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Our main goal is to define a fuzzy solution for problems involving diffusion. To this end, the solution of fuzzy diffusion-reaction-
advection equation will be defined as Zadeh’s extension of deterministic solution of the associated problem. Important aspects such
as unity and stability of these solutions will also be studied. Graphical representations of these solutions will be presented.

1. Introduction

In 1965, Zadeh introduced the concept of fuzzy sets [1].
Therefore, much research has been developed botkh from a
theoretical and practical [2–11]. One area of great interest was
the modelling uncertain phenomena by means of differen-
tial equations. When subjectivity is random, the nature of
uncertainty can be treated as a tool for stochastic differential
equations; however, the fuzzy variational models can include
various types of uncertainties beyond the stochastic.

Depending on the choice of state variable and/or model
parameters, respectively, demographic fuzziness state vari-
ables are modelled by fuzzy sets and/or environmental
fuzziness only when the parameters are considered fuzzy.
In biological phenomena in general, both types are present
fuzziness [2].

The fuzzy variational equations have been studied by
different methods. The first attempt to include subjectivity of
the nonrandom systems was with the variational derivative
of Hukuhara [12, 13], but this formulation is not able to
reproduce the rich behaviour of deterministic differential
equations such as periodicity, stability, and bifurcation.

In 1999, [14] proposed another way of looking at sub-
jectivity not by random differential inclusions. The fuzzy
solutions obtained by this approach are able to present fre-
quency, stability, and bifurcation; however, from a technical

standpoint, to obtain solutions through a family of differential
inclusions can be extremely difficult.

When the variables are uncertain, a way to have a more
adequate treatment variational models for all uncertainty is
to pass parameters to themathematicalmodel. In this case, an
alternative method that is used is that which is to make fuzzy
solutions of a deterministic model, using Zadeh’s extension
[15].

Zadeh’s extension is the way we produce a fuzzy transfor-
mation ̂

𝑓 : F(𝑋) → F(𝑋) for a given function𝑓 : 𝑋 → 𝑋.
Zadeh’s extension ̂

𝑓 has been studied and applied by many
authors, including [12, 16–18], in the study of fuzzy fractals
and Nguyen [7] in set-representation of fuzzy sets.

Our main objective in this paper is to explore proper-
ties such as uniqueness and stability of the fuzzy solution
of a fuzzy differential equation associated with classical
advection-diffusion-reaction equation (see Figure 9), using
Zadeh’s extension [19].

2. Basic Concepts

2.1. Fuzzy Sets. In this section we present the basic funda-
mentals necessary for the proper understanding and appli-
cation of fuzzy set theory in the following sections. For more
information, the reader may consult [2, 19].The fuzzy subsets
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of a space 𝑋 are characterized by functions of space in the
interval [0, 1]. Therefore we have the following.

Definition 1. Let 𝑋 be a nonempty set. A fuzzy subset 𝐹 of 𝑋
is a subset {(𝑥, 𝜇

𝐹
(𝑥)) : 𝑥 ∈ 𝑋} nonempty of 𝑋 × [0, 1] for

some function 𝜇
𝐹
:→ [0, 1].

The function 𝜇
𝐹
: 𝑋 → [0, 1] is called the membership

function of 𝐹 and the value assumed for each 𝑥 ∈ 𝑋 is the
degree of relevance of 𝑥 in 𝐹. The set consists of all fuzzy
subsets of a set𝑋 that will be denoted byF(𝑋).

Directly follow that, when defining that any subset
random 𝑋 is also a fuzzy subset of 𝑋, since this set is
well determined by the characteristic function and therefore
satisfies the definition above. In fact, if 𝐹 subset 𝑋 with
characteristic function 𝜒

𝐹
: 𝑋 → [0, 1], then the set 𝜒

𝐹
=

{(𝑥, 𝜒

𝐹
(𝑥)) : 𝑥 ∈ 𝑋} is a subset of𝑋×[0, 1]with membership

function 𝜇
𝜒𝐹
(𝑥) = 𝜒

𝐹
(𝑥) for all 𝑥 ∈ 𝑋 and hence 𝜒

𝐹
∈ F(𝑋).

