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One can reformulate chemical master equations of the stochastic reaction network into a partial differential equation (PDE)
of a probability generating function (PGF). In this paper, we present two improvements in such PGF-PDE approach, based on
perturbation and double-truncation, respectively.The stiff system that involves fast and slow reactions together often requires high
computational cost. By applying the perturbation method to PGF-PDEs, we expand the equation in terms of a small reaction rate
which is often responsible for such stiffness of the system. Also by doubly truncating, we dump relatively small terms and reduce
the computational load significantly at each time step. The terms corresponding to rare events are sieved out through truncations
of Taylor expansion. It is shown through numerical examples of enzyme kinetics, transition model, and Brusselator model that the
suggested method is accurate and efficient for approximation of the state probabilities.

1. Introduction

Stochastic chemical kinetics arises mostly in the modeling
of chemical reactions in relatively small biochemicalbhlt sys-
tems such as gene regulatory networks, cell systems, and
protein foldingmodels [1].The governing equation, chemical
master equation (CME), describes the probability distribu-
tion of the system under the Markov assumption as

𝜕

𝜕𝑡
𝑝 (n, 𝑡) = ∑

𝑘

𝑎𝑘 (n − 𝑉𝑘) ⋅ 𝑝 (n − 𝑉𝑘, 𝑡)

− ∑

𝑘

𝑎𝑘 (n) ⋅ 𝑝 (n, 𝑡) ,
(1)

where n(𝑡) = (𝑛1(𝑡), 𝑛2(𝑡), . . . , 𝑛𝑠(𝑡)), each 𝑛𝑖(𝑡) denotes the
molecular number of 𝑖th species at time 𝑡, 𝑎𝑘 is the propensity
function or probability intensity for the 𝑘th reaction, and 𝑉𝑘
denotes the 𝑘th column of the stoichiometric matrix 𝑉 of
which (𝑖, 𝑗)th entry is the change in the number of molecules
of the 𝑖th species by the occurrence of the 𝑗th reaction [2].

Since (1) is a high dimensional system in most real
applications, it is very challenging to handle both analytically
and computationally. One of the keymethods to help simplify

the computation of the stochastic dynamics is done by
using the stochastic simulation algorithm (SSA) [3]. One
realization of the SSA shows the trajectory of the time-
evolution of the states. Since it is basically aMonte-Carlo type
algorithm, one has to perform many realizations to obtain
important statistical quantities such as mean and variance.
Moreover, it often requires a large number of realizations,
especially in cases of the systems consisting of large numbers
ofmolecules or very different time scale reactions.There have
been many approaches to improve the SSA including Tau-
leaping methods [4–6], reduction methods on the slow time
scale [7–10], and moment closure methods [11–13].

In the recent papers [14, 15], the authors presented numer-
ical schemes based on probability generating functions (PGF)
for finding the probability distribution and moments. One
can reformulate chemical master equations of the stochastic
reaction network into a partial differential equation (PDE).
Although such PDEs are mostly hard to deal with due to
variable coefficients and lack of proper boundary conditions,
several improvements in approximation of the moments
based on Pade approximation and numerical superimposi-
tion have been made.
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In this paper, we present two improvements in such PGF-
PDE approach.The first method is an approximationmethod
called “perturbed probability generating function (PPGF)
method.” By applying the perturbation method to PDEs, we
expand the equation in terms of a small reaction rate which is
often responsible for the stiffness of the system. This enables
us to handle the systemmore efficiently with less iteration and
therefore capture same accuracy faster.

We also develop the double truncation method (DTM)
that efficiently approximates the state probabilities. As sug-
gested from the name, the method combines two truncation
procedures for the series solution to PGF-PDEs.

Through consecutive truncations of the Taylor expansion
of such PDEs in time, one can dump relatively rare events
which correspond to excessive occurrence of reactions during
a short time interval.This elimination is justified from the fact
that the coefficient of each term in the PGF is the probability
of a specific state. This enables us to ignore a great deal of
small terms which do not affect the system significantly.

