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For the quasi-linear parameter varying (quasi-LPV) system with bounded disturbance, a synthesis approach of dynamic output
feedback robust model predictive control (OFRMPC) is investigated. The estimation error set is represented by a zonotope and
refreshed by the zonotopic set-membership estimation method. By properly refreshing the estimation error set online, the bounds
of true state at the next sampling time can be obtained. Furthermore, the feasibility of the main optimization problem at the next
sampling time can be determined at the current time. A numerical example is given to illustrate the effectiveness of the approach.

1. Introduction

Model predictive control (MPC) or receding horizon control
is a class of optimization based control methods, which
explicitly utilizes process model parameters and measure-
ments to optimize a performance function. At the current
time, the optimization problem is carried out and then
generates the optimal control input sequence. However, only
the first element of control inputs is implemented. At the
next sampling time, the output measurement is updated and
the prediction horizon is shifted one step forward, and then
the optimization problem is repeated. Due to its ability to
handle the systems with hard constraints, it has attracted
many researchers’ attention, from both academic community
and industrial society, for example, [1–4]. However, in real
processes, the precise model parameters are seldomly avail-
able. Hence, robust MPC (RMPC) is more practical for real
applications.

Linear parameter varying (LPV) systems are the systems
whose parameters take their values in the prespecified sets
and the dynamic characteristics depend on the time-varying
parameters. When the time-varying parameters of LPV sys-
tems can be exactly known at the current time, the systems are

called quasi-LPV (quasi-linear parameter varying) systems.
It means that the model parameters are exactly known at
the current time, but their future evolutions are uncertain
and contained in the prescribed bounded sets. In RMPC, the
model parametric uncertainty can be dealt with within the
frame of LPV systems. For the online RMPC, at each time, a
min-max optimization problem is often utilized to minimize
the performance function of LPV systems, which considers
all the possible realization of model parametric uncertainty
[5]. Reference [6] extends the approaches in [5] to the quasi-
LPV systemwith a quasi-min-max optimization. In [7, 8], the
controller designment considers the time-varying parameters
of quasi-LPV systems having the bounds on their rate of
variation. Reference [9] considers the quasi-LPV systems
with a parameter-dependent control law.

However, in [5–9], the true states are assumed to be
known and the boundeddisturbance is not considered. In real
processes, the true states are usually unmeasurable, and only
the outputs with disturbance are available. In these situations,
output feedback RMPC (OFRMPC) is more practical than
the state feedback one for real applications. For OFRMPC
with bounded disturbance and without model parametric
uncertainty, see [10, 11]. ForOFRMPCwithmodel parametric
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uncertainty and without bounded disturbance, see [12–14].
For OFRMPC with both polytopic uncertainty and bounded
disturbance, see [15–20].

For OFRMPC, the bounds of estimation error set rep-
resent a kind of uncertainty, which has to be considered in
the robust stability and physical constraints.When themodel
parametric uncertainty, bounds of estimation error set, and
disturbance are known and contained in the bounded sets,
the evolution of state estimation is a compact set which is con-
sistent with the bounded uncertainties. The set-membership
estimation considers nonstatistical description of model
parameters, estimation error sets, and disturbance in the
form of bounded uncertainties. When the set-membership
estimation is utilized to state estimation, an appropriate
representation of estimation error sets should consider the
tradeoff between the precise representation of estimation
error sets and the online computational burden. Polytopes
can be used to represent exactly the estimation error set.
However, if the vertices of polytopes increase dramatically,
the computational burden becomes quickly prohibitive [21].
Ellipsoids can overcome the drawback by efficient compu-
tation. However, the Minkowski sum of ellipsoids is not
necessary an ellipsoid, and an outer approximation ellipsoid
is often used to estimate the Minkowski sum of ellipsoids,
which may lead to the conservatism of state estimation. In
recent years, zonotopes (a particular class of polytopes) have
receivedmore attention because of their advantages of having
better precision in comparison with ellipsoidal sets and less
complexity compared to polyhedral sets. Hence, several set-
membership estimation methods based on zonotopes [22–
25] have been proposed.

The present paper considers a synthesis approach of
dynamic OFRMPC for the quasi-LPV system with bounded
disturbance. The main optimization problem is similar to
that in [16, 19], while the estimation error sets are repre-
sented by zonotopes.Themain contribution is a combination
between the main optimization problem that calculates con-
trol parameters and the set-membership estimation based on
zonotopic computation. By properly refreshing the estima-
tion error sets, it can obtain the precise bounds of true states
at the next sampling time. Furthermore, the feasibility of the
main optimization problem at the next sampling time can
be determined by checking a feasible problem at the current
time.

2. Notations, Basic Definitions, and Properties

For any vector 𝑥 and positive-definite matrix 𝑊, ‖𝑥‖2
𝑊

≜

𝑥
T
𝑊𝑥. 𝑥(𝑖 | 𝑘) is the value of 𝑥 at time 𝑘 + 𝑖, predicted at

time 𝑘. 𝐼 is the identity matrix with appropriate dimension.
𝜀
𝑀

≜ {𝜉 | 𝜉
T
𝑀𝜉 ≤ 1} denotes the ellipsoid associated with

the symmetric positive-definitematrix𝑀. All vector inequal-
ities are interpreted in an element-wise sense. An element
belonging to Co{⋅} means that it is a convex combination
of the elements in {⋅}, with the scalar combing coefficients
nonnegative and their sum equal to 1.The symbol “⋆” induces
a symmetric structure in the matrix inequalities. A value
with superscript “∗” means that it is the optimal solution of

the optimization problem. The time-dependence (𝑘) of the
MPC decision variables is often omitted for brevity.

Let an interval [𝑎; 𝑏] be defined as the set {𝑥 : 𝑎 ≤

𝑥 ≤ 𝑏}. The unitary interval is B = [−1; 1]. A box
([𝑎

1
; 𝑏
1
], . . . , [𝑎

𝑛
; 𝑏
𝑛
])
T is an interval vector. A unitary box in

R𝑚, denoted byB𝑚, is a box composed by𝑚unitary intervals.
TheMinkowski sum of two sets𝑋 and𝑌 is defined by𝑋⊕𝑌 =

{𝑥 + 𝑦 : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌}.

Definition 1. A𝑚-zonotope inR𝑛 can be defined as the linear
image of a 𝑚-dimensional hypercube in R𝑛, where 𝑚 is the
order of the zonotope and satisfies𝑚 ≥ 𝑛. Given a vector 𝑝 ∈

R𝑛 and a matrix 𝐻 ∈ R𝑛×𝑚, a 𝑚-zonotope is the following
set:

𝑍 = 𝑝 ⊕ 𝐻B𝑚
= {𝑥 ∈ R

𝑛
| 𝑥 = 𝑝 + 𝐻𝑧, 𝑧 ∈ B𝑚

} . (1)

This is the Minkowski sum of the 𝑚-segments defined
by 𝑚 columns of matrix 𝐻 in R𝑛. The center of zonotope
𝑍 is vector 𝑝; 𝐻 = [ℎ

1
, . . . , ℎ

𝑖
, . . . , ℎ

𝑚
], with ℎ

𝑖
∈ R𝑛,

𝑖 ∈ {1, . . . , 𝑚}, are the generators of the zonotope. Some
properties for zonotopic computation are given as follows.

Property 1 (the Minkowski sum of two zonotopes [22]).
Given two zonotopes 𝑍

1
= 𝑝

1
⊕ 𝐻

1
B𝑚

1
∈ R𝑛 and 𝑍

2
=

𝑝
2
⊕ 𝐻

2
B𝑚

2
∈ R𝑛, the Minkowski sum of two zonotopes is

also a zonotope defined by 𝑍 = 𝑍
1
⊕ 𝑍

2
= (𝑝

1
+ 𝑝

2
) ⊕

[𝐻
1
𝐻
2
]B𝑚
1
+𝑚
2
∈ R𝑛.

