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The stability of neutral-type genetic regulatory networks with leakage delays is considered. Firstly, we describe the model of genetic
regulatory network with neutral delays and leakage delays. Then some sufficient conditions are derived to ensure the asymptotic
stability of the genetic regulatory network by the Lyapunov functional method. Further, the effect of leakage delay on stability is
discussed. Finally, a numerical example is given to show the effectiveness of the results.

1. Introduction

Biology networks are important research tools of complex
biological phenomena, which have been attracting attention
of scientists and engineers [1–4].There aremany kinds of bio-
logical networks, such as metabolic network, signal network,
genetic regulatory network (GRN), and protein interaction
network. GRN, which describes the complex interactions
between genes (mRNA) and its products (proteins), is often
modelled by a kind of dynamical system. The study of GRNs
can help scientists understand many important and complex
phenomena of living cells. Up to now, several models of
GRNs have been established, for example, Boolean network
models [5], Bayesian network models [6], Petri network
models [7, 8], and the differential equation models. It is
more convenient to analyze the dynamical behaviors by using
differential equationmodels and have been widely studied by
many experts [9–12].

As we all know, stability is one of the most important
issues of longtime quality behavior of dynamical systems.
Some important biological secrets have been revealed and
many significant results have been reported [13–15]. On
the other hand, time delay is a common phenomenon that
describes the dynamical behaviors. The existence of time
delay can make the dynamical behaviors more complicated

and may cause destabilization, oscillation, bifurcation, and
chaos. So time delay should be taken into considerationwhen
modelling the genetic networks. There are many types of
time delays such as discrete delays [16], continuous delays
[17, 18], random delays [19], and mixed delays [20]. In recent
years, the neutral delay has attracted attention because it can
embody some important information about the derivation
of the past state [21, 22]. In [23, 24], the authors considered
asymptotic stability of BAM neural networks of neutral type.
Lakshmanan and Balasubramaniam [25] obtained some new
results of robust stability analysis for neutral-type neural
networks with time-varying delays and Markovian jumping
parameters. However, the stability analysis for genetic reg-
ulatory networks with neutral delay has been rarely investi-
gated. In [26], Jung et al. discussed the stability for genetic
regulatory network with neutral delay. Further, Jiao et al.
[27] investigated the asymptotic stability of genetic regulatory
network with neutral delay, which extended and improved
themain results of Jung et al. [26]. On the other hand, leakage
delay is another type of delay, which exists in the negative
feedback term of system [28, 29]. So far, few studies have
been paid to the stability analysis for GRNs with leakage
delay. In [30], the authors discussed the global asymptotic
stability for genetic regulatory networks with leakage delay.
In [31], stability was investigated for a class of uncertain
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impulsive stochastic genetic regulatory networks with time-
varying leakage delay. As far as we know, there is no result
on the stability of genetic regulatory networks with neutral
delays and leakage delays. Motivated by the discussion above,
in this paper, we consider the stability of genetic regulatory
networks of neutral type with leakage delay.

The paper is organized as follows. In Section 2, the prob-
lem is formulated and some preliminaries and assumption
are given. In Section 3, the asymptotic stability of neutral-
type genetic regulatory networks with leakage delay is inves-
tigated. In Section 4, an illustrative example is given to show
the effectiveness of the theoretical results. Some conclusions
are proposed in Section 5.

Notations. Throughout this paper, 𝑅𝑛 and 𝑅𝑛×𝑛 denote the
𝑛-dimensional Euclidean space and the set of all 𝑛 × 𝑛
real matrices, respectively. 𝐴𝑇 denotes the transposition of
matrix 𝐴. Diag (⋅) denotes the diagonal matrix. Asterisk (∗)
represents the symmetric block of the symmetric matrix.

2. Preliminaries

GRNs with 𝑛 mRNA and 𝑛 proteins can be modelled by the
following differential equations:

�̇�
𝑖
(𝑡) = − 𝑎

𝑖
𝑚
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝜔
𝑖𝑗
𝑔
𝑗
(𝑝
𝑗
(𝑡 − 𝜎 (𝑡))) + 𝐼

𝑖
,

�̇�
𝑖
(𝑡) = − 𝑐

𝑖
𝑝
𝑖
(𝑡) + 𝑑

𝑖
𝑚
𝑖
(𝑡 − 𝜏
1
(𝑡)) ,

(1)

where 𝑚
𝑖
(𝑡) and 𝑝

𝑖
(𝑡) denote the concentrations of mRNA

and protein of the 𝑖th node at time 𝑡, respectively. 𝑎
𝑖
and 𝑐
𝑖
are

the degradation rates of the mRNA and protein, respectively.
𝑑
𝑖
is the translation rate,𝜎(𝑡) is the feedback regulation delays,

and 𝜏(𝑡) is the translation delays satisfying 0 ≤ 𝜎(𝑡) ≤

𝜎, 0 ≤ 𝜏
1
(𝑡) ≤ 𝜏

1
, where 𝜎 and 𝜏 are constants. Consider

𝑔
𝑗
(𝑝
𝑗
(𝑠)) = (𝑝

𝑗
(𝑠)/𝛽
𝑗
)
𝐻𝑗/(1 + 𝑝

𝑗
(𝑠)/𝛽
𝑗
)
𝐻𝑗 , where 𝐻

𝑗
is the

Hill coefficient. 𝛽
𝑗
is a positive constant which denotes the

feedback regulation of the protein on the transcription. The
coupling matrix𝑊 = (𝜔

𝑖𝑗
)
𝑛×𝑛

∈ 𝑅
𝑛×𝑛 of the GRNs is defined

as follows:
𝜔
𝑖𝑗

=

{{

{{

{

𝛼
𝑖𝑗
, if transcription factor 𝑗 is an activator of gene 𝑖,

0, if there is no link from 𝑗 to 𝑖,
−𝛼
𝑖𝑗
, if transcription factor 𝑗 is a repressor of gene 𝑖.

