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Given a planar system of nonautonomous ordinary differential equations, 𝑑𝑤/𝑑𝑡 = 𝐹(𝑡, 𝑤), conditions are given for the existence
of an associative commutative unital algebra A with unit 𝑒 and a function 𝐻 : Ω ⊂ R2 × R2 → R2 on an open set Ω such that
𝐹(𝑡, 𝑤) = 𝐻(𝑡𝑒, 𝑤) and the maps 𝐻

1
(𝜏) = 𝐻(𝜏, 𝜉) and 𝐻

2
(𝜉) = 𝐻(𝜏, 𝜉) are Lorch differentiable with respect to A for all (𝜏, 𝜉) ∈ Ω,

where 𝜏 and 𝜉 represent variables inA. Under these conditions the solutions 𝜉(𝜏) of the differential equation 𝑑𝜉/𝑑𝜏 = 𝐻(𝜏, 𝜉) over
A define solutions (𝑥(𝑡), 𝑦(𝑡)) = 𝜉(𝑡𝑒) of the planar system.

1. Introduction

The theory of analytic functions on algebras is based on Lorch
analyticity; see [1–5]. Results of classical function theory have
been extended to finite dimensional associative commutative
unital algebras:

(i) The Cauchy integral theorem is satisfied for analytical
functions in algebras, and the Cauchy integral for-
mula has an analogous version in algebras.

(ii) The classical theorems on Taylor power series are
easily established, and Laurent expansion may be
defined in several disjoint regions in each one of
which it may define a different analytic function.

(iii) Analyticity of functions of variables in algebras is
characterized by the generalized Cauchy-Riemann
equations, which is a set of first-order linear partial
differential equations.

This theory allows us to consider differential equations over
algebras, which can be used to solve family planar systems
having the form

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑡, 𝑥, 𝑦) ,

𝑑𝑦

𝑑𝑡
= 𝑔 (𝑡, 𝑥, 𝑦) .

(1)

For this work and hereinafter any algebra will be assumed
to be associative, commutative, and unital with unit 𝑒, and
A will denote the linear space R2 endowed with an algebra
structure.

In this paper a planar vector field 𝐹 is said to be A-
algebrizable orA-differentiable if there exists an algebraA for
the which 𝐹 is Lorch differentiable (see Section 2 for defi-
nitions). In the same way, we say that a planar autonomous
system of ordinary differential equations 𝑑𝑤/𝑑𝑡 = 𝐹(𝑤) is
algebrizable if 𝐹 is A-algebrizable.
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Definition 1. Let A be an algebra. We say that a function
𝐹 : 𝑈 ⊂ R3 → R2 defined in an open set 𝑈 has an H(A)-
differentiable lifting 𝐻 : Ω ⊂ R2 × R2 → R2 if 𝐻 is
a function defined in an open set Ω such that (i) the maps
𝐻
1
(𝜏) = 𝐻(𝜏, 𝑏) and 𝐻

2
(𝜉) = 𝐻(𝑎, 𝜉) are A-differentiable

functions with respect to A for all (𝑎, 𝑏) ∈ Ω, where 𝜏 and 𝜉

represent variables inA, (ii) (𝑡𝑒, 𝑥, 𝑦) ∈ Ω for all (𝑡, 𝑥, 𝑦) ∈ 𝑈,
and (iii) 𝐹(𝑡, 𝑥, 𝑦) = 𝐻(𝑡𝑒, 𝑥, 𝑦) for all (𝑡, 𝑥, 𝑦) ∈ 𝑈.

A nonautonomous differential equation over an algebraA
is denoted by

𝑑𝜉

𝑑𝜏
= 𝐻 (𝜏, 𝜉) , (2)

where 𝐻 : Ω ⊂ A × A → A is a function defined in
an open set Ω. For every point (𝜏

0
, 𝜉
0
) ∈ Ω, a solution to

the equation through (𝜏
0
, 𝜉
0
) consists of an A-differentiable

function 𝜉 : 𝑁(𝜏
0
) ⊂ A → A defined in a neighborhood

𝑁(𝜏
0
) of 𝜏

0
, with 𝜉(𝜏

0
) = 𝜉

0
and A-derivative 𝑑𝜉/𝑑𝜏 with

respect to A satisfies 𝑑𝜉(𝜏)/𝑑𝜏 = 𝐻(𝜏, 𝜉(𝜏)) for all 𝜏 ∈ 𝑁(𝜏
0
).

If 𝐹 = (𝑓, 𝑔) has anH(A)-differentiable lifting𝐻, we say that
planar system (1) is algebrizable and that (2) is an algebrization
of (1). A theorem of existence and uniqueness of solutions
for differential equations over algebras is proved in [6], and
a technique for visualization of solutions is given in [7].

The classical differential equation 𝑑𝑤/𝑑𝑡 = 𝑤
2 has

solutions 𝑤(𝑡) = −(𝑡 + 𝑐)
−1. Some differential systems of

autonomous differential equations can be written in this form
by using variables in algebras. For example, the algebrization
of the planar differential system

𝑑𝑥

𝑑𝑡
= 3𝑥
2
+ 2𝑥𝑦 − 𝑦

2
,

𝑑𝑦

𝑑𝑡
= 3𝑦
2
+ 2𝑥𝑦 − 𝑥

2
,

(3)

is the differential equation 𝑑𝜉/𝑑𝜏 = 𝜉
2 over the algebra A

defined by the linear space R2 endowed with the product

(𝑥
1
, 𝑦
1
) (𝑥
2
, 𝑦
2
) := (3𝑥

1
𝑥
2

+ (𝑥
1
𝑦
2
+ 𝑦
1
𝑥
2
− 𝑦
1
𝑦
2
) , 3𝑦
1
𝑦
2

+ (𝑥
1
𝑦
2
+ 𝑦
1
𝑥
2
− 𝑥
1
𝑥
2
)) .

(4)

The solutions 𝜉 are given by 𝜉(𝜏) = −(𝜏 + 𝑐)
−1; hence the

solutions of the planar system are given by (𝑥(𝑡), 𝑦(𝑡)) = 𝜉(𝑡𝑒),
where 𝑒 denotes the unit of A. Using the first fundamental
representation of A (see Section 2) the following expression
for the solution (𝑥(𝑡), 𝑦(𝑡)) of the system is obtained:

(𝑥 (𝑡) , 𝑦 (𝑡))

= (
−𝑡 − 𝑦

0

4 (2𝑡 + 𝑥
0
+ 𝑦
0
)
2
,

−𝑡 − 𝑥
0

4 (2𝑡 + 𝑥
0
+ 𝑦
0
)
2
) ,

(𝑥 (0) , 𝑦 (0)) =
− (𝑦
0
, 𝑥
0
)

4 (𝑥
0
+ 𝑦
0
)
2
.

(5)

Consider now the planar nonautonomous differential
system

𝑑𝑥

𝑑𝑡
= −

1

𝑡3
−

2𝑥

𝑡
+ 𝑡𝑥
2
− 𝑡𝑦
2
,

𝑑𝑦

𝑑𝑡
= −

2𝑦

𝑡
+ 2𝑡𝑥𝑦 + 𝑡𝑦

2
,

(6)

whose algebrization is the Riccati differential equation over
A:

𝑑𝜉

𝑑𝜏
= −

1

𝜏3
−

2𝜉

𝜏
+ 𝜏𝜉
2
, (7)

where A is the algebra defined by R2 and the product
(𝑢, V)(𝑥, 𝑦) = (𝑢𝑥 − V𝑦, 𝑥𝑦 + V𝑥 + V𝑦). By the classical Lie
methods for solving differential equations (see [8–10]), the
solutions of the Riccati equation have the form

𝜉 (𝜏) =
𝐶 + 𝜏
2

𝜏2 (𝐶 − 𝜏2)
, 𝐶 = (𝑎, 𝑏) . (8)

The functions (𝑥(𝑡), 𝑦(𝑡)) = 𝜉(𝑡𝑒), where 𝑒 is the unit ofA, are
solutions of the planar system, which can be obtained via the
first fundamental representation of A:

(𝑥 (𝑡) , 𝑦 (𝑡)) = (
𝑏
2
+ (𝑎 + 𝑏 − 𝑡

2
) (𝑎 + 𝑡

2
)

(𝑎2 + 𝑎𝑏 + 𝑏2) 𝑡2 − (2𝑎 + 𝑏) 𝑡4 + 𝑡6
,

−2𝑏

(𝑎2 + 𝑎𝑏 + 𝑏2) − (2𝑎 + 𝑏) 𝑡2 + 𝑡4
) .