Property 2 (the image of a zonotope [22]). The image of a
zonotope 𝑍 = 𝑝 ⊕ 𝐻B𝑚

∈ R𝑛 by a linear mapping 𝐾 can
be computed by a standard matrix product 𝐾𝑍 = (𝐾𝑝) ⊕

(𝐾𝐻)B𝑚
∈ R𝑛.

Property 3 (zonotope reduction [22, 23]). Given a zonotope
𝑍 = 𝑝⊕𝐻B𝑚

∈ R𝑛 and integer 𝑓 with 𝑛 < 𝑓 < 𝑚, denote by
�̂� the matrix resulting from the reordering of the columns of
matrix𝐻 in decreasing order of Euclidean norm and by 𝑂 ∈

R𝑛×𝑛 a diagonal matrix, satisfying the following conditions:

�̂� = [
̂
ℎ
1
, . . . ,

̂
ℎ
𝑖
, . . . ,

̂
ℎ
𝑚
] , with 






̂
ℎ
𝑖





2

≥







̂
ℎ
𝑖+1





2
, (2)

𝑂
𝑖𝑖
=

𝑚

∑

𝑗=𝑓−𝑛+1






�̂�
𝑖𝑗






, with 𝑖 = {1, . . . , 𝑛} , (3)

and then𝑍 ⊆
̂
𝑍 ≜ 𝑝⊕[�̂�

𝑇
𝑂]B𝑓

∈ R𝑛, where �̂�
𝑇
is obtained

from the first 𝑓 − 𝑛 columns of matrix �̂�.

Remark 2. From Property 3, it can obtain that ̂𝑍 is an outer
approximation of 𝑍 with a lower order, which can be utilized
to estimate a zonotope with high order. In Section 4.2, by
applying Property 3, the order of the estimation error set can
be reduced.

Zonotopes are the special case of polytopes and can be
represented by half-space representation (H-representation)
and vertex representation (V-representation).The definitions
are as follows.
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Definition 3 (H-representation of a polytope). For 𝑞 half-
spaces, a convex polytope 𝑃 is the set:

𝑃 = {𝑥 ∈ R
𝑛
| 𝐺𝑥 ≤ 𝑔, 𝐺 ∈ R

𝑞×𝑛
, 𝑔 ∈ R

𝑞×1
} . (4)

Definition 4 (V-representation of a polytope). A polytope 𝑃
is the set constructed by the convex combination of finite
vertices 𝜒

𝑖
∈ R𝑛, 𝑖 ∈ {1, . . . , 𝑉

𝑃
}; that is,

𝑃 = Co {𝜒
1
, . . . , 𝜒

𝑉
𝑃

}

= {

𝑉
𝑃

∑

𝑖=1

𝛼
𝑖
𝜒
𝑖
| 𝜒

𝑖
∈ R

𝑛
, 𝛼

𝑖
∈ R, 𝛼

𝑖
≥ 0,

𝑉
𝑃

∑

𝑖=1

𝛼
𝑖
= 1} ,

(5)

where 𝑉
𝑃
is the total number of vertices related to the V-

representation of polytope 𝑃. From Definition 1, the unitary
box B𝑚 inR𝑚 has 2𝑚 vertices, and each vertex of B𝑚 is a𝑚-
dimensional vector with the element being 1 or −1. Hence,
according to (1), at most 2𝑚 vertices of zonotope 𝑍 can be
calculated. We define the vertex which is the interior point
of 𝑍 as redundant vertex. To represent the zonotope 𝑍 by V-
representation through 𝑉

𝑍
vertices, a Quickhull Algorithm

in [26] can be employed to remove the redundant vertices.
When the dimension 𝑛 of zonotope𝑍 is fixed, the relationship
between𝑉

𝑍
and𝑚 can be obtained; for example, when 𝑛 = 2,

𝑉
𝑍
= 2𝑚; 𝑛 = 3, 𝑉

𝑍
= 𝑚(𝑚 − 1) + 2, respectively [27]. For

high-dimensional systems, although the relationship between
𝑉
𝑍
and𝑚 is complex, the upper bound of𝑉

𝑍
can be calculated

in polynomial time for the fixed dimension of zonotopes [28].

Figure 1 shows a zonotope 𝑍 = 𝑝 ⊕ 𝐻B3, where 𝑝 = [
6

5
],

𝐻 = [
2.5 −2 0.5

0 −1 −2
], 𝑚 = 3; the three generators are ℎ

1
= [

2.5

0
],

ℎ
2
= [

−2

−1
], ℎ

3
= [

0.5

−2
], which are the three columns of matrix

𝐻, respectively [27]. Based on Definition 1, the vertices of
zonotope 𝑍 can be calculated for the different 23 vertices
of unitary box B3, where the different combinations of “+”
and “−” denote the corresponding vertices of 𝑍. In order
to describe the zonotope 𝑍 by V-representation through 6
(𝑉

𝑧
= 2 × 3) vertices, the redundant vertices denoted by

“(−, −, +)” and “(+, +, −)” are removed.

3. Problem Statement

Consider the following discrete-time uncertain LPV system:

𝑥 (𝑘 + 1) = 𝐴 (𝑘) 𝑥 (𝑘) + 𝐵 (𝑘) 𝑢 (𝑘) + 𝐷 (𝑘)𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶 (𝑘) 𝑥 (𝑘) + 𝐸 (𝑘)𝑤 (𝑘) ,

(6)

where 𝑢 ∈ R𝑛
𝑢 , 𝑥 ∈ R𝑛

𝑥 , 𝑦 ∈ R𝑛
𝑦 , and 𝑤 ∈ R𝑛

𝑤 are input,
state, output, and disturbance, respectively.

We make the following assumptions on system (6).

(A1) The time-varying system matrices [𝐴 | 𝐵 | 𝐶 | 𝐷 |

𝐸](𝑘) are known to vary within a polytope Ω, that is,
[𝐴 | 𝐵 | 𝐶 | 𝐷 | 𝐸](𝑘) ∈ Ω ≜ Co{[𝐴

𝑙
| 𝐵

𝑙
| 𝐶

𝑙
|

𝐷
𝑙
| 𝐸

𝑙
], 𝑙 = {1, . . . , 𝐿}}, and there exist nonnegative

coefficients 𝜆
𝑙
(𝑘), where 𝜆

𝑙
(𝑘)’s are exactly known at

current time 𝑘, such that ∑𝐿

𝑙=1
𝜆
𝑙
(𝑘) = 1 and [𝐴 | 𝐵 |

𝐶 | 𝐷 | 𝐸](𝑘) = ∑
𝐿

𝑙=1
𝜆
𝑙
(𝑘)[𝐴

𝑙
| 𝐵

𝑙
| 𝐶

𝑙
| 𝐷

𝑙
| 𝐸

𝑙
].

(−, −, −)

(−, +, +)

(−, −, +)

(+, −, −)

(+, −, +)

(+, +, +)

(−, +, −) (+, +, −)
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x
2

0
0 2 4 6 8 10 12

1

2

3

4

5

6

7

8

Figure 1: Representation of a zonotope𝑍 by generators and vertices.

(A2) The bounded disturbance satisfies 𝑤(𝑘) ∈ 𝜀
𝑃
𝑤

, and
an outer approximation of the bounded ellipsoidal
disturbance set can be represented by a zonotope D;
that is,

𝜀
𝑃
𝑤

⊆ D ≜ 0 ⊕ 𝐻
𝑤
B𝑑

, 𝐻
𝑤
∈ R

𝑛
𝑤
×𝑑
, 𝑑 ≥ 𝑛

𝑤
, (7)

where matrix 𝐻
𝑤
is constructed by 𝑑 generators of

zonotope D.
(A3) The input and output constraints are required to

satisfy

−𝑢 ≤ 𝑢 (𝑘) ≤ 𝑢, −𝜓 ≤ Ψ𝑦 (𝑘 + 1) ≤ 𝜓, (8)

where 𝑢 = [𝑢
1
, 𝑢

2
, . . . , 𝑢

𝑛
𝑢

]
T; 𝑢

𝑗
> 0, 𝑗 ∈ {1, . . . , 𝑛

𝑢
};

𝜓 = [𝜓
1
, 𝜓

2
, . . . , 𝜓

𝑞
]
T; 𝜓

𝑗
> 0, 𝑗 ∈ {1, . . . , 𝑞}; Ψ ∈

R𝑞×𝑛
𝑦 .

