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New classes of univalent harmonic functions are introduced. We give sufficient coefficient conditions for these classes. These
coefficient conditions are shown to be also necessary if certain restrictions are imposed on the coefficients of these harmonic
functions. By using extreme points theory we also obtain coefficients estimates, distortion theorems, and integral mean inequalities
for these classes of functions. Radii of convexity and starlikeness of the classes are also considered.

1. Introduction

Acontinuous complex-valued function𝑓 = 𝑢+𝑖V defined in a
simply connected domain𝐷 ⊂ C is said to be harmonic in𝐷
if 𝑢 and V are real harmonic in𝐷.There is a close interrelation
between analytic functions and harmonic functions. For real
harmonic functions 𝑢 and V there exist analytic functions 𝐻
and 𝐺 so that 𝑢 = Re(𝐻) and V = Im(𝐺). Therefore, every
complex-valued function𝑓 harmonic in𝐷with 0 ∈ 𝐷 can be
uniquely represented as

𝑓 = ℎ + 𝑔, (1)

where ℎ = (𝐻+𝐺)/2 and 𝑔 = (𝐻−𝐺)/2 are analytic functions
in𝐷 with 𝑔(0) = 0. Then we call ℎ the analytic part and 𝑔 the
coanalytic part of 𝑓. It is easy to verify that the Jacobian of 𝑓
is given by

𝐽𝑓 (𝑧) =
󵄨󵄨󵄨󵄨󵄨ℎ
󸀠
(𝑧)

󵄨󵄨󵄨󵄨󵄨
2
−
󵄨󵄨󵄨󵄨󵄨𝑔
󸀠
(𝑧)

󵄨󵄨󵄨󵄨󵄨
2
, (𝑧 ∈ 𝐷) . (2)

The mapping 𝑓 is locally univalent if 𝐽𝑓(𝑧) ̸= 0 in 𝐷.
A result of Lewy [1] shows that the converse is true for
harmonic mappings. Therefore, 𝑓 is locally univalent and
sense-preserving if and only if

󵄨󵄨󵄨󵄨󵄨ℎ
󸀠
(𝑧)

󵄨󵄨󵄨󵄨󵄨 >
󵄨󵄨󵄨󵄨󵄨𝑔
󸀠
(𝑧)

󵄨󵄨󵄨󵄨󵄨 , (𝑧 ∈ 𝐷) . (3)

LetH denote the class of harmonic functions in the unit
disc U fl U(1), where U(𝑟) fl {𝑧 ∈ C : |𝑧| < 𝑟}, and by H0

we denote the class of function 𝑓 ∈ H normalized by 𝑓(0) =
𝑓󸀠𝑧(0) − 1 = 0. Then we may express the analytic functions ℎ
and 𝑔 defined by (1) as

ℎ (𝑧) = 𝑧 +
∞

∑
𝑛=2

𝑎𝑛𝑧
𝑛,

𝑔 (𝑧) =
∞

∑
𝑛=1

𝑏𝑛𝑧
𝑛,

(𝑧 ∈ U,
󵄨󵄨󵄨󵄨𝑏1

󵄨󵄨󵄨󵄨 < 1) ;

(4)

that is,

𝑓 (𝑧) =
∞

∑
𝑛=1

(𝑎𝑛𝑧
𝑛 + 𝑏𝑛𝑧

𝑛) ,

(𝑎1 = 1,
󵄨󵄨󵄨󵄨𝑏1

󵄨󵄨󵄨󵄨 < 1, 𝑧 ∈ U) .

(5)

By SH we denote the class of functions 𝑓 ∈ H0 which are
univalent and sense-preserving in U, and by A we denote
the class of functions 𝑓 ∈ H for which the coanalytic part
vanishes.

We say that a function 𝑓 : U → C is subordinate to a
function 𝐹 : U → C and write 𝑓(𝑧) ≺ 𝐹(𝑧) (or simply 𝑓 ≺
𝐹), if there exists a complex-valued function𝜔which mapsU
into oneself with 𝜔(0) = 0, such that

𝑓 (𝑧) = 𝐹 (𝜔 (𝑧)) , (𝑧 ∈ U) . (6)
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In particular, if 𝐹 is univalent in U, we have the following
equivalence:

𝑓 (𝑧) ≺ 𝐹 (𝑧) ⇐⇒ [𝑓 (0) = 𝐹 (0) , 𝑓 (U) ⊂ 𝐹 (U)] . (7)

For functions 𝑓1, 𝑓2 ∈ H of the form

𝑓𝑘 (𝑧) =
∞

∑
𝑛=0

𝑎𝑘,𝑛𝑧
𝑛 +
∞

∑
𝑛=1

𝑏𝑘,𝑛𝑧
𝑛,

(𝑧 ∈ U, 𝑘 ∈ N fl {1, 2})

(8)

by 𝑓1 ∗𝑓2 we denote the Hadamard product or convolution of
𝑓1 and 𝑓2, defined by

(𝑓1 ∗ 𝑓2) (𝑧) =
∞

∑
𝑛=0

𝑎1,𝑛𝑎2,𝑛𝑧
𝑛 +
∞

∑
𝑛=1

𝑏1,𝑛𝑏2,𝑛𝑧
𝑛, (𝑧 ∈ U) . (9)

Firstly, Clunie and Sheil-Small [2] and Sheil-Small [3]
studied SH together with some of its geometric subclasses.
In particular, they investigated harmonic starlike functions in
U and harmonic convex functions in U, which are defined as
follows. We say that 𝑓 ∈ SH is said to be harmonic starlike
functions in U(𝑟) if 𝑓(U(𝑟)) is a starlike domain with respect
to the origin. Likewise 𝑓 ∈ SH is said to be harmonic convex
functions in U(𝑟) if 𝑓(U(𝑟)) is a convex domain.

In particular, we have that 𝑓 ∈ H0 is harmonic starlike
function if

𝜕

𝜕𝑡
(arg𝑓 (𝑟𝑒𝑖𝑡)) > 0, 0 ≤ 𝑡 ≤ 2𝜋, 0 < 𝑟 < 1, (10)

or equivalently

Re
𝐷H𝑓 (𝑧)

𝑓 (𝑧)
> 0, (𝑧 ∈ U) , (11)

where

𝐷H𝑓 (𝑧) fl 𝑧ℎ󸀠 (𝑧) − 𝑧𝑔󸀠 (𝑧), (𝑧 ∈ U) . (12)

Let −𝐵 ≤ 𝐴 < 𝐵 ≤ 1, 0 ≤ 𝛼 < 1. Motivated by Janowski
[4] we define the following classes of functions.

Let S∗H(𝐴, 𝐵) denote the class of functions 𝑓 ∈ SH such
that

𝐷H𝑓 (𝑧)

𝑓 (𝑧)
≺
1 + 𝐴𝑧

1 + 𝐵𝑧
. (13)

Also, byRH(𝐴, 𝐵) we denote the class of functions 𝑓 ∈ SH

such that
𝐷H𝑓 (𝑧)

𝑧
≺
1 + 𝐴𝑧

1 + 𝐵𝑧
. (14)

Moreover, let us define

S
𝑐
H (𝐴, 𝐵) fl {𝑓 ∈SH : 𝐷H𝑓 ∈S∗H (𝐴, 𝐵)} ,

R
1
H (𝐴, 𝐵) fl {𝑓 ∈SH : 𝐷H𝑓 ∈RH (𝐴, 𝐵)} ,

S
∗
H (𝛼) fl S

∗
H (2𝛼 − 1, 1) ,

S
𝑐
H (𝛼) fl S

𝑐
H (2𝛼 − 1, 1) .