(9)

We consider differential systems having the form (1),
where 𝑓, 𝑔 : 𝑈 ⊂ R3 → R are 𝐶

1 functions defined in
an open set 𝑈. The aim of this work is to give a family of
functions 𝐹 = (𝑓, 𝑔) having H(A)-differentiable liftings 𝐻

over some algebra A. When they exist, the solutions 𝜉(𝜏)

of the differential equation 𝑑𝜉/𝑑𝜏 = 𝐻(𝜏, 𝜉) over A define
solutions (𝑥(𝑡), 𝑦(𝑡)) = 𝜉(𝑡𝑒) of system (1) which can be
obtained via the first fundamental representation of A.

The paper is organized as follows. In Section 2 definitions
of algebra, algebrizability of planar vector fields, and differen-
tiability on modules over algebras, a characterization of the
algebrizability of planar vector fields and the form of all the
quadratic vector fields which are algebrizable, are given. In
Section 3 the definition of algebrizable liftings of functions
𝑝 : 𝐼 ⊂ R → R2 is presented. It is shown that the class of
all of these functions defines an infinite dimensional algebra
and the form of a family of these functions 𝑝 is given. In
Section 4 it is proved that the solutions of planar systems (1)
can be obtained from the solutions of their algebrization; a
theorem containing conditions under which a planar system
like (1) which is polynomial is algebrizable is given, and it
is shown that the class of all the planar systems (1) having
an algebrization (2) defines an infinite dimensional algebra.
In Section 5 the case of quadratic systems is considered and
their algebrizations are given, which are Riccati equations
over algebras.The results presented in Sections 3, 4, and 5 are
the main contributions of this paper.
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2. Algebras and Lorch Analyticity

2.1. Algebras

Definition 2 (see [11]). An algebra A is a R-linear space E

endowed with a bilinear product A × A → A, denoted
by (𝑥, 𝑦) 󳨃→ 𝑥𝑦, which is associative 𝑥(𝑦𝑧) = (𝑥𝑦)𝑧 and
commutative 𝑥𝑦 = 𝑦𝑥 for all 𝑥, 𝑦, 𝑧 ∈ A, and has a unit 𝑒 ∈ A

satisfying 𝑒𝑥 = 𝑥𝑒 = 𝑥 for all 𝑥 ∈ A.

An element 𝑎 ∈ A is called regular if there exists 𝑎−1 ∈ A

called inverse of 𝑎 such that 𝑎−1 ⋅ 𝑎 = 𝑎 ⋅𝑎
−1

= 𝑒. If 𝑎 ∈ A is not
regular, then 𝑎 is called singular. If 𝑎, 𝑏 ∈ A and 𝑏 is regular,
the quotient 𝑎/𝑏means 𝑎 ⋅ 𝑏

−1.
In all the algebras considered in this paper it will be the

case that E = R2, unless otherwise stated.
Consider an algebra A. If 𝛽 = {𝑒

1
, 𝑒
2
} is the standard

basis of R2, the product between the elements of 𝛽 is given
by 𝑒
𝑖
𝑒
𝑗
= ∑
2

𝑘=1
𝑐
𝑖𝑗𝑘

𝑒
𝑘
, where the coefficients 𝑐

𝑖𝑗𝑘
∈ R, 𝑖, 𝑗, 𝑘 ∈

{1, 2}, are called structure constants ofA.Thefirst fundamental
representation of A is the injective linear homomorphism 𝑅 :

A → 𝑀(2,R) defined by 𝑅 : 𝑒
𝑖
󳨃→ 𝑅
𝑖
, where 𝑅

𝑖
is the matrix

whose 𝑗, 𝑘 entry is 𝑐
𝑖𝑘𝑗
, for 𝑖 = 1, 2.

2.2. Differentiability on Algebras. In this subsection the defi-
nition of Lorch differentiability is recalled, which in this paper
is calledA-algebrizability orA-differentiability to denote the
dependence of the Lorch differential over an algebra A.

Let | ⋅ | be the norm onA defined by |𝑎| = max{‖𝑋𝑅(𝑎)‖ :

𝑋 ∈ R2, ‖𝑋‖ = 1} (here the vector𝑋 is represented as a 1× 2

matrix in order for the product𝑋𝑅(𝑎) to make sense), where
𝑅 : A → 𝑀(2, 𝑅) is the first fundamental representation of
A and ‖ ⋅ ‖ the Euclidean norm in R2. For this norm we have
|𝑎𝑏| ≤ |𝑎||𝑏| for all 𝑎, 𝑏 ∈ 𝑀(2,R). Thus, we consider in this
work that every algebraA is a Banach algebra under the norm
| ⋅ |.

Definition 3. Let A be an algebra and 𝐹 : 𝑉 ⊂ A → A a
function on an open set𝑉. We say that 𝐹 isA-algebrizable or
A-differentiable on𝑉 if there exists a function 𝐹

󸀠
: 𝑉 ⊂ A →

A, called the A-derivative of 𝐹 on 𝑉, satisfying

lim
ℎ→0

󵄨󵄨󵄨󵄨󵄨
𝐹 (𝑎 + ℎ) − 𝐹 (𝑎) − 𝐹

󸀠
(𝑎) ℎ

󵄨󵄨󵄨󵄨󵄨

|ℎ|
= 0, (10)

for all 𝑎 ∈ 𝑉, where 𝐹󸀠(𝑎)ℎ denotes the product inA of 𝐹󸀠(𝑎)
with ℎ.

A vector field 𝐹 : 𝑉 ⊂ A → A is A-algebrizable on
𝑉 if and only if the Jacobian matrix of 𝐹 is contained in the
first fundamental representation of A; that is, 𝐽𝐹(𝑎) ∈ 𝑅(A)

for all 𝑎 ∈ 𝑉; see [5]. It can be shown that the notion of A-
algebrizability coincides with the holomorphicity when A is
the complex field.

A method for determining whether a given planar vector
field 𝐹 is algebrizable is the following. 𝐹 is algebrizable if
and only if for some of the following three types of pairs of
matrices

(I) 𝐵
1
= ( 1 0
𝑎 −1

), 𝐵
2
= (
0 1

𝑏 0
),

(II) 𝐵
1
= ( 1 𝑎
0 −1

), 𝐵
2
= ( 0 0
1 0

),
(III) 𝐵

1
= ( 0 1
0 0

), 𝐵
2
= ( 0 0
1 0

),

the condition ⟨𝐵
𝑖
, 𝜕𝐹(𝑥, 𝑦)/𝜕(𝑥, 𝑦)⟩ = 0 is satisfied for 𝑖 = 1, 2

and for all (𝑥, 𝑦) in the domain of definition of 𝐹, where
⟨⋅, ⋅⟩ denotes the usual inner product in𝑀(2,R). The algebra
for each type of pair of matrices is defined by the following
corresponding product table of the standard basis vectors
𝑒
1
, 𝑒
2
of R2:

(I)
⋅ 𝑒
1

𝑒
2

𝑒
1

𝑒
1

𝑒
2

𝑒
2

𝑒
2

−𝑏𝑒
1
+ 𝑎𝑒
2

(II)
⋅ 𝑒
1

𝑒
2

𝑒
1

−𝑎𝑒
1

𝑒
1

𝑒
2

𝑒
1

𝑒
2

(III)
⋅ 𝑒
1

𝑒
2

𝑒
1

𝑒
1

0

𝑒
2

0 𝑒
2

Consider a planar autonomous system of quadratic ordinary
differential equations in the variables 𝑥 and 𝑦. If this system is
algebrizable for an algebra with Type (I) product, then it can
be represented by equations of the form

𝑑𝑥

𝑑𝑡
= 𝑎
0
+ (𝑏
2
− 𝑎𝑏
1
) 𝑥 − 𝑏𝑏

1
𝑦 + (

1

2
𝑏
4
− 𝑎𝑏
3
)𝑥
2

− 2𝑏𝑏
3
𝑥𝑦 −

1

2
𝑏𝑏
4
𝑦
2
,

𝑑𝑦

𝑑𝑡
= 𝑏
0
+ 𝑏
1
𝑥 + 𝑏
2
𝑦 + 𝑏
3
𝑥
2
+ 𝑏
4
𝑥𝑦

+ (
1

2
𝑎𝑏
4
− 𝑏𝑏
3
)𝑦
2
,

(11)

for some real constants 𝑎, 𝑏, 𝑎
0
, 𝑏
0
, 𝑏
1
, . . . , 𝑏

4
. In the case of

algebrizability for an algebra with Type (II) product, the
system is

𝑑𝑥

𝑑𝑡
= 𝑎
0
+ 𝑎
1
𝑥 + 𝑎
2
𝑦 −

1

2
𝑎𝑎
3
𝑥
2
+ 𝑎
3
𝑥𝑦 + 𝑎

4
𝑦
2
,

𝑑𝑦

𝑑𝑡
= 𝑏
0
+ (𝑎
1
+ 𝑎𝑎
2
) 𝑦 + (

1

2
𝑎
3
+ 𝑎𝑎
4
)𝑦
2
,

(12)

for some real constants 𝑎, 𝑏
0
, 𝑎
0
, 𝑎
1
, 𝑎
2
, 𝑎
3
, and 𝑎

4
. For Type

(III) product the system can be represented by equations of
the form

𝑑𝑥

𝑑𝑡
= 𝑎
0
+ 𝑎
1
𝑥 + 𝑎
2
𝑥
2
,

𝑑𝑦

𝑑𝑡
= 𝑏
0
+ 𝑏
1
𝑦 + 𝑏
2
𝑦
2
,

(13)

for some real constants 𝑎
𝑖
, 𝑏
𝑖
, 𝑖 = 0, 1, 2. Moreover, conditions

on the components of vector fields 𝐹 can be given for con-
structing scalar functions 𝛼(𝑥, 𝑦), which we call algebrizante
factors, such that 𝛼𝐹 are algebrizable vector fields. Inverse
integrating factors (see [12, 13]) are constructed for these
vector fields.
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2.3. Differentiability onModules over Algebras. In this subsec-
tion we give the definition of A-differentiability of functions
with domain in A × A and image in A.