For the system (6), the dynamic output feedback con-
troller is of the following form [16, 19]:

𝑥
𝑐
(𝑖 + 1 | 𝑘) = 𝐴

𝑐
(𝑖 | 𝑘) 𝑥

𝑐
(𝑖 | 𝑘) + 𝐵

𝑐
(𝑖 | 𝑘) 𝑦 (𝑖 | 𝑘) ,

𝑢 (𝑖 | 𝑘) = 𝐶
𝑐
(𝑖 | 𝑘) 𝑥

𝑐
(𝑖 | 𝑘) + 𝐷

𝑐
(𝑖 | 𝑘) 𝑦 (𝑖 | 𝑘) ,

(9)

where 𝑥
𝑐
∈ R𝑛

𝑥 , {𝐴
𝑐
(𝑖 | 𝑘), 𝐵

𝑐
(𝑖 | 𝑘)} are the controller

gain matrices, and {𝐶
𝑐
(𝑖 | 𝑘), 𝐷

𝑐
(𝑖 | 𝑘)} are the feedback gain

matrices.The controller parameters {𝐴
𝑐
(𝑖 | 𝑘), 𝐵

𝑐
(𝑖 | 𝑘), 𝐶

𝑐
(𝑖 |

𝑘), 𝐷
𝑐
(𝑖 | 𝑘)} take the parameter-dependent form as

𝐴
𝑐
(𝑖 | 𝑘) =

𝐿

∑

𝑙=1

𝐿

∑

𝑗=1

𝜆
𝑙
(𝑘 + 𝑖) 𝜆

𝑗
(𝑘 + 𝑖) 𝐴

𝑙𝑗

𝑐
,

𝐷
𝑐
(𝑖 | 𝑘) = 𝐷

𝑐
,

𝐵
𝑐
(𝑖 | 𝑘) =

𝐿

∑

𝑙=1

𝜆
𝑙
(𝑘 + 𝑖) 𝐵

𝑙

𝑐
,

𝐶
𝑐
(𝑖 | 𝑘) =

𝐿

∑

𝑗=1

𝜆
𝑗
(𝑘 + 𝑖) 𝐶

𝑗

𝑐
.

(10)
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Hence, the augmented closed-loop system, based on (9) and
the predictions made by (6), is

𝑥 (𝑖 + 1 | 𝑘) = Φ (𝑖, 𝑘) 𝑥 (𝑖 | 𝑘)

+ Γ (𝑖, 𝑘) 𝑤 (𝑘 + 𝑖) , ∀𝑖 ≥ 0,

𝑥 (0 | 𝑘) = 𝑥 (𝑘) ,

(11)

where

𝑥 = [𝑥
T
, 𝑥

T
𝑐
]

T
,

Φ
𝑙𝑗
= [

𝐴
𝑙
+ 𝐵

𝑙
𝐷
𝑐
𝐶
𝑗
𝐵
𝑙
𝐶

𝑗

𝑐

𝐵

𝑙

𝑐
𝐶
𝑗

𝐴

𝑙𝑗

𝑐

] ,

Γ
𝑙𝑗
= [

𝐵
𝑙
𝐷
𝑐
𝐸
𝑗
+ 𝐷

𝑙

𝐵

𝑙

𝑐
𝐸
𝑗

] ,

[Φ (𝑖, 𝑘) | Γ (𝑖, 𝑘)] =

𝐿

∑

𝑙=1

𝐿

∑

𝑗=1

𝜆
𝑙
(𝑘 + 𝑖) 𝜆

𝑗
(𝑘 + 𝑖) [Φ

𝑙𝑗
| Γ

𝑙𝑗
] .

(12)

At each time 𝑘, the true state 𝑥(𝑘) is unmeasurable. Hence
it is necessary to use its bounds to represent the true state.
Suppose, at time 𝑘, 𝑥(𝑘) is confined by a𝑚(𝑘) order zonotope
represented by

𝑥 (𝑘) ∈ 𝑋 (𝑘) = 𝑥
𝑐
(𝑘) ⊕ 𝐻 (𝑘)B𝑚(𝑘)

,

𝐻 (𝑘) ∈ R
𝑛
𝑥
×𝑚(𝑘)

, 𝑚 (𝑘) ≥ 𝑛
𝑥
,

(13)

and then by applying Definition 1 and removing the redun-
dant vertices, the true state 𝑥(𝑘) can be represented by the
following convex set:

𝑥 (𝑘) ∈ Co {𝜒
1
(𝑘) , 𝜒

2
(𝑘) , . . . , 𝜒

𝑉
𝑋(𝑘)

(𝑘)} , (14)

where 𝜒
𝑟
(𝑘), 𝑟 ∈ {1, 2, . . . , 𝑉

𝑋(𝑘)
}, are the vertices of 𝑋(𝑘)

and 𝑉
𝑋(𝑘)

is the total number of vertices related to the V-
representation of zonotope𝑋(𝑘) at time 𝑘.

4. Synthesis Approach of Dynamic OFRMPC

4.1. The Main Optimization Problem. In the dynamic
OFRMPC approach, at each time 𝑘, based on the dynamic
OFRMPC approaches in [16, 19], the following main
optimization problem is considered:

min
𝛾,𝑄,𝐴

𝑙𝑗

𝑐
,𝐵
𝑙

𝑐
,𝐶
𝑗

𝑐
,𝐷
𝑐

max
[𝐴|𝐵|𝐶|𝐷|𝐸](𝑘+𝑖)∈Ω,𝑤(𝑘+𝑖)∈𝜀𝑃𝑤

𝛾, (15)

s.t. 𝑥 (𝑘) ∈ 𝜀
𝑄
−1 , (16)

‖𝑥 (𝑖 | 𝑘)‖
2

𝑄
−1

≥ 1 ⇒ ‖𝑥 (𝑖 | 𝑘)‖
2

𝑄
−1 − ‖𝑥 (𝑖 + 1 | 𝑘)‖

2

𝑄
−1

≥

1

𝛾

[




𝑦 (𝑖 | 𝑘)






2

Q
+ ‖𝑢 (𝑖 | 𝑘)‖

2

R] ,

∀𝑖 ≥ 0,

(17)

− 𝑢 ≤ 𝑢 (𝑖 | 𝑘) ≤ 𝑢, ∀𝑖 ≥ 0, (18)

− 𝜓 ≤ Ψ𝑦 (𝑖 + 1 | 𝑘) ≤ 𝜓, ∀𝑖 ≥ 0, (19)

where 𝛾 is the performance cost, (16) is the augmented state
constraint, (17) is the stability/optimality condition, (18) is the
input constraint, (19) is the output constraint, the matricesQ,
R are the positive-definite weightingmatrices, and𝑄 satisfies
the following conditions:

𝑄
−1

= 𝑀 = [
𝑀

1
𝑀

T
2

𝑀
2

𝑀
3

] ,

𝑄 = [
𝑄
1
𝑄

T
2

𝑄
2

𝑄
3

] .

(20)

Choosing 𝑀
2
= −𝑀

1
, then 𝑀

3
= 𝑀

1
(𝑀

1
− 𝑄

−1

1
)𝑀

1
, 𝑄

2
=

𝑄
3
= 𝑄

1
−𝑀

−1

1
.

In the following, some previous results mainly in [16,
19] are reviewed to deal with constraint conditions (16)–
(19). By applying the definition of augmented state and (14),
constraint (16) holds if there exist positive-definite matrices
{𝑀

1
, 𝑄

1
,𝑀

3
,𝑀

4
} such that

[

𝜒
𝑟
(𝑘)

𝑥
𝑐
(𝑘)

]

T
[

𝑀
1

−𝑀
1

−𝑀
1

𝑀
3

] [

𝜒
𝑟
(𝑘)

𝑥
𝑐
(𝑘)

] ≤ 1,

𝑟 ∈ {1, 2, . . . , 𝑉
𝑋(𝑘)

} ,

(21)

[
𝑀

3
−𝑀

1

−𝑀
1

𝑀
4

] ≥ 0,

[

𝑀
1
−𝑀

4
𝐼

𝐼 𝑄
1

] ≥ 0.