(2)

Let (𝑚∗, 𝑝∗)𝑇 be an equilibrium point of (1). The equi-
librium point can be shifted to the origin by transformation:
𝑥
𝑖
(𝑡) = 𝑚

𝑖
(𝑡) − 𝑚

∗

𝑖
, 𝑦
𝑖
(𝑡) = 𝑝

𝑖
(𝑡) − 𝑝

∗

𝑖
. System (1) can be

changed into the following compact matrix form:

�̇� (𝑡) = − 𝐴𝑥 (𝑡) + 𝑊𝑓 (𝑦 (𝑡 − 𝜎 (𝑡))) ,

̇𝑦 (𝑡) = − 𝐶𝑦 (𝑡) + 𝐷
1
𝑥 (𝑡 − 𝜏

1
(𝑡)) ,

(3)

where 𝐴 = diag[𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
],𝐶 = diag[𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
],𝐷
1
=

diag[𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
], and 𝑓(𝑦(𝑡)) = 𝑔(𝑦(𝑡) + 𝑝∗) − 𝑔(𝑝∗) with

𝑓(0) = 0.

In this paper, we will consider the GRNs with neutral
delays and leakage delays:

�̇� (𝑡) = − 𝐴𝑥 (𝑡 − 𝜌
1
) + 𝑊𝑓 (𝑦 (𝑡 − 𝜎 (𝑡))) ,

̇𝑦 (𝑡) = − 𝐶𝑦 (𝑡 − 𝜌
2
) + 𝐷
1
𝑥 (𝑡 − 𝜏

1
(𝑡)) + 𝐷

2
�̇� (𝑡 − 𝜏

2
(𝑡)) ,

(4)

where 𝜌
1
> 0 and 𝜌

2
> 0 denote the leakage delays. 𝜏

2
(𝑡) is

the neutral delay and satisfies 0 ≤ 𝜏
2
(𝑡) ≤ 𝜏

2
, ̇𝜏
2
(𝑡) ≤ 𝜏

∗.
The system (4) has the following equivalent form:

𝑑

𝑑𝑡
[𝑥 (𝑡) − 𝐴∫

𝑡

𝑡−𝜌1

𝑥 (𝜇) 𝑑𝜇] = −𝐴𝑥 (𝑡) + 𝑊𝑓 (𝑦 (𝑡 − 𝜎 (𝑡))) ,

𝑑

𝑑𝑡
[𝑦 (𝑡) − 𝐶∫

𝑡

𝑡−𝜌2

𝑦 (𝜇) 𝑑𝜇]

= −𝐶𝑦 (𝑡) + 𝐷
1
𝑥 (𝑡 − 𝜏

1
(𝑡)) + 𝐷

2
�̇� (𝑡 − 𝜏

2
(𝑡)) .

(5)

The initial conditions are given as follows:

𝑥
𝑖
(𝑠) = 𝜙

𝑖
(𝑠) , 𝑠 ∈ (−𝜏, 0) ,

𝑦
𝑖
(𝑠) = 𝜓

𝑖
(𝑠) , 𝑠 ∈ (−𝜎, 0) ,

(6)

where 𝜏 = max{𝜌
1
, 𝜎} and 𝜎 = max{𝜌

2
, 𝜏
1
, 𝜏
2
}.

In this paper, we introduce the following assumption and
lemmas.

Assumption 1. There exist constants 𝑘−
𝑖
, 𝑘
+

𝑖
such that the regu-

latory function 𝑓
𝑖
(⋅) satisfies

𝑘
−

𝑖
≤
𝑓
𝑖
(𝑥) − 𝑓

𝑖
(𝑦)

𝑥 − 𝑦
≤ 𝑘
+

𝑖
, (7)

for all 𝑥, 𝑦 ∈ R, 𝑥 ̸= 𝑦 and 𝑖 = 1, 2, . . . , 𝑛.

Remark 2. In the above assumption, 𝑘−
𝑖
, 𝑘
+

𝑖
are some real con-

stants, which may be positive, zero, or negative. Compared
with the existing results in [32], this is less conservative and
less restrictive.

The following lemmas will be used to derive our main
results.

Lemma 3 (see [33]). Given any real matrix of appropriate
dimension𝑀 = 𝑀

𝑇

> 0 and a vector function 𝜔(⋅) : [𝑎, 𝑏] →
R𝑛, such that the integrations concerned are well defined, then

[∫

𝑏

𝑎

𝜔 (𝑠) 𝑑𝑠]

𝑇

𝑀[∫

𝑏

𝑎

𝜔 (𝑠) 𝑑𝑠]

≤ (𝑏 − 𝑎) ∫

𝑏

𝑎

𝜔
𝑇

(𝑠)𝑀𝜔 (𝑠) 𝑑𝑠.