The Cartesian productA×A defines a normedA-module
with respect to the norm ‖ ⋅ ‖ : A × A → R, ‖(𝑎

1
, 𝑎
2
)‖ =

√|𝑎
1
|2 + |𝑎

2
|2. This norm satisfies

(i) ‖𝑋‖ ≥ 0 for all 𝑋 ∈ A × A and ‖𝑋‖ = 0 if and only if
𝑋 = (0, 0),

(ii) ‖𝑎𝑋‖ ≤ |𝑎|‖𝑋‖ for all 𝑎 ∈ A and𝑋 ∈ A × A,
(iii) ‖𝑋 + 𝑌‖ ≤ ‖𝑋‖ + ‖𝑌‖ for all𝑋,𝑌 ∈ A × A.

In the following definition ‖ ⋅ ‖ denotes the norm given
above on the A-module A × A.

Definition 4. Let A be an algebra and 𝐻 : Ω ⊂ A × A →

A a function, where Ω is an open set. We say that 𝐻 is
H(A)-differentiable on 𝑋

0
∈ Ω if there exists a module

homeomorphism 𝑀 : A × A → A, which we call the
differential homomorphism of 𝐻 at 𝑋

0
, which satisfies the

condition

lim
𝑋→𝑋0

󵄩󵄩󵄩󵄩𝐻 (𝑋) − 𝐻 (𝑋
0
) − 𝑀(𝑋 − 𝑋

0
)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑋 − 𝑋
0

󵄩󵄩󵄩󵄩

= 0. (14)

We denote 𝑀 by D𝐻(𝑋
0
). We say that 𝐻 is H(A)-

differentiable on Ω if 𝐻 is H(A)-differentiable on all the
points ofΩ.

A function 𝐻 : Ω ⊂ A × A → A isH(A)-differentiable
at 𝑋
0
if and only if the usual Jacobian matrix of 𝐻 : Ω ⊂

R2 × R2 → R2 at 𝑋
0
satisfies 𝐽𝐻(𝑋

0
) ∈ 𝑅(A) × 𝑅(A).

The differential homomorphismD𝐻(𝑋
0
) is represented by a

matrix in𝑀
1,2

(A)with respect to the standard basis ofA×A,
where𝑀

1,2
(A) is theA-module of all the matrices of one row

and two columns with entries in A; see [14].

3. On Algebrizable Liftings of Functions 𝑝 : 𝐼 ⊂

R → R2

In this section are considered functions 𝑝 : 𝐼 ⊂ R → R2

defined in open intervals 𝐼, and conditions for the existence
of algebrasA andA-algebrizable functions𝑃 such that 𝑝(𝑡) =
𝑃(𝑡𝑒) will be determined, where 𝑒 is the unit of A.

Definition 5. Let 𝑝 : 𝐼 ⊂ R → R2 be a function defined in an
open interval 𝐼 andA an algebra with unit 𝑒. We will say that
𝑃 : 𝑉 ⊂ R2 → R2 is an A-algebrizable lifting of 𝑝 if (a) 𝑉 is
an open set on which 𝑃 isA-algebrizable, (b) {𝑡𝑒 : 𝑡 ∈ 𝐼} ⊂ 𝑉,
and (c) 𝑝(𝑡) = 𝑃(𝑡𝑒) for all 𝑡 ∈ 𝐼.

As a consequence of the following proposition, the family
of all the functions 𝑝 : 𝐼 ⊂ R → R2 having algebrizable
liftings is an infinite dimensional algebra.

Proposition 6. Let A be an algebra and let 𝑝, 𝑞 : 𝐼 ⊂ R →

R2 be functions, where 𝐼 is an interval.

(a) Every constant function 𝑝(𝑡) = 𝑐 admits the A-
algebrizable lifting 𝑃(𝜏) = 𝑐.

(b) 𝑝(𝑡) = 𝑡𝑒 admits the A-algebrizable lifting 𝑃(𝜏) = 𝜏,
where 𝑒 ∈ A is the unit of A.

(c) If 𝑝 and 𝑞 admit A-algebrizable liftings 𝑃 and 𝑄 with
respect to A, respectively, and 𝑎, 𝑏 are constants in A,
then 𝑎𝑝 + 𝑏𝑞 and 𝑝𝑞 (all products with respect to A)
admit algebrizable liftings 𝑎𝑃+𝑏𝑄 and𝑃𝑄, respectively.

(d) If 𝑝 has an A-algebrizable lifting 𝑃 and 𝑄 is an A-
algebrizable function with Im(𝑃) ⊂ Dom(𝑄), then
𝑄 ∘ 𝑃 is an algebrizable lifting of 𝑄 ∘ 𝑝.

Proof. Identity and constant functions are A-differentiable
for any algebra A. Thus, (a) and (b) hold.

Let 𝑝 and 𝑞 be functions with A-algebrizable liftings 𝑃

being 𝑄 and 𝑎, 𝑏 ∈ A constants. The functions 𝑆 = 𝑎𝑃 + 𝑏𝑄

and 𝑇 = 𝑃𝑄 are A-algebrizable and satisfy

𝑆 (𝑡𝑒) = 𝑎𝑃 (𝑡𝑒) + 𝑏𝑄 (𝑡𝑒) = 𝑎𝑝 (𝑡) + 𝑏𝑞 (𝑡) ,

𝑇 (𝑡𝑒) = 𝑃 (𝑡𝑒) 𝑄 (𝑡𝑒) = 𝑝 (𝑡) 𝑞 (𝑡) .

(15)

Therefore 𝑆 and 𝑇 are algebrizable liftings of 𝑎𝑝 + 𝑏𝑞 and 𝑝𝑞,
respectively.

If 𝑝 has an A-algebrizable lifting 𝑃 and 𝑄 is an A-
differentiable function with Im(𝑃) ⊂ Dom(𝑄), then 𝑄 ∘

𝑃(𝑡𝑒) = 𝑄 ∘ 𝑝(𝑡). Therefore 𝑄 ∘ 𝑃 is an A-algebrizable lifting
of 𝑄 ∘ 𝑝.

Corollary 7. LetA be an algebra.Then the following functions
admit A-algebrizable liftings: polynomial functions, rational
functions, trigonometric functions, exponential functions, and
all of those functions which can be defined by linear com-
binations, products, quotients, and compositions of functions
admitting algebrizable liftings.

Every function 𝑡 󳨃→ (ℎ(𝑡), 𝑘(𝑡)) with polynomial com-
ponents ℎ(𝑡) and 𝑘(𝑡) has an A-algebrizable lifting. The
following proposition gives a wider class of these functions.

Proposition 8. Let A be an algebra. Any function 𝑡 󳨃→

(ℎ(𝑡), 𝑘(𝑡)) with components of the form

ℎ (𝑡) =
𝑎
𝑚

𝑡𝑚
+

𝑎
𝑚−1

𝑡𝑚−1
+ ⋅ ⋅ ⋅ +

𝑎
−1

𝑡
+ 𝑎
0
+ 𝑎
1
𝑡 + ⋅ ⋅ ⋅ 𝑎

𝑛
𝑡
𝑛
,

𝑘 (𝑡) =
𝑏
𝑚

𝑡𝑚
+

𝑏
𝑚−1

𝑡𝑚−1
+ ⋅ ⋅ ⋅ +

𝑏
−1

𝑡
+ 𝑏
0
+ 𝑏
1
𝑡 + ⋅ ⋅ ⋅ 𝑏

𝑛
𝑡
𝑛
,

(16)

𝑚, 𝑛 ∈ N, has an A-algebrizable lifting. An A-algebrizable
lifting is given by

𝜏 󳨃→ (𝑎
𝑚
, 𝑏
𝑚
)

1

𝜏𝑚
+ ⋅ ⋅ ⋅ + (𝑎

−1
, 𝑏
−1
)
1

𝜏
+ (𝑎
0
, 𝑏
0
)

+ (𝑎
1
, 𝑏
1
) 𝜏 + ⋅ ⋅ ⋅ + (𝑎

𝑛
, 𝑏
𝑛
) 𝜏
𝑛
.