(15)

We should notice here that Janowski [4] introduced the
classes S∗(𝐴, 𝐵) fl S∗H(𝐴, 𝐵) ∩ A and R(𝐴, 𝐵) fl
RH(𝐴, 𝐵) ∩ A. The classes S∗H(𝛼) and S𝑐H(𝛼) were inves-
tigated by Jahangiri [5, 6]. The classes S∗H fl S∗H(0) and
S𝑐H fl S𝑐H(0) are the classes of functions 𝑓 ∈ SH which
are starlike in U(𝑟) or convex in U(𝑟), respectively, for all
𝑟 ∈ (0, 1⟩. It is easy to verify (e.g., see [5]) that

S
𝑐
H (𝐴, 𝐵) ⊂ S

𝑐
H ⊂ S

∗
H ⊂ SH,

S
∗
H (𝐴, 𝐵) ⊂ S

∗
H.

(16)

In the paper we obtain some necessary and sufficient
conditions for defined classes of functions. Some topological
properties, radii of convexity and starlikeness, and extreme
points of the classes are also considered. By using extreme
points theory we obtain coefficients estimates, distortion
theorems, and integral mean inequalities for the classes of
functions.

2. Necessary and Sufficient Conditions

Theorem 1. Let 𝑓 ∈ SH. Then 𝑓 ∈ S∗H(𝐴, 𝐵) if and only if

𝑓 (𝑧) ∗ 𝜑 (𝑧; 𝜉) ̸= 0, (𝜉 ∈ C,
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 = 1) , (17)

where

𝜑 (𝑧; 𝜉) =
(𝐵 − 𝐴) 𝜉𝑧 + (1 + 𝐴𝜉) 𝑧2

(1 − 𝑧)2

−
{2 + (𝐴 + 𝐵) 𝜉} 𝑧 − (1 + 𝐴𝜉) 𝑧2

(1 − 𝑧)2
,

(𝑧 ∈ U) .

(18)

Proof. Let 𝑓 ∈ SH be of form (1). Then 𝑓 ∈ S∗H(𝐴, 𝐵) if and
only if it satisfies (13) or equivalently

𝐷H𝑓 (𝑧)

𝑓 (𝑧)
̸=
1 + 𝐴𝜉

1 + 𝐵𝜉
, (𝜉 ∈ C,

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 = 1) . (19)

Since

𝑧ℎ󸀠 (𝑧) = ℎ (𝑧) ∗
𝑧

(1 − 𝑧)2
,

ℎ (𝑧) = ℎ (𝑧) ∗
𝑧

1 − 𝑧
,

(20)

we have
(1 + 𝐵𝜉)𝐷H𝑓 (𝑧) − (1 + 𝐴𝜉) 𝑓 (𝑧)

= (1 + 𝐵𝜉) 𝑧ℎ
󸀠
(𝑧) − (1 + 𝐴𝜉) ℎ (𝑧)

− [(1 + 𝐵𝜉) 𝑧𝑔󸀠 (𝑧) + (1 + 𝐴𝜉) 𝑔 (𝑧)]

= ℎ (𝑧) ∗ (
(1 + 𝐵𝜉) 𝑧

(1 − 𝑧)2
−
(1 + 𝐴𝜉) 𝑧

1 − 𝑧
) − 𝑔 (𝑧)

∗ (
(1 + 𝐵𝜉) 𝑧

(1 − 𝑧)2
+
(1 + 𝐴𝜉) 𝑧

1 − 𝑧
)

= 𝑓 (𝑧) ∗ 𝜑 (𝑧; 𝜉) .

(21)



Abstract and Applied Analysis 3

Thus, conditions (17) and (19) are equivalent, and the proof is
completed.

Putting 𝐵 = −𝐴 = 1 inTheorem 1 we obtain the following
corollary.

Corollary 2. Let 𝑓 ∈ SH. Then 𝑓 ∈ S∗H if and only if

𝑓 (𝑧) ∗ 𝜑 (𝑧; 𝜉) ̸= 0, (𝜉 ∈ C,
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 = 1) , (22)

where

𝜑 (𝑧; 𝜉) =
2𝜉𝑧 + (1 − 𝜉) 𝑧2

(1 − 𝑧)2
−
2𝑧 − (1 − 𝜉) 𝑧2

(1 − 𝑧)2
,

(𝑧 ∈ U) .

(23)

Theorem 3. If a function 𝑓 ∈ H0 of form (5) satisfies the con-
dition

∞

∑
𝑛=1

(𝛼𝑛
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨 + 𝛽𝑛
󵄨󵄨󵄨󵄨𝑏𝑛

󵄨󵄨󵄨󵄨) ≤ 2 (𝐵 − 𝐴) , (24)

where

𝛼𝑛 = 𝑛 (1 + 𝐵) − (1 + 𝐴) ,

𝛽𝑛 = 𝑛 (1 + 𝐵) + (1 + 𝐴) ,
(25)

then 𝑓 ∈ S∗H(𝐴, 𝐵).

Proof. It is clear that the theorem is true for the function
𝑓(𝑧) ≡ 𝑧. Let 𝑓 ∈ H0 be a function of form (5) and let there
exist 𝑛 ∈ N such that 𝑎𝑛 ̸= 0 (𝑛 ≥ 2) or 𝑏𝑛 ̸= 0. Since

𝛼𝑛
𝐵 − 𝐴

≥ 𝑛,

𝛽𝑛
𝐵 − 𝐴

≥ 𝑛,

𝑛 ∈ N,

(26)

by (24) we have
∞

∑
𝑛=2

𝑛 (
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑏𝑛

󵄨󵄨󵄨󵄨) ≤ 1 − 𝑏1, (27)

󵄨󵄨󵄨󵄨󵄨ℎ
󸀠
(𝑧)

󵄨󵄨󵄨󵄨󵄨 −
󵄨󵄨󵄨󵄨󵄨𝑔
󸀠
(𝑧)

󵄨󵄨󵄨󵄨󵄨 ≥ 1 − 𝑏1 −
∞

∑
𝑛=2

𝑛 (
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑏𝑛

󵄨󵄨󵄨󵄨) |𝑧|
𝑛−1

≥ 1 − 𝑏1 − |𝑧|
∞

∑
𝑛=2

(𝑛
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨 + 𝑛
󵄨󵄨󵄨󵄨𝑏𝑛

󵄨󵄨󵄨󵄨) (1 − 𝑏1) (1 − |𝑧|)

> 0, (𝑧 ∈ U) .

(28)

Thus, by (3) function𝑓 is locally univalent and sense-preserv-
ing in U. Moreover, if 𝑧1, 𝑧2 ∈ U, 𝑧1 ̸= 𝑧2, then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧𝑛1 − 𝑧𝑛2
𝑧1 − 𝑧2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑
𝑘=1

𝑧𝑘−11 𝑧𝑛−𝑘2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
𝑛

∑
𝑘=1

󵄨󵄨󵄨󵄨𝑧1
󵄨󵄨󵄨󵄨
𝑘−1 󵄨󵄨󵄨󵄨𝑧2

󵄨󵄨󵄨󵄨
𝑛−𝑘

< 𝑛,

(𝑛 = 2, 3, . . .) .

