
Research Article
On Distance (𝑟, 𝑘)-Fibonacci Numbers and Their Combinatorial
and Graph Interpretations

Dorota Bród

Faculty of Mathematics and Applied Physics, Rzeszów University of Technology, Aleja Powstańców Warszawy 12,
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We introduce three new two-parameter generalizations of Fibonacci numbers.These generalizations are closely related to 𝑘-distance
Fibonacci numbers introduced recently. We give combinatorial and graph interpretations of distance (𝑟, 𝑘)-Fibonacci numbers. We
also study some properties of these numbers.

1. Introduction

In general we use the standard terminology of the combina-
torics and graph theory; see [1]. The well-known Fibonacci
sequence {𝐹

𝑛
} is defined by the recurrence 𝐹

𝑛
= 𝐹
𝑛−1

+ 𝐹
𝑛−2

for 𝑛 ≥ 2 with 𝐹
0
= 𝐹
1
= 1. The Fibonacci numbers have

been generalized inmanyways, some by preserving the initial
conditions and others by preserving the recurrence relation.
For example, in [2] 𝑘-Fibonacci numbers were introduced
and defined recurrently for any integer 𝑘 ≥ 1 by 𝐹(𝑘, 𝑛) =
𝑘𝐹(𝑘, 𝑛 − 1) + 𝐹(𝑘, 𝑛 − 2) for 𝑛 ≥ 2 with 𝐹(𝑘, 0) = 0,
𝐹(𝑘, 1) = 1. In [3] the following generalization of the
Fibonacci numbers was defined: 𝑥

𝑛
= 2
𝑟

𝑥
𝑛−1

+ 𝑥
𝑛−2

for an
integer 𝑟 ≥ 0 such that 4𝑟−1 + 1 ̸= 0 and 𝑛 ≥ 2 with 𝑥

0
= 0

and 𝑥
1
= 1. Other interesting generalizations of Fibonacci

numbers are presented in [4, 5]. In the literature there are
different kinds of distance generalizations of 𝐹

𝑛
. They have

many graph interpretations closely related to the concept of
𝑘-independent sets. We recall some of such generalizations:

(1) Reference [6]. Consider𝐹(𝑘, 𝑛) = 𝐹(𝑘, 𝑛−1)+𝐹(𝑘, 𝑛−
𝑘) for 𝑛 ≥ 𝑘 + 1 with 𝐹(𝑘, 𝑛) = 𝑛 + 1 for 𝑛 ≤ 𝑘.

(2) References [4, 7, 8]. Consider Fibonacci 𝑝-numbers
𝐹
𝑝
(𝑛) = 𝐹

𝑝
(𝑛 − 1) +𝐹

𝑝
(𝑛 −𝑝−1) for any given 𝑝 (𝑝 =

1, 2, 3, . . .) and 𝑛 > 𝑝+1with 𝐹
𝑝
(0) = 0 and 𝐹

𝑝
(𝑛) = 1

for 1 ≤ 𝑛 ≤ 𝑝 + 1.

(3) Reference [9]. Consider 𝐹𝑑(1)(𝑘, 𝑛) = 𝐹𝑑(1)(𝑘, 𝑛 − 𝑘 +
1) + 𝐹𝑑

(1)

(𝑘, 𝑛 − 𝑘) for 𝑛 ≥ 𝑘 with 𝐹𝑑(1)(𝑘, 𝑛) = 1 for
𝑛 ≤ 𝑘 − 1.

(4) Reference [9]. Consider 𝐹𝑑(2)(𝑘, 𝑛) = 𝐹𝑑(2)(𝑘, 𝑛 − 𝑘 +
1) + 𝐹𝑑

(2)

(𝑘, 𝑛 − 𝑘) for 𝑛 ≥ 𝑘 with 𝐹𝑑(2)(𝑘, 𝑛) = 0 for
𝑛 = 0, . . . , 𝑘 − 2, 𝐹𝑑(2)(𝑘, 𝑘 − 1) = 1, 𝐹𝑑(2)(1, 1) = 1,
𝐹𝑑
(2)

(2, 2) = 2, for 𝑘 ≥ 3 𝐹𝑑(2)(𝑘, 𝑘) = 1.

(5) Reference [9]. Consider 𝐹𝑑(3)(𝑘, 𝑛) = 𝐹𝑑(3)(𝑘, 𝑛 − 𝑘 +
1)+𝐹𝑑

(3)

(𝑘, 𝑛−𝑘) for 𝑛 ≥ 2𝑘−1with𝐹𝑑(3)(𝑘, 𝑛) = 1 for
𝑛 = 0, . . . , 𝑘−1,𝐹𝑑(3)(2, 2) = 2, for 𝑘 ≥ 3 𝐹𝑑(3)(𝑘, 𝑘) =
𝐹𝑑
(3)

(𝑘, 2𝑘−2) = 3, for 𝑘+1 ≤ 𝑛 ≤ 2𝑘−1 𝐹𝑑(3)(𝑘, 𝑛) =
4.

(6) Reference [10]. Consider 𝐹(1)
2
(𝑘, 𝑛) = 𝐹

(1)

2
(𝑘, 𝑛 − 2) +

𝐹
(1)

2
(𝑘, 𝑛 − 𝑘) for 𝑛 ≥ 𝑘 + 1 with

𝐹
(1)

2
(𝑘, 𝑛) =

{

{

{

1 if 𝑛 ≤ 𝑘 − 1 or 𝑛 = 𝑘 = 1,

2 if 𝑛 = 𝑘 ≥ 2.
(1)
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Table 1: Distance (𝑟, 𝑘)-Fibonacci numbers 𝐹(I)
𝑟
(𝑘, 𝑛) of the first kind.

