fitness function. According to Newtonian laws, all these
objects will attract each other due to the gravity force. Due to
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this force, all these objects will move towards the object with
heavier mass. In other words, heavy masses equaled good
solutions and they move slower than the lighter masses that
equaled bad solutions. In this way, the exploitation step of the
algorithm is guaranteed.

The details of the proposed method to reduce power loss
are based on the following steps.

Step 1 (input data and parameters). Input data are inserted
in the program. This includes bus data, line data, PV output,
base MVA, base voltage, predefined voltage bus range, radial
configuration constraint, maximum iteration, and accuracy.
The parameter needed to be set in GSA is the number of
masses (𝑁mass).

Step 2 (generating initial masses). The initial population is
determined by selecting random switches to be opened in
the distribution network to form the masses. The number of
switches to be opened is 𝑁opened. The set of switches to be
opened is written as follows:

Mass
𝑖
= ⌊𝑆1
1
, 𝑆2
2
, . . . , 𝑆𝑑

𝑁opened
⌋ for 𝑖 = 1, 2, . . . , 𝑁mass, (12)

where Mass
𝑖
represents the position of 𝑖th mass in the 𝑑th

dimension or 𝑑th component in 𝑖th mass. 𝑆1
1
, 𝑆2
2
, and 𝑆𝑑

𝑁opened

are the switches to be opened in 𝑑th dimension. Only the
set of switches to be opened that satisfy all the constraints
will be generated as the mass. At the end of this step, all the
elements in the masses for network reconfiguration are then
converted to whole number by rounding the decimal number
to the nearest positive number.

Step 3 (evaluate fitness of each mass). In the fitness function,
power loss is calculated in the current mass population using
Newton-Raphson load flow analysis.

Step 4 (update gravitational constant, best mass, worst mass,
and inertia mass of each iteration). In order to control the
searching accuracy, the gravitational constant,𝐺, is initialized
at the beginning and is reduced with iteration. Hence,
gravitational constant 𝐺 is a function of initial value of
gravitational constant, 𝐺

𝑜
, and iteration, iter, as follows:

𝐺 (iter) = 𝐺
𝑜
ℓ−𝛼(iter/max iter), (13)

where 𝛼 is a user specified constant, iter is the current
iteration, and max iter is the total number of iterations.

The active gravitational mass, 𝑀
𝑎
, passive gravitational

mass, 𝑀
𝑝
, and inertial mass of mass 𝑖, 𝑀

𝑖𝑖
, are computed

using fitness evaluation. According to Newton’s law and law
of motion, a heavier mass has higher attractions and move
more slowly. Hence, in GSA, a heavier mass is represented as
good solution and the pattern of movement is represented by
the explorations. The inertia mass, 𝑀

𝑖
, is updated as follows

by assuming all masses are equal:

𝑀
𝑎𝑖
= 𝑀
𝑝𝑖
= 𝑀
𝑖𝑖
= 𝑀
𝑖
,

𝑚
𝑖 (iter) =

fit
𝑖 (iter) − worst (iter)

best (iter) − worst (iter)
,

𝑀
𝑖 (iter) =

𝑚
𝑖 (iter)

∑𝑁mass
𝑗=1

𝑚
𝑗 (iter)

,

(14)

where fit
𝑖
(iter) represents the power loss of the mass 𝑖 at

iteration, iter, and best(iter) and worst(iter) represent the
strongest and weakest masses with respect to the lowest
and highest power losses in current iteration. The mass 𝑗 of
current iteration is represented as𝑚

𝑗
(iter). For minimization

problem, the best(iter) and worst(iter) are defined as

best (iter) = min
𝑗∈{1,...,𝑁ma}

fit
𝑗 (iter) ,

worst (iter) = max
𝑗∈{1,...,𝑁mass}

fit
𝑗 (iter) .