(8)
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Lemma 4 (see [34, 35]). For any diagonal matrices Λ > 0, if
Assumption 1 holds, then

[
𝑦 (𝑡)

𝑓 (𝑦 (𝑡))
]

𝑇

[
−Λ𝐿 Λ𝐾

∗ −Λ
][

𝑦 (𝑡)

𝑓 (𝑦 (𝑡))
] ≥ 0, (9)

[
𝑦 (𝑡 − 𝜎 (𝑡))

𝑓 (𝑦 (𝑡 − 𝜎 (𝑡)))
]

𝑇

[
−Λ𝐿 Λ𝐾

∗ −Λ
][

𝑦 (𝑡 − 𝜎 (𝑡))

𝑓 (𝑦 (𝑡 − 𝜎 (𝑡)))
] ≥ 0,

(10)

where 𝐾 = diag(𝑘−
1
𝑘
+

1
, . . . , 𝑘

−

𝑛
𝑘
+

𝑛
) and 𝐿 = diag((𝑘−

1
+

𝑘
+

1
)/2, . . . , (𝑘

−

𝑛
+ 𝑘
+

𝑛
)/2).

3. Main Results

In this section, the asymptotic stability of system (5) is inves-
tigated. Some sufficient conditions are obtained to ensure
the stability of system (5) based on the Lyapunov functional
approach.

Theorem 5. Let Assumption 1 hold. Then the trivial solution
of system (5) is asymptotically stable if there exist symmetric
positive definite matrices 𝑃,𝑄, symmetric matrices 𝑃

𝑖
, 𝑄
𝑖
(𝑖 =

1, 2), diagonal positive definite matrix𝑄
3
, and positive definite

matrices 𝑄
4
, 𝑄
5
, 𝑄
6
such that the following LMIs hold:

∏ = (Π
𝑖,𝑗
)
16×16

< 0, (11)

[

[

𝑆
11
𝑆
12
𝑆
13

∗ 𝑆
22
𝑆
23

∗ ∗ 𝑆
33

]

]

> 0, (12)

[
𝑇
11
𝑇
12

∗ 𝑆
22

] > 0, (13)

[
𝑅
11
𝑅
12

∗ 𝑅
22

] > 0, (14)

where

Π
1,1
= −𝑃𝐴 − 𝐴𝑃 + 𝑃

1
+ 𝜌
2

1
𝑃
2
+ 𝑅
1
+ 𝜏
2
𝑅
3
,

Π
1,4
= 𝑇
𝑇

12
, Π

1,6
= 𝐴𝑃𝐴,

Π
1,12
= 𝑃𝑊, Π

1,14
= −𝑅
12
,

Π
2,2
= 𝜏
1
𝑇
22
+ 𝑄
3
− 𝑄
4
− 𝑄
𝑇

4
+ 𝑅
1
+ 𝜏
2
𝑅
22
,

Π
2,3
= −𝑄
4
𝐴, Π

2,5
= 𝑅
𝑇

12
, Π

2,12
= 𝑄
4
𝑊,

Π
3,3
= −𝑃
1
, Π

4,4
= −𝑇
12
− 𝑇
𝑇

12
+ 𝜏
1
𝑇
11
,

Π
4,5
= −𝐷
𝑇

1
𝑄
𝑇

6
𝐷
2
, Π

4,7
= 𝐷
1
𝑄
𝑇

,

Π
4,8
= 𝐷
𝑇

1
𝑄
𝑇

5
, Π

4,13
= −𝐷
𝑇

1
𝑄𝐶,

Π
5,5
= (𝜏
∗

− 1)𝑄
3
− 𝐷
𝑇

2
𝑄
6
𝐷
2
− 𝐷
𝑇

2
𝑄
𝑇

6
𝐷
2

+ 𝜏
2
𝑅
11
− 𝑅
12
− 𝑅
𝑇

12
,

Π
5,7
= 𝐷
𝑇

2
𝑄
𝑇

, Π
5,8
= 𝐷
𝑇

2
𝑄
𝑇

5
+ 𝐷
𝑇

2
𝑄
6
,

Π
5,9
= 𝐷
𝑇

2
𝑄
6
𝐶, Π

5,13
= −𝐷
𝑇

2
𝑄𝐶,

Π
6,6
= −𝑃
2
, Π

6,12
= −𝐴𝑃𝑊,

Π
7,7
= −𝑄𝐶 − 𝐶𝑄 + 𝑄

1
+ 𝜌
2

2
𝑄
2
− Λ
1
𝐿,

Π
7,10
= 𝑆
𝑇

13
, Π

7,11
= Λ
1
𝐾, Π

7,12
= 𝑆
𝑇

23
,

Π
7,13
= 𝐶𝑄𝐶, Π

8,8
= 𝜎𝑆
33
− 𝑄
5
− 𝑄
𝑇

5
,

Π
8,9
= −𝑄
5
𝐶, Π

9,9
= −𝑄
1
,

Π
10,10

= 𝜎𝑆
11
− 𝑆
13
− Λ
2
𝐿,

Π
10,12

= 𝜎𝑆
12
− 𝑆
𝑇

23
+ Λ
2
𝐾,

Π
11,11

= −Λ
1
, Π

12,12
= 𝜎𝑆
22
− Λ
2
,

Π
13,13

= −𝑄
2
, Π

14,14
= −𝑅
1
,

Π
15,15

= −𝑅
2
, Π

16,16
= −
𝑅
3

𝜏
2

.

