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This paper deals with the analysis and design of positivity and stability of linear continuous conic systems. First, two robustness
analysis theorems are proposed for the systems with state-feedback. Second, the state-feedback stabilization problem is solved by
using linear programming (LP). Numerical examples are given for illustration. Finally, the conclusions are made.

1. Introduction

Many researchers study positive systems. The design of
observers and dynamic output-feedback controllers for posi-
tive linear systems with interval uncertainties was finished by
Shu et al. [1]. The continuous-time case and the discrete-time
case were both treated in a unified linear matrix inequality
(LMI) framework. Liu et al. [2] tried to adapt the linear
copositive Lyapunov function to LTI discrete-time positive
systems with delays, focusing on controller design under
the positivity constraint and/or with bounds on the inputs
and the states. Liu [3] finished the continuous-time positive
systems with delays. Roszak and Davison [4] considered the
problem of stabilization via output-feedback, state-feedback,
and stabilization via the sequential separation principle
for positive linear time-invariant (LTI) systems. Jacquez
and Simon [5] applied compartmental systems in different
fields ranging from biology and chemistry, over ecology to
economy and sociology. Marchetti et al. [6] proposed an
improved PID control strategy for blood glucose control.This
is a great contribution for type 1 diabetes. Rami and Tadeo
[7] pointed out that linear programming (LP) approach is
simpler than the linearmatrix inequality (LMI) approach and
possesses a low computational complexity. They also solved
an important synthesis problem: finding bounded stabilizing

state-feedback control. In this paper, we will solve the state-
feedback stabilization problems for positive linear systems
with conic uncertainty in terms of linear programming (LP).

2. Preliminary

Consider the following linear system:

𝑥̇ = 𝐴𝑥, (1)

where 𝑥(𝑡) ∈ 𝑅

𝑛 is the system state and 𝐴 ∈ 𝑅

𝑛×𝑛. The system
in (1) is said to be positive if and only if, for any nonnegative
initial condition, denoted as 𝑥(0) = 𝑥0 ≥ 0, the resulting state
should be nonnegative; that is, 𝑥(𝑡) ≥ 0 for all 𝑡 > 0.

Definition 1. 𝐴 ∈ 𝑅

𝑛×𝑛 is said to be Metzler if all off-diagonal
entries are nonnegative.

3. Positivity and Stability of Continuous-Time
Conic Linear Systems

Lemma 2 (see [8]). The system (1) is a continuous-time
positive system if and only if the matrix 𝐴 is a Metzler matrix.
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Lemma 3 (see [7]). Continuous-time positive linear system is
asymptotically stable if and only if there exists a 𝑑 ∈ 𝑅

𝑛

+
with

𝐴𝑑 < 0.

Consider an autonomous system with the system matrix
𝐴 represented by a more general conic form:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) ,

𝑥 (0) = 𝑥0 ∈ 𝑅

𝑛

+
,

𝐴 ∈

{

{

{

𝑝

∑

𝑝=1
𝛼

𝑝
𝐴

𝑝
| 𝛼

𝑝
≥ 0,

𝑝

∑

𝑝=1
𝛼

𝑝
̸= 0
}

}

}

,

(2)

where 𝐴

𝑝
are given constant matrices and 𝑝 is a given

number. Then, the following result is obtained.

Theorem 4. The linear conic system in (2) is positive and
asymptotically stable if𝐴

𝑝
areMetzlermatrices and there exists

a 𝑑 ∈ 𝑅

𝑛

+
such that 𝐴

𝑝
𝑑 < 0, for all 𝑝 = 1, . . . , 𝑝.