(22)

For all𝑥(𝑖 | 𝑘) and all admissible𝑤(𝑘 + 𝑖), condition (17) holds
if there exist a scalar 𝛼 andmatrices {𝐴𝑙𝑗

𝑐
, 𝐵

𝑙

𝑐
, 𝐶

𝑗

𝑐
, 𝐷

𝑐
} such that

Υ
𝑄𝐵

(𝑖, 𝑘) =

𝐿

∑

𝑙=1

𝐿

∑

𝑗=1

𝜆
𝑙
(𝑘 + 𝑖) 𝜆

𝑗
(𝑘 + 𝑖) Υ

𝑄𝐵

𝑙𝑗
≥ 0, ∀𝑖 ≥ 0,

Υ
𝑄𝐵

𝑙𝑗

=

[

[

[

[

[

[

[

[

(1 − 𝛼)𝑀1 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

(1 − 𝛼) 𝐼 (1 − 𝛼)𝑄1 ⋆ ⋆ ⋆ ⋆ ⋆

0 0 𝛼𝑃𝑤 ⋆ ⋆ ⋆ ⋆

𝐴𝑙 + 𝐵𝑙�̂�𝑐𝐶𝑗 𝐴𝑙𝑄1 + 𝐵𝑙�̂�
𝑗

𝑐 𝐵𝑙�̂�𝑐𝐸𝑗 + 𝐷𝑙 𝑄1 ⋆ ⋆ ⋆

𝑀1𝐴𝑙 + 𝐵
𝑙

𝑐
𝐶𝑗 𝐴

𝑙𝑗

𝑐 𝐵
𝑙

𝑐
𝐸𝑗 +𝑀1𝐷𝑙 𝐼 𝑀1 ⋆ ⋆

Q1/2
𝐶𝑗 Q1/2

𝐶𝑗𝑄1 Q1/2
𝐸𝑗 0 0 𝛾𝐼 ⋆

R1/2
�̂�𝑐𝐶𝑗 R1/2

�̂�
𝑗

𝑐 R1/2
�̂�𝑐𝐸𝑗 0 0 0 𝛾𝐼

]

]

]

]

]

]

]

]

,

(23)
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with (10) being parameterized as

𝐷
𝑐
= 𝐷

𝑐
,

𝐶

𝑗

𝑐
= (𝐷

𝑐
𝐶
𝑗
𝑄
1
− 𝐶

𝑗

𝑐
) (𝑀

−1

1
− 𝑄

1
)

−1

,

𝐵

𝑙

𝑐
= 𝑀

−1

1
(𝑀

1
𝐵
𝑙
𝐷
𝑐
− 𝐵

𝑙

𝑐
) ,

𝐴

𝑙𝑗

𝑐
= (𝑀

−1

1
𝐴
𝑙𝑗

𝑐
− 𝐴

𝑙
𝑄
1
− 𝐵

𝑙
𝐷
𝑐
𝐶
𝑗
𝑄
1
+ 𝐵

𝑙

𝑐
𝐶
𝑗
𝑄
1
)

× (𝑀
−1

1
− 𝑄

1
)

−1

+ 𝐵
𝑙
𝐶

𝑗

𝑐
.

(24)

Suppose, at time 𝑘, constrains (21), (22), and (23) are
satisfied; there exist positive-definitematrices {𝑈, Ξ̃} such that

Υ
𝑢

𝑗
=

[

[

[

[

𝑀
1

⋆ ⋆ ⋆

𝐼 𝑄
1

⋆ ⋆

0 0 𝑃
𝑤

⋆

√2𝐷
𝑐
𝐶
𝑗
√2𝐶

𝑗

𝑐
√2𝐷

𝑐
𝐸
𝑗
𝑈

]

]

]

]

≥ 0,

𝑈
𝑠𝑠
≤ 𝑢

2

𝑠
, 𝑗 = 1, . . . , 𝐿, 𝑠 = 1, . . . , 𝑛

𝑢
,

Υ
ℎ
(𝑖, 𝑘) =

𝐿

∑

𝑙=1

𝐿

∑

𝑗=1

𝜆
𝑙
(𝑘 + 𝑖) 𝜆

𝑗
(𝑘 + 𝑖) Υ

ℎ

𝑙𝑗
≥ 0,

ℎ = 1, . . . , 𝐿, ∀𝑖 ≥ 0,

Υ
ℎ

𝑙𝑗
=

[

[

[

[

𝑀
1

⋆ ⋆ ⋆

𝐼 𝑄
1

⋆ ⋆

0 0 𝑃
𝑤

⋆

Ψ𝐶
ℎ
(𝐴

𝑙
+ 𝐵

𝑙
𝐷
𝑐
𝐶
𝑗
) Ψ𝐶

ℎ
(𝐴

𝑙
𝑄
1
+ 𝐵

𝑙
𝐶
𝑗

𝑐
) Ψ𝐶

ℎ
(𝐵

𝑙
𝐷
𝑐
𝐸
𝑗
+ 𝐷

𝑙
) Ξ̃

]

]

]

]

,

Ξ̃
𝑠𝑠
≤ �̃�

2

𝑠
, 𝑠 = 1, . . . , 𝑞,

�̃�
𝑠
=

1

√2

(𝜓
𝑠
− √𝜁

𝑠
) ,

𝜁
𝑠
= max

ℎ

(Ψ𝐸
ℎ
𝑃
−1

𝑤
𝐸
T
ℎ
Ψ

T
)
𝑠𝑠
,

(25)

where 𝑈
𝑠𝑠
(Ξ̃

𝑠𝑠
) is the 𝑠th diagonal element of 𝑈(Ξ̃), and then

by applying (10) and (24), the constraints (18) and (19) are
satisfied.

From the above conditions, it is shown that the main
optimization problem (15)–(19) can be approximated by

min
𝛾,𝛼,𝑄

1
,𝑀
1
,𝑀
3
,𝑀
4
,𝐴
𝑙𝑗

𝑐 ,𝐵
𝑙

𝑐
,�̂�
𝑗

𝑐 ,�̂�𝑐,𝑈,Ξ̃

𝛾,

s.t. (21) , (22) , (23) , (25) .

(26)

At each time 𝑘, if the main optimization problem (26) is
solved, then (11) is quadratically bounded [29, 30] within a
common Lyapunov matrix 𝑄−1, and the controller parame-
ters are calculated by (10) and (24). The main optimization
problem (26) can be solved by an LMI (linear matrix
inequality) tool, which is the same as in [16, 19].

Remark 5. In [16], the true state constraint in the main
optimization problem is represented by the V-representation
of general polyhedral sets. In [19], to guarantee the recursive
feasibility of the optimization problem based on polyhedral
bounds, the true state constraint in the main optimization
problem utilizes either the ellipsoidal set or the polyhedral

set, with the latter being used if and only if it is contained in
the former. Compared with [16, 19], the present paper utilizes
the V-representation of zonotopes to represent the bounds of
true state.