𝑘 \ 𝑛 0 1 2 3 4 5 6 7 8

1 1 1 𝑟 + 1 2𝑟 + 1 𝑟
2

+ 3𝑟 + 1 𝑟
2

+ 5𝑟 + 2 𝑟
3

+ 4𝑟
2

+ 6𝑟 + 2 2𝑟
3

+ 9𝑟
2

+ 8𝑟 + 2 𝑟
4

+ 6𝑟
3

+ 15𝑟
2

+ 10𝑟 + 2

2 1 1 2𝑟 2𝑟 4𝑟
2

4𝑟
2

8𝑟
3

8𝑟
3

16𝑟
4

3 1 1 𝑟 𝑟
2

+ 𝑟 2𝑟
2

2𝑟
3

+ 𝑟
2

𝑟
4

+ 3𝑟
3

4𝑟
4

+ 𝑟
3

3𝑟
5

+ 4𝑟
4

4 1 1 𝑟 𝑟 𝑟
3

+ 𝑟
2

𝑟
3

+ 𝑟
2

2𝑟
4

+ 𝑟
3

2𝑟
4

+ 𝑟
3

𝑟
6

+ 3𝑟
5

+ 𝑟
4

5 1 1 𝑟 𝑟 𝑟
2

𝑟
4

+ 𝑟
2

𝑟
4

+ 𝑟
3

2𝑟
5

+ 𝑟
3

2𝑟
5

+ 𝑟
4

6 1 1 𝑟 𝑟 𝑟
2

𝑟
2

𝑟
5

+ 𝑟
3

𝑟
5

+ 𝑟
3

2𝑟
6

+ 𝑟
4

7 1 1 𝑟 𝑟 𝑟
2

𝑟
2

𝑟
3

𝑟
6

+ 𝑟
3

𝑟
6

+ 𝑟
4

(7) Reference [11]. Consider 𝐹(2)
2
(𝑘, 𝑛) = 𝐹

(2)

2
(𝑘, 𝑛 − 2) +

𝐹
(2)

2
(𝑘, 𝑛 − 𝑘) for 𝑛 ≥ 𝑘 + 1 with

𝐹
(2)

2
(𝑘, 𝑛) =

{

{

{

0 if 𝑛 is odd and 𝑛 ≤ 𝑘 − 1,

1 if 𝑛 is even and 𝑛 ≤ 𝑘 − 1,

𝐹
(2)

2
(𝑘, 𝑘) =

{{{{

{{{{

{

0 if 𝑘 = 1,

1 if 𝑘 is odd and 𝑘 ≥ 3,

2 if 𝑘 is even.

(2)

(8) Reference [11]. Consider 𝐹(3)
2
(𝑘, 𝑛) = 𝐹

(3)

2
(𝑘, 𝑛 − 2) +

𝐹
(3)

2
(𝑘, 𝑛 − 𝑘) for 𝑛 ≥ 𝑘 + 1 with

𝐹
(3)

2
(𝑘, 𝑛) =

{

{

{

1 if 𝑛 is even and 𝑛 ≤ 𝑘 − 1,

2 if 𝑛 is odd and 𝑛 ≤ 𝑘 − 1,

𝐹
(3)

2
(𝑘, 𝑘) =

{

{

{

3 if 𝑘 is odd and 𝑘 ≥ 3,

2 if 𝑘 is even or 𝑘 = 1.

(3)

In this paper we introduce three new two-parameter
generalizations of distance Fibonacci numbers. They are
closely related with the numbers 𝐹

(𝑗)

2
(𝑘, 𝑛), 𝑗 = 1, 2, 3,

presented in [10, 11]. We show their combinatorial and graph
interpretations and we present some identities for them.

2. Distance (𝑟, 𝑘)-Fibonacci Numbers

Let 𝑘 ≥ 1, 𝑛 ≥ 0, and 𝑟 ≥ 1 be integers. We define distance
(𝑟, 𝑘)-Fibonacci numbers of the first kind 𝐹

(I)
𝑟
(𝑘, 𝑛) by the

recurrence relation

𝐹
(I)
𝑟
(𝑘, 𝑛) = 𝑟𝐹

(I)
𝑟
(𝑘, 𝑛 − 2) + 𝑟

𝑘−1

𝐹
(I)
𝑟
(𝑘, 𝑛 − 𝑘)

for 𝑛 ≥ 𝑘 + 1
(4)

with the following initial conditions:

𝐹
(I)
𝑟
(𝑘, 0) = 𝐹

(I)
𝑟
(𝑘, 1) = 1,

𝐹
(I)
𝑟
(𝑘, 𝑛) = 𝑟

[𝑛/2] for 𝑛 = 2, 3, . . . , 𝑘 − 2,

𝐹
(I)
𝑟
(𝑘, 𝑘 − 1) = 𝑟

[(𝑘−1)/2] for 𝑘 ≥ 3,

𝐹
(I)
𝑟
(𝑘, 𝑘) = 𝑟

𝑘−1

+ 𝑟
[𝑘/2] for 𝑘 ≥ 2.