An outline of the paper is as follows. In Section 2,
we review the properties of PDEs that PGF should satisfy.
The perturbation of PGF is discussed in Section 3 with its
numerical accuracy of through some examples. Section 4
presents the double truncationmethod for the PGF-PDEs. In
Sections 3 and 4, we also illustrate numerical accuracy of the
method in several examples.

2. PGF-PDE Approach

The probability generating function is defined as

𝐺 (z, 𝑡) =

∞

∑

n=0
zn𝑝 (n, 𝑡) , (2)

where z = (𝑧1, . . . , 𝑧𝑠), 𝑧𝑖 ∈ [−1, 1], n = (𝑛1, 𝑛2, . . . , 𝑛𝑠), and

zn ≡ 𝑧
𝑛
1

1
𝑧
𝑛
2

2
⋅ ⋅ ⋅ 𝑧
𝑛
𝑠

𝑠
. (3)

After differentiation of (2) with respect to 𝑡 and application of
(1), one can derive a PDE

𝜕𝐺

𝜕𝑡
= ∑

|k|≤𝑚
𝐻k (z, 𝑡) 𝐷

k
𝐺. (4)

Here k = (𝑘1, . . . , 𝑘𝑠), |k| = 𝑘1+⋅ ⋅ ⋅+𝑘𝑠,𝑚 is the highest order
of the reactions in the chemical system, and𝐷

k
𝐺 denotes any

𝑘th order partial derivatives of 𝐺 as

𝐷
k
𝐺 =

𝜕
𝑘
1

𝜕𝑧
𝑘
1

1

𝜕
𝑘
2

𝜕𝑧
𝑘
2

2

⋅ ⋅ ⋅
𝜕
𝑘
𝑠

𝜕𝑧
𝑘
𝑠

𝑠

𝐺. (5)

One can see that the PDE (4) is linear and𝐻k is a polynomial
function of degree at most order 𝑚 which satisfies 𝐻k(z =

1, 𝑡) = 0 for |k| = 0, 1, . . . , 𝑚.
The conditions of the PDE (4) can be found from the

conditions on 𝑛 [14]. The initial condition is

𝐺 (z, 𝑡 = 0) = zn0 , (6)

where n0 is the initial condition of n, and also it is true that

𝐺 (z = 0, 𝑡) = 𝑝 (n = 0, 𝑡) ,

𝐺 (z = 1, 𝑡) = ∑

n
𝑝 (n, 𝑡) = 1.

(7)

Using the solution 𝐺 of the PDE (4), one can find the
important information for stochastic reaction network such
as marginal probability, mean, and the second moment [14].
If𝑁𝑖(𝑡) denotes the number ofmolecules of 𝑖th species at time
𝑡, the probability that𝑁𝑖 = ℓ at time 𝑡 is

𝑝(𝑁𝑖 = ℓ, 𝑡) =
1

ℓ!

𝜕
ℓ
𝐺(z, 𝑡)
𝜕𝑧ℓ
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑧
𝑖
=0,𝑧
𝑗
=1,𝑗 ̸=𝑖

, (8)

and the mean and second moment are obtained by the first
and second derivatives of 𝐺

𝜕

𝜕𝑧𝑖

𝐺 (z = 1, 𝑡) = 𝐸 [𝑁𝑖 (𝑡)] ,

𝜕
2

𝜕𝑧𝑖𝜕𝑧𝑗

𝐺 (z = 1, 𝑡) =
{

{

{

𝐸 [𝑁𝑖 (𝑡)𝑁𝑗 (𝑡)] , if 𝑖 ̸= 𝑗,

(𝐸 [𝑁
2

𝑖
(𝑡)] − 𝐸 [𝑁𝑖 (𝑡)]) , if 𝑖 = 𝑗,

(9)

where 𝐸[𝑋(𝑡)] denotes the expectation of𝑋(𝑡).