(15)

Proof. Consider the following Lyapunov-Krasovskii func-
tional:

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡) + 𝑉

5
(𝑡) , (16)

where

𝑉
1
(𝑡) = [𝑥 (𝑡)− 𝐴∫

𝑡

𝑡−𝜌1

𝑥 (𝜇) 𝑑𝜇]

𝑇

× 𝑃[𝑥 (𝑡)− 𝐴∫

𝑡

𝑡−𝜌1

𝑥 (𝜇) 𝑑𝜇]

+ [𝑦 (𝑡)− 𝐶∫

𝑡

𝑡−𝜌2

𝑦 (𝜇) 𝑑𝜇]

𝑇

× 𝑄[𝑦 (𝑡)− 𝐶∫

𝑡

𝑡−𝜌2

𝑦 (𝜇) 𝑑𝜇] ,

𝑉
2
(𝑡) = ∫

𝑡

𝑡−𝜌1

𝑥
𝑇

(𝑠) 𝑃
1
𝑥 (𝑠) 𝑑𝑠

+𝜌
1
∫

𝑡

𝑡−𝜌1

∫

𝑡

𝑠

𝑥
𝑇

(𝜇) 𝑃
2
𝑥 (𝜇) 𝑑𝜇 𝑑𝑠

+∫

𝑡

𝑡−𝜌2

𝑦
𝑇

(𝑠) 𝑄
1
𝑦 (𝑠) 𝑑𝑠

+𝜌
2
∫

𝑡

𝑡−𝜌2

∫

𝑡

𝑠

𝑦
𝑇

(𝜇)𝑄
2
𝑦 (𝜇) 𝑑𝜇 𝑑𝑠,

𝑉
3
(𝑡) = ∫

𝑡

0

∫

𝜇

𝜇−𝜎(𝜇)

[
[

[

𝑦 (𝜇 − 𝜎 (𝜇))

𝑓 (𝑦 (𝜇 − 𝜎 (𝜇)))

̇𝑦 (𝑠)

]
]

]

𝑇

× [

[

𝑆
11
𝑆
12
𝑆
13

∗ 𝑆
22
𝑆
23

∗ ∗ 𝑆
33

]

]
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× [

[

𝑦 (𝜇 − 𝜎 (𝜇))

𝑓 (𝑦 (𝜇 − 𝜎 (𝜇)))

̇𝑦 (𝑠)

]

]

𝑑𝑠 𝑑𝜇

+∫

𝑡

0

∫

𝜇

𝜇−𝜏1(𝜇)

[
𝑥 (𝜇 − 𝜏

1
(𝜇))

�̇� (𝑠)
]

𝑇

[
𝑇
11
𝑇
12

∗ 𝑆
22

]

× [
𝑥 (𝜇 − 𝜏

1
(𝜇))

�̇� (𝑠)
] 𝑑𝑠 𝑑𝜇

+∫

𝑡

0

∫

𝜇

𝜇−𝜏2(𝜇)

[
�̇� (𝜇 − 𝜏

2
(𝜇))

�̇� (𝑠)
]

𝑇

[
𝑅
11
𝑅
12

∗ 𝑅
22

]

× [
�̇� (𝜇 − 𝜏

2
(𝜇))

�̇� (𝑠)
] 𝑑𝑠 𝑑𝜇,

𝑉
4
(𝑡) = ∫

0

−𝜎

∫

𝑡

𝑡+𝜇

̇𝑦
𝑇

(𝑠) 𝑆
33
̇𝑦 (𝑠) 𝑑𝑠 𝑑𝜇

+ ∫

0

−𝜏1

∫

𝑡

𝑡+𝜇

�̇�
𝑇

(𝑠) 𝑇
22
�̇� (𝑠) 𝑑𝑠 𝑑𝜇,

𝑉
5
(𝑡) = ∫

𝑡

𝑡−𝜏2

[𝑥
𝑇

(𝑠) 𝑅
1
𝑥 (𝑠) + �̇�

𝑇

(𝑠) 𝑅
2
�̇� (𝑠)] 𝑑𝑠

+ ∫

0

−𝜏2

∫

𝑡

𝑡+𝜇

[𝑥
𝑇

(𝑠) 𝑅
3
𝑥 (𝑠)

+�̇�
𝑇

(𝑠) 𝑅
22
�̇� (𝑠)] 𝑑𝑠 𝑑𝜇

+ ∫

𝑡

𝑡−𝜏2(𝑡)

�̇�
𝑇

(𝑠) 𝑄
3
�̇� (𝑠) 𝑑𝑠.

(17)

Calculating the derivative of 𝑉(𝑡) along with the solution
of the system (5), we have

�̇�
1
(𝑡) = 2[𝑥 (𝑡) − 𝐴∫

𝑡

𝑡−𝜌1

𝑥 (𝜇) 𝑑𝜇]

𝑇

× 𝑃 [−𝐴𝑥 (𝑡) + 𝑊𝑓 (𝑦 (𝑡 − 𝜎 (𝑡)))]

+ 2[𝑦 (𝑡) − 𝐶∫

𝑡

𝑡−𝜌2

𝑦 (𝜇) 𝑑𝜇]

𝑇

× [−𝐶𝑦 (𝑡) + 𝐷
1
𝑥 (𝑡 − 𝜏

1
(𝑡)) + 𝐷

2
�̇� (𝑡 − 𝜏

2
(𝑡))]

= −2𝑥
𝑇

(𝑡) 𝑃𝐴𝑥 (𝑡) + 2𝑥
𝑇

(𝑡) 𝑃𝑊𝑓 (𝑦 (𝑡 − 𝜎 (𝑡)))

+ 2𝑥
𝑇

(𝑡) 𝐴𝑃𝐴(∫

𝑡

𝑡−𝜌1

𝑥 (𝜇) 𝑑𝜇)

− 2(∫

𝑡

𝑡−𝜌1

𝑥 (𝜇) 𝑑𝜇)

𝑇

𝐴𝑃𝑊𝑓 (𝑦 (𝑡 − 𝜎 (𝑡)))

− 2𝑦
𝑇

(𝑡) 𝑄𝐶𝑦 (𝑡) + 2𝑥
𝑇

(𝑡 − 𝜏
1
(𝑡))𝐷

1
𝑄
𝑇

𝑦 (𝑡)