(5)

For 𝑟 = 1 we get 𝐹(I)
1
(𝑘, 𝑛) = 𝐹

(1)

2
(𝑘, 𝑛). These numbers were

introduced in [10].
If 𝑟 = 1 and 𝑘 = 1, then 𝐹

(I)
1
(1, 𝑛) gives the Fibonacci

numbers 𝐹
𝑛
. For 𝑟 = 1 and 𝑘 = 3 the numbers 𝐹(I)

1
(3, 𝑛) are

the well-known Padovan numbers.
Table 1 includes the values of 𝐹(I)

𝑟
(𝑘, 𝑛) for special values

of 𝑘 and 𝑛.
Let 𝑘 ≥ 1, 𝑛 ≥ 0, and 𝑟 ≥ 1 be integers. We define

the distance (𝑟, 𝑘)-Fibonacci numbers of the second kind
𝐹
(II)
𝑟
(𝑘, 𝑛) by the following recurrence relation:

𝐹
(II)
𝑟

(𝑘, 𝑛) = 𝑟𝐹
(II)
𝑟

(𝑘, 𝑛 − 2) + 𝑟
𝑘−1

𝐹
(II)
𝑟

(𝑘, 𝑛 − 𝑘)

for 𝑛 ≥ 𝑘 + 1
(6)

with initial conditions

𝐹
(II)
𝑟

(𝑘, 𝑛) =
{

{

{

𝑟
[𝑛/2] for even 𝑛,

0 for odd 𝑛,

for 𝑛 = 0, 1, . . . , 𝑘 − 1

𝐹
(II)
𝑟

(𝑘, 𝑘) =

{{{{

{{{{

{

0 for 𝑘 = 1,

𝑟
𝑘−1 for odd 𝑘, 𝑘 ≥ 3,

𝑟
𝑘−1

+ 𝑟
𝑘/2 for even 𝑘.

(7)

For 𝑟 = 1 we have then 𝐹
(II)
1
(𝑘, 𝑛) = 𝐹

(2)

2
(𝑘, 𝑛); see [10].

Moreover, for 𝑟 = 1 and 𝑘 = 1, 𝑛 ≥ 2 𝐹(II)
1
(𝑘, 𝑛) = 𝐹

𝑛−2
.

In Table 2 a fewfirst words of the distance (𝑟, 𝑘)-Fibonacci
numbers of the second kind 𝐹(II)

𝑟
(𝑘, 𝑛) for special values of 𝑘

and 𝑛 are presented.
Let 𝑘 ≥ 1, 𝑛 ≥ 0, and 𝑟 ≥ 1 be integers. We define distance

(𝑟, 𝑘)-Fibonacci numbers of the third kind 𝐹(III)
𝑟

(𝑘, 𝑛) by the
following recurrence relation:

𝐹
(III)
𝑟

(𝑘, 𝑛) = 𝑟𝐹
(III)
𝑟

(𝑘, 𝑛 − 2) + 𝑟
𝑘−1

𝐹
(III)
𝑟

(𝑘, 𝑛 − 𝑘)

for 𝑛 ≥ 𝑘 + 1
(8)
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Table 2: Distance (𝑟, 𝑘)-Fibonacci numbers 𝐹(II)
𝑟
(𝑘, 𝑛) of the second kind.

𝑘 \ 𝑛 0 1 2 3 4 5 6 7 8

1 1 0 𝑟 𝑟 𝑟
2

+ 𝑟 2𝑟
2

+ 𝑟 𝑟
3

+ 3𝑟
2

+ 𝑟 3𝑟
3

+ 4𝑟
2

+ 𝑟 𝑟
4

+ 6𝑟
3

+ 5𝑟
2

+ 𝑟

2 1 0 2𝑟 0 4𝑟
2

0 8𝑟
3

0 16𝑟
4

3 1 0 𝑟 𝑟
2

𝑟
2

2𝑟
3

𝑟
4

+ 𝑟
3

3𝑟
4

3𝑟
5

+ 𝑟
4

4 1 0 𝑟 0 𝑟
3

+ 𝑟
2

0 2𝑟
4

+ 𝑟
3

0 𝑟
6

+ 3𝑟
5

+ 𝑟
4

5 1 0 𝑟 0 𝑟
2

𝑟
4

𝑟
3

2𝑟
5

𝑟
4

6 1 0 𝑟 0 𝑟
2

0 𝑟
5

+ 𝑟
3

0 2𝑟
6

+ 𝑟
4

7 1 0 𝑟 0 𝑟
2

0 𝑟
3

𝑟
6

𝑟
4

with initial conditions
𝐹
(III)
𝑟

(1, 1) = 2,

𝐹
(III)
𝑟

(𝑘, 𝑛) =
{

{

{

𝑟
𝑛/2 for even 𝑛,

2𝑟
[𝑛/2] for odd 𝑛,

for 𝑛 = 0, 1, . . . , 𝑘 − 1

𝐹
(III)
𝑟

(𝑘, 𝑘) =
{

{

{

𝑟
𝑘−1

+ 𝑟
𝑘/2 for even 𝑘,

𝑟
𝑘−1

+ 2𝑟
[𝑘/2] for odd 𝑘 ≥ 3.