3. Perturbation of Probability Generating
Function Method

3.1. Perturbation of PGF. For the PGF method recently
proposed in [14], 𝐺(z, 𝑡) is represented by a power expansion
with respect to 𝑡 as

𝐺 (z, 𝑡) =

∞

∑

𝑛=0

𝑓𝑛 (z) 𝑡
𝑛
, (10)

where 𝑓𝑛, 𝑛 = 0, 1, . . ., are coefficient functions of z. Note that
the initial condition determines the first coefficient as𝑓0(z) =

zn0 .
Suppose that the reaction rates in the network do not

change with time and therefore the coefficients of the PDE
do not involve 𝑡 explicitly. This implies 𝐻k(z, 𝑡) = 𝐻k(z) in
(4). Plugging (10) into the both sides of (4) and comparing
the power series lead to a recursive relation between 𝑓𝑛+1(z)
and 𝑓𝑛(z), 𝑛 = 0, 1, . . .. One can derive coefficient functions
𝑓1(z), 𝑓2(z), . . . , 𝑓𝐽(z) from 𝑓1(z) = zn0 and then construct an
approximation ∑

𝐽

𝑛=0
𝑓𝑛(z)𝑡𝑛 for sufficiently large 𝐽. Since the

initial function 𝑓0(z) and the coefficient of the PDE (2) are
polynomials, all 𝑓𝑛(z) generated are polynomials as well.

Now, let us apply the perturbation method to PGF. Since
many practical chemical networks that interest us involve
reactions in a broad range of time scales, from seconds
to microseconds, it is important to efficiently handle such
stiffness in simulation of the systems. Suppose that 𝑐 ≪ 1 is
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a small reaction rate in the system; then one can expand the
PGF as

𝐺 (z, 𝑡) = 𝑔0 (z, 𝑡) + 𝑐𝑔1 (z, 𝑡) + 𝑐
2
𝑔2 (z, 𝑡) + ⋅ ⋅ ⋅ ,

=

∞

∑

𝑗=0

𝑐
𝑗
𝑔𝑗 (z, 𝑡) ,

(11)

where 𝑔𝑗(z, 𝑡), 𝑗 = 0, 1, 2, . . ., are functions to be determined.
As in (10), one can set for each 𝑔𝑗

𝑔𝑗 (z, 𝑡) =

∞

∑

𝑘=0

𝑓𝑗,𝑘 (z) 𝑡
𝑘
. (12)

Now, instead of (10), one can seek 𝐺(z, 𝑡) in the following
form:

𝐺 (z, 𝑡) =

∞

∑

𝑗=0

𝑐
𝑗

∞

∑

𝑘=0

𝑓𝑗,𝑘 (z) 𝑡
𝑛

=

𝑀

∑

𝑗=0

𝑐
𝑗

𝑁

∑

𝑘=0

𝑓𝑗,𝑘 (z) 𝑡
𝑘
+ 𝑂 (𝑐

𝑀+1
, 𝑡
𝑁+1

)

(13)

for large 𝑀 and 𝑁. By plugging (13) into the both sides of
(4) and comparing the power series, one can find recurrence
relations for 𝑓𝑗,𝑘, 𝑓𝑗+1,𝑘 and 𝑓𝑗+1,𝑘+1, where 𝑗, 𝑘 = 0, 1, 2, . . ..
This decomposition enables us to handle stiffness caused by
𝑐 properly, by adjusting the perturbation order 𝑀 as will be
shown in the numerical examples in the next sections.

3.2. Example 1: Enzyme Kinetics. As the first application, we
consider a fundamental chemical kinetic model, the enzyme-
substrate reaction system

𝐸 + 𝑆
𝑐
1

󴀘󴀯
𝑐
−1

𝐸𝑆
𝑐
2

󳨀→ 𝐸 + 𝑃, (14)

where 𝐸, 𝑆, 𝐸𝑆, and 𝑃 denote enzyme, substrate, enzyme-
substrate complex, and product, respectively, and 𝑐1, 𝑐−1, and
𝑐2 are probability constants for reactions. If we denote the
molecular numbers of 𝐸, 𝑆, 𝐸𝑆, and 𝑃 by 𝑛1, 𝑛2, 𝑛3, and
𝑛4, respectively, the governing equation of the stochastic
enzyme-substrate system is obtained [16] as

𝜕𝑝 (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑡)

𝜕𝑡

= 𝑐1 (𝑛1 + 1) (𝑛2 + 1)

⋅ 𝑝 (𝑛1 + 1, 𝑛2 + 1, 𝑛3 − 1, 𝑛4, 𝑡)

+ 𝑐−1 (𝑛3 + 1) 𝑝 (𝑛1 − 1, 𝑛2 − 1, 𝑛3 + 1, 𝑛4, 𝑡)

+ 𝑐2 (𝑛3 + 1) 𝑝 (𝑛1 − 1, 𝑛2, 𝑛3 + 1, 𝑛4 − 1, 𝑡)

− (𝑐1𝑛1𝑛2 + 𝑐−1𝑛3 + 𝑐2𝑛3) 𝑝 (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑡) .

(15)

One can see that there are two conservation quantities in
the system and thuswe can remove two of variables, say 𝑛3, 𝑛4.

After the removal, we can derive a PDEof𝐺(𝑧1, 𝑧2, 𝑡) from the
master equation [14]

𝐺𝑡 = 𝑐1 (1 − 𝑧1𝑧2) 𝐺12

+ ((𝑐−1 + 𝑐2) 𝑧1 − 𝑐−1𝑧
2

1
𝑧2 − 𝑐2𝑧

2

1
)𝐺1

+ 𝐴 (𝑐−1𝑧1𝑧2 + 𝑐2𝑧1 − (𝑐−1 + 𝑐2)) 𝐺.

(16)

Here 𝐴 is the conserved quantity 𝑛1 + 𝑛3 and we use the
notations

𝐺𝑖 =
𝜕𝐺

𝜕𝑧𝑖

, 𝐺𝑖𝑗 =
𝜕
2
𝐺

𝜕𝑧𝑖𝜕𝑧𝑗

, 𝑖, 𝑗 = 1, 2, . . . . (17)

In the example, we use parameters 𝑐1 = 0.01𝑠
−1, 𝑐−1 =

1𝑠
−1, and 𝑐3 = 1𝑠

−1 and let the perturbation be expanded in 𝑐1.
Figure 1 shows comparison of the exact solution of themaster
equation (15) and the approximate solution obtained from the
PPGF method.

3.3. Example 2: Brusselator Model. We consider the Brussela-
tor model:

𝐴
𝑐
1

󳨀→ 𝑋, 2𝑋 + 𝑌
𝑐
2

󳨀→ 3𝑋,

𝐵 + 𝑋
𝑐
3

󳨀→ 𝑌 + 𝐷, 𝑋
𝑐
4

󳨀→ 𝐸.

(18)

Here 𝑋, 𝑌 are molecular species and 𝐴, 𝐵, 𝐷, and 𝐸 are
constant species. The Brusselator is a generic model for a
type of autocatalytic reaction. It is well known that the model
reveals simple chemical oscillations. Refer to Figure 2(a) for
a typical run of the model. If we denote the number of 𝑋, 𝑌
by 𝑛1, 𝑛2, respectively, we obtain the PDE for the probability
generating function as follows:

𝐺𝑡 = 𝑐1𝐴 (𝑧1 − 1)𝐺 +
𝑐2

2
𝑧
2

1
(𝑧1 − 𝑧2) 𝐺112

+ 𝑐3𝐵 (𝑧2 − 𝑧1) 𝐺1 + 𝑐4 (1 − 𝑧1) 𝐺1.

(19)

Here 𝐴 = 𝐵 = 1 and the reaction rates 𝑐1 = 1𝑠
−1, 𝑐2 =

0.0001𝑠
−1, and 𝑐3 = 𝑐4 = 0.1 are used. We use PPGF with

respect to the smallest parameter 𝑐2. Figure 2 compares the
corresponding numerical result to those from SSA.

4. Double Truncation Method

4.1. Truncations in 𝑡 and z. The truncationmethod was firstly
introduced in [15] to deal with PGF-PDEs. Although the
method provides a fast way to evaluate the mean and the
variance, most of high order terms need to be thrown away
for efficient computations at each time step. As a result, the
statistical information that is carried in high order terms,
such as the higher order moments and the probabilities of the
states, is generally not available from the method.