Proof. Owing to the matrices 𝐴
𝑝
are Metzler; let 𝑎

𝑝,𝑖𝑗
and 𝑎

𝑖𝑗

be the entries of𝐴
𝑝
and, for 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑛, 𝑝 = 1, . . . , 𝑝. From

(2), 𝑎
𝑖𝑗
= ∑

𝑝

𝑝=1
𝛼

𝑝
𝑎

𝑝,𝑖𝑗
≥ 0, for 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑛. This shows that

the off-diagonal entries of 𝐴 are nonnegative. By Lemma 2,
the system (2) is positive.On the other hand,𝐴

𝑝
𝑑 < 0, for𝑝 =

1, . . . , 𝑝; that is, ∑𝑛
𝑗=1

𝑎

𝑝,𝑖𝑗
𝑑

𝑗
< 0, for 1 ≤ 𝑖 ≤ 𝑛, 𝑝 = 1, . . . , 𝑝.

From (2), 𝐴𝑑 = ∑

𝑛

𝑗=1
∑

𝑝

𝑝=1
𝛼

𝑝
𝑎

𝑝,𝑖𝑗
𝑑

𝑗
< 0, for 1 ≤ 𝑖 ≤ 𝑛. By

Lemma 3, system (2) is asymptotically stable.

Remark 5. The polytopic and interval representations are the
special cases of the considered conic set representation.

In the following, consider the continuous-time linear
conic system:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) ,

𝑥 (0) = 𝑥

0
∈ 𝑅

𝑛

+
,

𝐴 ∈

{

{

{

𝑝

∑

𝑝=1

𝛼

𝑝
𝐴

𝑝
| 𝛼

𝑝
≥ 0,

𝑝

∑

𝑝=1

𝛼

𝑝
̸= 0

}

}

}

,

𝐵 ∈ {

𝑞

∑

𝑞=1

𝛽

𝑞
𝐵

𝑞
| 𝛽

𝑞
≥ 0,

𝑞

∑

𝑞=1

𝛽

𝑞
̸= 0} ,

(3)

where 𝐴
𝑝
= [𝑎

𝑝,𝑖𝑗
]

𝑛×𝑛
and 𝐵

𝑞
= [𝑏

𝑞,𝑖ℎ
]

𝑛×𝑚
are given constant

matrices and 𝑝 and 𝑞 are given constants. When the state-
feedback 𝑢 = 𝐾𝑥, where 𝐾 = [𝑘

ℎ𝑗
] ∈ 𝑅

𝑚×𝑛, is applied, the
closed-loop system becomes

𝑥̇ (𝑡) = (𝐴+𝐵𝐾) 𝑥 (𝑡) ,

𝑥 (0) = 𝑥

0
∈ 𝑅

𝑛

+
,

𝐴 ∈

{

{

{

𝑝

∑

𝑝=1

𝛼

𝑝
𝐴

𝑝
| 𝛼

𝑝
≥ 0,

𝑝

∑

𝑝=1

𝛼

𝑝
̸= 0

}

}

}

,

𝐵 ∈ {

𝑞

∑

𝑞=1

𝛽

𝑞
𝐵

𝑞
| 𝛽

𝑞
≥ 0,

𝑞

∑

𝑞=1

𝛽

𝑞
̸= 0} .

(4)

Lemma 6. System (4) is positive and asymptotically stable if
𝐴

𝑝
+ 𝐵

𝑞
𝐾 are Metzler matrices and there exists a 𝑑 ∈ 𝑅

𝑛

+
such

that (𝐴
𝑝
+ 𝐵

𝑞
𝐾)𝑑 < 0, for 𝑝 = 1, . . . , 𝑝, 𝑞 = 1, . . . , 𝑞.

Proof. By Theorem 4, the system in (2) is positive and
asymptotically stable if 𝐴

𝑝
are Metzler matrices and there

exists a 𝑑 ∈ 𝑅

𝑛

+
such that 𝐴

𝑝
𝑑 < 0, for all 𝑝 = 1, . . . , 𝑝.

Now, in system (4), assume that 𝐴cl = 𝐴 + 𝐵𝐾 where

𝐴 ∈

{

{

{

𝑝

∑

𝑝=1

𝛼

𝑝
𝐴

𝑝
| 𝛼

𝑝
≥ 0,

𝑝

∑

𝑝=1

𝛼

𝑝
̸= 0

}

}

}

,

𝐵 ∈ {

𝑞

∑

𝑞=1

𝛽

𝑞
𝐵

𝑞
| 𝛽

𝑞
≥ 0,

𝑞

∑

𝑞=1

𝛽

𝑞
̸= 0} .