(9)

For 𝑟 = 1 we get 𝐹(III)
1

(𝑘, 𝑛) = 𝐹
(3)

2
(𝑘, 𝑛). These numbers

were introduced in [11]. For 𝑟 = 1, 𝑘 = 1, and 𝑛 ≥ 0 we
have 𝐹(III)

1
(1, 𝑛) = 𝐹

𝑛+1
. Moreover, for 𝑟 = 1, 𝑘 = 4, and

𝑛 ≥ 1 𝐹
(III)
1

(4, 2𝑛) = 𝐹
𝑛
.

Table 3 includes a few initial words of distance 𝐹(III)
𝑟

(𝑘, 𝑛)

for special values of 𝑘 and 𝑛.
By the definition of distance (𝑟, 𝑘)-Fibonacci numbers of

three kinds we get for 𝑘 ≥ 1 and 𝑛 ≥ 0 the following relations:

𝐹
(III)
𝑟

(𝑘, 𝑛) = 2𝐹
(I)
𝑟
(𝑘, 𝑛) for even 𝑘 and odd 𝑛,

𝐹
(I)
𝑟
(𝑘, 𝑛) = 𝐹

(II)
𝑟

(𝑘, 𝑛) = 𝐹
(III)
𝑟

(𝑘, 𝑛)

for even 𝑘 and even 𝑛,

𝐹
(II)
𝑟

(𝑘, 𝑛) = 0 for even 𝑘 and odd 𝑛.

(10)

3. Combinatorial and Graph Interpretations of
Distance (𝑟, 𝑘)-Fibonacci Numbers

In this section we present some combinatorial and graph
interpretations of distance (𝑟, 𝑘)-Fibonacci numbers. The
classical Fibonacci numbers have many combinatorial inter-
pretations. One of them is the interpretation related to set
decomposition. We recall it. Let 𝑋 = {1, 2, . . . , 𝑛}, 𝑛 ≥ 1, and
Y⋆ = {𝑌

⋆

𝑡
: 𝑡 ∈ 𝑇} be a family of disjoint subsets of 𝑋 such

that
(1) |𝑌⋆
𝑡
| ∈ {1, 2},

(2) if |𝑌⋆
𝑡
| = 2 then 𝑌⋆

𝑡
contains two consecutive integers,

(3) 𝑋 \ ⋃
𝑡∈𝑇

𝑌
⋆

𝑡
= 0.

It is well known that the number of all familiesY⋆ is equal to
the classical Fibonacci numbers 𝐹

𝑛
. We introduce analogous

interpretation of distance (𝑟, 𝑘)-Fibonacci numbers.

Let 𝑟 ≥ 1 and 𝑋 = {1, 2, . . . , 𝑛}, 𝑛 ≥ 2, be the set of 𝑛
integers. Let 𝑘 ≥ 3. Assume thatR

𝑛
is a multifamily of two-

element subsets of𝑋 such that

R
𝑛
=

{{

{{

{

{1, 2} , {1, 2} , . . . , {1, 2}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑟−times
, {2, 3} , . . . , {2, 3}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑟−times
, . . . ,

{𝑛 − 1, 𝑛} , . . . , {𝑛 − 1, 𝑛}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑟−times

}}

}}

}

.

(11)

For fixed 𝑡, 1 ≤ 𝑡 ≤ 𝑛 − 𝑘 byR(𝑘, 𝑡) we denote a subfamily of
R
𝑛
such that R(𝑘, 𝑡) = {{𝑡 + 𝑗, 𝑡 + 𝑗 + 1} : 𝑗 = 0, 1, . . . , 𝑘 −

2, 𝑡 = 1, 2, . . . , 𝑛 − 𝑘 + 1}. Analogously for fixed 𝑡󸀠 we define
R(𝑘, 𝑡

󸀠

) = {{𝑡, 𝑡 + 1} : 𝑡 = 1, 2, . . . , 𝑛 − 1}.
LetR(𝑗)

𝑡,𝑡
󸀠
, 𝑗 = 1, 2, 3, be a subfamily ofR

𝑛
such thatR(𝑗)

𝑡,𝑡
󸀠
=

R(𝑘, 𝑡) ∪R(𝑘, 𝑡
󸀠

) and

(a) for each𝑅(𝑘, 𝑡󸀠
1
), 𝑅(𝑘, 𝑡

󸀠

2
) ∈ R(𝑘, 𝑡

󸀠

), 𝑡󸀠
1

̸= 𝑡
󸀠

2
holds |𝑡󸀠

1
−

𝑡
󸀠

2
| ≥ 2, for each 𝑅(𝑘, 𝑡

1
), 𝑅(𝑘, 𝑡

2
) ∈ R(𝑘, 𝑡), 𝑡

1
̸= 𝑡
2
,

holds |𝑡
1
− 𝑡
2
| ≥ 𝑘,

(b) for each 𝑅
𝑡
∈ R
(𝑗)

𝑡,𝑡
󸀠
holds |𝑅

𝑡
| ∈ {2, 𝑘} for 𝑡 ∈ 𝑇

and exactly one of the following conditions for 𝑅
𝑡
∈ R
(𝑗)

𝑡,𝑡
󸀠
and

𝑗 = I, II, III, respectively, is satisfied:

(c1) 𝑋 \ ⋃
𝑡∈𝑇

𝑅
𝑡
= 0 or𝑋 \ ⋃

𝑡∈𝑇
𝑅
𝑡
= {𝑛},

(c2) 𝑋 \ ⋃
𝑡∈𝑇

𝑅
𝑡
= 0,

(c3) |𝑋\⋃
𝑡∈𝑇

𝑅
𝑡
| ∈ {0, 1} and if𝑝 ∈ 𝑋\⋃

𝑡∈𝑇
𝑅
𝑡
then either

𝑝 = 1 or 𝑝 = 𝑛.