(17)

Proof. Consider 𝑄 given by the above expression; then

(𝑎
𝑘
, 𝑏
𝑘
) (𝑡𝑒)
𝑘
= (𝑎
𝑘
, 𝑏
𝑘
) 𝑡
𝑘
𝑒 = (𝑎

𝑘
𝑡
𝑘
, 𝑏
𝑘
𝑡
𝑘
) (18)

holds for 𝑘 = −𝑚, . . . , 𝑛, so 𝑄(𝑡𝑒) = (ℎ(𝑡), 𝑞(𝑡)), where 𝑒 is
the unit ofA. Therefore, 𝑄 is anA-algebrizable lifting of 𝑡 󳨃→
(ℎ(𝑡), 𝑘(𝑡)).
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In particular, every function 𝑝 = (𝑝
1
, 𝑝
2
) : 𝐼 ⊂ R →

R2 with quadratic components 𝑝
1
(𝑡) = 𝑎

0
+ 𝑎
1
𝑡 + 𝑎
2
𝑡
2 and

𝑝
2
(𝑡) = 𝑏

0
+𝑏
1
𝑡+𝑏
2
𝑡
2 admits theA-algebrizable lifting 𝑃(𝜏) =

(𝑎
0
, 𝑏
0
) + (𝑎
1
, 𝑏
1
)𝜏 + (𝑎

2
, 𝑏
2
)𝜏
2.

4. On Algebrizable Liftings of Planar Systems

Solutions of every algebrizable planar system can be found
by solving an algebrization of the system, as it is seen in the
following proposition.

Proposition 9. If (2) is an algebrization of (1) and 𝜉(𝜏) a
solution of (2), then (𝑥(𝑡), 𝑦(𝑡)) = 𝜉(𝑡𝑒) is a solution of (1),
where 𝑒 denotes the unit of the corresponding algebra.

Proof. Let 𝜉 be a solution of (2). The derivative of
(𝑥(𝑡), 𝑦(𝑡)) = 𝜉(𝑡𝑒) with respect to 𝑡 is given by

𝑑

𝑑𝑡
(𝑥 (𝑡) , 𝑦 (𝑡)) =

𝑑

𝑑𝑡
𝜉 (𝑡𝑒) = [

𝑑𝜉 (𝜏, 𝜉)

𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=(𝑡𝑒)

𝑑𝜏

𝑑𝑡
]

= 𝐻 (𝜏, 𝜉 (𝜏))
󵄨󵄨󵄨󵄨𝜏=(𝑡𝑒) 𝑒 = 𝐻 (𝑡𝑒, 𝜉 (𝑡𝑒))

= (𝑓 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡)) , 𝑔 (𝑡, 𝑥 (𝑡) , 𝑦 (𝑡))) .

(19)

Thus, (𝑥(𝑡), 𝑦(𝑡)) is a solution of system (1).

As a consequence of the following proposition, the family
of all the functions 𝐹 : Ω ⊂ R3 → R2 having algebrizable
liftings defines an infinite dimensional algebra.

Proposition 10. Let A be an algebra with unit 𝑒. In the
following statements 𝐹 and𝐺 denote functions defined on open
sets Ω ⊂ R3 and they have values in R2.

(a) 𝐹(𝑡, 𝑥, 𝑦) = 𝑐 admits the H(A)-differentiable lifting
𝐻(𝜏, 𝜉) = 𝑐.

(b) 𝐹(𝑡, 𝑥, 𝑦) = 𝑡𝑒 admits the H(A)-differentiable lifting
𝐻(𝜏, 𝜉) = 𝜏.

(c) 𝐹(𝑡, 𝑥, 𝑦) = (𝑥, 𝑦) admits the H(A)-differentiable
lifting𝐻(𝜏, 𝜉) = 𝜉.

(d) If 𝐹 and 𝐺 admit H(A)-differentiable liftings 𝐻
𝐹
and

𝐻
𝐺
, respectively, and 𝑎, 𝑏 are constants inA, then 𝑎𝐻

𝐹
+

𝑏𝐻
𝐺
and 𝐹𝐺 (all products with respect to A) have

H(A)-differentiable liftings 𝑎𝐻
𝐹
+ 𝑏𝐻
𝐺
and 𝐻

𝐹
𝐻
𝐺
,

respectively.

(e) Every function 𝐸 having the form 𝐸(𝑡, 𝑥, 𝑦) = 𝐹(𝑡, 𝐺(𝑡,

𝑥, 𝑦)), where 𝐹 and 𝐺 admit H(A)-differentiable
liftings 𝐻

𝐹
and 𝐻

𝐺
, admits an H(A)-differentiable

lifting𝐻
𝐸
given by𝐻

𝐸
(𝜏, 𝜉) = 𝐻

𝐹
(𝜏,𝐻
𝐺
(𝜏, 𝜉)).

(f) Every function 𝐸 having the form 𝐸(𝑡, 𝑥, 𝑦) =

𝐹(𝑡, 𝑃(𝑥, 𝑦)), where 𝐹 has an H(A)-differentiable
lifting𝐻

𝐹
and 𝑃 is anA-differentiable function, admits

anH(A)-differentiable lifting𝐻
𝐸
(𝜏, 𝜉) = 𝐻

𝐹
(𝜏, 𝑃(𝜉)).

Proof. The proofs of (a), (b), and (c) are trivial. Let 𝐻
𝐹
and

𝐻
𝐺
be the algebrizable liftings of 𝐹 and 𝐺 and then𝐻

𝐹
+𝐻
𝐺
,

𝐻
𝐹
𝐻
𝐺
, and𝐻

𝐹
/𝐻
𝐺
are A-algebrizable and

(i) (𝑎𝐻
𝐹
+𝑏𝐻
𝐺
)(𝑡𝑒, 𝑥, 𝑦) = 𝑎𝐻

𝐹
(𝑡𝑒, 𝑥, 𝑦)+𝑏𝐻

𝐺
(𝑡𝑒, 𝑥, 𝑦) =

𝑎𝐹(𝑡, 𝑥, 𝑦) + 𝑎𝐺(𝑡, 𝑥, 𝑦),

(ii) (𝐻
𝐹
𝐻
𝐺
)(𝑡𝑒, 𝑥, 𝑦) = 𝐻

𝐹
(𝑡𝑒, 𝑥, 𝑦)𝐻

𝐺
(𝑡𝑒, 𝑥, 𝑦) =

𝐹(𝑡, 𝑥, 𝑦)𝐺(𝑡, 𝑥, 𝑦),

(iii) 𝐻
𝐸
(𝑡𝑒, 𝑥, 𝑦) = 𝐻

𝐹
(𝑡𝑒,𝐻

𝐺
(𝑡𝑒, 𝑥, 𝑦)) = 𝐹(𝑡, 𝐺(𝑡, 𝑥, 𝑦)),

(iv) 𝐻
𝐸
(𝑡𝑒, 𝑥, 𝑦) = 𝐻

𝐹
(𝑡𝑒, 𝑃(𝑒, 𝑦)) = 𝐹(𝑡, 𝑃(𝑥, 𝑦)).

Thus, the proof is complete.

Corollary 11. Let A be an algebra. The following func-
tions admitH(A)-differentiable liftings: polynomial functions,
rational functions, trigonometric functions, exponential func-
tions, and all of those functions which can be defined by
linear combinations, products, quotients, and compositions of
functions admittingH(A)-differentiable liftings.

Given a function 𝐹(𝑡, 𝑥, 𝑦) = (𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)),
where 𝑓, 𝑔 are polynomial functions of the variables 𝑥, 𝑦,
the goal of the paper is to determine if 𝐹 has an H(A)-
differentiable lifting. As a consequence of the following
theorem, every function 𝐹 which is polynomial of the
variables 𝑡, 𝑥, and 𝑦, has an H(A)-differentiable lifting
when (𝑥, 𝑦) 󳨃→ (𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)) is A-differentiable for
all 𝑡.

Theorem 12. Let A be an algebra with unit 𝑒 and 𝐹 :

Ω ⊂ R3 → R2, 𝐹 = (𝑓, 𝑔), where 𝑓 = ∑
𝑚

𝑘=0
𝑓
𝑘
,

𝑔 = ∑
𝑚

𝑘=0
𝑔
𝑘
, and 𝑓

𝑘
(𝑡, 𝑥, 𝑦), 𝑔

𝑘
(𝑡, 𝑥, 𝑦) are homogeneous

polynomials of degree 𝑘 in the variables 𝑥, 𝑦, and Ω = 𝐼 ×

R2 for an open interval 𝐼. Then the following statements are
equivalent.

(a) 𝐹 has anH(A)-differentiable lifting𝐻.