4.2. The Refreshment of Estimation Error Sets. Define the
estimation error 𝑒(𝑘) ≜ 𝑥(𝑘) − 𝑥

𝑐
(𝑘). At each time 𝑘, for

the quasi-LPV system (6), the model parameters [𝐴 | 𝐵 |

𝐶 | 𝐷 | 𝐸](𝑘) are exactly known at the current time
𝑘. If the controller parameters {𝐴

𝑐
(𝑘), 𝐵

𝑐
(𝑘), 𝐶

𝑐
(𝑘), 𝐷

𝑐
(𝑘)}

are obtained, then according to (11) and the definition of
estimation error, it is shown that

𝑒 (𝑘 + 1) =

𝐿

∑

𝑙=1

𝐿

∑

𝑗=1

𝜆
𝑙
(𝑘) 𝜆

𝑗
(𝑘)

× {(𝐴
𝑙
+ 𝐵

𝑙
𝐷
𝑐
𝐶
𝑗
− 𝐵

𝑙

𝑐
𝐶
𝑗
) 𝑥 (𝑘)

+ (𝐵
𝑙
𝐶

𝑗

𝑐
− 𝐴

𝑙𝑗

𝑐
) 𝑥

𝑐
(𝑘)

+ (𝐵
𝑙
𝐷
𝑐
𝐸
𝑗
+ 𝐷

𝑙
− 𝐵

𝑙

𝑐
𝐸
𝑗
)𝑤 (𝑘)}
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= [𝐴 (𝑘) + 𝐵 (𝑘)𝐷
𝑐
(𝑘) 𝐶 (𝑘) − 𝐵

𝑐
(𝑘) 𝐶 (𝑘)] 𝑥 (𝑘)

+ [𝐵 (𝑘) 𝐶
𝑐
(𝑘) − 𝐴

𝑐
(𝑘)] 𝑥

𝑐
(𝑘)

+ [𝐵 (𝑘)𝐷
𝑐
(𝑘) 𝐸 (𝑘) + 𝐷 (𝑘) − 𝐵

𝑐
(𝑘) 𝐸 (𝑘)] 𝑤 (𝑘) .

(27)

By applying (7) and (13) and Properties 1 and 2, it can be
obtained that

𝑒 (𝑘 + 1) ∈ E (𝑘 + 1)

≜ [𝐴 (𝑘) + 𝐵 (𝑘)𝐷
𝑐
(𝑘) 𝐶 (𝑘)

− 𝐵
𝑐
(𝑘) 𝐶 (𝑘) + 𝐵 (𝑘) 𝐶

𝑐
(𝑘) − 𝐴

𝑐
(𝑘)] 𝑥

𝑐
(𝑘)

⊕ {[𝐴 (𝑘) + 𝐵 (𝑘)𝐷
𝑐
(𝑘) 𝐶 (𝑘) − 𝐵

𝑐
(𝑘) 𝐶 (𝑘)]𝐻 (𝑘) ,

[𝐵 (𝑘)𝐷
𝑐
(𝑘) 𝐸 (𝑘) + 𝐷 (𝑘) − 𝐵

𝑐
(𝑘) 𝐸 (𝑘)]𝐻

𝑤
}

× B𝑚(𝑘)+𝑑
.

(28)

From (28), the estimation error set at time 𝑘 + 1 can be
represented by a [𝑚(𝑘) + 𝑑]-zonotope E(𝑘 + 1) = 𝑝(𝑘 + 1) ⊕

𝐻(𝑘 + 1)B𝑚(𝑘)+𝑑, where

𝑝 (𝑘 + 1)

= [𝐴 (𝑘) + 𝐵 (𝑘)𝐷
𝑐
(𝑘) 𝐶 (𝑘)

− 𝐵
𝑐
(𝑘) 𝐶 (𝑘) + 𝐵 (𝑘) 𝐶

𝑐
(𝑘) − 𝐴

𝑐
(𝑘)] 𝑥

𝑐
(𝑘) ,

𝐻 (𝑘 + 1)

= [[𝐴 (𝑘) + 𝐵 (𝑘)𝐷
𝑐
(𝑘) 𝐶 (𝑘) − 𝐵

𝑐
(𝑘) 𝐶 (𝑘)]𝐻 (𝑘) ,

[𝐵 (𝑘)𝐷
𝑐
(𝑘) 𝐸 (𝑘) + 𝐷 (𝑘) − 𝐵

𝑐
(𝑘) 𝐸 (𝑘)]𝐻

𝑤
] .

(29)

It can easily be obtained from (28) that, with the evolution
of time, the order of zonotope E(𝑘 + 1) will increase.
Accordingly, the generators and the vertices of zonotope
E(𝑘 + 1) will increase, which may lead to more LMIs in the
main optimization problem (26) to enforce the augmented
state constraints and then increase the online computational
burden of the main optimization problem (26). To decrease
the online computational burden of the main optimization
problem (26), we impose the restriction on the order ofE(𝑘+
1) by 𝑚(𝑘) + 𝑑 ≤ 𝑁

𝑧
. When 𝑚(𝑘) + 𝑑 > 𝑁

𝑧
, Property 3 is

applied to construct a low order 𝑁
𝑧
-zonotope ̂E(𝑘 + 1) =

𝑝(𝑘 + 1) ⊕ �̂�(𝑘 + 1)B𝑁
𝑧 for outer approximation of the high

order zonotopeE(𝑘 + 1); that is, E(𝑘 + 1) ⊆
̂E(𝑘 + 1), where

�̂� (𝑘 + 1) = [�̂�
𝑇
(𝑘 + 1) 𝑂 (𝑘 + 1)] ,

�̂� (𝑘 + 1) ∈ R
𝑛
𝑥
×𝑁
𝑧
,

(30)

and �̂�
𝑇
(𝑘 + 1) ∈ R𝑛

𝑥
×[𝑁
𝑧
−𝑛
𝑥
] and 𝑂(𝑘 + 1) ∈ R𝑛

𝑥
×𝑛
𝑥 are

calculated according to (2) and (3), respectively. From the

above derivations, it can be obtained that the estimation error
set at time 𝑘 + 1 is one of the following forms:

𝑃 (𝑘 + 1) = E (𝑘 + 1) ,

𝐻 (𝑘 + 1) = 𝐻 (𝑘 + 1) ,

𝑚 (𝑘 + 1) = 𝑚 (𝑘) + 𝑑, when 𝑚(𝑘) + 𝑑 ≤ 𝑁
𝑧
;

𝑃 (𝑘 + 1) =
̂E (𝑘 + 1) ,

𝐻 (𝑘 + 1) = �̂� (𝑘 + 1) ,

𝑚 (𝑘 + 1) = 𝑁
𝑧
, when 𝑚(𝑘) + 𝑑 > 𝑁

𝑧
.

(31)

When the estimation error set 𝑃(𝑘 + 1) is obtained,
according to Definition 1, at most 2𝑚(𝑘+1) vertices can be
calculated. By removing the redundant vertices, the set 𝑃(𝑘 +
1) can be described by V-representation through 𝑉

𝑃(𝑘+1)

vertices. The vertices of the true state set 𝑋(𝑘 + 1) are the
same as 𝑃(𝑘 + 1); that is, 𝑉

𝑋(𝑘+1)
= 𝑉

𝑃(𝑘+1)
. Hence the V-

representation of the true state at time 𝑘 + 1 is

𝑥 (𝑘 + 1) ∈ Co {𝜒
1
(𝑘 + 1) , 𝜒

2
(𝑘 + 1) , . . . , 𝜒

𝑉
𝑋(𝑘+1)

(𝑘 + 1)} ,

𝜒
𝑟
(𝑘 + 1) = 𝑥

𝑐
(𝑘 + 1) + V

𝑟
(𝑘 + 1) ,

𝑟 ∈ {1, 2, . . . , 𝑉
𝑋(𝑘+1)

} .

(32)

Remark 6. In Section 2, we have mentioned the relationship
between 𝑉

𝑧
(the number of vertices related to zonotopes), 𝑚

(the order of zonotopes), and the dimension of zonotopes.
For the refreshment of estimation error sets in Section 4.2,
when the dimension of true state is 𝑛

𝑥
= 2,𝑉

𝑋(𝑘+1)
= 𝑉

𝑃(𝑘+1)
=

2𝑚(𝑘+1); when 𝑛
𝑥
= 3,𝑉

𝑋(𝑘+1)
= 𝑉

𝑃(𝑘+1)
= 𝑚(𝑘+1)[𝑚(𝑘+1)−

1]+2, respectively [27]. For high-dimensional systems, when
𝑛
𝑥
is fixed, the upper bound of 𝑉

𝑋(𝑘+1)
(or 𝑉

𝑃(𝑘+1)
) is related

to 𝑚(𝑘 + 1) and can be calculated in polynomial time [28].
In [16],𝑉

𝑋(𝑘+1)
(or𝑉

𝑃(𝑘+1)
) only depends on the dimension of

true state; that is, 𝑉
𝑋(𝑘+1)

= 𝑉
𝑃(𝑘+1)

= 2
𝑛
𝑥 . In [19], the upper

bound of𝑉
𝑋(𝑘+1)

(or𝑉
𝑃(𝑘+1)

) is bounded by properly selecting
an integer 𝑝.