(15)

Step 5 (calculation of the total force in different directions).
The gravitational force, 𝐹

𝑖𝑗
, of mass 𝑖 due to mass 𝑗 at current

iteration, iter, can be computed as follows:

𝐹
𝑖𝑗 (iter) = 𝐺 (iter)

𝑀
𝑖 (iter) × 𝑀

𝑗 (iter)
𝑅
𝑖𝑗 (iter) + 𝜀

(Mass
𝑗 (iter)

−Mass
𝑖 (iter)) ,

(16)

where 𝑀
𝑖
is the inertial mass of the mass 𝑖, 𝑀

𝑗
is the

inertial mass of mass 𝑗, 𝜀 is a small constant, and 𝑅
𝑖𝑗
(iter)

is the Euclidian distance between 𝑖 and 𝑗 masses specified as
follows:

𝑅
𝑖𝑗 (iter) =

󵄩󵄩󵄩󵄩󵄩Mass
𝑖 (iter) ,Mass

𝑗 (iter)
󵄩󵄩󵄩󵄩󵄩2 . (17)

Step 6 (calculation of acceleration and velocity). The acceler-
ation of the mass 𝑖 at current iteration, iter, in 𝑑th dimension,
and 𝑎𝑑
𝑖
(iter) is defined as follows:

𝑎𝑑
𝑖
(iter) =

𝐹𝑑
𝑖
(iter)

𝑀
𝑖𝑖 (iter)

, (18)

where 𝐹𝑑
𝑖
(iter) is the total force that acts on mass 𝑖 of 𝑑th

dimension and is calculated as follows:

𝐹𝑑
𝑖
(iter) =

𝑁mass

∑
𝑗∈𝑘best ,𝑗 ̸=𝑖

rand
𝑗
𝐹𝑑
𝑖𝑗
(iter) . (19)

The random number between interval [0, 1], rand
𝑗
is intro-

duced in GSA. In order to compromise between exploration
and exploitation in this algorithm, the exploration must fade
out and exploitation must fade in with lapse of iterations.
In other words, all masses apply force to each other in the
beginning and only onemass applies force to others in the end
of the algorithm. Based on the aforementioned concept,𝐾best,
a function of iteration which is the set of first 𝐾masses with
the lowest power loss and biggest mass, is introduced to this
algorithm.𝐾o, the initial value of𝐾best, is set at the beginning
anddecreasedwith iterations.Thus,𝐾best is decreased linearly
with iterations as well. In this way, a smaller value of𝐾best will
result in less interaction between the masses by gravitational
force. Hence, themovement and computational of power loss
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are reduced and lead to convergence [37].The next velocity of
a mass is given as follows:

V𝑑
𝑖
(iter + 1) = rand

𝑖
× V𝑑
𝑖
(iter) + 𝑎𝑑

𝑖
(iter) . (20)

Step 7 (update masses’ position). The next position of a mass
can be expressed as follows:

Mass𝑑
𝑖
(iter + 1) = Mass𝑑

𝑖
(iter) + V𝑑

𝑖
(iter + 1) . (21)

Step 8 (convergence). Steps 3 to 8 are repeated until the
stopping criterion is reached.

Step 9 (matrix of ℎ feasible configurations). Amatrix consists
of ℎ feasible configuration and its power loss is created. Each
configuration consists of 𝑁opened switch to be opened which
depends on the chosen test system.Configuration ℎ is the best
configuration with the minimum power loss at hour ℎ. For
example, configuration 1 is the best configuration at 0100 and
so on as illustrated in

𝑆
1

𝑆
2

𝑆
3

⋅ ⋅ ⋅ 𝑆
𝑁opened

Power loss for ℎ hour

Configuration 1
Configuration 2

...

Configuration ℎ

[
[
[
[
[
[

[

𝑆
1,1

𝑆
2,1

...

𝑆
ℎ,1

𝑆
1,2

𝑆
2,2

...

𝑆
ℎ,2

𝑆
1,3

𝑆
2,3

...

𝑆
ℎ,3

⋅ ⋅ ⋅

⋅ ⋅ ⋅

...

⋅ ⋅ ⋅

𝑆
1,𝑁opened

𝑆
2,𝑁opened

...

𝑆
ℎ,𝑁opened

𝑃loss𝑠1
𝑃loss𝑠2

...

𝑃loss𝑠ℎ

]
]
]
]
]
]

]

. (22)

Part 2: A Selective Approach for Optimal Daily Configuration.
In the steps above, 𝑁

𝑧
number of configurations will be

obtained for total time, 𝑇. Since most of the PV generations
and the load of certain ℎ hour in total time, 𝑇, are approxi-
mately the same, most of the obtained configurations in (22)
are similar. The similar configurations, 𝑁similar, are removed
from the matrix. Hence, only the nonsimilar effective con-
figurations are left in the matrix,𝑁left (𝑁𝑧 − 𝑁similar = 𝑁left).