(b) The map (𝑥, 𝑦) 󳨃→ 𝐹(𝑡, 𝑥, 𝑦) is A-algebrizable for
all 𝑡 ∈ 𝐼 and the functions ℎ

𝑘
given by ℎ

𝑘
(𝑡) =

(𝑓
𝑘
(𝑡, 𝑒), 𝑔

𝑘
(𝑡, 𝑒)) have A-algebrizable liftings, for 𝑘 =

0, 1, . . . , 𝑚.

(c) 𝐻(𝜏, 𝜉) = ∑
𝑚

𝑘=0
𝐻
𝑘
(𝜏)𝜉
𝑘 is an H(A)-differentiable

lifting of 𝐹, where 𝐻
𝑘
(𝜏) are A-algebrizable liftings of

ℎ
𝑘
(𝑡) = (𝑓

𝑘
(𝑡, 𝑒), 𝑔

𝑘
(𝑡, 𝑒)).

Proof. Obviously (a) implies (b) and (c) implies (a). We now
show that (b) implies (c). Suppose that𝑓(𝑡, 𝑥, 𝑦) and𝑔(𝑡, 𝑥, 𝑦)

are homogenous polynomials 𝑓(𝑡, 𝑥, 𝑦) = ∑
𝑛

𝑘=0
𝑝
𝑘
(𝑡)𝑥
𝑘
𝑦
𝑛−𝑘

and 𝑔(𝑡, 𝑥, 𝑦) = ∑
𝑛

𝑘=0
𝑞
𝑘
(𝑡)𝑥
𝑘
𝑦
𝑛−𝑘 of the variables 𝑥, 𝑦 defined
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on the setΩ = 𝐼 ×R2 as above. Taking the partial derivatives
of 𝐹 with respect to 𝑥 and 𝑦 we obtain

𝜕 (𝑓, 𝑔)

𝜕 (𝑥, 𝑦)
(𝑡, 𝑥, 𝑦)

= (

𝑛

∑

𝑘=1

𝑘𝑝
𝑘
(𝑡) 𝑥
𝑘−1

𝑦
𝑛−𝑘

𝑛

∑

𝑘=1

(𝑛 − 𝑘 + 1) 𝑝
𝑘−1

(𝑡) 𝑥
𝑘−1

𝑦
𝑛−𝑘

𝑛

∑

𝑘=1

𝑘𝑞
𝑘
(𝑡) 𝑥
𝑘−1

𝑦
𝑛−𝑘

𝑛

∑

𝑘=1

(𝑛 − 𝑘 + 1) 𝑞
𝑘−1

(𝑡) 𝑥
𝑘−1

𝑦
𝑛−𝑘

)

= (

𝑛

∑

𝑘=1

𝑘𝑝
𝑘
(𝑡) 𝑥
𝑘−1

𝑦
𝑛−𝑘

𝑛

∑

𝑘=1

(𝑛 − 𝑘 + 1) 𝑝
𝑘−1

(𝑡) 𝑥
𝑘−1

𝑦
𝑛−𝑘

𝑛

∑

𝑘=1

𝑘𝑞
𝑘
(𝑡) 𝑥
𝑘−1

𝑦
𝑛−𝑘

𝑛

∑

𝑘=1

(𝑛 − 𝑘 + 1) 𝑞
𝑘−1

(𝑡) 𝑥
𝑘−1

𝑦
𝑛−𝑘

)

=

𝑛

∑

𝑘=1

𝑥
𝑘−1

𝑦
𝑛−𝑘

(
𝑘𝑝
𝑘
(𝑡) (𝑛 − 𝑘 + 1) 𝑝

𝑘−1
(𝑡)

𝑘𝑞
𝑘
(𝑡) (𝑛 − 𝑘 + 1) 𝑞

𝑘−1
(𝑡)

) .

(20)

Let 𝑅 be the first fundamental representation of A. Since
(𝑥, 𝑦) 󳨃→ (𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)) is A-algebrizable for all 𝑡 ∈ 𝐼,
then (𝜕(𝑓, 𝑔)/𝜕(𝑥, 𝑦))(𝑡, 𝑥, 𝑦) ∈ 𝑅(A) for all (𝑡, 𝑥, 𝑦) ∈ Ω.
Thus

𝜕 (𝑓, 𝑔)

𝜕 (𝑥, 𝑦)
(𝑡, 0, 1) = (

𝑝
1
(𝑡) 𝑛𝑝

0
(𝑡)

𝑞
1
(𝑡) 𝑛𝑞

0
(𝑡)

) ∈ 𝑅 (A) (21)

for all 𝑡 ∈ 𝐼 and then

𝜕 (𝑓, 𝑔)

𝜕 (𝑥, 𝑦)
(𝑡, 𝑥, 𝑦) − 𝑦

𝑛−1
(
𝑝
1
(𝑡) 𝑛𝑝

0
(𝑡)

𝑞
1
(𝑡) 𝑛𝑞

0
(𝑡)

)

=

𝑛

∑

𝑘=2

𝑥
𝑘−1

𝑦
𝑛−𝑘

(
𝑘𝑝
𝑘
(𝑡) (𝑛 − 𝑘 + 1) 𝑝

𝑘−1
(𝑡)

𝑘𝑞
𝑘
(𝑡) (𝑛 − 𝑘 + 1) 𝑞

𝑘−1
(𝑡)

)

(22)

is in 𝑅(A) for all (𝑡, 𝑥, 𝑦) ∈ Ω. If 𝑥(𝑠) = 1/𝑠 and 𝑦(𝑠) =
(𝑛−2)√𝑠,

then

lim
𝑠→∞

[
𝜕 (𝑓, 𝑔)

𝜕 (𝑥, 𝑦)
(𝑡, 𝑥 (𝑠) , 𝑦 (𝑠))

− [𝑦 (𝑠)]
𝑛−1

(
𝑝
1
(𝑡) 𝑛𝑝

0
(𝑡)

𝑞
1
(𝑡) 𝑛𝑞

0
(𝑡)

)]

= (
𝑝
2
(𝑡) (𝑛 − 1) 𝑝

1
(𝑡)

𝑞
2
(𝑡) (𝑛 − 1) 𝑞

1
(𝑡)

) ∈ 𝑅 (A) .

(23)

Following the same idea, for 𝑘 = 1, 2, . . . , 𝑛

(
𝑘𝑝
𝑘
(𝑡) (𝑛 − 𝑘 + 1) 𝑝

𝑘−1
(𝑡)

𝑘𝑞
𝑘
(𝑡) (𝑛 − 𝑘 + 1) 𝑞

𝑘−1
(𝑡)

) ∈ 𝑅 (A) . (24)

If (𝑥, 𝑦) 󳨃→ (𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)) is A-algebrizable for an
algebra A with Type (I) product (given in Section 2), then

𝑘𝑝
𝑘
+ 𝑎𝑘𝑞

𝑘
− (𝑛 − 𝑘 + 1) 𝑞

𝑘−1
= 0,

𝑏𝑘𝑞
𝑘
+ (𝑛 − 𝑘 + 1) 𝑝

𝑘−1
= 0,

(25)

or equivalently

(𝑞
𝑘−1

, 𝑝
𝑘−1

) = (
𝑘𝑝
𝑘
+ 𝑎𝑘𝑞

𝑘

𝑛 − 𝑘 + 1
, −

𝑏𝑘𝑞
𝑘

𝑛 − 𝑘 + 1
) (26)

for 𝑘 = 1, . . . , 𝑛. Thus, the functions 𝑝
𝑘
, 𝑞
𝑘

are
determined by 𝑝

𝑛
, 𝑞
𝑛

for 𝑘 = 0, 1, . . . , 𝑛 − 1.
Since (𝑓(𝑡, 1, 0), 𝑔(𝑡, 1, 0)) = (𝑝

𝑛
(𝑡), 𝑞
𝑛
(𝑡)), then

(𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)) = (𝑝
𝑛
(𝑡), 𝑞
𝑛
(𝑡))(𝑥, 𝑦)

𝑛.
Therefore, 𝐹 has anH(A)-differentiable lifting 𝐻(𝜏, 𝜉) =

𝐻
𝑛
(𝜏)𝜉
𝑛, where 𝐻

𝑛
(𝜏) is an A-algebrizable lifting of 𝑡 󳨃→

(𝑝
𝑛
(𝑡), 𝑞
𝑛
(𝑡)).