(29)

Therefore, by (27) we have

󵄨󵄨󵄨󵄨𝑓 (𝑧1) − 𝑓 (𝑧2)
󵄨󵄨󵄨󵄨 ≥

󵄨󵄨󵄨󵄨ℎ (𝑧1) − ℎ (𝑧2)
󵄨󵄨󵄨󵄨

−
󵄨󵄨󵄨󵄨𝑔 (𝑧1) − 𝑔 (𝑧2)

󵄨󵄨󵄨󵄨 ≥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑧1 − 𝑧2 +

∞

∑
𝑛=2

𝑎𝑛 (𝑧
𝑛
1 − 𝑧𝑛2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑
𝑛=1

𝑏𝑛 (𝑧
𝑛
1 − z𝑛2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≥
󵄨󵄨󵄨󵄨𝑧1 − 𝑧2

󵄨󵄨󵄨󵄨 −
∞

∑
𝑛=2

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑧
𝑛
1 − 𝑧𝑛2

󵄨󵄨󵄨󵄨

−
∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑧
𝑛
1 − 𝑧𝑛2

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨𝑧1 − 𝑧2

󵄨󵄨󵄨󵄨

⋅ (1 − 𝑏1 −
∞

∑
𝑛=2

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧𝑛1 − 𝑧𝑛2
𝑧1 − 𝑧2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−
∞

∑
𝑛=2

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧𝑛1 − 𝑧𝑛2
𝑧1 − 𝑧2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
)

>
󵄨󵄨󵄨󵄨𝑧1 − 𝑧2

󵄨󵄨󵄨󵄨 (1 − 𝑏1 −
∞

∑
𝑛=2

𝑛 (
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑏𝑛

󵄨󵄨󵄨󵄨)) ≥ 0.

(30)

This leads to the univalence of 𝑓; that is, 𝑓 ∈ SH. Therefore,
𝑓 ∈ S∗H(𝐴, 𝐵) if and only if there exists a complex-valued
function 𝜔, 𝜔(0) = 0, |𝜔(𝑧)| < 1 (𝑧 ∈ U), such that

𝐷H𝑓 (𝑧)

𝑓 (𝑧)
=
1 + 𝐴𝜔 (𝑧)

1 + 𝐵𝜔 (𝑧)
(𝑧 ∈ U) , (31)

or equivalently

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐷H𝑓 (𝑧) − 𝑓 (𝑧)

𝐵𝐷H𝑓 (𝑧) − 𝐴𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< 1, (𝑧 ∈ U) . (32)

Thus, it is sufficient to prove that

󵄨󵄨󵄨󵄨𝐷H𝑓 (𝑧) − 𝑓 (𝑧)
󵄨󵄨󵄨󵄨 −

󵄨󵄨󵄨󵄨𝐵𝐷H𝑓 (𝑧) − 𝐴𝑓 (𝑧)
󵄨󵄨󵄨󵄨 < 0,

(𝑧 ∈ U \ {0}) .
(33)

Indeed, letting |𝑧| = 𝑟 (0 < 𝑟 < 1) we have

󵄨󵄨󵄨󵄨𝐷H𝑓 (𝑧) − 𝑓 (𝑧)
󵄨󵄨󵄨󵄨 −

󵄨󵄨󵄨󵄨𝐵𝐷H𝑓 (𝑧) − 𝐴𝑓 (𝑧)
󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑
𝑛=2

(𝑛 − 1) 𝑎𝑛𝑧
𝑛 −
∞

∑
𝑛=1

(𝑛 + 1) 𝑏𝑛𝑧
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝐵 − 𝐴) 𝑧

+
∞

∑
𝑛=2

(𝐵𝑛 − 𝐴) 𝑎𝑛𝑧
𝑛 −
∞

∑
𝑛=1

(𝐵𝑛 + 𝐴) 𝑏𝑛𝑧
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
∞

∑
𝑛=2

(𝑛 − 1)
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨 𝑟
𝑛 +
∞

∑
𝑛=1

(𝑛 + 1)
󵄨󵄨󵄨󵄨𝑏𝑛

󵄨󵄨󵄨󵄨 𝑟
𝑛 − (𝐵 − 𝐴) 𝑟

+
∞

∑
𝑛=2

(𝐵𝑛 − 𝐴)
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨 𝑟
𝑛 +
∞

∑
𝑛=1

(𝐵𝑛 + 𝐴)
󵄨󵄨󵄨󵄨𝑏𝑛

󵄨󵄨󵄨󵄨 𝑟
𝑛

≤ 𝑟{
∞

∑
𝑛=1

(𝛼𝑛
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨 + 𝛽𝑛
󵄨󵄨󵄨󵄨𝑏𝑛

󵄨󵄨󵄨󵄨) 𝑟
𝑛−1 − 2 (𝐵 − 𝐴)} < 0,

(34)

whence 𝑓 ∈ S∗H(𝐴, 𝐵).
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Motivated by Silverman [7] we denote byT𝜆 (𝜆 ∈ {0, 1})
the class of functions𝑓 ∈ H0 of form (5) such that 𝑎𝑛 = −|𝑎𝑛|,
𝑏𝑛 = (−1)𝜆|𝑏𝑛| (𝑛 = 2, 3, . . .); that is,

𝑓 = ℎ + 𝑔,

ℎ (𝑧) = 𝑧 −
∞

∑
𝑛=2

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 𝑧
𝑛,

𝑔 (𝑧) = (−1)
𝜆
∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 𝑧
𝑛,

(𝑧 ∈ U) .

(35)

Moreover, let us define

S
∗
T (𝐴, 𝐵) fl T

0 ∩S
∗
H (𝐴, 𝐵) ,

S
𝑐
T (𝐴, 𝐵) fl T

1 ∩S
𝑐
H (𝐴, 𝐵) ,

RT (𝐴, 𝐵) fl T
0 ∩RH (𝐴, 𝐵) ,

R
1
T (𝐴, 𝐵) fl T

1 ∩R
1
H (𝐴, 𝐵) ,

S
∗
T fl S

∗
T (−1, 1) ,

S
𝑐
T fl S

𝑐
T (−1, 1) .

(36)

Now, we show that condition (24) is also the sufficient
condition for a function 𝑓 ∈ T0 to be in class S∗T(𝐴, 𝐵).

Theorem 4. Let 𝑓 ∈ T0 be a function of form (35). Then 𝑓 ∈
S∗T(𝐴, 𝐵) if and only if condition (24) holds true.

Proof. In view of Theorem 3 we need only to show that each
function 𝑓 ∈ S∗T(𝐴, 𝐵) satisfies the coefficient inequality
(24). If 𝑓 ∈ S∗T(𝐴, 𝐵), then it satisfies (32) or equivalently

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑
∞
𝑛=1 {(𝑛 − 1)

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 𝑧
𝑛 + (𝑛 + 1)

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 𝑧
𝑛}

2 (𝐵 − 𝐴) 𝑧 − ∑
∞
𝑛=1 {(𝐵𝑛 − 𝐴)

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 𝑧
𝑛 + (𝐵𝑛 + 𝐴)

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 𝑧
𝑛}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 1, (𝑧 ∈ U) .