Assume that the condition (c1) is satisfied.Then the subfamily
R
(1)

𝑡,𝑡
󸀠
we will call a decomposition with repetitions of the set

𝑋 with the rest at the end.
Assume that the condition (c2) is satisfied. Then the

subfamily R
(2)

𝑡,𝑡
󸀠
we will call a perfect decomposition with

repetitions of the set𝑋.
Assume that the condition (c3) is satisfied. Then the

subfamilyR(3)
𝑡,𝑡
󸀠
we will call a decomposition with repetitions

of the set𝑋 with the rest at the end or at the beginning.

Theorem 1. Let 𝑘 ≥ 3, 𝑛 ≥ 2, and 𝑟 ≥ 1 be integers. Then the
number of all decompositions with repetitions of the set𝑋 with
the rest at the end is equal to the number 𝐹(𝐼)

𝑟
(𝑘, 𝑛).
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Table 3: Distance (𝑟, 𝑘)-Fibonacci numbers 𝐹(III)
𝑟

(𝑘, 𝑛) of the third kind.

𝑘 \ 𝑛 0 1 2 3 4 5 6 7 8

1 1 2 𝑟 + 2 3𝑟 + 2 𝑟
2

+ 5𝑟 + 2 4𝑟
2

+ 7𝑟 + 2 𝑟
3

+ 9𝑟
2

+ 9𝑟 + 2 5𝑟
3

+ 9𝑟
2

+ 16𝑟 + 4 𝑟
4

+ 14𝑟
3

+ 18𝑟
2

+ 18𝑟 + 4

2 1 2 2𝑟 4𝑟 4𝑟
2

8𝑟
2

8𝑟
3

16𝑟
3

16𝑟
4

3 1 2 𝑟 𝑟
2

+ 2𝑟 3𝑟
2

2𝑟
3

+ 2𝑟
2

𝑟
4

+ 5𝑟
3

5𝑟
4

+ 2𝑟
3

3𝑟
5

+ 7𝑟
4

4 1 2 𝑟 2𝑟 𝑟
3

+ 𝑟
2

2𝑟
3

+ 2𝑟
2

2𝑟
4

+ 𝑟
3

4𝑟
4

+ 2𝑟
3

𝑟
6

+ 3𝑟
5

+ 𝑟
4

5 1 2 𝑟 2𝑟 𝑟
2

𝑟
4

+ 2𝑟
2

2𝑟
4

+ 𝑟
3

2𝑟
5

+ 2𝑟
3

4𝑟
5

+ 𝑟
4

6 1 2 𝑟 2𝑟 𝑟
2

2𝑟
2

𝑟
5

+ 𝑟
3

2𝑟
5

+ 2𝑟
3

2𝑟
6

+ 𝑟
4

7 1 2 𝑟 2𝑟 𝑟
2

2𝑟
2

𝑟
3

𝑟
6

+ 2𝑟
3

2𝑟
6

+ 2𝑟
4

Proof (induction on 𝑛). Let 𝑘 ≥ 3, 𝑛 ≥ 2, and 𝑟 ≥ 1 be
integers. Let 𝑋 = {1, 2, . . . , 𝑛}. Denote by 𝑑(𝑛) the number
of all decompositions with repetitions of 𝑋 with the rest at
the end. Let 𝑛 = 2. Then it is easily seen that there are exactly
𝑟 decompositions of 𝑋. Thus we get 𝑑(2) = 𝑟 = 𝐹(I)

𝑟
(𝑘, 2). Let

𝑛 ≥ 3. Assume that equality 𝑑(𝑛) = 𝐹
(I)
𝑟
(𝑘, 𝑛) holds for an

arbitrary 𝑛. We will show that 𝑑(𝑛 + 1) = 𝐹(I)
𝑟
(𝑘, 𝑛 + 1).

Let 𝑑2(𝑛 + 1) and 𝑑
𝑘

(𝑛 + 1) denote the number of all
decompositions𝑅with repetitions of the set𝑋 = {1, 2, . . . , 𝑛+

1} with the rest at the end such that {1, 2} ∈ 𝑅 and
{1, 2, . . . , 𝑘} ∈ 𝑅, respectively. It is easily seen that

𝑑 (𝑛 + 1) = 𝑑
2

(𝑛 + 1) + 𝑑
𝑘

(𝑛 + 1) . (12)

Moreover, we get

𝑑
2

(𝑛 + 1) = 𝑑
𝑘

(𝑛 − 1) ,

𝑑
𝑘

(𝑛 + 1) = 𝑑
𝑘

(𝑛 + 1 − 𝑘) .

(13)

By the induction hypothesis and by recurrence (4) we obtain

𝑑 (𝑛 + 1) = 𝑑 (𝑛 − 1) + 𝑑 (𝑛 + 1 − 𝑘)

= 𝐹
(I)
𝑟
(𝑘, 𝑛 − 1) + 𝐹

(I)
𝑟
(𝑘, 𝑛 + 1 − 𝑘)

= 𝐹
(I)
𝑟
(𝑘, 𝑛 + 1) ,

(14)

which ends the proof.

Analogously as Theorem 1 we can prove the following.