+ 2�̇� (𝑡 − 𝜏
2
(𝑡))𝐷

𝑇

2
𝑄
𝑇

𝑦 (𝑡)

+ 2𝑦
𝑇

(𝑡) 𝐶𝑄𝐶(∫

𝑡

𝑡−𝜌2

𝑦 (𝜇) 𝑑𝜇)

− 2(∫

𝑡

𝑡−𝜌2

𝑦 (𝜇) 𝑑𝜇)

𝑇

𝐶𝑄𝐷
1
𝑥 (𝑡 − 𝜏

1
(𝑡))

− 2�̇� (𝑡 − 𝜏
2
(𝑡))𝐷

𝑇

2
𝑄𝐶(∫

𝑡

𝑡−𝜌2

𝑦 (𝜇) 𝑑𝜇) ,

�̇�
2
(𝑡) = 𝑥

𝑇

(𝑡) 𝑃
1
𝑥 (𝑡) − 𝑥

𝑇

(𝑡 − 𝜌
1
) 𝑃
1
𝑥 (𝑡 − 𝜌

1
)

− 𝜌
1
∫

𝑡

𝑡−𝜌1

𝑥
𝑇

(𝜇) 𝑃
2
𝑥 (𝜇) 𝑑𝜇 + 𝜌

2

1
𝑥
𝑇

(𝑡) 𝑃
2
𝑥 (𝑡)

+ 𝑦
𝑇

(𝑡) 𝑄
1
𝑦 (𝑡) − 𝑦

𝑇

(𝑡 − 𝜌
2
) 𝑄
1
𝑦 (𝑡 − 𝜌

2
)

− 𝜌
2
∫

𝑡

𝑡−𝜌2

𝑦
𝑇

(𝜇)𝑄
2
𝑦 (𝜇) 𝑑𝜇 + 𝜌

2

2
𝑦
𝑇

(𝑡) 𝑄
2
𝑦 (𝑡)

≤ 𝑥
𝑇

(𝑡) 𝑃
1
𝑥 (𝑡) − 𝑥

𝑇

(𝑡 − 𝜌
1
) 𝑃
1
𝑥 (𝑡 − 𝜌

1
)

− [∫

𝑡

𝑡−𝜌1

𝑥 (𝜇) 𝑑𝜇]

𝑇

𝑃
2
[∫

𝑡

𝑡−𝜌1

𝑥 (𝜇) 𝑑𝜇]

+ 𝜌
2

1
𝑥
𝑇

(𝑡) 𝑃
2
𝑥 (𝑡) + 𝑦

𝑇

(𝑡) 𝑄
1
𝑦 (𝑡)

− 𝑦
𝑇

(𝑡 − 𝜌
2
) 𝑄
1
𝑦 (𝑡 − 𝜌

2
)

− [∫

𝑡

𝑡−𝜌2

𝑦 (𝜇) 𝑑𝜇]

𝑇

𝑄
2
[∫

𝑡

𝑡−𝜌2

𝑦 (𝜇) 𝑑𝜇]

+ 𝜌
2

2
𝑦
𝑇

(𝑡) 𝑄
2
𝑦 (𝑡) ,

�̇�
3
(𝑡) = ∫

𝑡

𝜇−𝜎(𝑡)

[

[

𝑦 (𝑡 − 𝜎 (𝑡))

𝑓 (𝑦 (𝑡 − 𝜎 (𝑡)))

̇𝑦 (𝑠)

]

]

𝑇

[

[

𝑆
11
𝑆
12
𝑆
13

∗ 𝑆
22
𝑆
23

∗ ∗ 𝑆
33

]

]

× [

[

𝑦 (𝑡 − 𝜎 (𝑡))

𝑓 (𝑦 (𝑡 − 𝜎 (𝑡)))

̇𝑦 (𝑠)

]

]

𝑑𝑠

+ ∫

𝑡

𝑡−𝜏1(𝑡)

[
𝑥 (𝑡 − 𝜏

1
(𝑡))

�̇� (𝑠)
]

𝑇

[
𝑇
11
𝑇
12

∗ 𝑆
22

]

× [
𝑥 (𝑡 − 𝜏

1
(𝑡))

�̇� (𝑠)
] 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏2(𝑡)

[
�̇� (𝑡 − 𝜏

2
(𝑡))

�̇� (𝑠)
]

𝑇

[
𝑅
11
𝑅
12

∗ 𝑅
22

]

× [
�̇� (𝑡 − 𝜏

2
(𝑡))

�̇� (𝑠)
] 𝑑𝑠

≤ 𝜏
1
𝑥
𝑇

(𝑡 − 𝜏
1
(𝑡)) 𝑇
11
𝑥 (𝑡 − 𝜏

1
(𝑡))

+ 2𝑥
𝑇

(𝑡) 𝑇
𝑇

12
𝑥 (𝑡 − 𝜏

1
(𝑡))

− 2𝑥
𝑇

(𝑡 − 𝜏
1
(𝑡)) 𝑇
𝑇

12
𝑥 (𝑡 − 𝜏

1
(𝑡))



Abstract and Applied Analysis 5

+ ∫

𝑡

𝑡−𝜏1

�̇�
𝑇

(𝑠) 𝑇
22
�̇� (𝑠) 𝑑𝑠

+ 𝜏
2
�̇�
𝑇

(𝑡 − 𝜏
2
(𝑡)) 𝑅
11
�̇� (𝑡 − 𝜏

2
(𝑡))

+ 2�̇�
𝑇

(𝑡) 𝑅
𝑇

12
�̇� (𝑡 − 𝜏

2
(𝑡))