In [16, 19], the outer approximation of ellipsoidal bounded
disturbance is represented by the V-representation of the
polytope. The present paper utilizes zonotopes to outer
approximation of 𝜀

𝑃
𝑤

. The outer approximation of ellipsoids
introduces conservatism. However, by properly increasing
the vertices of outer approximation polyhedral sets in [16,
19] and choosing matrix 𝐻

𝑤
with proper generators, the

conservatism can be reduced.

4.3. The Feasibility of the Optimization Problem at the Next
Sampling Time. The original optimization problem (15)–(19)
is recursive feasible; that is, it is feasible for all 𝑘 > 0

if and only if it is feasible at time 𝑘 = 0. However, by
using the bounds of true state to handle the uncertainty
of true state, the recursive feasibility may be lost for the
main optimization problem (26). If the main optimization
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problem (26) is solved at time 𝑘, then the optimal solu-
tions {𝛼, 𝛾, 𝐴𝑙𝑗

𝑐
, 𝐵

𝑙

𝑐
, 𝐶

𝑗

𝑐
, 𝐷

𝑐
, 𝑄

1
,𝑀

1
, 𝑈, Ξ̃}

∗
(𝑘) are obtained, and

𝑥(𝑘) ∈ 𝜀
[𝑄
∗
(𝑘)]
−1 . At time 𝑘 + 1, by choosing

𝑀
4
(𝑘 + 1) = 𝑀

∗

1
(𝑘) − 𝑄

∗

1
(𝑘)

−1
,

𝑀
1
(𝑘 + 1) = 𝑀

∗

1
(𝑘) ,

𝑄
1
(𝑘 + 1) = 𝑄

∗

1
(𝑘) ,

𝑀
3
(𝑘 + 1) = 𝑀

3
(𝑘 + 1)

= 𝑀
∗

1
(𝑘) [𝑀

∗

1
(𝑘) − 𝑄

∗

1
(𝑘)

−1
]

−1

𝑀
∗

1
(𝑘)

T
,

(33)

then (22) is satisfied as follows:

[
𝑀

3
(𝑘 + 1) −𝑀

1
(𝑘 + 1)

−𝑀
1
(𝑘 + 1) 𝑀

4
(𝑘 + 1)

] ≥ 0,

[

𝑀
1
(𝑘 + 1) − 𝑀

4
(𝑘 + 1) 𝐼

𝐼 𝑄
1
(𝑘 + 1)

] ≥ 0.

(34)

Based on (33) and (34) and the definitions of 𝑄 and𝑀, then,
by applying the Schur complement, it can be obtained that if
the problem (35) is feasible:

find 𝜂,

s.t.
[

[

[

[

[

𝜂 ⋆ ⋆

𝜒
𝑟
(𝑘 + 1) 𝑄

∗

1
(𝑘) ⋆

𝑥
𝑐
(𝑘 + 1) 𝑄

∗

2
(𝑘) 𝑄

∗

3
(𝑘)

]

]

]

]

]

≥ 0,

0 < 𝜂 ≤ 1, 𝑟 ∈ {1, 2 . . . , 𝑉
𝑋(𝑘+1)

} ,

(35)

then (21) is satisfied and 𝑥(𝑘 + 1) ∈ 𝜀
[𝑄
∗
(𝑘)]
−1 . In

the main optimization problem (26), only (21) and
(22) are related to the process state information. By
further choosing {𝛼, 𝛾, 𝐴

𝑙𝑗

𝑐
, 𝐵

𝑙

𝑐
, 𝐶

𝑗

𝑐
, 𝐷

𝑐
, 𝑈, Ξ̃}(𝑘 + 1) =

{𝛼, 𝛾, 𝐴
𝑙𝑗

𝑐
, 𝐵

𝑙

𝑐
, 𝐶

𝑗

𝑐
, 𝐷

𝑐
, 𝑈, Ξ̃}

∗
(𝑘), the feasible solutions for

the main optimization problem (26) at time 𝑘 + 1 can be
constructed. The feasible solutions for (21) at time 𝑘 + 1 can
be directly constructed through (33). Hence, the feasibility
of (35) determines not only whether 𝑥(𝑘 + 1) is contained in
the ellipsoidal set 𝜀

[𝑄
∗
(𝑘)]
−1 or not, but also the feasibility of

the main optimization problem (26) at time 𝑘 + 1.

Remark 7. In [16], the refreshment of estimation error sets
and the feasibility of the main optimization problem at
the next sampling time are performed simultaneously by
an iterative auxiliary optimization problem. Furthermore,
it involves the H-representation of estimation error set in
the auxiliary optimization problem. In [19], to guarantee
the recursive feasibility of the main optimization problem
based on polyhedral sets, the recursions of both polyhedral
sets and ellipsoidal sets are obtained. At the next sampling
time, the polyhedral set is used in the main optimization
problem if and only if it is contained in the ellipsoidal set.The
present paper refreshes the estimation error set via zonotopic
computations and is represented by V-representation. Then

problem (35) is applied to determine whether the main
optimization problem (26) is solved or not at the next
sampling time.

4.4. Overall Solutions

Algorithm 8. Choose a feasible 𝑥
𝑐
(0) and the initial constrain

of 𝑥(0) represented by a zonotope 𝑥
𝑐
(0) ⊕ 𝐻(0)B𝑚(0), where

𝐻(0) ∈ R𝑛
𝑥
×𝑚(0). Let 𝑝ro = 1. Select the maximal order of

zonotope related to the estimation error set as 𝑁
𝑧
. At each

time 𝑘 ≥ 0, perform the following steps.

(1) If 𝑝ro = 1, then solve the main optimization problem
(26) and obtain the controller parameters by (10) and
(24).

(2) If 𝑝ro = 0, then inherit the previous controller
parameters.

(3) Implement 𝑢(𝑘) = 𝐶
𝑐
(𝑘)𝑥

𝑐
(𝑘) + 𝐷

𝑐
(𝑘)𝑦(𝑘), and

calculate 𝑥
𝑐
(𝑘 + 1) = 𝐴

𝑐
(𝑘)𝑥

𝑐
(𝑘) + 𝐵

𝑐
(𝑘)𝑦(𝑘).

(4) CalculateE(𝑘 + 1) by (28). If𝑚(𝑘) + 𝑑 ≤ 𝑁
𝑧
, then let

𝑃(𝑘 + 1) = E(𝑘 + 1); else then calculate ̂E(𝑘 + 1) by
(30) and let 𝑃(𝑘 + 1) =

̂E(𝑘 + 1).

(5) Check the feasibility of problem (35). If problem (35)
is feasible, then let 𝑝ro = 1; else then let 𝑝ro = 0.

The complexity analysis of Algorithm 8 and the related
algorithms for worst cases are listed in Table 1. For the main
optimization problem in Table 1, an LMI tool is utilized. The
complexity for solving the main optimization problem is
polynomial time, which (regarding the fastest interior-point
algorithms) is proportional toK3L, whereK is the number of
scalar LMI variables and L is the number of scalar LMI rows
(see [31]). The complexities of Algorithm 1 in [16], Algorithm
1 in [19], and Algorithm 8 are summarized in Table 1. From
Table 1, it can be obtained that the computational burden of
the main optimization problem is different mainly in how
many of scalar LMI rows are utilized to describe the bounds
of estimation error (or true state). In the main optimization
problem of [16],L depends on the dimension of true state 𝑛

𝑥
;

L in the main optimization problem of [19] can be confined
by properly choosing𝑝. In Algorithm 8, the restriction on the
order of zonotope by𝑁

𝑧
can limit 𝑉

𝑋(𝑘)
.