(37)

Therefore, putting 𝑧 = 𝑟 (0 ≤ 𝑟 < 1) we obtain

∑
∞
𝑛=1 {(𝑛 − 1)

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 + (𝑛 + 1)

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 𝑟
𝑛−1}

2 (𝐵 − 𝐴) − ∑
∞
𝑛=1 {(𝐵𝑛 − 𝐴)

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 + (𝐵𝑛 + 𝐴)

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 𝑟
𝑛−1}

< 1.

(38)

It is clear that the denominator of the left hand side cannot
vanish for 𝑟 ∈ (0, 1). Moreover, it is positive for 𝑟 = 0, and in
consequence for 𝑟 ∈ (0, 1). Thus, by (38) we have

∞

∑
𝑛=1

(𝛼𝑛
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨 + 𝛽𝑛
󵄨󵄨󵄨󵄨𝑏𝑛

󵄨󵄨󵄨󵄨) 𝑟
𝑛−1 < 𝐵 − 𝐴, (0 < 𝑟 < 1) . (39)

The sequence of partial sums {𝑆𝑛} associated with the series
∑
∞
𝑛=2(𝛼𝑛|𝑎𝑛| + 𝛽𝑛|𝑏𝑛|) is nondecreasing sequence. Moreover,

by (39) it is bounded by 𝐵 − 𝐴. Hence, the sequence {𝑆𝑛} is
convergent and

∞

∑
𝑛=2

(𝛼𝑛
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨 + 𝛽𝑛
󵄨󵄨󵄨󵄨𝑏𝑛

󵄨󵄨󵄨󵄨) = lim
𝑛→∞

𝑆𝑛 ≤ 𝐵 − 𝐴, (40)

which yields assertion (24).

By using Theorems 1–4 and definition of the class
S𝑐H(𝐴, 𝐵) we have the following three corollaries.

Corollary 5. Let 𝑓 ∈ SH. Then 𝑓 ∈ S𝑐H(𝐴, 𝐵) if and only if

𝐷H𝑓 (𝑧) ∗ 𝜑 (𝑧; 𝜉) ̸= 0, (
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 = 1) , (41)

where 𝜑(𝑧; 𝜉) is defined by (18).

Corollary 6. If a function 𝑓 ∈ H0 of form (5) satisfies the
condition

∞

∑
𝑛=1

(𝑛𝛼𝑛
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨 + 𝑛𝛽𝑛
󵄨󵄨󵄨󵄨𝑏𝑛

󵄨󵄨󵄨󵄨) ≤ 2 (𝐵 − 𝐴) , (42)

then 𝑓 ∈ S𝑐H(𝐴, 𝐵).

Corollary 7. Let 𝑓 ∈ T1 be a function of form (35). Then
𝑓 ∈ S𝑐T(𝐴, 𝐵) if and only if condition (42) holds true.

Similar to Theorem 4 and Corollary 6 we can obtain the
following two results.

Theorem 8. Let 𝑓 ∈ T0 be a function of form (35). Then 𝑓 ∈
RT(𝐴, 𝐵) if and only if

∞

∑
𝑛=1

𝑛 (
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑏𝑛

󵄨󵄨󵄨󵄨) ≤
2𝐵 − 𝐴 + 1

1 + 𝐵
. (43)

Corollary 9. Let 𝑓 ∈ T1 be a function of form (35). Then
𝑓 ∈ R1T(𝐴, 𝐵) if and only if

∞

∑
𝑛=1

𝑛2 (
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑏𝑛

󵄨󵄨󵄨󵄨) ≤
2𝐵 − 𝐴 + 1

1 + 𝐵
. (44)

Thus we have the following.

Corollary 10. Consider

S
∗
T = RT fl RT (−1, 1) ,

S
𝑐
T = R

1
T fl R

1
T (−1, 1) .

(45)

3. Radii of Starlikeness and Convexity

We say that a function 𝑓 ∈ H0 is starlike of order 𝛼 inU(𝑟) if

𝜕

𝜕𝑡
(arg𝑓 (𝜌𝑒𝑖𝑡)) > 𝛼, 0 ≤ 𝑡 ≤ 2𝜋, 0 < 𝜌 < 𝑟 < 1. (46)

Analogously, we say that a function𝑓 ∈ H0 is convex of order
𝛼 in U(𝑟) if

𝜕

𝜕𝑡
(arg 𝜕

𝜕𝑡
𝑓 (𝜌𝑒𝑖𝑡)) > 𝛼,

0 ≤ 𝑡 ≤ 2𝜋, 0 < 𝜌 < 𝑟 < 1.

(47)
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It is easy to verify that for a function 𝑓 ∈ T condition (46) is
equivalent to

Re
𝐷H𝑓 (𝑧)

𝑓 (𝑧)
> 𝛼, (𝑧 ∈ U (𝑟)) (48)

or equivalently
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐷H𝑓 (𝑧) − (1 + 𝛼) 𝑓 (𝑧)

𝐷H𝑓 (𝑧) + (1 − 𝛼) 𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< 1, (𝑧 ∈ U (𝑟)) . (49)

LetB be a subclass of the classH0. We define the radius
of starlikeness 𝑅∗𝛼(B) and the radius of convexity 𝑅𝑐𝛼(B) for
the classB by

𝑅∗𝛼 (B)

fl inf
𝑓∈B

(sup {𝑟 ∈ (0, 1] : 𝑓 is starlike of order 𝛼 in U (𝑟)}) ,

𝑅𝑐𝛼 (B)

fl inf
𝑓∈B

(sup {𝑟 ∈ (0, 1] : 𝑓 is convex of order 𝛼 in U (𝑟)}) .

(50)

Theorem 11. The radius of starlikeness of order 𝛼 for the class
S∗T(𝐴, 𝐵), 0 ≤ 𝛼 ≤ (2 + 2𝐴)/(2 + 𝐴 + 3𝐵), is given by

𝑅∗𝛼 (S
∗
T (𝐴, 𝐵))

= inf
𝑛≥2

(
1 − 𝛼

𝐵 − 𝐴
min{

𝛼𝑛
𝑛 − 𝛼

,
𝛽𝑛

𝑛 + 𝛼
})
1/(𝑛−1)

,
(51)

where 𝛼𝑛 and 𝛽𝑛 are defined by (25).

Proof. Let𝑓 ∈ S∗T(𝐴, 𝐵) be of form (35).Then, for |𝑧| = 𝑟 < 1
we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐷H𝑓 (𝑧) − (1 + 𝛼) 𝑓 (𝑧)

𝐷H𝑓 (𝑧) + (1 − 𝛼) 𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼𝑧 − ∑
∞
𝑛=2 (𝑛 − 1 − 𝛼)

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 𝑧
𝑛 + ∑
∞
𝑛=1 (𝑛 + 1 + 𝛼)

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 𝑧
𝑛

(2 − 𝛼) 𝑧 − ∑
∞
𝑛=2 (𝑛 + 1 − 𝛼)

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 𝑧
𝑛 + ∑
∞
𝑛=1 (𝑛 − 1 + 𝛼)

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 𝑧
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
2𝛼 + ∑

∞
𝑛=1 ((𝑛 − 1 − 𝛼)

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 + (𝑛 + 1 + 𝛼)

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨) 𝑟
𝑛−1

4 − 2𝛼 − ∑
∞
𝑛=1 ((𝑛 + 1 − 𝛼)

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 + (𝑛 − 1 + 𝛼)

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨) 𝑟
𝑛−1

.