In this section, we develop an extension of the truncation
method which enables us to carry high order terms in the
computation. This is done by another truncation in z at each
step. Note that this is not just additional manipulation to
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Figure 1: Comparison of mean, standard deviation andmarginal probability for the enzyme-substrate model. In the three figures, we assume
that 𝑛1(0) = 5, 𝑛2(0) = 5, and 𝐴 = 5. (a) shows the comparison of exact values and approximate values obtained from the PPGF method
for mean and mean ± standard deviations (±𝜎) of 𝑛1 and (b) shows the comparison of the exact probability and the approximate probability
obtained from the PPGF method. In the figure, 𝑃(𝑠 = 𝑖) denotes the probability that the number 𝑛2 of the substrate is 𝑖. The exact probability,
mean, and variance are obtained by rewriting (15) into the linear ODE system 𝑑𝑝/𝑑𝑡 = 𝐾𝑝 under the given initial condition and then solving
it by MATLAB.

simply make further elimination after the first truncation.
By introducing the second truncation, we can alleviate the
restriction on the original truncation in 𝑡 and allow higher
order terms to remain, which is essential for computation of
high order moments and probabilities.

In the second truncation, the terms with relatively small
coefficients are dropped. It is justified from the fact that
the coefficient of each term in the PGF is the probability
of a specific state. We can therefore carry over high order
terms, while keeping a reasonable number of terms only.
This is important since evaluation of the high order moments
and the probabilities is generally expensive, especially when
the system involves stiff chemical reactions. Since DTM can
preserve the high order terms without increasing the total
number of the terms, it enables us to easily evaluate the
probabilities for the states with many molecules.
The First Truncation. To overcome gradually increasing com-
putational load in the series expansion (10), we restrict the
series solution onto a short time interval. That is, on each
interval [𝑡𝑟, 𝑡𝑟+1], 𝑟 = 0, 1, 2, . . ., 𝑡0 = 0 < 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ , we
construct the separate Taylor expansion𝐺

[𝑟]
(z, 𝑡) at the center

𝑡 = 𝑡𝑟 of finite order 𝑁. We expect that side-by-side PGFs on
consecutive intervals, 𝐺[𝑟](z, 𝑡) and 𝐺

[𝑟+1]
(z, 𝑡), are equal on

the boundary 𝑡 = 𝑡𝑟+1 as

𝐺
[𝑟]

(z, 𝑡𝑟+1) ≈ 𝐺
[𝑟+1]

(z, 𝑡𝑟+1) . (20)

More generally,

𝐺
[0]

(z, 𝑡) =

𝑁

∑

𝑛=0

𝑓
[0]

𝑛
(z) 𝑡𝑛, 𝐺

[0]
(z, 0) = zn,

𝐺
[1]

(z, 𝑡) =

𝑁

∑

𝑛=0

𝑓
[1]

𝑛
(z) (𝑡 − 𝑡1)

𝑛
,

𝐺
[1]

(z, 𝑡1) = 𝐹 (𝐺
[0]

(z, 𝑡1)) ,

𝐺
[2]

(z, 𝑡) =

𝑁

∑

𝑛=0

𝑓
[2]

𝑛
(z) (𝑡 − 𝑡2)

𝑛
,

𝐺
[2]

(z, 𝑡2) = 𝐹 (𝐺
[1]

(z, 𝑡2)) ,

.

.

.

𝐺
[𝑟]

(z, 𝑡) =

𝑁

∑

𝑛=0

𝑓
[𝑟]

𝑛
(z) (𝑡 − 𝑡𝑟)

𝑛
,

𝐺
[𝑟]

(z, 𝑡𝑟) = 𝐹 (𝐺
[𝑟−1]

(z, 𝑡𝑟)) ,

.

.

.

(21)

where 𝐹 is a “carry-over” functional. Our motivation of this
successive superimpositions is to keep approximation order
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Figure 2: Comparison of mean and standard deviation for the Brusselator model. The initial condition 𝑛1(0) = 0 and 𝑛2(0) = 0 are assumed.
(a) shows a typical run of 𝑌 in 500 seconds from a Monte Carlo simulation of the Brusselator model. In (b), 𝑃(𝑦 = 𝑖) denotes the probability
that the number 𝑛2 of the substrate is 𝑖. (c) and (d) compare mean and mean ± standard deviations (±𝜎) of 𝑛1, 𝑛2, and 𝑛3 obtained from the
SSA and the PPGF. The results from the SSA are based on 50,000 realizations.