Theorem 2. Let 𝑘 ≥ 3, 𝑛 ≥ 2, and 𝑟 ≥ 1 be integers. Then the
number of all perfect decompositions with repetitions of the set
𝑋 is equal to the number 𝐹(𝐼𝐼)

𝑟
(𝑘, 𝑛).

Theorem 3. Let 𝑘 ≥ 3, 𝑛 ≥ 2, and 𝑟 ≥ 1 be integers. Then the
number of all decompositions with repetitions of the set𝑋 with
the rest at the end or at the beginning is equal to the number
𝐹
(𝐼𝐼𝐼)

𝑟
(𝑘, 𝑛).

Distance (𝑟, 𝑘)-Fibonacci numbers of three kinds have a
graph interpretation, too. It is connected with 𝑘-distance𝐻-
matchings in graphs. We recall the definition of a 𝑘-distance
𝐻-matching. Let 𝐺 and𝐻 be any two graphs, let 𝑘 ≥ 1 be an
integer, and a 𝑘-distance𝐻-matching𝑀 of𝐺 is a subgraph of
𝐺 such that all connected components of𝑀 are isomorphic

to 𝐻 and for each two components 𝐻
1
and 𝐻

2
from 𝑀 for

each 𝑥 ∈ 𝑉(𝐻
1
) and 𝑦 ∈ 𝑉(𝐻

2
) holds 𝑑

𝐺
(𝑥, 𝑦) ≥ 𝑘. In case

of 𝑘 = 1 and𝐻 = 𝐾
2
we obtain the definition of matching in

classical sense. If𝑀 covers the set 𝑉(𝐺) (i.e., 𝑉(𝑀) = 𝑉(𝐺)),
then we say that𝑀 is a perfect matching of 𝐺. For 𝑘 = 2 and
𝐻 = 𝐾

1
the definition of 𝑘-distance 𝐻-matchings reduces

to the definition of an independent set of a graph 𝐺. In the
literature the generalization of 𝐻-matching of a graph 𝐺 is
considered, too. For a given collection H = 𝐻

1
, 𝐻
2
, . . . , 𝐻

𝑛

of graphs aH-matchingM of𝐺 is a family of subgraphs of𝐺
such that each connected component of M is isomorphic to
some𝐻

𝑖
, 1 ≤ 𝑖 ≤ 𝑛. Moreover, the empty set is aH-matching

of 𝐺, too. If𝐻
𝑖
= 𝐻 for all 𝑖 = 1, 2, . . . , 𝑛, then we obtain the

definition of𝐻-matching.
Among H-matchings we consider such H-matchings,

where 𝐻
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, belong to the same class of graphs,

namely, 2-vertex or 𝑘-vertex paths (𝑃
2
and 𝑃

𝑘
, resp.), 𝑘 ≥ 3.

Consider a multipath 𝑃𝑟
𝑛
, where 𝑛 ≥ 2, 𝑟 ≥ 1, 𝑉(𝑃𝑟

𝑛
) =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}, and

𝐸 (𝑃
𝑟

𝑛
) =

{{

{{

{

{𝑥
1
, 𝑥
2
} , . . . , {𝑥

1
, 𝑥
2
}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑟−times

,

{𝑥
2
, 𝑥
3
} , . . . , {𝑥

2
, 𝑥
3
}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑟−times

, . . . ,

{𝑥
𝑛−1

, 𝑥
𝑛
} , . . . , {𝑥

𝑛−1
, 𝑥
𝑛
}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑟−times

}}

}}

}

.

(15)

Let 𝑛 ≥ 2, 𝑘 ≥ 3, and 𝑟 ≥ 1 be integers. In the graph
terminology the number 𝐹(I)

𝑟
(𝑘, 𝑛) is equal to the number of

special {𝑃
2
, 𝑃
𝑘
}-matchings 𝑀 of the multipath 𝑃

𝑟

𝑛
such that

at most one vertex, namely, 𝑥
𝑛
, does not belong to a {𝑃

2
, 𝑃
𝑘
}-

matching of the graph 𝑃𝑟
𝑛
. We will call such matchings 𝑀 a

quasi-perfect matching of 𝑃𝑟
𝑛
. The number 𝐹(II)

𝑟
(𝑘, 𝑛) is equal

to the number of such {𝑃
2
, 𝑃
𝑘
}-matchings of 𝑃𝑟

𝑛
that both

vertex 𝑥
1
and vertex 𝑥

𝑛
belong to some {𝑃

2
, 𝑃
𝑘
}-matchings

𝑀 and𝑀󸀠, respectively, of the graph 𝑃𝑟
𝑛
. In other words the

number𝐹(II)
𝑟
(𝑘, 𝑛) is equal to all perfect {𝑃

2
, 𝑃
𝑘
}-matchings𝑀

of the graph 𝑃𝑟
𝑛
.

The number 𝐹(III)
𝑟

(𝑘, 𝑛) is equal to the number of special
{𝑃
𝑘
, 𝑃
2
}-matchings of the multipath 𝑃𝑟

𝑛
such that at most one

vertex either vertex 𝑥
1
or 𝑥
𝑛
does not belong to a {𝑃

2
, 𝑃
𝑘
}-

matching of the graph 𝑃𝑟
𝑛
.
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Let 𝜎(𝑃𝑟
𝑛
) be the number of all perfect {𝑃

2
, 𝑃
𝑘
}-matchings

𝑀 of the graph 𝑃𝑟
𝑛
.