To a better distinction, the fuzzy subset 𝜒
𝐹
will be referred to

herein as set crisp of𝑋.
Given a fuzzy subset 𝐹 in F(𝑋) defined, for each 𝛼 ∈

(0, 1], the set [𝐹]𝛼 ⊂ 𝑋 is the set of elements of 𝑋 such that
the degree of relevance in 𝐹 is at least 𝛼. The set [𝐹]𝛼 ⊂ 𝑋 is
called 𝛼-level of 𝐹 and, mathematically, is defined as

[𝐹]

𝛼
= {𝑥 ∈ 𝑋 : 𝜇

𝐴 (
𝑥) ≥ 𝛼} para 𝛼 ∈ (0, 1] . (1)

The zero level of a fuzzy subset 𝐹 is defined by

[𝐹]

0
= ⋃

𝛼∈(0,1]

[𝐹]

𝛼
= supp (𝐹), (2)

where supp(𝐹) = {𝑥 ∈ 𝑋 : 𝜇

𝐹
(𝑥) > 0} is the support of fuzzy

subset 𝐹.
Two fuzzy sets are equal when the characteristic functions

are equal, that is,

𝐴 = 𝐵 ⇐⇒ 𝜇

𝐴 (
𝑥) = 𝜇𝐵 (

𝑥) ∀𝑥 ∈ 𝑋. (3)

The equality between fuzzy sets can also be characterized
through 𝛼-levels. In this case, the sets are equal when 𝛼-level
matches for every 𝛼 ∈ [0, 1].

In many cases it may be necessary to extend the domain
of a application 𝑓 : 𝑋 → 𝑌 for the fuzzy sets in F(𝑋).
Note that for each subset 𝐹 ⊂ 𝑋 an application 𝑓 defines a
subset 𝑓(𝐹) ⊂ 𝑌. Assuming now that 𝐹 is a fuzzy subset 𝑋,
that is, 𝐹 ∈ F(𝑋), then we need to determine how the image
induced the application 𝑓 over 𝐹. The way this picture is can
be characterized by principle of Zadeh’s extension as defined
below.

Definition 2. Let𝑓 : 𝑋 → 𝑌 be a𝐹 applying a fuzzy subset𝑋.
Zadeh’s extension ̂

𝑓 : F(𝑋) → F(𝑌)whose image is applied
has membership function:

𝜇

𝑓(𝐹)
(𝑦) =

{

{

{

sup
𝑎∈𝑓
−1
(
𝑦
)

𝜇

𝐹 (
𝑎) se 𝑓−1

(𝑦) ̸= 0,

0 se 𝑓−1
(𝑦) = 0.

(4)

As mentioned earlier, a subset 𝐹 ⊂ 𝑋 determines fuzzy
set 𝜒

𝐹
of 𝑋 whose membership function is a characteristic

function of 𝐹. The image of 𝜒
𝐹
by extension ̂

𝑓 that is a
function𝑓 coincides with the fuzzy set 𝜒

𝑓(𝐹)
defined by 𝑓(𝐹).

That is, ̂𝑓(𝜒
𝐹
) = 𝜒

𝑓(𝐹)
. In fact, the above definition ensures

that ̂𝑓(𝜒
𝐹
) has membership function:

𝜇

𝑓(𝜒𝐹)
(𝑦) = {

1 if 𝑦 ∈ 𝑓 (𝐹) ,
0 if 𝑦 ∈ 𝑌 − 𝑓 (𝐹)

(5)

which is the characteristic function of 𝑓(𝐹). Therefore,
̂

𝑓(𝜒

𝐹
) = 𝜒

𝑓(𝐹)
. In particular, for all 𝑥 ∈ 𝑋 it is worth ̂

𝑓(𝜒

𝑥
) =

𝜒

{𝑓(𝑥)}
.