𝑁 low in favor of computational efficiency while carrying
over essential information like first several moments to a
next function over the following time interval. Note that
truncation of high order temporal terms can be justified in
that, in PGF computation, 𝑁 represents how many reaction
would happen for that interval [𝑡𝑟, 𝑡𝑟+1], 𝑟 = 0, 1, 2, . . ..
Elimination of such terms has an effect of excluding excessive
occurrence of reactions during such short interval.

One of the issues in the first truncation is how to deter-
mine carry-over functional 𝐹. Although the best approxima-
tion in this framework would be obtained with the identity
functional, it is not a practical choice since the number of
terms involved in the computations keeps increasing rapidly.
In [15], 𝐹 was suggested as a projection onto 𝑃3(z), a set
of polynomials of degree three or less, which preserves the
mean and the variance. However, such functional does not
preserve the information related to high order derivatives
of PGF and therefore approximation of quantities such as
the state probabilities is not possible. Here we propose a
different type of carry-over functional that preserves high

order information. This functional indeed works as another
truncation on what remains after the first truncation.
TheSecond Truncation.At time 𝑡 = 𝑡𝑟+1, the separate PGF𝐺

[𝑟]

becomes

𝐺
[𝑟]

(z, 𝑡𝑟+1) =

∞

∑

n=0
zn𝑝[𝑟] (n, 𝑡𝑟+1) , (22)

where 𝑝[𝑟](n, 𝑡𝑟+1)means the probability for the state being n
at time 𝑡𝑟+1. Now we define the carry-over functional 𝐹 such
that it maps (22) into

∞

∑

n=0
zn𝐼𝜖 (𝑝

[𝑟]
(n, 𝑡𝑟+1)) , (23)

where𝐻𝜖 is a function defined as

𝐼𝜖 (𝑥) =
{

{

{

𝑥, if 𝑥 > 𝜖,

0, if 𝑥 ≤ 𝜖.

(24)
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Figure 3: The initial condition 𝑛 = [10, 20, 20, 0] and parameters 𝑐
1
= 0.1, 𝑐

−1
= 1, and 𝑐

2
= 0.5 are assumed. In (c), each curve 𝑝(𝑛

2
= 𝑖)

denotes the time-dependent probability solution that 𝑛2 = 𝑖, 𝑖 = 5, 10, 17, respectively. The terms which have a coefficient less than 10
−7 are

dropped out.

Application of such 𝐹 implies that we sieve the terms out of
which coefficients are less than 𝜖. One can see from (2) that
those terms correspond to rare events of which coefficients
probability is less than 𝜖. Considering that the iterative
process in the PGF approach is a linear operation with
respect to zn, manipulation on a term only affects entailed
terms, each of which represents possible consequence of the
corresponding state. Since the probabilities of all the entailed
events and their sum as well cannot exceed the probability
of the eliminated event, the effect of elimination does not
propagate or grow in probability.

Note that this truncation process is clearly consistent in
that the scheme reverts to the first truncation as 𝜖 → 0.
However, one should be careful when applying the second
truncation to approximation of the moments, since the
moments do not solely depend on the state probabilities.
For example, suppose that a rare state eventually gives a
birth to large number of a species in an open system. If the
mean is what is sought, one cannot simply omit such state
for the reason that the corresponding probability is small,
since the elimination may substantially change the resulted
mean or variance in approximation. Hence, for the moment
approximation of the open systems, it is better to use the
above functional 𝐹 together with other carry-over functional
as suggested in [15].

4.2. Example 1: Enzyme Kinetics. Once again, we use
the enzyme kinetic model to test the performance of
DTM. Figure 3 shows comparison of approximate solutions
obtained from DTM and those from SSA. Note that, in
the perturbation method in Section 3.2, evaluation of the
probabilities was available only for the states that correspond
to small number of that species, 𝑛2 = 0, 1, 2. This is

because the probability computation (8) requires as many
times of differentiation as the number of the species at the
state. However, one can see that DTM successfully resolves
this problem and produces the probabilities of the states
corresponding as many as 𝑛2 = 10, 15.