The first nonsimilar effective configuration in the matrix
represents the set switch 1, and so forth, until the last
nonsimilar effective configuration, and set switch 𝑦. Hence, a
matrix consists of all nonsimilar effective configurations and
is obtained as illustrated in

Power loss for each set switch at ℎ hour

Set Switch 1
Set Switch 2

...

Set Switch 𝑦

[
[
[
[
[
[
[

[

𝑋
1

𝑋
2

...

𝑋
𝑦

]
]
]
]
]
]
]

]

𝑃loss𝑋1
𝑃loss𝑋2

...

𝑃loss𝑋𝑦

. (23)

Each set switch obtained in Part 2 is used to calculate the
total power loss for a day using Newton-Raphson load flow
analysis. Then, the total daily power losses of the distribution
system for all sets of the switch are obtained and the switch
set with the minimum total daily power loss is selected as the
optimum configuration of the day, as illustrated in

Set switch Total daily power loss

[
[
[
[
[
[
[

[

𝑋
1

𝑋
2

...

𝑋
𝑦

TotDaily𝑃loss𝑋1
TotDaily𝑃loss𝑋2

...

TotDaily𝑃loss𝑋𝑦

]
]
]
]
]
]
]

]

, (24)

where optimal daily configuration = min(TotDaily𝑃loss).

4. Selection of PV Module

ThePVgeneration in this study is dependent on the solar irra-
diance and ambient temperature ofMalaysianMeteorological
Department for year 2008 at Kuantan site.The capacity factor
(CF) is calculated using four PVmodules from [38] based on
the solar irradiance mentioned as above for a day. As shown
in Figure 2, module D has the highest CF (0.2223); therefore,
module D is selected for this study. The PV output for 10000
units and each ℎ time interval are calculated using (8) to (12).
The PV generation is shown in Figure 3:

𝑇CZ (ℎ) = 𝑇
𝑎
+ 𝑠az (ℎ𝑟) (

𝑁OT (module) − 20
0.8

) ,

𝐼
𝑍 (ℎ) = 𝑠az (ℎ)

⋅ [𝐼SC (module) + 𝐾
𝑖 (module) (𝑇CZ (ℎ) − 25)] ,
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Figure 3: PV generation and load profile of a day.

𝑉
𝑍 (ℎ) = 𝑉OC (module) − (𝐾

𝑉 (module) × 𝑇CZ (ℎ)) ,

FF (module) =
(𝑉MPP (module) × 𝐼MPP (module))
𝑉OC (module) × 𝐼SC (module)

,

𝑃Sz (ℎ) = 𝑁PV × FF (module) × 𝑉
𝑍 (ℎ) × 𝐼

𝑍 (ℎ) ,

(25)

where 𝑇CZ(ℎ) is cell temperature [∘C] during ℎ current time,
𝑇
𝑎
is ambient temperature [∘C], 𝐾

𝑉
(module) is voltage tem-

perature coefficient of the PV module [V/∘C], 𝐾
𝑖
(module) is

current temperature of the PVmodule [A/∘C],𝑁OT(module)
is nominal operating temperature of cell of the PV module
[∘C], FF(module) is fill factor of the PVmodule, 𝐼SC(module)
is short circuit current of the PV module [A], 𝑉OC(module)
is open circuit voltage of the PV module [V], 𝐼MPP(module)
is current at maximum power point of the PV module [A],
𝑉MPP(module) is voltage at maximum power point of the PV
module [V],𝑃SZ(ℎ) is output generation of PVmodule during
ℎ current time, and 𝑠az(ℎ) is average solar irradiance during ℎ
current time.

5. Load Modelling and PV Generation

The load profiles were received fromTenaga Nasional Berhad
(TNB) [39] as shown in Figure 3. This study provides hourly
peak load per unit of the daily peak load.