For the auxiliary optimization problem in [16], the com-
putational burden mainly comes from an iterative method.
Algorithm 1 in [19] and Algorithm 8 take the advantage
of Quickhull Algorithm in [26] to remove the redundant
vertices andobtain the estimation error set byV-presentation.
The worst-case complexity of Quickhull in [26] is𝑂(𝑉 log 𝑟

𝑝
)

for 𝑛
𝑥
≤ 3 and 𝑂(𝑉𝑓

𝑟
/𝑟
𝑝
) for 𝑛

𝑥
≥ 4, where 𝑉 is the number

of input points inR𝑛
𝑥 , 𝑟

𝑝
is the number of processed points,

and 𝑓
𝑟
is the maximum number of facets for 𝑟

𝑝
processed

vertices, respectively. Furthermore, the outer approximation
of ellipsoidal sets in [19] and problem (35) are solved by
an LMI tool, and the complexity analysis of the related
parametersK and L is listed in Table 1.
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Table 1: The complexity analysis of the compared algorithms.

Different algorithms Main optimization problem Refreshment of estimation error set and/or determination of
feasibility problem

Algorithm 1 in [16] K = K
𝑀
, L = L

𝑀
+ 2

𝑛𝑥

Each iteration of (35) in [16]:K = 𝑛
𝑥
(𝑛

𝑥
+ 1) + 1,

L = 𝑛
2

𝑥
+ 2𝑛

𝑥
𝑛
𝑤

𝑝
2
𝑛𝑥
+ 2

𝑛𝑥
(1 + 𝑛

𝑥
) + 3𝑛

𝑥
+ 1; (35) in [16] is infeasible:

K = 1, L = 2𝑛
𝑥
𝑛
𝑤

𝑝
2
𝑛𝑥

Algorithm 1 in [19]
For polyhedral set:K = K

𝑀
, L = L

𝑀
+ 𝑝;

for ellipsoidal set:K = K
𝑀
+ 1,

L = L
𝑀
+ 3

Quickhull Algorithm: 𝑂(𝑝𝑛𝑤
𝑝
log 𝑟

𝑝
), 𝑛

𝑥
≤ 3; 𝑂(𝑝𝑛𝑤

𝑝
𝑓
𝑟
/𝑟

𝑝
), 𝑛

𝑥
≥ 4;

outer approximation of ellipsoidal sets:K = 𝑝, L = 𝑝
2
𝑛
𝑤

𝑝

Algorithm 8 K = K
𝑀
, L = L

𝑀
+ 𝑉

𝑋(𝑘)

Quickhull Algorithm: 𝑂(2𝑁𝑧 log 𝑟
𝑝
), 𝑛

𝑥
≤ 3; 𝑂(2𝑁𝑧𝑓

𝑟
/𝑟

𝑝
), 𝑛

𝑥
≥ 4;

problem (35):K = 1, L = 2𝑛
𝑥
+ 1

Note:K𝑀 = (1/2)𝐿(𝐿 + 1)𝑛
2

𝑥
+ 𝐿𝑛𝑥(𝑛𝑦 + 𝑛𝑢) + 𝑛𝑢𝑛𝑦 + 2𝑛𝑥(𝑛𝑥 + 1) + (1/2)𝑛𝑢(𝑛𝑢 + 1) + (1/2)𝑛𝑦(𝑛𝑦 + 1) + 1; L𝑀 = ((𝐿 + 𝑛 − 1)!/𝑛!(𝐿 − 1)!)(4𝑛𝑥 + 𝑛𝑤 + 𝑛𝑦 +

𝑛𝑢) + 𝐿((𝐿 + 𝑛 − 1)!/𝑛!(𝐿 − 1)!)(2𝑛𝑥 + 2𝑛𝑤 + 𝑛𝑦) + 𝐿(2𝑛𝑥 + 𝑛𝑤 + 𝑛𝑢) + 4𝑛𝑥 + 𝑛𝑢 + 𝑛𝑦; 𝑛
𝑤

𝑝
is the number of vertices related to the outer approximation of 𝜀𝑃𝑤

by V-presentation; 𝑝 is the maximal number of vertices related to the estimation error set (or true state) in the main optimization problem;𝑁𝑧 is the maximal
order of zonotopes related to the estimation error set (or true state) in the main optimization problem.

Theorem 9. For system (6), Algorithm 8 is applied. Suppose
𝑥(0) ∈ 𝑋(0) = 𝑥

𝑐
(0) ⊕ 𝐻(0)B𝑚(0), where𝐻(0) ∈ R𝑛

𝑥
×𝑚(0). If

the main optimization problem (26) is feasible at time 𝑘 = 0,
then 𝑥(𝑘) will converge to a neighborhood of 𝑥 = 0, and the
input and output constraints (8) are satisfied for all time 𝑘 ≥ 0.

Proof. The proof is similar to the “proof of Theorem 1” in
[32]. Suppose, at time 𝑘, Algorithm 8 is performed with a
refreshed control law; at time 𝑘 + 1, 𝑘 + 2, . . . , 𝑘 + 𝑙 − 1, 𝑙 > 0,
it obtains 𝑝ro = 0, and at time 𝑘 + 𝑙 it obtains 𝑝ro = 1.
According to Algorithm 8, the optimal solutions to (26) at
time 𝑘 will be feasible to (26) at time 𝑘 + 𝑙. Hence, 𝛾(𝑘 + 𝑙) =

𝛾
∗
(𝑘) is a feasible bound of performance cost at time 𝑘 + 𝑙.

At time 𝑘 + 𝑙, solve the main optimization problem (26),
𝛾
∗
(𝑘 + 𝑙) ≤ 𝛾(𝑘 + 𝑙) will be obtained, and then it will satisfy

𝛾
∗
(𝑘 + 𝑙) ≤ 𝛾

∗
(𝑘). By induction, 𝛾∗(𝑘o) will not increase with

time 𝑘o, where 𝑘o is the time when the main optimization
problem (26) is solved.With the evolution of time, 𝛾∗(𝑘o)will
tend to a constant value denoted by 𝛾

𝑐
, and the corresponding

positively invariant ellipsoidal set related to 𝛾
𝑐
for system (11)

is represented by ellipsoidal set 𝜀
𝑄
−1

𝑐

.
Consider the following uncorrupt system (i.e., the system

is not corrupted by disturbance):

𝑥u (𝑖 + 1 | 𝑘
o
) = Φ (𝑖, 𝑘

o
) 𝑥u (𝑖 | 𝑘

o
) , ∀𝑖 ≥ 0,

𝑥u (0 | 𝑘
o
) = 𝑥 (𝑘

o
) ,

𝑢u (𝑖 | 𝑘
o
) = 𝐶

𝑐
(𝑖 | 𝑘

o
) 𝑥

𝑐,u (𝑖 | 𝑘
o
) + 𝐷

𝑐
(𝑖 | 𝑘

o
) 𝑦u (𝑖 | 𝑘

o
) ,

𝑦u (𝑖 | 𝑘
o
) = 𝐶 (𝑘

o
+ 𝑖) 𝑥u (𝑖 | 𝑘

o
) .

(36)

The quadratic boundedness condition (23) guarantees the
asymptotic stability of the uncorrupt system (36). Hence,





𝑥u (𝑖 | 𝑘

o
)





2

𝑄
−1 −





𝑥u (𝑖 + 1 | 𝑘

o
)





2

𝑄
−1

≥

1

𝛾 (𝑘
o
)

[




𝑦u (𝑖 | 𝑘

o
)





2

Q
+




𝑢u (𝑖 | 𝑘

o
)





2

R
] ,

∀𝑖 ≥ 0.

(37)

By summing (37) from 𝑖 = 0 to 𝑖 = ∞, it achieves

𝐽
∞
(𝑘

o
) =

∞

∑

𝑖=0

[




𝑦u (𝑖 | 𝑘

o
)





2

Q
+




𝑢u (𝑖 | 𝑘

o
)





2

R
]

≤ 𝛾 (𝑘
o
)




𝑥 (𝑘

o
)



𝑄
−1 ≤ 𝛾 (𝑘

o
) .