(5)

Then 𝐴cl = 𝐴 + 𝐵𝐾 = ∑

𝑞

𝑞=1
∑

𝑝

𝑝=1
𝛼

𝑝
𝛽

𝑞
(𝐴

𝑝
+ 𝐵

𝑞
𝐾); that

is, 𝐴cl has 𝑝 𝑞 vertices. Hence, system (4) is positive and
asymptotically stable if 𝐴

𝑝
+ 𝐵

𝑞
𝐾 are Metzler matrices and

there exists a 𝑑 ∈ 𝑅

𝑛

+
such that (𝐴

𝑝
+ 𝐵

𝑞
𝐾)𝑑 < 0, for

𝑝 = 1, . . . , 𝑝, 𝑞 = 1, . . . , 𝑞.

Theorem 7. Using the state-feedback 𝑢 = 𝐾𝑥 with 𝐾 =

[𝑘

ℎ𝑗
] ∈ 𝑅

𝑚×𝑛, the closed-loop system in (4) is positive and
asymptotically stable if there exist a [𝑑

𝑗
] ∈ 𝑅

𝑛

+
and a [𝑧

ℎ𝑗
] ∈

𝑅

𝑚×𝑛 such that, for all 𝑝 = 1, . . . , 𝑝 and 𝑞 = 1, . . . , 𝑞,

𝑎

𝑝,𝑖𝑗
𝑑

𝑗
+

𝑚

∑

ℎ=1

𝑏

𝑞,𝑖ℎ
𝑧

ℎ𝑗
≥ 0, 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑛, (6a)

𝑛

∑

𝑗=1

(𝑎

𝑝,𝑖𝑗
𝑑

𝑗
+

𝑚

∑

ℎ=1

𝑏

𝑞,𝑖ℎ
𝑧

ℎ𝑗
) < 0, 1 ≤ 𝑖 ≤ 𝑛, (6b)

where𝐾 = 𝑍𝐷

−1, 𝐾 = [𝑘

ℎ𝑗
] ∈ 𝑅

𝑚×𝑛, and

𝐷 = diag {𝑑
1
, 𝑑

2
, . . . , 𝑑

𝑛
} . (7)

Proof. (a) Positivity is as follows.
Due to

𝑎

𝑝,𝑖𝑗
𝑑

𝑗
+

𝑚

∑

ℎ=1

𝑏

𝑞,𝑖ℎ
𝑧

ℎ𝑗
≥ 0, 𝑑

𝑗
> 0, (8)

owing to 𝑘
ℎ𝑗
= 𝑧

ℎ𝑗
𝑑

−1

𝑗
,

𝑎

𝑝,𝑖𝑗
+

𝑚

∑

ℎ=1

𝑏

𝑞,𝑖ℎ
𝑘

ℎ𝑗
≥ 0 (9)
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for 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑛, 𝑝 = 1, . . . , 𝑝, and 𝑞 = 1, . . . , 𝑞, this shows
that the off-diagonal entries of the matrices 𝐴

𝑝
+ 𝐵

𝑞
𝐾 are

nonnegative. By Lemma 6, the closed-loop system in (4) is
positive.

(b) Stability is as follows.
Due to

𝑛

∑

𝑗=1

(𝑎

𝑝,𝑖𝑗
𝑑

𝑗
+

𝑚

∑

ℎ=1

𝑏

𝑞,𝑖ℎ
𝑧

ℎ𝑗
) < 0, 𝑑

𝑗
> 0, (10)

owing to 𝑘
ℎ𝑗
= 𝑧

ℎ𝑗
𝑑

−1

𝑗
,

𝑛

∑

𝑗=1

(𝑎

𝑝,𝑖𝑗
+

𝑚

∑

ℎ=1

𝑏

𝑞,𝑖ℎ
𝑘

ℎ𝑗
)𝑑

𝑗
< 0 (11)

for 1 ≤ 𝑖 ≤ 𝑛, 𝑝 = 1, . . . , 𝑝, and 𝑞 = 1, . . . , 𝑞, this shows
that there exists a [𝑑

𝑗
] ∈ 𝑅

𝑛

+
such that (𝐴

𝑝
+ 𝐵

𝑞
𝐾)𝑑 < 0.