6. Analysis of Proposed Method

The test system for this study consists of 12.66 kV 33-bus
radial distribution. The single line diagram of the system is
shown in Figure 2. The system consists of three DGs, five
labelled tie switches, 32 unlabelled sectionalizing switches,
and 33 labelled buses. The line between bus 1 and bus 2 is
referred to as switch 1, line between bus 2 and bus 3 is referred
to as switch 2, and so forth until switch 32.Thefive tie switches
are referred to as switches 33, 34, 35, 36, and 37 as shown
in Figure 4. The line and load data are taken from [6]. For
analysis purpose, theDGs are assumed to be installed at buses
6, 18, and 22. However, the locations can be changed based on
the actual site data or using other placement methods such as
in [29].The parameters of GSA used in the simulation are set
to 𝑁mass = 100, max iter = 100, and 𝐺

0
= sum of all active

power in the system and 𝛼 = 10. The simulations are carried
out on a computer with Intel Duo Core, 3.0GHz, and 3.0GB
RAM.

The 𝑆base equals 100MVA and all the calculations are
performed per unit. In the simulation of the network, four
scenarios were considered to analyse the capability of the
proposed method. They are as follows.

Scenario 1. The system is without reconfiguration and varia-
tion of the load and PV generation are considered.

Scenario 2. The system is with optimal hourly reconfigu-
ration and variation of the load and PV generation are
considered.

Scenario 3. The system is with optimal daily configuration
obtained from the proposed method.

Scenario 4. The system is with optimal daily configuration
obtained by considering 24 demand levels and PV generation
as whole.

The results of a matrix consist of ℎ feasible configurations
and their power loss obtained in Part 1 of the study is
shown in Table 4. The highlighted configurations in Table 4
represent repeated configurations that will be removed in
selection approach in Part 2 to obtain the nonsimilar effective
configurations matrix in Part 2. The remaining are the non-
imilar effective configurations. The results of nonsimilar
effective configurations matrix in Part 2 of the study are
shown in Table 5.

Then, for each set of the switch in Table 5, their total daily
power loss is obtained by carrying out Newton-Raphson load
flow analysis.The results of the total power loss evaluation for
all sets switch obtained in Part 2 are shown in Table 1.

From Table 1, the total daily power loss of set switch
19 which is represented with ∗ is the lowest among the
20 sets switch. Even set switch 16 with the lowest power
loss at 1300 does not yield the lowest total daily power
losses. Hence, set switch 19 is chosen as the optimal daily
configuration which is the best configuration for the day.
The real results of the four scenarios are summarised in
Table 2. The proposed method is carried out using EP for
these four scenarios as well as for comparison as shown in
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Figure 4: 33-bus test system with DG at buses 6, 18, and 22.

Table 1: Results of total power loss evaluation for all sets switch obtained in Part 2.

Set switch 1 2 3 4 5 6 7 8 9 10
Total daily
power loss (kW) 2724.30 2770.07 2638.54 2752.83 2960.39 2564.08 2219.49 2909.31 2375.65 2149.08

Set switch 11 12 13 14 15 16 17 18 19∗ 20
Total daily
power loss (kW) 2249.01 2303.23 2330.55 3202.01 2088.32 2256.25 2721.87 2256.25 2075.51 2473.59

Table 2. EP is selected for comparison since it is a common
and well-established optimization method.The optimal daily
configuration obtained in Scenario 4 is 37, 10, 7, 13, and 17with
GSA and 6, 8, 17, 10, and 5 with EP.

From Table 2, the total daily power loss is reduced by
50.36% in Scenario 2, 48.40% in Scenario 3, and 48.02%
in Scenario 4 using GSA as optimizing tool and 44.77% in
Scenario 2, 41.97% in Scenario 3, and 41.00% in Scenario
4 using EP as optimizing tool compared with Scenario 1
with same load profile and PV generation. The total daily
power loss reduction using Scenario 2 is 1.96% (GSA) and
2.80% (EP) more compared with Scenario 3 and 2.34%
(GSA) and 3.77% (EP) more compared with Scenario 4.
However, no switching is required for Scenarios 3 and 4.
For example, 24 times switching are requested in Scenario
2 while no switching is requested in Scenarios 3 and 4.
Scenarios 3 and 4 far outweigh Scenario 2 with an acceptable
total power loss reduction less than Scenario 2. Apart from
that, Scenario 3 gives slightly higher total daily power loss
reduction compared with Scenario 4. This is because more
constraints need to be consideredwhen 24 demand levels and
PV generation are considered as whole. Hence, this limited
the solution options.