4.3. Example 2: 𝐺2/𝑀 Transition Model. We consider the
𝐺2/𝑀 transition network in the eukaryotic cell cycle as
follows [14, 17]:

𝑋 + 𝑌𝑝

𝑐
1

󴀘󴀯
𝑐
2

𝐶𝑥

𝑐
3

󳨀→ 𝑋𝑝 + 𝑌𝑝, 𝐸1 + 𝑋𝑝

𝑐
4

󴀘󴀯
𝑐
5

𝐶
𝑒

𝑥

𝑐
6

󳨀→ 𝑋 + 𝐸1

𝑋𝑝 + 𝑌
𝑐
7

󴀘󴀯
𝑐
8

𝐶𝑦

𝑐
9

󳨀→ 𝑋𝑝 + 𝑌𝑝, 𝐸2 + 𝑌𝑝

𝑐
10

󴀘󴀯
𝑐
11

𝐶
𝑒

𝑦

𝑐
12

󳨀󳨀→ 𝑌 + 𝐸2.

(25)
We denote the number of molecules of 𝑋𝑝, 𝑌𝑝, 𝑋, 𝑌, 𝐸1,

𝐸2, 𝐶𝑥, 𝐶
𝑒

𝑥
, 𝐶𝑦, and 𝐶

𝑒

𝑦
by 𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6, 𝑛7, 𝑛8, 𝑛9, and

𝑛10, respectively.
We obtain a PDE of the moment generating function

𝐺(z, 𝑡) [14]
𝐺𝑡 = 𝑐1𝐺23 (𝑧7 − 𝑧2𝑧3) + 𝑐2𝐺7 (𝑧2𝑧3 − 𝑧7)

+ 𝑐3𝐺7 (𝑧1𝑧2 − 𝑧7) + 𝑐4𝐺15 (𝑧8 − 𝑧1𝑧5)

+ 𝑐5𝐺8 (𝑧1𝑧5 − 𝑧8) + 𝑐6𝐺8 (𝑧3𝑧5 − 𝑧8)

+ 𝑐7𝐺14 (𝑧9 − 𝑧1𝑧4) + 𝑐8𝐺9 (𝑧1𝑧4 − 𝑧9)

+ 𝑐9𝐺9 (𝑧1𝑧2 − 𝑧9) + 𝑐10𝐺26 (𝑧10 − 𝑧2𝑧6)

+ 𝑐11𝐺10 (𝑧2𝑧6 − 𝑧10) + 𝑐12𝐺10 (𝑧4𝑧6 − 𝑧10) .

(26)

In Figure 4, we compare the simulation results obtained
from the SSA and the DTM.
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Figure 4: The initial condition 𝑛 = [5, 4, 2, 3, 2, 3, 2, 0, 0, 0] and parameters 𝑐
1
= 𝑐
4
= 𝑐
7
= 𝑐
10

= 0.2, 𝑐
2
= 𝑐
5
= 𝑐
8
= 𝑐
11

= 1, and 𝑐
3
= 𝑐
6
= 𝑐
9
=

𝑐12 = 0.1 are assumed. In (c), each curve 𝑝(𝑛2 = 𝑖) denotes the time-dependent probability solution that 𝑛2 = 𝑖, 𝑖 = 1, 3, 5, respectively. The
terms which have a coefficient less than 10

−8 are dropped out.

5. Conlusion

In this work, we presented the double truncation method
(DTM) that improves the probability generating function
(PGF) method for computation of the solutions of stochastic
reaction networks. Advantage of the PGF method is that,
rather than struggling with the chemical master equation of
extremely high order, one can handle a partial differential
equation (PDE) of low order. However, it still requires intense
computation for high order approximation, especially for the
systems with stiff parameters. The method proposed in this
paper applies the perturbation method to the corresponding
PGF for reaction networks. That is, we expand the PGF
in the parameter that is responsible for stiffness of the
system. Then the PGF-PDE leads to a recurrence relation
of the coefficient functions with respect to both the time
and the corresponding parameter, which we can easily solve
symbolically. It turns out that the suggested method requires
a lower approximation order than the original PGF method,
while it produces as good approximation as such.