Theorem 4. Let 𝑟 ≥ 1, 𝑘 ≥ 3, and 𝑛 ≥ 2 be integers. Then
𝜎(𝑃
𝑟

𝑛
) = 𝐹
(𝐼𝐼)

𝑟
(𝑘, 𝑛).

Proof. Consider a multipath 𝑃𝑟
𝑛
where vertices from 𝑉(𝑃

𝑟

𝑛
) =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} are numbered in the natural fashion. Let𝜎

𝑘
(𝑛)

and 𝜎
2
(𝑛) be the number of perfect {𝑃

2
, 𝑃
𝑘
}-matchings𝑀 of

𝑃
𝑟

𝑛
such that 𝑥

𝑛
, 𝑥
𝑛−1

∈ 𝑉(𝑀) and 𝑥
𝑛
, 𝑥
𝑛−1

, . . . , 𝑥
𝑛−𝑘

∈ 𝑉(𝑀),
respectively. It is easily seen that 𝜎

𝑘
(𝑛) + 𝜎

2
(𝑛) = 𝜎(𝑃

𝑟

𝑛
).

Let𝑀 be an arbitrary perfect {𝑃
2
, 𝑃
𝑘
}-matching of 𝑃𝑟

𝑛
, 𝑘 ≥

3. Consider two cases:

(1) {𝑥
𝑛−1

, 𝑥
𝑛
} ∈ 𝐸(𝑃

𝑘
), where 𝑃

𝑘
∈ 𝑀.

Then we can choose the edge {𝑥
𝑛−1

, 𝑥
𝑛
} on 𝑟 ways.

Moreover,𝑀 = 𝑀
󸀠

∪ {𝑃
𝑘
}, where𝑀󸀠 is an arbitrary {𝑃

2
, 𝑃
𝑘
}-

matching of the graph 𝑃
𝑟

𝑛
\ {𝑥
𝑛
, 𝑥
𝑛−1

, . . . , 𝑥
𝑛−𝑘+1

} which is
isomorphic to themultipath𝑃𝑟

𝑛−𝑘
. Hence𝜎

𝑘
(𝑛) = 𝑟

𝑘−1

𝜎(𝑃
𝑟

𝑛−𝑘
).

(2) {𝑥
𝑛−1

, 𝑥
𝑛
} ∈ 𝐸(𝑃

2
), where 𝑃

2
∈ 𝑀.

Proving analogously as in case (1) we obtain 𝜎
2
(𝑛) =

𝑟𝜎(𝑃
𝑟

𝑛−2
).

Consequently

𝜎 (𝑃
𝑟

𝑛
) = 𝜎
𝑘
(𝑛) + 𝜎

2
(𝑛) = 𝑟

𝑘−1

𝜎 (𝑃
𝑟

𝑛−𝑘
) + 𝑟𝜎 (𝑃

𝑟

𝑛−2
) . (16)

Claim

𝜎 (𝑃
𝑟

𝑛
) = 𝑟
𝑘−1

𝐹
(II)
𝑟

(𝑘, 𝑛 − 𝑘) + 𝑟𝐹
(II)
𝑟

(𝑘, 𝑛 − 2) . (17)

Proof. Assume now that the set𝑋 = {1, 2, . . . , 𝑛} corresponds
to 𝑉(𝑃

𝑟

𝑛
) with the numbering in the natural fashion. Let

R(𝑡, 𝑡
󸀠

) = {𝑅
𝑡
: 𝑡 ∈ 𝑇} ∪ {𝑅

󸀠

𝑡
: 𝑡
󸀠

∈ 𝑇} be a multifamily of 𝑋
which gives a perfect decomposition of the set𝑋. Then every
𝑅
𝑡
and 𝑅

𝑡
󸀠 correspond to subgraph 𝑃

|𝑅
𝑡
|
and 𝑃
|𝑅
󸀠

𝑡
|
for 𝑡, 𝑡󸀠 ∈ 𝑇,

respectively, of 𝑃𝑟
𝑛
. By Theorem 2 we get

𝜎 (𝑃
𝑟

𝑛
) = 𝜎
𝑘
(𝑛) + 𝜎

2
(𝑛)

= 𝑟
𝑘−1

𝐹
(II)
𝑟

(𝑘, 𝑛 − 𝑘) + 𝑟𝐹
(II)
𝑟

(𝑘, 𝑛 − 2) .

(18)

Moreover, by (6) we obtain 𝜎(𝑃𝑟
𝑛
) = 𝐹

(II)
𝑟
(𝑘, 𝑛), which ends

the proof.

Analogously we can prove combinatorial interpretations
of numbers 𝐹(I)

𝑟
(𝑘, 𝑛) and 𝐹(III)

𝑟
(𝑘, 𝑛).

4. Identities for Distance
(𝑟, 𝑘)-Fibonacci Numbers

In this section we give some identities and some relations
between distance (𝑟, 𝑘)-Fibonacci numbers of three types.

Theorem 5. For 𝑘 ≥ 1, 𝑛 ≥ 2𝑘 − 2, and 𝑗 = 𝐼, 𝐼𝐼, 𝐼𝐼𝐼,

𝐹
(𝑗)

𝑟
(𝑘, 𝑛) = 𝑟𝐹

(𝑗)

𝑟
(𝑘, 𝑛 − 2) + 𝑟

𝑘−2

𝐹
(𝑗)

𝑟
(𝑘, 𝑛 − 𝑘 + 2)

− 𝑟
2𝑘−3

𝐹
(𝑗)

𝑟
(𝑘, 𝑛 − 2𝑘 + 2) .