− 2�̇�
𝑇

(𝑡 − 𝜏
2
(𝑡)) 𝑅
𝑇

12
�̇� (𝑡 − 𝜏

2
(𝑡))

+ ∫

𝑡

𝑡−𝜏2

�̇�
𝑇

(𝑠) 𝑅
22
�̇� (𝑠) 𝑑𝑠

+ 𝜎𝑦
𝑇

(𝑡 − 𝜎 (𝑡)) 𝑆
11
𝑦 (𝑡 − 𝜎 (𝑡))

+ 𝜎𝑓
𝑇

(𝑦 (𝑡 − 𝜎 (𝑡))) 𝑆
22
𝑓 (𝑦 (𝑡 − 𝜎 (𝑡)))

+ ∫

𝑡

𝑡−𝜎

̇𝑦
𝑇

(𝑠) 𝑆
33
̇𝑦 (𝑠) 𝑑𝑠

+ 𝜎𝑦
𝑇

(𝑡 − 𝜎 (𝑡)) 𝑆
12
𝑓 (𝑦 (𝑡 − 𝜎 (𝑡)))

+ 𝑦
𝑇

(𝑡 − 𝜎 (𝑡)) 𝑆
13
[𝑦 (𝑡) − 𝑦 (𝑡 − 𝜎 (𝑡))]

+ 𝑓
𝑇

(𝑦 (𝑡 − 𝜎 (𝑡))) 𝑆
23
[𝑦 (𝑡) − 𝑦 (𝑡 − 𝜎 (𝑡))] ,

�̇�
4
(𝑡) = 𝜎 ̇𝑦

𝑇

(𝑡) 𝑆
33
̇𝑦 (𝑡) − ∫

0

−𝜎

̇𝑦
𝑇

(𝑡 + 𝑡) 𝑆
33
̇𝑦 (𝑡 + 𝑡) 𝑑𝑡

+ 𝜏
1
�̇�
𝑇

(𝑡) 𝑇
22
�̇� (𝑡) − ∫

0

−𝜏1

�̇�
𝑇

(𝑡 + 𝑡) 𝑇
22
�̇� (𝑡 + 𝑡) 𝑑𝑡

= 𝜎 ̇𝑦
𝑇

(𝑡) 𝑆
33
̇𝑦 (𝑡) − ∫

𝑡

𝑡−𝜎

̇𝑦
𝑇

(𝑠) 𝑆
33
̇𝑦 (𝑠) 𝑑𝑠

+ 𝜏
1
�̇�
𝑇

(𝑡) 𝑇
22
�̇� (𝑡) − ∫

𝑡

𝑡−𝜏1

�̇�
𝑇

(𝑠) 𝑇
22
�̇� (𝑠) 𝑑𝑠,

�̇�
5
(𝑡) = 𝑥

𝑇

(𝑡) 𝑅
1
𝑥 (𝑡) + �̇�

𝑇

(𝑡) 𝑅
1
�̇� (𝑡)

− 𝑥
𝑇

(𝑡 − 𝜏
2
) 𝑅
1
𝑥 (𝑡 − 𝜏

2
)

− �̇�
𝑇

(𝑡 − 𝜏
2
) 𝑅
2
�̇� (𝑡 − 𝜏

2
)

+ 𝜏
2
𝑥
𝑇

(𝑡) 𝑅
3
𝑥 (𝑡) + 𝜏

2
�̇�
𝑇

(𝑡) 𝑅
22
�̇� (𝑡)

− ∫

𝑡

𝑡−𝜏2

𝑥
𝑇

(𝑠) 𝑅
3
𝑥 (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−𝜏2

�̇�
𝑇

(𝑠) 𝑅
22
�̇� (𝑠) 𝑑𝑠

+ �̇�
𝑇

(𝑡) 𝑄
3
�̇� (𝑡) − �̇�

𝑇

(𝑡 − 𝜏
2
(𝑡))

× 𝑄
3
�̇� (𝑡 − 𝜏

2
(𝑡)) [1 − ̇𝜏

2
(𝑡)]

≤ 𝑥
𝑇

(𝑡) 𝑅
1
𝑥 (𝑡) + �̇�

𝑇

(𝑡) 𝑅
1
�̇� (𝑡)

− 𝑥
𝑇

(𝑡 − 𝜏
2
) 𝑅
1
𝑥 (𝑡 − 𝜏

2
)

− �̇�
𝑇

(𝑡 − 𝜏
2
) 𝑅
2
�̇� (𝑡 − 𝜏

2
)

+ 𝜏
2
𝑥
𝑇

(𝑡) 𝑅
3
𝑥 (𝑡) + 𝜏

2
�̇�
𝑇

(𝑡) 𝑅
22

−
1

𝜏
2

(∫

𝑡

𝑡−𝜏2

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑅
3
(∫

𝑡

𝑡−𝜏2

𝑥 (𝑠) 𝑑𝑠)

− ∫

𝑡

𝑡−𝜏2

�̇�
𝑇

(𝑠) 𝑅
22
�̇� (𝑠) 𝑑𝑠 + �̇�

𝑇

(𝑡) 𝑄
3
�̇� (𝑡)

+ �̇�
𝑇

(𝑡 − 𝜏
2
(𝑡)) 𝑄

3
�̇� (𝑡 − 𝜏

2
(𝑡)) (𝜏

∗

− 1) .