While mean and variance of species are easily traceable
in single truncation suggested in [15], efficient evaluation of
the state probability was still a challenging task. In Section 4,
we showed that the probability evaluation though PGF-PDEs
can be achieved by doubly truncating the Taylor series at
each time step. Through consecutive truncation processes,
we dump relatively rare events, most of which are generated
from excessive occurrence of reactions during a short time

interval. This also implies elimination of a great deal of terms
and significant reduction in computation.

It turns out in several numerical examples that the
suggestedmethod produces good approximation for the state
probabilities. We expect that the DTM will be used for a fast
and accurate approximation for computation of real and
complex stochastic chemical reaction networks.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Pilwon Kim acknowledges that this work was supported by
Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Min-
istry of Education (2011-0023486). Chang Hyeong Lee was
supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the
Ministry of Education (2014R1A1A2054976).

References

[1] C. V. Rao, D. M. Wolf, and A. P. Arkin, “Control, exploitation
and tolerance of intracellular noise,” Nature, vol. 420, no. 6912,
pp. 231–237, 2002.



8 Journal of Applied Mathematics

[2] D. T. Gillespie, “A rigorous derivation of the chemical master
equation,” Physica A: Statistical Mechanics and its Applications,
vol. 188, no. 1–3, pp. 404–425, 1992.

[3] D. T.Gillespie, “Exact stochastic simulation of coupled chemical
reactions,” Journal of Physical Chemistry, vol. 81, no. 25, pp.
2340–2361, 1977.

[4] D. T. Gillespie, “Approximate accelerated stochastic simulation
of chemically reacting systems,” Journal of Chemical Physics, vol.
115, no. 4, pp. 1716–1733, 2001.

[5] Y. Cao, D. T. Gillespie, and L. R. Petzold, “Efficient step size
selection for the tauleaping simulation method,”The Journal of
Chemical Physics, vol. 124, no. 4, Article ID 044109, 2006.

[6] D. F. Anderson, “Incorporating postleap checks in tau-leaping,”
Journal of Chemical Physics, vol. 128, no. 5, Article ID 054103,
2008.

[7] Y. Cao, D. T. Gillespie, and L. R. Petzold, “The slow-scale sto-
chastic simulation algorithm,” Journal of Chemical Physics, vol.
122, no. 1, Article ID 014116, 2005.

[8] B.Munsky andM. Khammash, “The finite state projection algo-
rithm for the solution of the chemical master equation,” Journal
of Chemical Physics, vol. 124, no. 4, Article ID 044104, 2006.

[9] C. H. Lee and R. Lui, “A reduction method for multiple time
scale stochastic reaction networks,” Journal of Mathematical
Chemistry, vol. 46, no. 4, pp. 1292–1321, 2009.

[10] C. H. Lee and R. Lui, “A reduction method for multiple time
scale stochastic reactionnetworkswith non-unique equilibrium
probability,” Journal of Mathematical Chemistry, vol. 47, no. 2,
pp. 750–770, 2010.

[11] C. H. Lee, K.-H. Kim, and P. Kim, “A moment closure method
for stochastic reaction networks,” Journal of Chemical Physics,
vol. 130, no. 13, Article ID 134107, 2009.

[12] P. Milner, C. S. Gillespie, and D. J. Wilkinson, “Moment closure
approximations for stochastic kinetic models with rational rate
laws,”Mathematical Biosciences, vol. 231, no. 2, pp. 99–104, 2011.

[13] C. H. Lee, “A moment closure method for stochastic chemical
reactionnetworkswith general kinetics,”MATCH.Communica-
tions in Mathematical and in Computer Chemistry, vol. 70, no.
3, pp. 785–800, 2013.

[14] P. Kim and C. H. Lee, “A probability generating function
method for stochastic reaction networks,” Journal of Chemical
Physics, vol. 136, no. 23, Article ID 234108, 2012.

[15] P. Kim and C. H. Lee, “Fast probability generating function
method for stochastic chemical reaction networks,” MATCH:
Communications in Mathematical and in Computer Chemistry,
vol. 71, no. 1, pp. 57–69, 2014.

[16] D. A. McQuarrie, “Stochastic approach to chemical kinetics,”
Journal of Applied Probability, vol. 4, pp. 413–478, 1967.
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