(52)

Thus, condition (49) is true if and only if
∞

∑
𝑛=1

(
𝑛 − 𝛼

1 − 𝛼

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 +

𝑛 + 𝛼

1 − 𝛼

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨) 𝑟
𝑛−1 ≤ 2. (53)

ByTheorem 4, we have
∞

∑
𝑛=1

(
𝛼𝑛

𝐵 − 𝐴

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 +

𝛽𝑛
𝐵 − 𝐴

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨) ≤ 2, (54)

where 𝛼𝑛 and 𝛽𝑛 are defined by (25). Since 𝛼𝑛 < 𝛽𝑛 (𝑛 ∈ N),
condition (53) is true if

𝑛 − 𝛼

1 − 𝛼
𝑟𝑛−1 ≤

𝛼𝑛
𝐵 − 𝐴

,

𝑛 + 𝛼

1 − 𝛼
𝑟𝑛−1 ≤

𝛽𝑛
𝐵 − 𝐴

,

(𝑛 ∈ N) ,

(55)

that is, if (1 + 𝛼)/(1 − 𝛼) ≤ 𝛽1/(𝐵 − 𝐴) (or 𝛼 ≤ (2 + 2𝐴)/(2 +
𝐴 + 3𝐵)) and

𝑟 ≤ (
1 − 𝛼

𝐵 − 𝐴
min{

𝛼𝑛
𝑛 − 𝛼

,
𝛽𝑛

𝑛 + 𝛼
})
1/(𝑛−1)

,

(𝑛 = 2, 3, . . .) .

(56)

It follows that function 𝑓 is starlike of order 𝛼 in the disk
𝑈(𝑟∗), where 𝑟∗ is

𝑟∗ fl inf
𝑛≥2

(
1 − 𝛼

𝐵 − 𝐴
min{

𝛼𝑛
𝑛 − 𝛼

,
𝛽𝑛

𝑛 + 𝛼
})
1/(𝑛−1)

. (57)

The radii of starlikeness 𝑟∗(ℎ∗𝑛 ) and 𝑟∗(ℎ∗𝑛 ) of functions
ℎ∗𝑛 , 𝑔
∗
𝑛 (𝑛 = 2, 3, . . .) of form (75) are given by

𝑟∗ (ℎ∗𝑛 ) = (
1 − 𝛼

𝑛 − 𝛼

𝛼𝑛
𝐵 − 𝐴

)
1/(𝑛−1)

,

𝑟∗ (𝑔∗𝑛 ) = (
1 − 𝛼

𝑛 + 𝛼

𝛽𝑛
𝐵 − 𝐴

)
1/(𝑛−1)

.

(58)

Therefore, the radius 𝑟∗ given by (57) cannot be larger.
Thus we have (51).

The following result may be proved inmuch the sameway
as Theorem 11.

Theorem 12. Let 𝛼𝑛 and 𝛽𝑛 be defined by (25). Then

𝑅𝑐𝛼 (S
∗
T (𝐴, 𝐵)) = 𝑅∗𝛼 (S

𝑐
T (𝐴, 𝐵))

= inf
𝑛≥2

(
1 − 𝛼

𝐵 − 𝐴
min{

𝛼𝑛
𝑛 (𝑛 − 𝛼)

,
𝛽𝑛

𝑛 (𝑛 + 𝛼)
})
1/(𝑛−1)

,

𝑅𝑐𝛼 (S
𝑐
T (𝐴, 𝐵))

= inf
𝑛≥2

(
1 − 𝛼

𝐵 − 𝐴
min{

𝛼𝑛
𝑛2 (𝑛 − 𝛼)

,
𝛽𝑛

𝑛2 (𝑛 + 𝛼)
})
1/(𝑛−1)

.

(59)

4. Topological Properties

We consider the usual topology on H defined by a metric
in which a sequence {𝑓𝑛} in H converges to 𝑓 if and only if
it converges to 𝑓 uniformly on each compact subset of U. It
follows from the theorems ofWeierstrass andMontel that this
topological space is complete.

Let F be a subclass of the class H. A function 𝑓 ∈ F is
called an extreme point of F if the condition

𝑓 = 𝛾𝑓1 + (1 − 𝛾) 𝑓2, (𝑓1, 𝑓2 ∈ F, 0 < 𝛾 < 1) (60)

implies 𝑓1 = 𝑓2 = 𝑓. We will use the notation 𝐸F to denote
the set of all extreme points ofF. It is clear that 𝐸F ⊂ F.

We say that F is locally uniformly bounded if for each
𝑟, 0 < 𝑟 < 1, there is a real constant𝑀 = 𝑀(𝑟) so that

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 ≤ 𝑀, (𝑓 ∈ F, |𝑧| ≤ 𝑟) . (61)

We say that a classF is convex if

𝛾𝑓 + (1 − 𝛾) 𝑔 ∈ F, (𝑓, 𝑔 ∈ F, 0 ≤ 𝛾 ≤ 1) . (62)
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Moreover, we define the closed convex hull of F as the
intersection of all closed convex subsets ofH that containF.
We denote the closed convex hull ofF by coF.

A real-valued functionalJ : H → R is called convex on
a convex classF ⊂ H if

J (𝛾𝑓 + (1 − 𝛾) 𝑔) ≤ 𝛾J (𝑓) + (1 − 𝛾)J (𝑔) ,

(𝑓, 𝑔 ∈ F, 0 ≤ 𝛾 ≤ 1) .
(63)

The Krein-Milman theorem (see [8]) is fundamental in
the theory of extreme points. In particular, it implies the
following lemma.

Lemma 13. If F is a nonempty compact subclass of the class
H, then 𝐸F is nonempty and co𝐸F = coF.

Due to Hallenbeck and MacGregor [9, pp. 45] (see also
[10]) we prove the following result.

Lemma 14. LetF be a nonempty compact convex subclass of
the classH and letJ : H → R be a real-valued, continuous,
and convex functional onF. Then

max {J (𝑓) : 𝑓 ∈F} = max {J (𝑓) : 𝑓 ∈ 𝐸F} . (64)

Proof. Since the functional J is continuous on the compact
setF there exists

max {J (𝑓) : 𝑓 ∈F} =: 𝑀. (65)

Therefore, the set 𝐺 fl {𝑓 ∈ F : J(𝑓) = 𝑀} is nonempty
compact subclass of F. Hence, by Lemma 13 we find that 𝐺
has an extreme point 𝑓0. Suppose that

𝑓0 = 𝛾𝑓1 + (1 − 𝛾) 𝑓2, (66)

where 𝑓1, 𝑓2 ∈ F and 0 < 𝛾 < 1. Then

𝑀 = J (𝑓0) ≤ 𝛾J (𝑓1) + (1 − 𝛾)J (𝑓2)

≤ 𝛾𝑀 + (1 − 𝛾)𝑀 = 𝑀
(67)

and we must have J(𝑓1) = J(𝑓2) = 𝑀; that is, 𝑓1, 𝑓2 ∈ 𝐺.
Since 𝑓0 is an extreme point of 𝐺 we have 𝑓1 = 𝑓2 = 𝑓0 and,
in consequence,𝑓0 ∈ 𝐸F.Thus, we conclude that there exists
max{J(𝑓) : 𝑓 ∈ 𝐸F} = 𝑀, and the proof is complete.

SinceH is a completemetric space,Montel’s theorem (see
[11]) implies the following lemma.