The DG installation location and number are assumed in
this work. Altering DG installation location and number will
automatically effect the power loss. The performance of the
proposed method is not affected since the algorithm still the
same just altering the load data. In other words, more power
loss can be reduced with optimal DG installation location
and number for a distribution network. An optimal daily

configuration still can be obtainedwith the proposedmethod.
Similarly for different type of DG with their typical output
generation.

The performance of Scenario 2 is reduced when changing
the hour slots from 1 hour to 2 hours or 4 hours and so
forth. In this case, lower total daily power loss is obtained
in Scenario 3 compared to Scenario 2 if the hour slot is
increased. The total daily power loss for Scenarios 2 and 3
and optimal daily configuration obtained from Scenario 3 for
hour slots of one, two, and four are presented in Table 3. It can
be noticed that the total daily power loss in Scenario 3 is less
than Scenario 2 for two- and four-hour slots. However, these
results are the optimal results since the load demand and PV
generation are changing with time. Therefore, the analysis in
this work is carried out based on hourly basis.

From this analysis, it clearly shows that the proposed
method is effective to determine optimal daily configura-
tion based on PV generation and load profiles for a day.
Apart from that, GSA with selection approach gives the
best solution compared with EP with selection approach.
Figure 5 illustrates the optimal configuration obtained from
the proposed method.

The voltage profiles for all scenarios are shown in
Figure 6. All the scenarios show the similar shape of the
voltage profiles with slight change in the magnitude. The
proposedmethod also improves the overall voltage profiles of
the distribution system besides generating lower power loss.

From Figure 6, all bus voltages in Scenario 1 are below
the 0.95 p.u. voltage constraint in a day. Although all the bus
voltages satisfy the minimum voltage constraint only from
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Table 2: Comparison of the total daily power loss among the four scenarios.

Scenario 1 (without
reconfiguration)

Scenario 2 (with optimal
hourly reconfiguration)

Scenario 3 (with
proposed method)

Scenario 4 (with optimal
daily configuration of 24
demand levels as whole)

GSA and selection approach
Total daily power loss
(kW) 4022.30 1996.58 2075.51 2090.78

EP and selection approach
Total daily power loss
(kW) 4022.30 2221.52 2334.28 2373.17
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Figure 5: Optimal daily configuration.

Table 3: Comparison of the total daily power loss among one, two,
and four hours’ slots.

Hour slots
(hr) Scenario 2 Scenario 3

Optimal daily
configuration in

Scenario 3
1 1996.58 2075.51 28, 14, 7, 17, 10
2 2204.75 2088.97 31, 6, 37, 34, 10
4 2132.67 2099.09 28, 10, 7, 17, 13

time 0200 to 1800, the overall voltage profiles are improved
clearly for all the buses in Scenarios 2, 3, and 4. The voltage
profiles at time 1800 for all the buses for Scenarios 1, 2, 3, and
4 are shown in Figure 7.

FromFigure 7, it can be seen that, at time 1800, the voltage
profiles for Scenarios 1, 2, 3, and 4 are almost the same for
all buses. Scenarios 2, 3, and 4 improve the voltage profiles
of all the buses and the voltages are within acceptable range
especially for buses 28 to 33.This implies that reconfiguration
considering PV generation and load profiles yields desired
results of minimizing the power loss, reducing the number
of switching and improving the voltage profiles. Meanwhile,
Figure 8 shows the ability of the GSA with proposed method
in finding the optimum configuration at times 0100, 0800,
and 1800 which required less than 10 numbers of iterations
to reach the optimal point. It is to note that the large the
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Figure 6: Performance of voltage profile for all scenarios of a day.

number of iterations, the longer computing time required
as the iteration is counted based on the fixed looping in
programming. Thus, in this work, the number of iterations
is set to 100.

7. Conclusion

In this work, a novel method to determine the best config-
uration based on the daily PV generation and load profiles
in the distribution network has been successfully proposed.
Experimental results indicate that the proposed method is
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Table 4: Results of matrix consists of ℎ feasible configurations and
their power loss obtained in Part 1.