(18)

In addition, note that

0 = 2�̇�
𝑇

(𝑡) 𝑄
4
[−�̇� (𝑡) + �̇� (𝑡)]

= 2�̇�
𝑇

(𝑡) 𝑄
4
[−�̇� (𝑡) − 𝐴𝑥 (𝑡 − 𝜌

1
) + 𝑊𝑓 (𝑦 (𝑡 − 𝜎 (𝑡)))]

= −2�̇�
𝑇

(𝑡) 𝑄
4
�̇� (𝑡) − 2�̇�

𝑇

(𝑡) 𝑄
4
𝐴𝑥 (𝑡 − 𝜌

1
)

+ 2�̇�
𝑇

(𝑡) 𝑄
4
𝑊𝑓(𝑦 (𝑡 − 𝜎 (𝑡))) ,

(19)

0 = 2 ̇𝑦
𝑇

(𝑡) 𝑄
5
[− ̇𝑦 (𝑡) + ̇𝑦 (𝑡)]

= 2 ̇𝑦
𝑇

(𝑡) 𝑄
5
[− ̇𝑦 (𝑡) − 𝐶𝑦 (𝑡 − 𝜌

2
)

+ 𝐷
1
𝑥 (𝑡 − 𝜏

1
(𝑡)) + 𝐷

2
�̇� (𝑡 − 𝜏

2
(𝑡))]

= −2 ̇𝑦
𝑇

(𝑡) 𝑄
5
̇𝑦 (𝑡) − 2 ̇𝑦

𝑇

(𝑡) 𝑄
5
𝐶𝑦 (𝑡 − 𝜌

2
)

+ 2𝑥
𝑇

(𝑡 − 𝜏
1
(𝑡))𝐷

1
𝑄
𝑇

5
̇𝑦 (𝑡)

+ 2�̇�
𝑇

(𝑡 − 𝜏
2
(𝑡))𝐷

𝑇

2
𝑄
𝑇

5
̇𝑦 (𝑡) ,

(20)

0 = 2�̇�
𝑇

(𝑡 − 𝜏
2
(𝑡))𝐷

𝑇

2
𝑄
6

× [−𝐷
2
�̇� (𝑡 − 𝜏

2
(𝑡)) + 𝐷

2
�̇� (𝑡 − 𝜏

2
(𝑡))]

= 2�̇�
𝑇

(𝑡 − 𝜏
2
(𝑡))𝐷

𝑇

2
𝑄
6

× [−𝐷
2
�̇� (𝑡 − 𝜏

2
(𝑡)) + ̇𝑦 (𝑡) + 𝐶𝑦 (𝑡 − 𝜌

2
)

−𝐷
1
𝑥 (𝑡 − 𝜏

1
(𝑡))]

= −2�̇�
𝑇

(𝑡 − 𝜏
2
(𝑡))𝐷

𝑇

2
𝑄
6
𝐷
2
�̇� (𝑡 − 𝜏

2
(𝑡))

+ 2�̇�
𝑇

(𝑡 − 𝜏
2
(𝑡))𝐷

𝑇

2
𝑄
6
̇𝑦 (𝑡)

+ 2�̇�
𝑇

(𝑡 − 𝜏
2
(𝑡))𝐷

𝑇

2
𝑄
6
𝐶𝑦 (𝑡 − 𝜌

2
)

− 2𝑥
𝑇

(𝑡 − 𝜏
1
(𝑡))𝐷

𝑇

1
𝑄
𝑇

6
𝐷
2
�̇�
𝑇

(𝑡 − 𝜏
2
(𝑡)) .

(21)

From (9) to (21), we have

�̇� (𝑡) ≤ 𝜉
𝑇

(𝑡)∏𝜉 (𝑡) , (22)
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where∏ is defined in (11) and

𝜉
𝑇

(𝑡) = [𝑥
𝑇

(𝑡) , �̇�
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝜌
1
) , 𝑥
𝑇

(𝑡 − 𝜏
1
(𝑡)) ,

𝑥
𝑇

(𝑡 − 𝜏
2
(𝑡)) , (∫

𝑡

𝑡−𝜌1

𝑥 (𝜇) 𝑑𝜇)

𝑇

,

𝑦
𝑇

(𝑡) , ̇𝑦
𝑇

(𝑡) , 𝑦
𝑇

(𝑡 − 𝜌
2
) , 𝑦
𝑇

(𝑡 − 𝜎 (𝑡)) ,

𝑓
𝑇

(𝑦 (𝑡)) , 𝑓
𝑇

(𝑦 (𝑡 − 𝜎 (𝑡))) ,

(∫

𝑡

𝑡−𝜌2

𝑦 (𝜇) 𝑑𝜇)

𝑇

, 𝑥
𝑇

(𝑡 − 𝜏
2
) , �̇�
𝑇

(𝑡 − 𝜏
2
) ,

(∫

𝑡

𝑡−𝜏2

𝑥 (𝜇) 𝑑𝜇)

𝑇

]

(23)

which implies �̇�(𝑡) ≤ 0. It is easy to prove �̇�(𝑡) ≤

𝜆min(∏)𝜉
𝑇

(𝑡)𝜉(𝑡) ≤ 𝜆min(∏)[𝑥
𝑇

(𝑡)𝑥(𝑡) + 𝑦
𝑇

(𝑡)𝑦(𝑡)], where
𝜆min(∏) < 0. According to the Lyapunov stability theory,
the GRNs (5) are asymptotically stable. The proof is com-
plete.

Remark 6. If the leakage delay 𝜌
1
= 𝜌
2
= 0, the model is the

same as that in [27]. We can also deduce the sufficient
conditions for guaranteeing system stability. So the model
in [27] is a special case of the model in this paper. In
fact, the leakage delay has a large effect on the dynamic
behaviors of the model. It often leads to the instability. This
phenomenon can be observed in Figure 1. Considering the
impact of leakage delay, we analyze GRNs with neutral delays
and leakage delays simultaneously.