Lemma 15. A classF ⊂ H is compact if and only ifF is closed
and locally uniformly bounded.

Theorem 16. The classS∗T(𝐴, 𝐵) is convex and compact subset
ofH0.

Proof. Let 𝑓𝑘 ∈ S∗T(𝐴, 𝐵) be functions of the form

𝑓𝑘 (𝑧) = 𝑧 −
∞

∑
𝑛=1

(
󵄨󵄨󵄨󵄨𝑎𝑘,𝑛

󵄨󵄨󵄨󵄨 𝑧
𝑛 −

󵄨󵄨󵄨󵄨𝑏𝑘,𝑛
󵄨󵄨󵄨󵄨 𝑧
𝑛) ,

(𝑧 ∈ U, 𝑘 ∈ N) ,

(68)

and let 0 ≤ 𝛾 ≤ 1. Since

𝛾𝑓1 (𝑧) + (1 − 𝛾) 𝑓2 (𝑧)

= 𝑧 −
∞

∑
𝑛=2

(𝛾
󵄨󵄨󵄨󵄨𝑎1,𝑛

󵄨󵄨󵄨󵄨 + (1 − 𝛾)
󵄨󵄨󵄨󵄨𝑎2,𝑛

󵄨󵄨󵄨󵄨) 𝑧
𝑛

+
∞

∑
𝑛=1

(𝛾
󵄨󵄨󵄨󵄨𝑏1,𝑛

󵄨󵄨󵄨󵄨 + (1 − 𝛾)
󵄨󵄨󵄨󵄨𝑏2,𝑛

󵄨󵄨󵄨󵄨) 𝑧
𝑛

(69)

and byTheorem 4 we have

∞

∑
𝑛=1

{𝛼𝑛 (𝛾
󵄨󵄨󵄨󵄨𝑎1,𝑛

󵄨󵄨󵄨󵄨 + (1 − 𝛾)
󵄨󵄨󵄨󵄨𝑎2,𝑛

󵄨󵄨󵄨󵄨)

+ 𝛽𝑛 (𝛾
󵄨󵄨󵄨󵄨𝑏1,𝑛

󵄨󵄨󵄨󵄨 + (1 − 𝛾)
󵄨󵄨󵄨󵄨𝑏2,𝑛

󵄨󵄨󵄨󵄨)} = 𝛾
∞

∑
𝑛=1

{𝛼𝑛
󵄨󵄨󵄨󵄨𝑎1,𝑛

󵄨󵄨󵄨󵄨

+ 𝛽𝑛
󵄨󵄨󵄨󵄨𝑏1,𝑛

󵄨󵄨󵄨󵄨} + (1 − 𝛾)
∞

∑
𝑛=1

{𝛼𝑛
󵄨󵄨󵄨󵄨𝑎2,𝑛

󵄨󵄨󵄨󵄨 + 𝛽𝑛
󵄨󵄨󵄨󵄨𝑏2,𝑛

󵄨󵄨󵄨󵄨}

≤ 2𝛾 (𝐵 − 𝐴) + 2 (1 − 𝛾) (𝐵 − 𝐴) = 2 (𝐵 − 𝐴) ,

(70)

the function 𝜙 = 𝛾𝑓1 + (1 − 𝛾)𝑓2 belongs to the class
S∗T(𝐴, 𝐵). Hence, the class is convex. Furthermore, for 𝑓 ∈
S∗T(𝐴, 𝐵), |𝑧| ≤ 𝑟, 0 < 𝑟 < 1, we have

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 ≤
∞

∑
𝑛=1

(
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑏𝑛

󵄨󵄨󵄨󵄨) 𝑟
𝑛

≤
∞

∑
𝑛=1

(
𝛼𝑛

𝐵 − 𝐴

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 +

𝛽𝑛
𝐵 − 𝐴

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨) ≤ 2.

(71)

Thus, we conclude that the classS∗T(𝐴, 𝐵) is locally uniformly
bounded. By Lemma 15, we only need to show that it is closed;
that is, if 𝑓𝑘 ∈ S∗T(𝐴, 𝐵) (𝑘 ∈ N) and 𝑓𝑘 → 𝑓, then 𝑓 ∈
S∗T(𝐴, 𝐵). Let 𝑓𝑘 and 𝑓 be given by (68) and (5), respectively.
UsingTheorem 4 we have

∞

∑
𝑛=1

(𝛼𝑛
󵄨󵄨󵄨󵄨𝑎𝑘,𝑛

󵄨󵄨󵄨󵄨 + 𝛽𝑛
󵄨󵄨󵄨󵄨𝑏𝑘,𝑛

󵄨󵄨󵄨󵄨) ≤ 2 (𝐵 − 𝐴) , (𝑘 ∈ N) . (72)

Since 𝑓𝑘 → 𝑓, we conclude that 𝑎𝑘,𝑛 → 𝑎𝑛 and
𝑏𝑘,𝑛 → 𝑏𝑛 as 𝑘 → ∞ (𝑛 ∈ N). The sequence of partial
sums {𝑆𝑛} associated with the series ∑∞𝑛=1(𝛼𝑛|𝑎𝑛| + 𝛽𝑛|𝑏𝑛|) is
nondecreasing sequence. Moreover, by (72) it is bounded by
2(𝐵 − 𝐴). Therefore, the sequence {𝑆𝑛} is convergent and

∞

∑
𝑛=2

(𝛼𝑛
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨 + 𝛽𝑛
󵄨󵄨󵄨󵄨𝑏𝑛

󵄨󵄨󵄨󵄨) = lim
𝑛→∞

𝑆𝑛 ≤ 𝐵 − 𝐴. (73)

This gives condition (24), and, in consequence, 𝑓 ∈
S∗T(𝐴, 𝐵), which completes the proof.

Theorem 17. Consider

𝐸S∗T (𝐴, 𝐵) = {ℎ∗𝑛 : 𝑛 ∈ N} ∪ {𝑔∗𝑛 : 𝑛 ∈ N} , (74)
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where

ℎ∗1 (𝑧) = 𝑧,

ℎ∗𝑛 (𝑧) = 𝑧 −
𝐵 − 𝐴

𝛼𝑛
𝑧𝑛,

𝑔∗𝑛 (𝑧) = 𝑧 +
𝐵 − 𝐴

𝛽𝑛
𝑧𝑛,

(𝑧 ∈ U) .

(75)

Proof. Suppose that 0 < 𝛾 < 1, 𝑛 ∈ N, and

𝑔∗𝑛 = 𝛾𝑓1 + (1 − 𝛾) 𝑓2, (76)

where 𝑓1, 𝑓2 ∈ S∗T(𝐴, 𝐵) are functions of form (8). Then, by
(24) we have |𝑏1,𝑛| = |𝑏2,𝑛| = (𝐵−𝐴)/𝛽𝑛, and, in consequence,
𝑎1,𝑘 = 𝑎2,𝑘 = 0 for 𝑘 ∈ {2, 3, . . .} and 𝑏1,𝑘 = 𝑏2,𝑘 = 0 for
𝑘 ∈ N \ {𝑛}. It follows that 𝑔∗𝑛 = 𝑓1 = 𝑓2, and consequently
𝑔∗𝑛 ∈ 𝐸S∗T(𝐴, 𝐵). Similarly, we verify that the functions ℎ∗𝑛 of
form (75) are the extreme points of the class S∗T(𝐴, 𝐵). Now,
suppose that 𝑓 ∈ 𝐸S∗T(𝐴, 𝐵) and 𝑓 is not of form (75). Then
there exists 𝑘 ∈ N such that

0 <
󵄨󵄨󵄨󵄨𝑎𝑘

󵄨󵄨󵄨󵄨 <
𝐵 − 𝐴

𝛼𝑘

or 0 <
󵄨󵄨󵄨󵄨𝑏𝑘

󵄨󵄨󵄨󵄨 <
𝐵 − 𝐴

𝛽𝑘
.