(19)

Proof. We give the proof for distance (𝑟, 𝑘)-Fibonacci num-
bers of the first kind. By the definition of numbers 𝐹(I)

𝑟
(𝑘, 𝑛),

we have
𝑟𝐹
(I)
𝑟
(𝑘, 𝑛 − 2) + 𝑟

𝑘−2

𝐹
(I)
𝑟
(𝑘, 𝑛 − 𝑘 + 2)

− 𝑟
2𝑘−3

𝐹
(I)
𝑟
(𝑘, 𝑛 − 2𝑘 + 2) = 𝑟𝐹

(I)
𝑟
(𝑘, 𝑛 − 2)

+ 𝑟
𝑘−2

(𝑟𝐹
(I)
𝑟
(𝑘, 𝑛 − 𝑘) + 𝑟

𝑘−1

𝐹
(I)
𝑟
(𝑘, 𝑛 − 2𝑘 + 2))

− 𝑟
2𝑘−3

𝐹
(I)
𝑟
(𝑘, 𝑛 − 2𝑘 + 2) = 𝑟𝐹

(I)
𝑟
(𝑘, 𝑛 − 2)

+ 𝑟
𝑘−1

𝐹
(I)
2
(𝑘, 𝑛 − 𝑘) = 𝐹

(I)
𝑟
(𝑘, 𝑛) ,

(20)

which ends the proof.

Corollary 6. For 𝑛 ≥ 2 𝐹
𝑛
= (1/2)(𝐹

𝑛−2
+ 𝐹
𝑛+1

).

Proof. For 𝑟 = 1, 𝑗 = I, and 𝑘 = 1 by (19) we obtain

𝐹
(I)
1
(1, 𝑛) = 𝐹

𝑛
= 𝐹
𝑛−2

+ 𝐹
𝑛+1

− 𝐹
𝑛
. (21)

Hence

𝐹
𝑛
=
1

2
(𝐹
𝑛−2

+ 𝐹
𝑛+1

) . (22)

Theorem 7. For 𝑟 ≥ 1, 𝑘 ≥ 2, and 𝑛 ≥ 1,
𝐹
(𝐼)

𝑟
(𝑘, 𝑛) = 𝐹

(𝐼𝐼)

𝑟
(𝑘, 𝑛) + 𝐹

(𝐼𝐼)

𝑟
(𝑘, 𝑛 − 1) . (23)

Proof (induction on 𝑛). For 𝑛 = 1 we have

𝐹
(I)
𝑟
(𝑘, 1) = 1 = 𝐹

(II)
𝑟

(𝑘, 1) + 𝐹
(II)
𝑟

(𝑘, 0) . (24)
Assume that equality (23) is true for an arbitrary 𝑛. We will
prove it for 𝑛 + 1. By the recurrence (6) and by induction
hypothesis we get

𝐹
(I)
𝑟
(𝑘, 𝑛 + 1)

= 𝑟𝐹
(I)
𝑟
(𝑘, 𝑛 − 1) + 𝑟

𝑘−1

𝐹
(I)
𝑟
(𝑘, 𝑛 + 1 − 𝑘)

= 𝑟 (𝐹
(II)
𝑟

(𝑘, 𝑛 − 1) + 𝐹
(II)
𝑟

(𝑘, 𝑛 − 2))

+ 𝑟
𝑘−1

(𝐹
(II)
𝑟

(𝑘, 𝑛 + 1 − 𝑘) + 𝐹
(II)
𝑟

(𝑘, 𝑛 − 𝑘))

= 𝑟𝐹
(II)
𝑟

(𝑘, 𝑛 − 1) + 𝑟
𝑘−1

𝐹
(II)
𝑟

(𝑘, 𝑛 + 1 − 𝑘)

+ 𝑟𝐹
(II)
𝑟

(𝑘, 𝑛 − 2) + 𝑟
𝑘−1

𝐹
(II)
2

(𝑘, 𝑛 − 𝑘)

= 𝐹
(II)
𝑟

(𝑘, 𝑛 + 1) + 𝐹
(II)
𝑟

(𝑘, 𝑛) ,

(25)

which ends the proof.

Analogously we can prove the following.

Theorem 8. For 𝑟 ≥ 1, 𝑘 ≥ 3, and 𝑛 ≥ 0,
2𝐹
(𝐼)

𝑟
(𝑘, 𝑛) = 𝐹

(𝐼𝐼)

𝑟
(𝑘, 𝑛) + 𝐹

(𝐼𝐼𝐼)

𝑟
(𝑘, 𝑛) . (26)

Theorem 9. For 𝑟 ≥ 1, 𝑘 ≥ 2, 𝑛 ≥ 2𝑘, and 𝑗 = 𝐼, 𝐼𝐼, 𝐼𝐼𝐼,

𝐹
(𝑗)

𝑟
(𝑘, 𝑛) = 𝑟

2

𝐹
(𝑗)

𝑟
(𝑘, 𝑛 − 4) + 2𝑟

𝑘

𝐹
(𝑗)

𝑟
(𝑘, 𝑛 − 𝑘 − 2)

+ 𝑟
2𝑘−2

𝐹
(𝑗)

𝑟
(𝑘, 𝑛 − 2𝑘) .

(27)
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