4. Simulation Results

In this section, an example is given to demonstrate the fea-
sibility and efficiency of the theoretical results above. The
simulation is conducted on MATLAB, and the ordinary
differential equation is solved by Runge-Kutta method.

Example 7. Consider the following neutral-type genetic reg-
ulatory networks with leakage delays:

�̇� (𝑡) = − 𝐴𝑥 (𝑡 − 𝜌
1
) + 𝑊𝑓 (𝑦 (𝑡 − 𝜎 (𝑡))) ,

̇𝑦 (𝑡) = − 𝐶𝑦 (𝑡 − 𝜌
2
) + 𝐷
1
𝑥 (𝑡 − 𝜏

1
(𝑡)) + 𝐷

2
�̇� (𝑡 − 𝜏

2
(𝑡)) ,

(24)

where

𝐴 = [
6 0

0 7
] , 𝑊 = [

−1 0

1 2
] , 𝐶 = [

2.5 0

0 2.5
] ,

𝐷
1
= [
0.2 0

0 0.2
] , 𝐷

2
= [
8 0

0 0.8
] , 𝑓 (𝑦) =

𝑦
2

1 + 𝑦2
.

(25)

Then we have

𝑘
+

𝑖
= 0.65, 𝑘

−

𝑖
= 0,

𝐾 = diag [0.325, 0.325] , 𝐿 = 0.

(26)

Time-varying delays and the leakage delays are chosen as

𝜏
1
= 0.995, 𝜏

2
= 1, 𝜌

1
= 𝜌
2
= 0.01, 𝜎 = 0.01.

(27)

By using the MATLAB LMI Toolbox, we obtain

𝑃 = [
0.3039 0.0035

0.0035 0.1728
] , 𝑄 = [

0.0011 0.0000

0.0000 0.0544
] ,

𝑃
1
= [
1.4529 0.0114

0.0114 0.9774
] , 𝑃

2
= [
64.7658 0.5258

0.5258 59.4535
] ,

𝑄
1
= [
0.0007 0.0001

0.0001 0.0627
] , 𝑄

2
= [
4.2036 0.0059

0.0059 17.3389
] ,

𝑄
3
= [
0.0100 0

0 0.0100
] , 𝑄

4
= [
0.0397 0.0007

0.0011 0.0178
] ,

𝑄
5
= [
0.0001 0.0000

0.0000 0.0100
] , 𝑄

6
= [
0.0001 0.0000

0.0000 0.0101
] ,

𝑇
11
= [
0.1108 0.0002

0.0002 0.0870
] , 𝑇

12
= [
0.2207 0.0005

0.0005 0.1803
] ,

𝑇
22
= [
0.0022 0.0001

0.0001 0.0011
] , 𝑆

11
= [
0.0084 0.0005

0.0005 0.7474
] ,

𝑆
12
= [
−25.6827 −0.0276

−1.7215 −21.2464
] ,

𝑆
13
= [

0.0003 −0.0000

−0.0000 0.0344
] ,

𝑆
22
= [
10.4912 −1.0149

−1.0149 9.3772
] ,

𝑆
23
= [

0.0097 −0.0195

−0.0004 −0.1500
] ,

𝑆
33
= [
0.0018 0.0002

0.0002 0.1414
] , 𝑅

11
= [
0.1961 0.0029

0.0029 0.1490
] ,

𝑅
12
= [
0.0188 0.0002

0.0004 0.0048
] , 𝑅

22
= [
0.2200 0.0077

0.0077 0.1084
] ,

𝑅
1
= [
0.0044 0.0001

0.0001 0.0014
] , 𝑅

2
= [
12.3518 0

0 12.3518
] ,

𝑅
3
= [
3.4620 0.0037

0.0037 3.1125
] , Λ

1
= [
0.0084 0

0 0.0084
] ,

Λ
2
= [
0.7930 0

0 0.7930
] .

(28)
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Figure 1: State trajectory of the system with 𝜌
1
= 𝜌
2
= 0.24 for Example 7 with two nodes.
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Figure 2: State trajectory of the system with 𝜌
1
= 𝜌
2
= 0.13 for Example 7 with two nodes.

Table 1: Effect of leakage delay on the stability.

𝜌 (leakage delay) Condition Stability
0 < 𝜌 ≤ 0.229 Satisfied Stable
0.229 < 𝜌 ≤ 0.239 Dissatisfied Stable
𝜌 ≥ 0.240 Dissatisfied Unstable

This means that all conditions inTheorem 5 are satisfied.
Hence, the GRN model (24) is asymptotically stable. On the
other hand, we have the following simulation results shown
in Figure 2, which also show the correctness of the theoretic
analysis.

Remark 8. In order to reflect the effect of the leakage delays
on the stability of GRNs, we have given the simulation
results by using different leakage delays. Table 1 shows the
conclusions when the leakage delays are changed. When
leakage delays specially 𝜌

1
= 𝜌
2
= 0.23, the conditions in

Theorem 5 are not satisfied.However, the system is still stable.
Thus, there still exist rooms for improving the sufficient
conditions inTheorem 5.

5. Conclusion

In this paper, we have investigated the stability of neural-
type GRNs with leakage delays. Based on Lyapunov stability
theory and linear matrix inequalities, some sufficient condi-
tions have been obtained to guarantee stability for GRNs. It is
noted that the leakage delay and neutral delay are considered

together in the paper, which extended and improved the
previous results in [27, 30]. Finally, a numerical simulation
has been given to show the effectiveness of our theoretic
results.
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