By Lemma 6, the closed-loop system in (4) is asymptotically
stable.

Remark 8. Since the conditions in ((6a), (6b)) are linear in
the entries of [𝑑

𝑗
] and [𝑧

ℎ𝑗
], these variables can be easily

solved by using the linear programming. After [𝑑
𝑗
] and [𝑧

ℎ𝑗
]

are decided, the robust state-feedback is determined by 𝐾 =

𝑍𝐷

−1. This will accomplish the design for the positivity and
stability of continuous-time conic positive linear systems.

4. Numerical Examples

In this section, the corresponding example is presented to
show the effectiveness of our results.

Example 1. Consider a continuous-time conic system de-
scribed by (3). Let 𝑝 = 4 and 𝑞 = 4; the matrices 𝐴 =

∑

4

𝑝=1
𝛼

𝑝
𝐴

𝑝
and 𝐵 = ∑

4

𝑞=1
𝛽

𝑞
𝐵

𝑞
with the following parame-

ters:

𝐴

1
= [

−0.5 −0.4

0.6 −0.3

] ,

𝐴

2
= [

−0.7 0.6

0.9 0.5

] ,

𝐴

3
= [

−0.3 0.5

−0.7 −0.5

] ,

𝐴

4
= [

−0.9 0.4

0.6 0.3

] ,

𝐵

1
= [

0.5 0.2

0.7 −0.4

] ,

𝐵

2
= [

0.4 0.5

0.3 −0.5

] ,

𝐵

3
= [

0.3 0.4

0.6 −0.3

] ,

𝐵

4
= [

0.6 0.3

0.4 −0.2

] ,

𝛼

1
≥ 0,

𝛼

2
≥ 0,

𝛼

3
≥ 0,

𝛼

4
≥ 0,

4

∑

𝑝=1

𝛼

𝑝
= 4,

𝛽

1
≥ 0,

𝛽

2
≥ 0,

𝛽

3
≥ 0,

𝛽

4
≥ 0,

4

∑

𝑞=1

𝛽

𝑞
= 4.

(12)

ByTheorem 7 and MATLAB to get

𝑍 = [

−8.7788 −16.7758
−57.8970 72.5071

] ,

𝑑 = [

8.2047
4.3698

] ,

𝐾 = 𝑍𝐷

−1

= [

−1.0700 −3.8390
−7.0566 16.5926

] .

(13)

For the uncertain parameters 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛽1, 𝛽2, 𝛽3, and 𝛽4,
the following cases are presented.

Case 1 (𝛼1 = 0, 𝛼2 = 2, 𝛼3 = 0, 𝛼4 = 2, 𝛽1 = 2, 𝛽2 = 0, 𝛽3 =

2, and 𝛽4 = 0). The matrix of the closed-loop system (4) is
obtained as

𝐴+𝐵𝐾 = [

−13.3798 15.7687
10.0972 −31.6110

] . (14)

Case 2 (𝛼1 = 1, 𝛼2 = 1, 𝛼3 = 1, 𝛼4 = 1, 𝛽1 = 1, 𝛽2 = 1, 𝛽3 =

1, and 𝛽4 = 1). The matrix of the closed-loop system (4) is
obtained as

𝐴+𝐵𝐾 = [

−14.2051 17.4195
9.1392 −30.9076

] . (15)
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5. Conclusion

The proofs of the two theorems are finished. The simulations
are complete by using Theorem 7. All results are Hurwitz
matrix. In short, the systems are positive and asymptotically
stable.
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