If (𝑥, 𝑦) 󳨃→ (𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)) is A-algebrizable for an
algebra A with Type (II) product (given in Section 2), then

𝑘𝑝
𝑘
+ 𝑎 (𝑛 − 𝑘 + 1) 𝑝

𝑘−1
− (𝑛 − 𝑘 + 1) 𝑞

𝑘−1
= 0,

𝑘𝑞
𝑘
= 0,

(27)

or equivalently

(𝑝
𝑘
, 𝑞
𝑘
) = (−

𝑎 (𝑛 − 𝑘 + 1) 𝑝
𝑘−1

𝑘
, 0) (28)

for 𝑘 = 1, . . . , 𝑛. Thus, 𝑞
𝑘

= 0 and 𝑝
𝑘
is determined by 𝑝

0
,

for 𝑘 = 1, 2, . . . , 𝑛. Since (𝑓(𝑡, 0, 1), 𝑔(𝑡, 0, 1)) = (𝑝
0
(𝑡), 𝑞
0
(𝑡)),

then (𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)) = (𝑝
0
(𝑡), 𝑞
0
(𝑡))(𝑥, 𝑦)

𝑛.
Therefore, 𝐹 has anH(A)-differentiable lifting 𝐻(𝜏, 𝜉) =

𝐻
𝑛
(𝜏)𝜉
𝑛, where 𝐻

𝑛
(𝜏) is an A-algebrizable lifting of 𝑡 󳨃→

(𝑝
0
(𝑡), 𝑞
0
(𝑡)).

If (𝑥, 𝑦) 󳨃→ (𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)) is A-algebrizable for an
algebra A with Type (III) product (given in Section 2), then
(𝑛 − 𝑘 + 1)𝑝

𝑘−1
= 0 and 𝑘𝑞

𝑘
= 0; that is, 𝑝

𝑘−1
= 0, 𝑞

𝑘
= 0,

for 𝑘 = 1, . . . , 𝑛. Thus, 𝑞
𝑘

= 0 and 𝑝
𝑘
is determined by 𝑝

0
,

for 𝑘 = 1, 2, . . . , 𝑛. Since (𝑓(𝑡, 0, 1), 𝑔(𝑡, 0, 1)) = (𝑝
𝑛
(𝑡), 𝑞
0
(𝑡)),

then (𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)) = (𝑝
𝑛
(𝑡), 𝑞
0
(𝑡))(𝑥, 𝑦)

𝑛.
Therefore, 𝐹 has anH(A)-differentiable lifting 𝐻(𝜏, 𝜉) =

𝐻
𝑛
(𝜏)𝜉
𝑛, where 𝐻

𝑛
(𝜏) is an A-algebrizable lifting of 𝑡 󳨃→

(𝑝
𝑛
(𝑡), 𝑞
0
(𝑡)).

Thus, if 𝑓 and 𝑔 are homogenous polynomial of degree
𝑛 in the variables 𝑥 and 𝑦, then 𝐻(𝜏, 𝜉) = 𝐻

𝑛
(𝜏)𝜉
𝑛 in each

of the cases of algebras defined by products of Types (I),
(II), and (III) given in Section 2. Since a polynomial function
(𝑡, 𝑥, 𝑦) 󳨃→ (𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)) in the variables 𝑥 and 𝑦 can
be seen as the finite addition of homogenous polynomial in
the variables 𝑥 and 𝑦, by (d) of Proposition 10, (b) implies
(c).

Example 13. Consider the planar system (6); then

𝐹 (𝑡, 𝑥, 𝑦)

= (−
1

𝑡3
−

2𝑥

𝑡
+ 𝑡𝑥
2
− 𝑡𝑦
2
, −

2𝑦

𝑡
+ 2𝑡𝑥𝑦 + 𝑡𝑦

2
) .

(29)

The Jacobian 𝜕𝐹/𝜕(𝑥, 𝑦) is given by

𝜕𝐹 (𝑡, 𝑥, 𝑦)

𝜕 (𝑥, 𝑦)
= (

−
2

𝑡
+ 2𝑡𝑥 −2𝑡𝑦

2𝑡𝑦 −
2

𝑡
+ 2𝑡𝑥 + 2𝑡𝑦

) . (30)
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Thus, 𝜕𝐹/𝜕(𝑥, 𝑦) is orthogonal to the matrices

𝐵
1
= (

1 0

1 −1
) ,

𝐵
2
= (

0 1

1 0
) ,

(31)

for all (𝑥, 𝑦); that is, ⟨𝜕𝐹/𝜕(𝑥, 𝑦), 𝐵
𝑖
⟩ = 0 for 𝑖 = 1, 2. Themap

(𝑥, 𝑦) 󳨃→ 𝐹(𝑡, 𝑥, 𝑦) isA-algebrizable for an algebra of Type (I)
with constants 𝑎 = 1 and 𝑏 = 1; see Section 2. The function 𝐹

can be written as

𝐹 (𝑡, 𝑥, 𝑦) = (−
1

𝑡3
, 0) + (−

2

𝑡
𝑥, −

2

𝑡
𝑦)

+ (𝑡𝑥
2
− 𝑡𝑦
2
, 𝑡𝑦
2
) .

(32)

Thus, the functions 𝑝
𝑖
and 𝑞

𝑖
of Theorem 12 are given by

𝑝
0
(𝑡, 𝑥, 𝑦) = −1/𝑡

3, 𝑞
0
(𝑡, 𝑥, 𝑦) = 0, 𝑝

1
(𝑡, 𝑥, 𝑦) = −(2/𝑡)𝑥,

𝑞
1
(𝑡, 𝑥, 𝑦) = −(2/𝑡)𝑦, 𝑝

2
(𝑡, 𝑥, 𝑦) = 𝑡𝑥

2
− 𝑡𝑦
2, and 𝑞

2
(𝑡, 𝑥, 𝑦) =

𝑡𝑦
2.
The unit 𝑒 of A is 𝑒 = (1, 0) and then ℎ

0
(𝑡) = (−1/𝑡

3
, 0),

ℎ
1
(𝑡) = (−2/𝑡, 0), and ℎ

2
(𝑡) = (𝑡, 0) have A-algebrizable

liftings 𝐻
0
(𝜏) = −1/𝜏

3, 𝐻
1
(𝜏) = −2/𝜏, and 𝐻

2
(𝜏) = 𝜏,

respectively.
From the form of 𝐹(𝑡, 𝑥𝑒) = (−1/𝑡

3
− (2/𝑡)𝑥 − 𝑡𝑥

2
)𝑒, 𝐻

must be

𝐻(𝜏, 𝜉) = −
1

𝜏3
−

2

𝜏
𝜉 + 𝜏𝜉

2
. (33)

5. The Case of Second-Degree Polynomials in
the Variables 𝑡, 𝑥, and 𝑦

If 𝑓 and 𝑔 in (1) are quadratic polynomials in three variables
𝑡, 𝑥, and 𝑦 andA is an algebra with respect to which the map
(𝑥, 𝑦) 󳨃→ (𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)) is A-algebrizable, it will be
showed that the H(A)-differentiable lifting 𝐻 of 𝐹 = (𝑓, 𝑔)

is a polynomial in two variables ofA. Under these conditions
(1) has an algebrization which is a Riccati equation over A
having the form

𝑑𝜉

𝑑𝜏
= 𝑃 (𝜏) + 𝑄 (𝜏) 𝜉 + 𝑅 (𝜏) 𝜉

2
, (34)

where𝑃,𝑄, and𝑅 are polynomials overA of degrees two, one,
and zero, respectively.

Consider system (1) where 𝑓, 𝑔 : Ω ⊂ R3 → R2 are
second-degree polynomials of three variables 𝑡, 𝑥, and 𝑦; that
is,

𝑓 (𝑡, 𝑥, 𝑦) = 𝑎
0
+ 𝑎
1
𝑡 + 𝑎
2
𝑥 + 𝑎
3
𝑦 + 𝑎
4
𝑡
2
+ 𝑎
5
𝑡𝑥

+ 𝑎
6
𝑡𝑦 + 𝑎

7
𝑥
2
+ 𝑎
8
𝑥𝑦 + 𝑎

9
𝑦
2
,

𝑔 (𝑡, 𝑥, 𝑦) = 𝑏
0
+ 𝑏
1
𝑡 + 𝑏
2
𝑥 + 𝑏
3
𝑦 + 𝑏
4
𝑡
2
+ 𝑏
5
𝑡𝑥 + 𝑏

6
𝑡𝑦

+ 𝑏
7
𝑥
2
+ 𝑏
8
𝑥𝑦 + 𝑏

9
𝑦
2
.

(35)

All the quadratic vector fields which are algebrizable with
respect to algebras with Type (I) products have the form

𝑑𝑥

𝑑𝑡
= 𝐴
0
+ (𝐵
2
− 𝑎𝐵
1
) 𝑥 − 𝑏𝐵

1
𝑦 + (

1

2
𝐵
4
− 𝑎𝐵
3
)𝑥
2

− 2𝑏𝐵
3
𝑥𝑦 −

1

2
𝑏𝐵
4
𝑦
2
,

𝑑𝑦

𝑑𝑡
= 𝐵
0
+ 𝐵
1
𝑥 + 𝐵
2
𝑦 + 𝐵
3
𝑥
2
+ 𝐵
4
𝑥𝑦

+ (
1

2
𝑎𝐵
4
− 𝑏𝐵
3
)𝑦
2
,

(36)

where 𝑎, 𝑏, 𝐴
0
, 𝐵
0
, 𝐵
1
, . . . , 𝐵

5
are real constants;

see Section 2.2. The algebrizability of (𝑥, 𝑦) 󳨃→

(𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)) with respect to algebras with Type
(I) products can be verified, by considering 𝑡 as a constant.