(77)

If 0 < |𝑎𝑘| < (𝐵 − 𝐴)/𝛼𝑘, then, putting

𝛾 =

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝛼𝑘

𝐵 − 𝐴
,

𝜑 =
1

1 − 𝛾
(𝑓 − 𝛾ℎ∗𝑘 ) ,

(78)

we have that 0 < 𝛾 < 1, ℎ∗𝑘 , 𝜑 ∈ S∗T(𝐴, 𝐵), ℎ
∗
𝑘 ̸= 𝜑, and

𝑓 = 𝛾ℎ∗𝑘 + (1 − 𝛾) 𝜑. (79)

Thus, 𝑓 ∉ 𝐸S∗T(𝐴, 𝐵). Similarly, if 0 < |𝑏𝑘| < (𝐵 − 𝐴)/𝛽𝑘,
then, putting

𝛾 =

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨 𝛽𝑘

𝐵 − 𝐴
,

𝜙 (𝑧) =
1

1 − 𝛾
(𝑓 − 𝛾𝑔∗𝑘 ) ,

(80)

we have that 0 < 𝛾 < 1, 𝑔∗𝑘 , 𝜑 ∈ S∗T(𝐴, 𝐵), 𝑔
∗
𝑘 ̸= 𝜙, and

𝑓 = 𝛾𝑔∗𝑘 + (1 − 𝛾) 𝜙. (81)

It follows that 𝑓 ∉ 𝐸S∗T(𝐴, 𝐵), and the proof is completed.

The following result may be proved inmuch the sameway
as Theorems 16 and 17.

Theorem 18. The classS𝑐T(𝐴, 𝐵) is convex and compact subset
ofH0. Moreover,

𝐸S𝑐T (𝐴, 𝐵) = {ℎ𝑛 : 𝑛 ∈ N} ∪ {𝑔𝑛 : 𝑛 ∈ N} , (82)

where

ℎ1 (𝑧) = 𝑧,

ℎ𝑛 (𝑧) = 𝑧 −
𝐵 − 𝐴

𝑛𝛼𝑛
𝑧𝑛,

𝑔𝑛 (𝑧) = 𝑧 −
𝐵 − 𝐴

𝑛𝛽𝑛
𝑧𝑛,

(𝑧 ∈ U) .

(83)

5. Applications

It is clear that for the locally uniformly bounded class

F = {𝑓𝑛 ∈H : 𝑛 ∈ N} (84)

we have

coF = {
∞

∑
𝑛=1

𝛾𝑛𝑓𝑛 :
∞

∑
𝑛=1

𝛾𝑛 = 1, 𝛾𝑛 ≥ 0 (𝑛 ∈ N)} . (85)

Thus, by Theorems 16, 17, and 18 we have the following two
corollaries.

Corollary 19. Consider

S
∗
T (𝐴, 𝐵) = {

∞

∑
𝑛=1

(𝛾𝑛ℎ
∗
𝑛 + 𝛿𝑛𝑔

∗
𝑛 ) :
∞

∑
𝑛=1

(𝛾𝑛 + 𝛿𝑛)

= 1, 𝛾𝑛, 𝛿𝑛 ≥ 0} ,

(86)

where ℎ∗𝑛 , 𝑔
∗
𝑛 are defined by (75).

Corollary 20. Consider

S
𝑐
T (𝐴, 𝐵) = {

∞

∑
𝑛=1

(𝛾𝑛ℎ𝑛 + 𝛿𝑛𝑔𝑛) :
∞

∑
𝑛=1

(𝛾𝑛 + 𝛿𝑛)

= 1, 𝛾𝑛, 𝛿𝑛 ≥ 0} ,

(87)

where ℎ𝑛, 𝑔𝑛 are defined by (83).
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For each fixed value of 𝑛 ∈ N, 𝑧 ∈ U, the following real-
valued functionals are continuous and convex onH:

J (𝑓) =
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨 ,

J (𝑓) =
󵄨󵄨󵄨󵄨𝑏𝑛

󵄨󵄨󵄨󵄨 ,

J (𝑓) =
󵄨󵄨󵄨󵄨𝑓 (𝑧)

󵄨󵄨󵄨󵄨 ,

J (𝑓) =
󵄨󵄨󵄨󵄨𝐷H𝑓 (𝑧)

󵄨󵄨󵄨󵄨

J (𝑓) = (
1

2𝜋
∫
2𝜋

0

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑟𝑒𝑖𝜃)
󵄨󵄨󵄨󵄨󵄨
𝛾
𝑑𝜃)

1/𝛾

,

(𝑓 ∈ H, 𝛾 ≥ 1, 0 < 𝑟 < 1) .

(88)

Therefore, by Lemma 14 andTheorems 17 and 18 we have
the corollaries listed below.

Corollary 21. Let 𝑓 ∈ S∗T(𝐴, 𝐵) be a function of form (35).
Then

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 ≤

𝐵 − 𝐴

𝛼𝑛
,

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 ≤

𝐵 − 𝐴

𝛽𝑛
,

(𝑛 ∈ N) ,

(89)

where 𝛼𝑛, 𝛽𝑛 are defined by (25). The result is sharp. The
functions ℎ∗𝑛 , 𝑔

∗
𝑛 of form (75) are the extremal functions.

Corollary 22. Let 𝑓 ∈ S𝑐T(𝐴, 𝐵) be a function of form (35).
Then

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 ≤

𝐵 − 𝐴

𝑛𝛼𝑛
,

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 ≤

𝐵 − 𝐴

𝑛𝛽𝑛
,

(𝑛 ∈ N) ,

(90)

where 𝛼𝑛, 𝛽𝑛 are defined by (25). The result is sharp. The
functions ℎ𝑛, 𝑔𝑛 of form (83) are the extremal functions.

Corollary 23. Let 𝑓 ∈ S∗T(𝐴, 𝐵), |𝑧| = 𝑟 < 1. Then

𝑟 −
𝐵 − 𝐴

1 + 2𝐵 − 𝐴
𝑟2 ≤

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 ≤ 𝑟 +

𝐵 − 𝐴

1 + 2𝐵 − 𝐴
𝑟2,

𝑟 −
2 (𝐵 − 𝐴)

1 + 2𝐵 − 𝐴
𝑟2 ≤

󵄨󵄨󵄨󵄨𝐷H𝑓 (𝑧)
󵄨󵄨󵄨󵄨 ≤ 𝑟 +

2 (𝐵 − 𝐴)

1 + 2𝐵 − 𝐴
𝑟2.

(91)

The result is sharp.The function ℎ∗2 of form (75) is the extremal
function.