Current
time (h) 𝑆

1
𝑆
2

𝑆
3

𝑆
4

𝑆
5

Power losses
for ℎ hour
(kW)

01 11 7 27 32 14 88.56
02 11 7 28 14 36 80.08
03 28 14 33 9 32 75.39
04 28 9 33 32 14 71.31
05 9 34 37 32 7 70.74
06 32 28 34 7 11 71.65
07 33 36 10 28 34 71.21
08 37 34 9 32 7 70.73
09 37 17 9 14 7 75.63
10 21 31 37 7 13 70.41
11 11 14 30 7 28 70.01
12 8 33 28 13 16 70.22
13 10 7 37 30 14 57.17
14 37 9 30 7 13 62.30
15 37 7 30 10 13 67.28
16 21 34 31 37 7 83.17
17 14 11 7 28 17 86.92
18 10 7 37 14 31 79.19
19 7 11 34 32 28 98.01
20 10 7 14 27 32 126.14
21 10 37 31 14 7 123.80
22 28 14 7 17 10 118.42
23 9 14 28 32 33 108.45
24 7 37 13 32 9 99.78

Total daily power losses for Scenario 2 1996.58
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Figure 7: Voltage profiles for all buses for all scenarios with load and
PV generation at 1800.

simple and effective to minimize total daily power loss with
no switching required with the optimal daily configuration
obtained. Hence, same method can be applied for a year.
It also improves the voltage profiles. A 33-bus distribu-
tion system with three photovoltaic DGs, different sets of
PV generation, and load profiles are successfully used to

Table 5: Results of nonsimilar effective configurations matrix
obtained in Part 2.

𝑆
1

𝑆
2

𝑆
3

𝑆
4

𝑆
5

Set switch 1 11 7 27 32 14
Set switch 2 11 7 28 14 36
Set switch 3 28 9 33 32 14
Set switch 4 32 28 34 7 11
Set switch 5 33 36 10 28 34
Set switch 6 37 34 9 32 7
Set switch 7 37 17 9 14 7
Set switch 8 21 31 37 7 13
Set switch 9 11 14 30 7 28
Set switch 10 8 33 28 13 16
Set switch 11 10 7 37 30 14
Set switch 12 37 9 30 7 13
Set switch 13 37 7 30 10 13
Set switch 14 21 34 31 37 7
Set switch 15 14 11 7 28 17
Set switch 16 10 7 37 14 31
Set switch 17 10 7 14 27 32
Set switch 18 10 37 31 14 7
Set switch 19 28 14 7 17 10
Set switch 20 7 37 13 32 9
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Figure 8: Convergence performance of GSAwith proposedmethod
at selected time of a day.

demonstrate the effectiveness of the proposed method. A
comparison between GSA and EP with selection approach
is carried out and the result proven GSA outperforms EP in
terms of producing lower total daily power loss.
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[3] A. González, F. M. Echavarren, L. Rouco, T. Gómez, and J.
Cabetas, “Reconfiguration of large-scale distribution networks
for planning studies,” International Journal of Electrical Power &
Energy Systems, vol. 37, no. 1, pp. 86–94, 2012.

[4] A. Merlin and H. Back, “Search for a minimal-loss operating
spanning tree configuration in an urban power distribution
system,” in Proceedings of the 5th Power System Conference
(PSCC ’75), Cambridge, UK, 1975.

[5] D. Shirmohammadi and H. W. Hong, “Reconfiguration of
electric distribution networks for resistive life losses reduction,”
IEEE Transactions on Power Delivery, vol. 4, no. 2, pp. 1492–
1498, 1992.

[6] M. E. Baran and F. F. Wu, “Network reconfiguration in distri-
bution systems for loss reduction and load balancing,” IEEE
Transactions on Power Delivery, vol. 4, no. 2, pp. 1401–1407, 1989.

[7] W.-M. Lin and H.-C. Chin, “A new approach for distribution
feeder reconfiguration for loss reduction and service restora-
tion,” IEEE Transactions on Power Delivery, vol. 13, no. 3, pp.
870–875, 1998.

[8] J. Zhu, X. Xiong, J. Zhang, G. Shen, Q. Xu, and Y. Xue, “A rule
based comprehensive approach for reconfiguration of electrical
distribution network,” Electric Power Systems Research, vol. 79,
no. 2, pp. 311–315, 2009.