The following theorems give conditions that characterize
the algebrizability of planar systems like (1) when 𝑓 and
𝑔 are quadratic polynomials. The algebrizability of nonau-
tonomous quadratic systems with respect to algebras with
Type (I) products is given in the following theorem.

Theorem14. LetA be an algebrawith Type (I) product defined
by constants 𝑎 and 𝑏 and 𝑓, 𝑔 the polynomials (35). The
following statements are equivalent.

(1) The map 𝐹 : (𝑥, 𝑦) 󳨃→ (𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)) is A-
algebrizable.

(2) The functions 𝑓 and 𝑔 have the form

𝑓 (𝑡, 𝑥, 𝑦) = 𝑎
0
+ 𝑎
1
𝑡 + (𝑏
3
− 𝑎𝑏
2
) 𝑥 − 𝑏𝑏

2
𝑦 + 𝑎
4
𝑡
2

+ (𝑏
6
− 𝑎𝑏
5
) 𝑡𝑥 − 𝑏𝑏

5
𝑡𝑦

+ (
𝑏
8

2
− 𝑎𝑏
7
)𝑥
2
− 2𝑏𝑏
7
𝑥𝑦 −

𝑏𝑏
8

2
𝑦
2
,

𝑔 (𝑡, 𝑥, 𝑦) = 𝑏
0
+ 𝑏
1
𝑡 + 𝑏
2
𝑥 + 𝑏
3
𝑦 + 𝑏
4
𝑡
2
+ 𝑏
5
𝑡𝑥 + 𝑏

6
𝑡𝑦

+ 𝑏
7
𝑥
2
+ 𝑏
8
𝑥𝑦 + (

𝑎𝑏
8

2
− 𝑏𝑏
7
)𝑦
2
.

(37)

(3) The function𝐻 : A×A → A of the variables 𝜏 = (𝑡, 𝑠)

and 𝜉 = (𝑥, 𝑦), defined by

𝐻(𝜏, 𝜉) = 𝐴
0
+ 𝐴
1
𝜏 + 𝐴

2
𝜉 + 𝐴

3
𝜏
2
+ 𝐴
4
𝜏𝜉 + 𝐴

5
𝜉
2
, (38)

is anH(A)-differentiable lifting of 𝐹, where

𝐴
0
= (𝑎
0
, 𝑏
0
) ,

𝐴
1
= (𝑎
1
, 𝑏
1
) ,

𝐴
2
= (𝑏
3
− 𝑎𝑏
2
, 𝑏
2
) ,

𝐴
3
= (𝑎
4
, 𝑏
4
) ,

𝐴
4
= (𝑏
6
− 𝑎𝑏
5
, 𝑏
5
) ,

𝐴
5
= (

𝑏
8

2
− 𝑎𝑏
7
, 𝑏
7
) .

(39)
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Proof. Writing𝑔(𝑡, 𝑥, 𝑦) = 𝐵
0
+𝐵
1
𝑥+𝐵
2
𝑦+𝐵
3
𝑥
2
+𝐵
4
𝑥𝑦+𝐵

5
𝑦
2

yields

𝐵
0
= 𝑏
0
+ 𝑏
1
𝑡 + 𝑏
4
𝑡
2
,

𝐵
1
= 𝑏
2
+ 𝑏
5
𝑡,

𝐵
2
= 𝑏
3
+ 𝑏
6
𝑡,

𝐵
3
= 𝑏
7
,

𝐵
4
= 𝑏
8
,

𝐵
5
= 𝑏
9
.

(40)

The function (𝑥, 𝑦) 󳨃→ (𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)) isA-algebrizable
if and only if

𝑓 (𝑡, 𝑥, 𝑦) = 𝐴
0
+ (𝐵
2
− 𝑎𝐵
1
) 𝑥 − 𝑏𝐵

1
𝑦

+ (
1

2
𝐵
4
− 𝑎𝐵
3
)𝑥
2
− 2𝑏𝐵

3
𝑥𝑦 −

1

2
𝑏𝐵
4
𝑦
2
,

(41)

where 𝐴
0

= 𝑎
0
+ 𝑎
1
𝑡 + 𝑎
4
𝑡
2 and 𝑏

9
= 𝑎𝑏
8
/2 − 𝑏𝑏

7
. Thus,

statements (1) and (2) are equivalent.
The function 𝐻 is polynomial in the variables 𝜏 and 𝜉 of

A; hence 𝐻 is H(A)-differentiable. 𝐻 satisfies 𝐻(𝑡𝑒, 𝑥, 𝑦) =

(𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)), where 𝑒 is the unit of A. So, 𝐻 is an
H(A)-differentiable lifting of 𝐹. Thus, statement (2) implies
statement (3).

Since 𝐻 is H(A)-differentiable and 𝐹(𝑡, 𝑥, 𝑦) =

𝐻(𝑡𝑒, 𝑥, 𝑦), then (𝑥, 𝑦) 󳨃→ 𝐹(𝑡, 𝑥, 𝑦) is A-algebrizable
for all 𝑡. Thus, statement (3) implies statement (1).

All the quadratic vector fields which are algebrizable with
respect to algebras with Type (II) products have the form

𝑥̇ = 𝐴
0
+ 𝐴
1
𝑥 + 𝐴

2
𝑦 −

1

2
𝑎𝐴
3
𝑥
2
+ 𝐴
3
𝑥𝑦 + 𝐴

4
𝑦
2
,

̇𝑦 = 𝐵
0
+ (𝐴
1
+ 𝑎𝐴
2
) 𝑦 + (

1

2
𝐴
3
+ 𝑎𝐴
4
)𝑦
2
,

(42)

where 𝑎, 𝐴
0
, . . . , 𝐴

4
, 𝐵
0
are real constants; see Section 2.2.

The algebrizability of (𝑥, 𝑦) 󳨃→ (𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)) with
respect to algebras with Type (II) products can be verified,
by considering 𝑡 as a constant.

The algebrizability of nonautonomous quadratic systems
with respect to algebras with Type (II) products is given in the
following theorem.

Theorem 15. Let A be an algebra with Type (II) product
defined by the constant 𝑎 and let 𝑓, 𝑔 be the polynomials (35).
The following statements are equivalent.

(1) The map (𝑥, 𝑦) 󳨃→ (𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)) is A-
algebrizable.

(2) The functions 𝑓 and 𝑔 are given by

𝑓 (𝑡, 𝑥, 𝑦) = 𝑎
0
+ 𝑎
1
𝑡 + 𝑎
2
𝑥 + 𝑎
3
𝑦 + 𝑎
4
𝑡
2
+ 𝑎
5
𝑡𝑥

+ 𝑎
6
𝑡𝑦 −

1

2
𝑎𝑎
8
𝑥
2
+ 𝑎
8
𝑥𝑦 + 𝑎

9
𝑦
2
,

𝑔 (𝑡, 𝑥, 𝑦) = 𝑏
0
+ 𝑏
1
𝑡 + (𝑎
2
+ 𝑎𝑎
3
) 𝑦 + 𝑏

4
𝑡
2

+ (𝑎
5
+ 𝑎𝑎
6
) 𝑡𝑦 + (

𝑎
8

2
+ 𝑎𝑎
9
)𝑦
2
.

(43)

(3) The function𝐻 : A×A → A of the variables 𝜏 = (𝑡, 𝑠)

and 𝜉 = (𝑥, 𝑦), defined by

𝐻(𝜏, 𝜉) = 𝐴
0
+ 𝐴
1
𝜏 + 𝐴

2
𝜉 + 𝐴

3
𝜏
2
+ 𝐴
4
𝜏𝜉 + 𝐴

5
𝜉
2
, (44)

is anH(A)-differentiable lifting of 𝐹, where

𝐴
0
= (𝑎
0
, 𝑏
0
) ,

𝐴
1
= (𝑎
1
, 𝑏
1
) ,

𝐴
2
= (𝑎
3
, 𝑎
2
+ 𝑎𝑎
3
) ,

𝐴
3
= (𝑎
4
, 𝑏
4
) ,

𝐴
4
= (𝑎
6
, 𝑎
5
+ 𝑎𝑎
6
) ,

𝐴
5
= (𝑎
9
,
𝑎
8

2
+ 𝑎𝑎
9
) .