(38)

Hence, 𝛾(𝑘o) is also an upper bound of performance cost for
the uncorrupt system (36). The condition 𝐽

∞
(𝑘

o
) ≤ 𝛾

∗
(𝑘

o
)

results in lim
𝑖→∞

𝑦u(𝑖 | 𝑘
o
) = 0 and lim

𝑖→∞
𝑢u(𝑖 | 𝑘

o
) =

0. When 𝛾
∗
(𝑘

o
) tends to a constant value, 𝛾

𝑐
means that the

augmented state will converge to a neighborhood of 𝑥 = 0

represented by 𝜀
𝑄
−1

𝑐

and stay in this neighborhood thereafter.
Satisfaction of the input and output constraints (8) is due to
(25).

5. Numerical Example

Consider the nonlinear continuous stirred tank reactor
(CSTR) model, which has been studied in [12, 16, 19]. Similar
to [16, 19], the nonlinear CSTR model is represented as
the quasi-LPV system around the operation point, which
considers the physical constraints and bounded disturbance.
The details corresponding to system (6) are 𝐿 = 4,

𝐴
1
= [

0.8227 −0.00168

6.1233 0.9367
] ,

𝐴
2
= [

0.9654 −0.00182

−0.6759 0.9433
] ,

𝐴
3
= [

0.8895 −0.00294

2.9447 0.9968
] ,

𝐴
4
= [

0.8930 −0.00062

2.7738 0.8864
] ,

𝐵
1
= [

−0.000092

0.1014
] , 𝐵

2
= [

−0.000097

0.1016
] ,

𝐵
3
= [

−0.000157

0.1045
] , 𝐵

4
= [

−0.000034

0.0986
] ,
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Figure 2: The responses of estimated states and time-varying
estimation error sets, Algorithm 1 in [16].

𝐷
𝑙
= [

0.0022

0.0564
] , 𝐶

𝑙
= [0 1] , 𝐸

𝑙
= 0.2,

𝑙 = 1, . . . , 4,

𝑢 = 10, Ψ = 1, 𝜓 = 10,

𝜆
1
=

1

2

𝜑
1
(𝑦) − 𝜑

1
(−𝜓)

𝜑
1
(𝜓) − 𝜑

1
(−𝜓)

, 𝜆
2
=

1

2

𝜑
1
(𝜓) − 𝜑

1
(𝑦)

𝜑
1
(𝜓) − 𝜑

1
(−𝜓)

,

𝜑
1
(𝑦) = 7.2 × 10

10
𝑒
−8750/(𝑦+350)

,

𝜆
3
=

1

2

𝜑
2
(𝑦) − 𝜑

2
(−𝜓)

𝜑
2
(𝜓) − 𝜑

2
(−𝜓)

, 𝜆
4
=

1

2

𝜑
2
(𝜓) − 𝜑

2
(𝑦)

𝜑
2
(𝜓) − 𝜑

2
(−𝜓)

,

𝜑
2
(𝑦) =

3.6 × 10
10
(𝑒

−8750/(𝑦+350)
− 𝑒

−8750/350
)

𝑦

.

(39)

For the above quasi-LPV system, in Algorithm 8, choose
𝑃
𝑤

= 4, 𝐻
𝑤

= 0.5, Q = 25, and R = 1, take
𝑥
𝑐
(0) = [0.15, 3]

T, and the initial state belongs to a zonotope
𝑥
𝑐
(0) ⊕ 𝐻(0)B𝑚(0), where 𝐻(0) = [

0.12 0

0 1.2
], 𝑚(0) = 2.

In order to compare with Algorithm 1 in [16], 𝑁
𝑧

= 2

(𝑉
𝑋(𝑘)

= 𝑉
𝑃(𝑘)

= 4) is selected in Algorithm 8, and choose
the parameters for Algorithm 1 in [16] as 𝑒 = [0.12, 1.2]

T,
{𝜏, 𝛿, 𝜇} = {10, 0.003, 0.99}. For comparing with Algorithm
1 in [19], 𝑁

𝑧
= 4 (𝑉

𝑋(𝑘)
= 𝑉

𝑃(𝑘)
= 8) is selected in

Algorithm 8, and choose the parameters for Algorithm 1 in
[19] as 𝑒 = [0.12, 1.2]

T,𝑇 = [
0.1697 0.1697 0 −1.697

0 0.1697 1.697 1.697
]
T,𝑀

𝑒
(0) =

diag{0.5/(0.06 × 2)
2
, 0.5/(0.6 × 2)

2
}, 𝑝 = 8.

For all the compared algorithms above, the distur-
bance sequence 𝑤 is randomly generated from the interval
[−0.5, 0.5], which can be represented by a zonotope D =

0 ⊕ 𝐻
𝑤
B1. We have fixed 𝛼 = 0.001, which only has
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Figure 3: The responses of estimated states and time-varying
estimation error sets, Algorithm 1 in [19].
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Figure 4: The responses of estimated states and time-varying
estimation error sets, Algorithm 8,𝑁

𝑧
= 2.

negligible influence on the control performance. By applying
Algorithm 8 (𝑁

𝑧
= 2), Algorithm 8 (𝑁

𝑧
= 4), Algorithm 1

in [16], and Algorithm 1 in [19], the simulation results are
shown in Figures 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11. Figures 2–
4 show the responses of estimated states and time-varying
estimation error sets related to the compared algorithms.
Figure 6 compares the trajectories of augmented closed-loop
system corresponding to the different algorithms.The control
input signals shown in Figure 7 illustrate that the input
constraints are satisfied. Figure 8 shows the performance
cost of the compared algorithms. The same disturbance
sequence that is shown in Figure 9 has been applied for all the
simulations. Figures 10 and 11 show the projections of a super
dimensional ellipsoid 𝜀

𝑄
−1

𝑐

, which is related to performance
cost 𝛾

𝑐
, on the subspace of estimated state and estimation

error set, respectively.
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Figure 5: The responses of estimated states and time-varying
estimation error sets, Algorithm 8,𝑁
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Figure 6:The comparisons of trajectories of augmented closed-loop
systems.

Let 𝐽 = ∑
30

𝑘=0
{‖𝑦(𝑘)‖

2

Q + ‖𝑢(𝑘)‖
2

R}. For Algorithm 8
(𝑁

𝑧
= 2) (Algorithm 8 (𝑁

𝑧
= 4), Algorithm 1 in [16],

and Algorithm 1 in [19]), 𝐽 = 3808.8 (𝐽 = 3374.5, 𝐽 =

4253.6, 𝐽 = 3658.8) is obtained, and the time spent on
the simulations is 36.4 s (42.6 s, 50.8 s, 49.2 s), respectively.
Compare Algorithm 8 (𝑁

𝑧
= 2) with Algorithm 1 in [16]; the

control performance is improved with lower computational
burden; even the main optimization problem of Algorithm
1 in [16] is not solved at some sampling times. Compare
Algorithm 8 (𝑁

𝑧
= 2) withAlgorithm 8 (𝑁

𝑧
= 4); by properly
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Figure 7: The comparisons of control input signals.
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Figure 8: The performance costs of the compared algorithms.

limiting the order of zonotopes, the control performance can
be improved, with a slight increasement of computational
burden. Furthermore, the augmented states of Algorithm 8
(𝑁

𝑧
= 4) and Algorithm 1 in [19] converge to nearly the same

neighborhoods of 𝑥 = 0, while the control performance of
the former is better than the latter. The Matlab 7.14 (AMD
Phenom II Processor 2.70GHz, 4G Memory) is utilized for
the simulations.
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Figure 9: The disturbance utilized in the simulations.
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on the subspace of estimated state.

6. Conclusions

For quasi-LPV systems with bounded disturbance, a set-
membership estimation method via zonotopic computation
is applied to refresh the estimation error set. By properly
refreshing the estimation error set, the control performance
can be improved. Furthermore, the feasibility of the main
optimization problem at the next sampling time can be
determined by checking a feasible problem at the current
time. The augmented state can converge to a neighborhood
of 𝑥 = 0 and stay in the neighborhood of 𝑥 = 0 thereafter.
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