Corollary 24. Let 𝑓 ∈ S𝑐T(𝐴, 𝐵) and |𝑧| = 𝑟 < 1. Then

𝑟 −
𝐵 − 𝐴

2 (1 + 2𝐵 − 𝐴)
𝑟2 ≤

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨

≤ 𝑟 +
𝐵 − 𝐴

2 (1 + 2𝐵 − 𝐴)
𝑟2,

𝑟 −
𝐵 − 𝐴

1 + 2𝐵 − 𝐴
𝑟2 ≤

󵄨󵄨󵄨󵄨𝐷H𝑓 (𝑧)
󵄨󵄨󵄨󵄨

≤ 𝑟 +
𝐵 − 𝐴

1 + 2𝐵 − 𝐴
𝑟2.

(92)

The result is sharp. The function ℎ2 of form (83) is the extremal
function.

Due to Littlewood [12] we obtain the integral means
inequalities for functions from the classes S∗T(𝐴, 𝐵),
S𝑐T(𝐴, 𝐵).

Lemma 25 (see [12]). Let 𝑓, 𝑔 ∈ A. If 𝑓 ≺ 𝑔, then

∫
2𝜋

0

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑟𝑒𝑖𝜃)
󵄨󵄨󵄨󵄨󵄨
𝛾
𝑑𝜃 ≤ ∫

2𝜋

0

󵄨󵄨󵄨󵄨󵄨𝑔 (𝑟𝑒
𝑖𝜃)

󵄨󵄨󵄨󵄨󵄨
𝛾
𝑑𝜃,

(0 < 𝑟 < 1, 𝛾 > 0) .

(93)

Let ℎ∗𝑛 and 𝑔
∗
𝑛 be defined by (75) and let 𝑔𝑛(𝑧) = 𝑧 + ((𝐵 −

𝐴)/𝛽𝑛)𝑧
𝑛 (𝑛 ∈ N). Since ℎ∗𝑛 (𝑧)/𝑧 ≺ ℎ∗2 (𝑧)/𝑧 and 𝑔(𝑧)/𝑧 ≺

ℎ∗2 (𝑧)/𝑧, by Lemma 25 we have

∫
2𝜋

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ∗𝑛 (𝑧)

𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾

𝑑𝜃 ≤ ∫
2𝜋

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ∗2 (𝑧)

𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾

𝑑𝜃, (𝑧 = 𝑟𝑒𝑖𝜃) ,

∫
2𝜋

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔∗𝑛 (𝑧)

𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾

𝑑𝜃 = ∫
2𝜋

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔𝑛 (𝑧)

𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾

𝑑𝜃

≤ ∫
2𝜋

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ∗2 (𝑧)

𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾

𝑑𝜃, (𝑧 = 𝑟𝑒𝑖𝜃) .

(94)

Thus, we have the following lemma.

Lemma 26. Let 0 < 𝑟 < 1, 𝛾 > 0, 𝑛 ∈ N. Then

1

2𝜋
∫
2𝜋

0

󵄨󵄨󵄨󵄨󵄨ℎ
∗
𝑛 (𝑟𝑒
𝑖𝜃)

󵄨󵄨󵄨󵄨󵄨
𝛾
𝑑𝜃 ≤

1

2𝜋
∫
2𝜋

0

󵄨󵄨󵄨󵄨󵄨ℎ
∗
2 (𝑟𝑒
𝑖𝜃)

󵄨󵄨󵄨󵄨󵄨
𝛾
𝑑𝜃,

1

2𝜋
∫
2𝜋

0

󵄨󵄨󵄨󵄨󵄨𝑔
∗
𝑛 (𝑟𝑒
𝑖𝜃)

󵄨󵄨󵄨󵄨󵄨
𝛾
𝑑𝜃 ≤

1

2𝜋
∫
2𝜋

0

󵄨󵄨󵄨󵄨󵄨ℎ
∗
2 (𝑟𝑒
𝑖𝜃)

󵄨󵄨󵄨󵄨󵄨
𝛾
𝑑𝜃,

(95)

where ℎ∗𝑛 and 𝑔
∗
𝑛 are defined by (75).

By Lemmas 14 and 26 andTheorem 17 we have the follow-
ing corollary.
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Corollary 27. Let 0 < 𝑟 < 1, 𝛾 ≥ 1. If 𝑓 ∈ S∗T(𝐴, 𝐵), then

1

2𝜋
∫
2𝜋

0

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑟𝑒𝑖𝜃)
󵄨󵄨󵄨󵄨󵄨
𝛾
𝑑𝜃 ≤

1

2𝜋
∫
2𝜋

0

󵄨󵄨󵄨󵄨󵄨ℎ
∗
2 (𝑟𝑒
𝑖𝜃)

󵄨󵄨󵄨󵄨󵄨
𝛾
𝑑𝜃,

1

2𝜋
∫
2𝜋

0

󵄨󵄨󵄨󵄨󵄨𝐷H𝑓 (𝑟𝑒𝑖𝜃)
󵄨󵄨󵄨󵄨󵄨
𝛾
𝑑𝜃

≤
1

2𝜋
∫
2𝜋

0

󵄨󵄨󵄨󵄨󵄨𝐷Hℎ∗2 (𝑟𝑒
𝑖𝜃)

󵄨󵄨󵄨󵄨󵄨
𝛾
𝑑𝜃,

(96)

where ℎ∗2 is the function defined by (75).

In a similar manner, we can prove Corollary 23 below.

Corollary 28. Let 0 < 𝑟 < 1, 𝛾 ≥ 1. If 𝑓 ∈ S𝑐T(𝐴, 𝐵), then

1

2𝜋
∫
2𝜋

0

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑟𝑒𝑖𝜃)
󵄨󵄨󵄨󵄨󵄨
𝛾
𝑑𝜃 ≤

1

2𝜋
∫
2𝜋

0

󵄨󵄨󵄨󵄨󵄨ℎ2 (𝑟𝑒
𝑖𝜃)

󵄨󵄨󵄨󵄨󵄨
𝛾
𝑑𝜃,

1

2𝜋
∫
2𝜋

0

󵄨󵄨󵄨󵄨󵄨𝐷H𝑓 (𝑟𝑒𝑖𝜃)
󵄨󵄨󵄨󵄨󵄨
𝛾
𝑑𝜃

≤
1

2𝜋
∫
2𝜋

0

󵄨󵄨󵄨󵄨󵄨𝐷Hℎ2 (𝑟𝑒
𝑖𝜃)

󵄨󵄨󵄨󵄨󵄨
𝛾
𝑑𝜃,

(97)

where ℎ2 is the function defined by (83).

The following covering results follow from Corollaries 23
and 24.

Corollary 29. If 𝑓 ∈ S∗T(𝐴, 𝐵), then

{𝑤 : |𝑤| <
1 + 𝐵

1 + 2𝐵 − 𝐴
} ⊂ 𝑓 (U) . (98)

Corollary 30. If 𝑓 ∈ S𝑐T(𝐴, 𝐵), then

{𝑤 : |𝑤| <
2 + 3𝐵 − 𝐴

2 (1 + 2𝐵 − 𝐴)
} ⊂ 𝑓 (U) . (99)

Remark 31. By choosing the parameters in the defined classes
of functions we can obtain new and also well-known results
(see, e.g., [5–7, 10]).

6. Conclusion

In the paper new classes of univalent harmonic functions
are introduced. Necessary and sufficient conditions for
defined classes of functions are obtained. Some topological
properties, radii of convexity and starlikeness, and extreme
points of the classes are also considered. By using extreme
points theory we obtained coefficients estimates, distortion
theorems, and integral mean inequalities for these classes of
functions.
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