[9] A. A. Mohd Zin, A. K. Ferdavani, A. B. Khairuddin, and
M. M. Naeini, “Reconfiguration of radial electrical distribu-
tion network through minimum-current circular-updating-
mechanism method,” IEEE Transactions on Power Systems, vol.
27, no. 2, pp. 968–974, 2012.

[10] N. Kokash, An Introduction to Heuristic Algorithms, Depart-
ment of Informatics and Telecommunications, 2005.

[11] J. Z. Zhu, “Optimal reconfiguration of electrical distribution
network using the refined genetic algorithm,” Electric Power
Systems Research, vol. 62, no. 1, pp. 37–42, 2002.

[12] D. Das, “A fuzzy multiobjective approach for network recon-
figuration of distribution systems,” IEEE Transactions on Power
Delivery, vol. 21, no. 1, pp. 202–209, 2006.

[13] Y. Song, G. Wan, A. Johns, and P. Wang, “Distribution network
reconfiguration for loss reduction using fuzzy controlled evo-
lutionary programming,” IEE Proceedings—Generation, Trans-
mission and Distribution, vol. 144, no. 4, pp. 345–350, 1997.

[14] J. S. Savier and D. Das, “Impact of network reconfiguration on
loss allocation of radial distribution systems,” IEEETransactions
on Power Delivery, vol. 22, no. 4, pp. 2473–2480, 2007.

[15] H. Kim, Y. Ko, and K.-H. Jung, “Artificial neural-network
based feeder reconfiguration for loss reduction in distribution
systems,” IEEE Transactions on Power Delivery, vol. 8, no. 3, pp.
1356–1366, 1993.

[16] M. A. Kashem, G. B. Jasmon, A. Mohamed, and M.
Moghavvemi, “Artificial neural network approach to network
reconfiguration for lossminimization in distribution networks,”

International Journal of Electrical Power and Energy Systems,
vol. 20, no. 4, pp. 247–258, 1998.

[17] K. Prasad, R. Ranjan, N. C. Sahoo, and A. Chaturvedi, “Optimal
reconfiguration of radial distribution systems using a fuzzy
mutated genetic algorithm,” IEEE Transactions on Power Deliv-
ery, vol. 20, no. 2 I, pp. 1211–1213, 2005.

[18] M. Assadian, M. M. Farsangi, and H. Nezamabadi-Pour,
“GCPSO in cooperation with graph theory to distribution
network reconfiguration for energy saving,” Energy Conversion
and Management, vol. 51, no. 3, pp. 418–427, 2010.

[19] B. Enacheanu, B. Raison, R. Caire, O. Devaux, W. Bienia, and
N. HadjSaid, “Radial network reconfiguration using genetic
algorithm based on the matroid theory,” IEEE Transactions on
Power Systems, vol. 23, no. 1, pp. 186–195, 2008.

[20] T. Niknam, E. Azadfarsani, and M. Jabbari, “A new hybrid
evolutionary algorithm based on new fuzzy adaptive PSO and
NM algorithms for distribution feeder reconfiguration,” Energy
Conversion and Management, vol. 54, no. 1, pp. 7–16, 2012.

[21] C.-T. Su, C.-F. Chang, and J.-P. Chiou, “Distribution network
reconfiguration for loss reduction by ant colony search algo-
rithm,” Electric Power Systems Research, vol. 75, no. 2-3, pp. 190–
199, 2005.

[22] Y.-K. Wu, C.-Y. Lee, L.-C. Liu, and S.-H. Tsai, “Study of
reconfiguration for the distribution system with distributed
generators,” IEEE Transactions on Power Delivery, vol. 25, no.
3, pp. 1678–1685, 2010.

[23] R. Srinivasa Rao, S. V. L. Narasimham, M. Ramalinga Raju, and
A. Srinivasa Rao, “Optimal network reconfiguration of large-
scale distribution system using harmony search algorithm,”
IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1080–
1088, 2011.

[24] K. S. Kumar and T. Jayabarathi, “Power system reconfiguration
and loss minimization for an distribution systems using bacte-
rial foraging optimization algorithm,” International Journal of
Electrical Power & Energy Systems, vol. 36, no. 1, pp. 13–17, 2012.