Theorem 3. If 𝑓 : R𝑛
→ R𝑛 is continuous, then Zadeh’s

extension ̂

𝑓 : F(R𝑛
) → F(R𝑛

) is continuous and satisfies

[

̂

𝑓 (x)]
𝛼

= 𝑓 ([x]𝛼) (6)

for all 𝛼 ∈ [0, 1].

By the Hausdorff metric 𝑑
𝐻
, for the compacts of 𝑋, we

can define a metric for the setF(𝑋). Thus, given two points
a, b ∈ F(𝑋), the distance 𝑑

∞
(a, b) between a and b is given

by

𝑑

∞ (a, b) = sup
𝛼∈[0,1]

𝑑

𝐻
([a]𝛼 , [b]𝛼) , (7)

where

𝑑

𝐻
([a]𝛼 , [b]𝛼)

= max {dist ([a]𝛼 , [b]𝛼) , dist ([b]𝛼 , [a]𝛼)}

= max{ sup
𝑎∈[a]𝛼

inf
𝑏∈[b]𝛼

‖𝑎 − 𝑏‖ , sup
𝑏∈[b]𝛼

inf
𝑎∈[a]𝛼

‖𝑎 − 𝑏‖} .

(8)

Particular type of fuzzy set that will prove useful is the call
number fuzzy, which is an attempt to generalize real numbers
in the fuzzy context.

Definition 4. A fuzzy set 𝐹 ⊂ R is called fuzzy number if
satisfies the following:

(a) the 𝛼-level [𝐹]

𝛼 are compact, connected, and
nonempty for all 𝛼 ∈ [0, 1];

(b) there is a unique 𝑥 such that 𝜇
𝐹
(𝑥) = 1.

Definition 5. Let [𝑢(𝑥, 𝑡)]𝛼 be the 𝛼-level associated with a
function fuzzy 𝑢̂(𝑥, 𝑡) and 𝑢𝛼

1
(𝑥, 𝑡), 𝑢𝛼

2
(𝑥, 𝑡) functions such

that

[𝑢 (𝑥, 𝑡)]

𝛼
= [𝑢

𝛼

1
(𝑥, 𝑡) , 𝑢

𝛼

2
(𝑥, 𝑡)] , (9)

and then define a diameter of [𝑢(𝑥, 𝑡)]𝛼 as

diam ([𝑢 (𝑥, 𝑡)]

𝛼
) = 𝑢

0

2
(𝑥, 𝑡) − 𝑢

0

1
(𝑥, 𝑡) . (10)
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2.2. Diffusion Equation

2.2.1. Diffusion-Reaction-Advection Equation in R and R2.
Diffusion models have been extensively employed to investi-
gate dispersal and have yielded considerable insight into the
dynamics of animal movement in space and time. Diffusion
models can be written in the simplest form as

𝜕𝑢

𝜕𝑡

= 𝐷∇

2
𝑢 + 𝑓(𝑢,

𝜕𝑢

𝜕𝑥

) , (11)

where the operator ∇ denotes the spatial gradient, 𝑡 is
time, 𝑢(𝑥, 𝑦, 𝑡) is the local population density in the spatial
variables 𝑥 and 𝑦, 𝐷 is the coefficient of diffusion, and
𝑓(𝑢, 𝜕𝑢/𝜕𝑥) is the reaction-advection term describing the net
population change due to birth, death, and direction of travel.