(45)

Proof. Writing 𝑓(𝑡, 𝑥, 𝑦) = 𝐴
0
+ 𝐴
1
𝑥 + 𝐴

2
𝑦 − (1/2)𝑎𝐴

3
𝑥
2
+

𝐴
3
𝑥𝑦 + 𝐴

4
𝑦
2 yields

𝐴
0
= 𝑎
0
+ 𝑎
1
𝑡 + 𝑎
4
𝑡
2
,

𝐴
1
= 𝑎
2
+ 𝑎
5
𝑡,

𝐴
2
= 𝑎
3
+ 𝑎
6
𝑡,

𝐴
3
= 𝑎
8
,

𝐴
4
= 𝑎
9
,

(46)

and the map (𝑥, 𝑦) 󳨃→ (𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)) is A-algebrizable
if and only if

𝑔 (𝑡, 𝑥, 𝑦) = 𝐵
0
+ (𝐴
1
+ 𝑎𝐴
2
) 𝑦 + (

1

2
𝐴
3
+ 𝑎𝐴
4
)𝑦
2
, (47)

where 𝐵
0
= 𝑏
0
+ 𝑏
1
𝑡 + 𝑏
4
𝑡
2. Thus, statements (1) and (2) are

equivalent.
The rest of the proof is similar to that of Theorem 14.

All the quadratic vector fields which are differentiable
with respect to algebras with Type (III) products have the
form

𝑥̇ = 𝐴
0
+ 𝐴
1
𝑥 + 𝐴

2
𝑥
2
,

̇𝑦 = 𝐵
0
+ 𝐵
1
𝑦 + 𝐵
2
𝑦
2
,

(48)
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where 𝐴
0
, 𝐵
0
, 𝐴
1
, 𝐵
1
, 𝐴
2
, 𝐵
2

are real constants;
see Section 2.2. The algebrizability of (𝑥, 𝑦) 󳨃→

(𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)) with respect to algebras with Type
(III) products can be verified, by considering 𝑡 as a constant.

The algebrizability of nonautonomous quadratic systems
with respect to algebras with Type (III) products is given in
the following theorem.

Theorem 16. Let A be an algebra with Type (III) product
defined by the constant 𝑎 and let 𝑓, 𝑔 be the polynomials (35).
The following statements are equivalent.

(1) The map (𝑥, 𝑦) 󳨃→ (𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)) is A-
algebrizable.

(2) The functions 𝑓 and 𝑔 are given by

𝑓 (𝑡, 𝑥, 𝑦) = 𝑎
0
+ 𝑎
1
𝑡 + 𝑎
2
𝑥 + 𝑎
4
𝑡
2
+ 𝑎
5
𝑡𝑥 + 𝑎

7
𝑥
2
,

𝑔 (𝑡, 𝑥, 𝑦) = 𝑏
0
+ 𝑏
1
𝑡 + 𝑏
3
𝑦 + 𝑏
4
𝑡
2
+ 𝑏
6
𝑡𝑦 + 𝑏

9
𝑦
2
.

(49)

(3) The function𝐻 : A×A → A of the variables 𝜏 = (𝑡, 𝑠)

and 𝜉 = (𝑥, 𝑦), defined by

𝐻(𝜏, 𝜉) = 𝐴
0
+ 𝐴
1
𝜏 + 𝐴

2
𝜉 + 𝐴

3
𝜏
2
+ 𝐴
4
𝜏𝜉 + 𝐴

5
𝜉
2
, (50)

is an H(A)-differentiable lifting of 𝐹, where 𝐴
0

=

(𝑎
0
, 𝑏
0
), 𝐴
1

= (𝑎
1
, 𝑏
1
), 𝐴
2

= (𝑎
2
, 𝑏
3
), 𝐴
3

= (𝑎
4
, 𝑏
4
),

𝐴
4
= (𝑎
5
, 𝑏
6
), and 𝐴

5
= (𝑎
7
, 𝑏
9
).

Proof. Function (𝑥, 𝑦) 󳨃→ (𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)) is A-
algebrizable if and only if

𝑓 (𝑡, 𝑥, 𝑦) = 𝑎
0
+ 𝑎
1
𝑡 + 𝑎
2
𝑥 + 𝑎
4
𝑡
2
+ 𝑎
5
𝑡𝑥 + 𝑎

7
𝑥
2
,

𝑔 (𝑡, 𝑥, 𝑦) = 𝑏
0
+ 𝑏
1
𝑡 + 𝑏
3
𝑦 + 𝑏
4
𝑡
2
+ 𝑏
6
𝑡𝑦 + 𝑏

9
𝑦
2
.

(51)

Thus, first and second statements are equivalents. The func-
tion𝐻 given by𝐻(𝜏, 𝜉) = 𝐴

0
+𝐴
1
𝜏+𝐴
2
𝜉+𝐴
3
𝜏
2
+𝐴
4
𝜏𝜉+𝐴

5
𝜉
2,

where𝐴
0
= (𝑎
0
, 𝑏
0
),𝐴
1
= (𝑎
1
, 𝑏
1
),𝐴
2
= (𝑎
2
, 𝑏
3
),𝐴
3
= (𝑎
4
, 𝑏
4
),

𝐴
4
= (𝑎
5
, 𝑏
6
), 𝐴
5
= (𝑎
7
, 𝑏
9
), 𝜏 = (𝑟, 𝑠), and 𝜉 = (𝑥, 𝑦), satisfies

𝐻(𝑡𝑒, 𝑥, 𝑦) = (𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)). Thus, second and third
statements are equivalents.

By Theorems 14, 15, and 16, an algebrization of quadratic
systems is a Riccati equation over an algebra 𝑑𝜉/𝑑𝜏 = 𝑃(𝜏) +

𝑄(𝜏)𝜉 + 𝑅(𝜏)𝜉
2, where 𝑃(𝜏) = 𝐴

0
+ 𝐴
1
𝜏 + 𝐴

3
𝜏
2, 𝑄(𝜏) =

𝐴
2
+ 𝐴
4
𝜏, and 𝑅(𝜏) = 𝐴

5
. In the following example is

given a nonautonomous quadratic system for the which an
algebrization is found by usingTheorem 14.

Example 17. Consider system (1) given by

𝑓 (𝑡, 𝑥, 𝑦) = 1 + 7𝑡 − 𝑥 − 3𝑦 + 5𝑡
2
− 𝑡𝑥 − 3𝑡𝑦 − 6𝑥𝑦

− 6𝑦
2
,

𝑔 (𝑡, 𝑥, 𝑦) = 1 + 𝑡 + 𝑥 + 𝑦 + 𝑡
2
+ 𝑡𝑥 + 𝑡𝑦 + 𝑥

2
+ 4𝑥𝑦

+ 𝑦
2
.

(52)

The matrices

𝐵
1
= (

1 0

2 −1
) ,

𝐵
2
= (

0 1

3 0
)

(53)

satisfy ⟨𝐵
𝑖
, 𝜕(𝑓, 𝑔)/𝜕(𝑥, 𝑦)⟩ = 0 for 𝑖 = 1, 2.Thus, 𝐹 : (𝑥, 𝑦) 󳨃→

(𝑓(𝑡, 𝑥, 𝑦), 𝑔(𝑡, 𝑥, 𝑦)) is A-algebrizable for an algebra A with
Type (I) product defined by the constants 𝑎 = 2 and 𝑏 = 3.

The conditions of Theorem 14 are satisfied; then the
H(A)-differentiable lifting𝐻 of 𝐹 can be written as

𝐻(𝜏, 𝜉) = 𝐴
0
+ 𝐴
1
𝜏 + 𝐴

2
𝜉 + 𝐴

3
𝜏
2
+ 𝐴
4
𝜏𝜉 + 𝐴

5
𝜉
2
, (54)

where 𝐴
0
= (1, 1), 𝐴

1
= (7, 1), 𝐴

2
= (−1, 1), 𝐴

3
= (5, 1),

𝐴
4
= (−1, 1), and 𝐴

5
= (0, 1).

Disclosure

The authors declare having no financial affiliation with any
organization regarding the material discussed here.

Conflict of Interests

The authors declare that there is no conflict of interests
concerning this text.The issues discussed in this paper do not
have any secondary interest for any of the authors.

Acknowledgments

The authors wish to acknowledge the support of Grants
Promep/103.5/13/ and CB-2010/150532 Conacyt.

References

[1] E. K. Blum, “A theory of analytic functions in Banach algebras,”
Transactions of the American Mathematical Society, vol. 78, no.
2, pp. 343–370, 1955.

[2] P. W. Ketchum, “Analytic functions of hypercomplex variables,”
Transactions of the American Mathematical Society, vol. 30, no.
4, pp. 641–641, 1928.

[3] E. R. Lorch, “The theory of analytic functions in normed abelian
vector rings,” Transactions of the American Mathematical Soci-
ety, vol. 54, no. 3, pp. 414–425, 1943.

[4] J. A. Ward, “A theory of analytic functions in linear associative
algebras,” Duke Mathematical Journal, vol. 7, no. 1, pp. 233–248,
1940.

[5] J. A. Ward, “From generalized Cauchy-Riemann equations
to linear algebra,” Proceedings of the American Mathematical
Society, vol. 4, no. 3, pp. 456–461, 1953.
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