[25] J. S. Savier and D. Das, “Impact of network reconfiguration on
loss allocation of radial distribution systems,” IEEETransactions
on Power Delivery, vol. 22, no. 4, pp. 2473–2480, 2007.

[26] M. M. Aman, G. B. Jasmon, H. Mokhlis, and A. H. A. Bakar,
“Optimal placement and sizing of a DG based on a new power
stability index and line losses,” International Journal of Electrical
Power & Energy Systems, vol. 43, no. 1, pp. 1296–1304, 2012.

[27] Z. Yasin and T. Rahman, Network Reconfiguration in a Power
Distribution System under Fault Condition with the Presence of
Distributed Generation, Universiti Tenaga Nasional, Selangor,
Malaysia, 2006.

[28] J. Olamaei, T. Niknam, and G. Gharehpetian, “Application of
particle swarm optimization for distribution feeder reconfigu-
ration considering distributed generators,”AppliedMathematics
and Computation, vol. 201, no. 1-2, pp. 575–586, 2008.

[29] W. M. Dahalan, H. Mokhlis, A. H. A. Bakar, and J. J. Jamian,
“The simultaneous application of optimum network reconfigu-
ration and distributed generation sizing using PSO for power
loss reduction,” Przeglad Elektrotechniczny, vol. 89, no. 4, pp.
137–141, 2013.

[30] M. M. Aman, G. B. Jasmon, A. H. A. Bakar, and H. Mokhlis, “A
new approach for optimum simultaneousmulti-DG distributed
generation Units placement and sizing based on maximization
of system loadability using HPSO (hybrid particle swarm
optimization) algorithm,” Energy, vol. 66, pp. 202–215, 2014.

[31] Y. HuPing, P. YunYan, and X. Ning, “Gradual approaching
method for distribution network dynamic reconfiguration,” in



Journal of Applied Mathematics 11

Proceedings of the Workshop on Power Electronics and Intel-
ligent Transportation System (PEITS ’08), pp. 257–260, IEEE,
Guangzhou, China, August 2008.

[32] A. E. Milani and M. R. Haghifam, “An evolutionary approach
for optimal time interval determination in distribution network
reconfiguration under variable load,” Mathematical and Com-
puter Modelling, vol. 57, no. 1-2, pp. 68–77, 2013.

[33] T. Hao, L. Lin, and W. Yanhan, “Research of distribution net-
work reconfiguration with renewable energy power generation
unit,” in Proceedings of the IEEE International Conference on
Power System Technology (POWERCON ’14), pp. 2680–2685,
IEEE, Chengdu, China, October 2014.

[34] A. S. Bouhouras, T. A. Papadopoulos, G. C. Christoforidis, G.
K. Papagiannis, and D. P. Labridis, “Loss reduction via network
reconfigurations in Distribution Networks with Photovoltaic
Units Installed,” in Proceedings of the 10th International Con-
ference on the European Energy Market (EEM ’13), pp. 1–8,
Stockholm, Sweden, May 2013.

[35] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: a
gravitational search algorithm,” Information Sciences, vol. 179,
no. 13, pp. 2232–2248, 2009.

[36] H. Yang, F. Wen, and L. Wang, “Newton-Raphson on power
flow algorithm andBroydenmethod in the distribution system,”
in Proceedings of the IEEE 2nd International Power and Energy
Conference (PECon ’08), pp. 1613–1618, December 2008.

[37] B. Shaw, V. Mukherjee, and S. P. Ghoshal, “A novel opposition-
based gravitational search algorithm for combined economic
and emission dispatch problems of power systems,” Interna-
tional Journal of Electrical Power and Energy Systems, vol. 35,
no. 1, pp. 21–33, 2012.

[38] Y. M. Atwa, E. F. El-Saadany, M. M. A. Salama, and R.
Seethapathy, “Optimal renewable resourcesmix for distribution
system energy loss minimization,” IEEE Transactions on Power
Systems, vol. 25, no. 1, pp. 360–370, 2010.

[39] N. H. B. Jalal, Operating Code 1: Demand Forecast, The Ma-
laysian Grid Code Awareness Programme, Kuala Lumpur,
Malaysia, 2014.