Most of the phenomena involving diffusion are described
by models that suggest a dynamic inR andR2 is what will be
treated below. Consider the initial value problem given by

𝜕𝑢

𝜕𝑡

(𝑥, 𝑡) = 𝐷Δ (𝑢 (𝑥, 𝑡)) , in 𝑥 ∈ R, 𝑡 ≥ 0,

𝑢 (𝑥, 0) = 𝑁0
𝛿 (𝑥) , on R × {𝑡 = 0} ,

(12)

where 𝑢 : 𝑈 ⊂ R → R is a real function, 𝐷 is a diffusion
coefficient, 𝑁

0
is a number of individuals at the initial time,

and 𝛿(𝑥) is a Dirac function.
Thus, the classical solution to problem (12) exists and is

unique for values of 𝑥 in bounded domains 𝑈 ⊂ R and is
given by

𝑢 (𝑥, 𝑡) =

𝑁

0

√
(4𝜋𝐷𝑡)

𝑒

−𝑥
2
/4𝐷𝑡

. (13)

If incorporate into (13) the parameters of reaction and
advection will have a problem of the form

𝜕𝑢

𝜕𝑡

(𝑥, 𝑡) = 𝐷Δ (𝑢 (𝑥, 𝑡)) + 𝑎

𝜕𝑢

𝜕𝑥

(𝑥, 𝑡) + 𝑏𝑢 (𝑥, 𝑡) ,

in 𝑥 ∈ R, 𝑡 ≥ 0,

𝑢 (𝑥, 0) = 𝑢0 (
𝑥) ,

(14)

whose solution is given by

𝑢 (𝑥, 𝑡) =

𝑢

0

√
(4𝜋𝐷𝑡)

𝑒

−(𝑥−𝑎𝑡)
2
/4𝐷𝑡+𝑏𝑡

. (15)

If we consider 𝑥 ∈ R𝑛, then we have

𝜕𝑢

𝜕𝑡

(𝑥, 𝑡) = Δ (𝑢 (𝑥, 𝑡)) , 𝑥 ∈ R
𝑛
, 𝑡 ≥ 0,

𝑢 (𝑥, 0) = 𝑔 (𝑥) ,

(16)

where 𝑢 : 𝑈 ⊂ R𝑛
→ R, 𝑔 : R𝑛

→ R are real functions,
with 𝑈 ⊂ R𝑛 being the solution to

𝜑

𝑡 (
𝑥) =

1

(4𝜋𝐷𝑡)

𝑛/2
∫

R𝑛
𝑒

−‖𝑥−𝑦‖
2
/4𝐷𝑡

𝑔 (𝑦) 𝑑𝑦. (17)
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Figure 1: Graph of the fuzzy solution for 𝑎 = 𝑏 = 0.
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Figure 2: Graph of the fuzzy solution for 𝑎 = 0.

3. Fuzzy Diffusion-Reaction-
Advection Equation

3.1. Fuzzy Solution in R. Most of the phenomena involving
diffusion are described by models that describe a particular
dynamic in R and R2 and that is what will be done next.
Consider a classical diffusion equation (15), where 𝐷 is a
diffusion constant and 𝑢

0
is the number of individuals at the

initial time.
Thus, we interpret a problem that works as follows. We

know that the phenomenon occurs by diffusion, but its initial
condition is not well determined. Thus, we can consider the
initial condition as a fuzzy number and thereafter apply the
principle of Zadeh’s extension in initial condition. So we have
the solution to the fuzzy initial value problems:

𝑢̂ (𝑥, 𝑡) =

𝑢̂

0

√
(4𝜋𝐷𝑡)

𝑒

−(𝑥−𝑎𝑡)
2
/4𝐷𝑡+𝑏𝑡

, (18)

and their 𝛼-levels are given by

[𝑢 (𝑥, 𝑡)]

𝛼
=

[𝑢

0
]

𝛼

√
(4𝜋𝐷𝑡)

𝑒

−(𝑥−𝑎𝑡)
2
/4𝐷𝑡+𝑏𝑡 (19)

which is plotted in Figures 1, 2, 3, and 10. An important note
about these graphs is the fact that the deterministic solution
for fuzzy initial value problem associated with the chart
was kept deliberately fuzzy solution for the appropriate
comparisons. About the 𝛼-levels and their degree of mem-
bership a simulation of the evolution of the solutionwith time
is made. A video also was available on https://www.youtube
.com/watch?v=sHSfVfW67M4. The evolution of 𝛼-levels is
plotted in Figures 5, 6, 7, and 8.




