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Lie group analysis has been applied to singular perturbation problems in both ordinary differential and difference equations and has
allowed us to find the reduced dynamics describing the asymptotic behavior of the dynamical system. The present study provides
an extended method that is also applicable to partial differential equations. The main characteristic of the extended method is the
restriction of the manifold by some constraint equations on which we search for a Lie symmetry group. This extension makes it
possible to find a partial Lie symmetry group, which leads to a reduced dynamics describing the asymptotic behavior.

1. Introduction

Appropriate reduction of a dynamical system is one of
the important approximation approaches when the system
is too complicated to be solved analytically. The deriva-
tion of a reduced dynamical system which describes the
asymptotic behavior of the solution has been achieved by
using various singular perturbation methods developed for
ordinary differential equations, partial differential equations,
and difference equations [1–11]. On the other hand, the Lie
group analysis, a systematic method to construct solutions
with Lie symmetry groups that leave the manifold formed
by the dynamical system invariant [12], has been extended in
order to obtain approximation solutions or reduced dynamics
by considering approximate symmetries [13–19], asymptotic
symmetries [20–25], and renormalization group symmetries
[26–30].

While the above singular perturbation methods and the
Lie symmetry group analysis had been developed indepen-
dently, relations between them have been studied recently.
It has been shown that the asymptotic dynamics derived
with the singular perturbation methods can also be derived
with the Lie group analysis when it is applied to singular
perturbation problems of ordinary differential equations or
difference equations [31–33]. In other words, the Lie group
analysis plays also a role of a singular perturbation method.

While the method works for ordinary differential equations
and difference equations, it has not been clear if it works or
not also for partial differential equations.The straightforward
application of the method does not work because, due to
the increase of independent variables in the case of partial
differential equations, systems have no Lie symmetry group
suitable for the construction of asymptotic dynamics.

This paper reports that, by extending the method appro-
priately, we can reduce partial differential equations to
asymptotic dynamics. The main characteristic of the exten-
sion is to add some constraint equations to the equations
originally considered in order to find partial Lie symmetry
groups. The extended method is applied to one ordinary dif-
ferential equation and two partial differential equations in the
paper.While examples taken up here are quite simple in order
to make it easy to catch the essence of the procedure, this
method works for all the same types of singular perturbation
problems in which secular terms are included in the näıve
expansion of the solution.

2. Outline of the Extended Method

The singular perturbationmethodwith the Lie group analysis
[31–33] is briefly reviewed. For the perturbed dynamical
system under consideration here, referred to as the original
system inwhat follows, we find an approximate Lie symmetry
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group which includes the transformation of the perturbation
parameter that is a constant in terms of the dynamics. An
approximate solution is generated from the nonperturbative
solution by the transformation of the group; in other words,
the approximate solution is given by the group-invariant
solution.Thedifferential equation, which the group-invariant
solution satisfies, provides a reduced system describing the
asymptotic behavior of the solution when we consider its
long-time dynamics. It should be noted that another method
presented by Gazizov and Khalique [19] also considers
transformations of the perturbation parameter while the type
of the transformation is different from that presented here.
With their method, the regular expansion of the solution of
the original system is successfully derived.

The method is extended in this study. The procedure is
briefly summarized as follows. (1) Specify beforehand a non-
perturbative solution on which we would like to see the effect
of the perturbation. (2) Construct equations composed of the
independent and dependent variables and their derivatives
based on the nonperturbative solution specified in step (1).
Those equations are referred to as constraint equations in
what follows. (3) Find an approximate Lie symmetry group
of the original equations on the manifold formed by the
constraint equations constructed in the previous step. (4) For
the approximate Lie symmetry group found in step (3), con-
struct the differential equation that is satisfied by the group-
invariant solution and make an appropriate approximation
when necessary. As a consequence, this differential equation
generates the reduced system,which describes the asymptotic
behavior of the original system.

The procedure is almost the same as that presented before
for ordinary differential equations and difference equations
[31–33]. The main difference is in the second step, that is
to say, the addition of the constraint equations for finding
an approximate Lie symmetry group. In general, additional
Lie symmetry groups can be found by the addition of such
a constraint equation, because the groups do not need to
be admitted by the entire manifold formed by the original
system in the jet space but need to be admitted only by that
part of themanifold restricted by the added equations. In this
sense, a Lie symmetry group found by using this procedure
is interpreted as a partial Lie symmetry group [24]. Because
of the increase in the number of the admitted Lie symmetry
groups, in some cases, this method allows us to find a Lie
symmetry group when it is impossible to find such a group
with the normal Lie group analysis.

3. Application to Ordinary
Differential Equation

Themethod presented in this study is particularlymeaningful
when it is applied to partial differential equations. However,
first, we apply the method to an ordinary differential equa-
tion, because the calculation is simpler and therefore serves
to clarify the essence of the method.

Consider the following ordinary differential equation
[34]:

2𝑢�̈� + �̇�
2
= 𝜀. (1)

Here, 𝑢 denotes the dependent variable, the overdot denotes
the derivative with respect to the independent variable 𝑡, and
𝜀 denotes a perturbation parameter supposed to be small
sufficiently.

The two independent solutions of the nonperturbative
equation, 2𝑢�̈� + �̇�2 = 0, are

𝑢
(0)
= 𝐴𝑡
2/3
, 𝐵, (2)

where 𝐴 and 𝐵 are constants.
Focusing on one of these solutions, 𝑢(0) = 𝐴𝑡2/3, we inves-

tigate the effect of the perturbation on this nonperturbative
solution. For this solution,

�̇�
(0)
=
2

3

𝑢
(0)

𝑡

(3)

is satisfied. From this relation, an equation is constructed,

�̇� =
2

3

𝑢

𝑡
, (4)

which is used as a constraint equation in finding a Lie
symmetry group.

We find a Lie symmetry group admitted by (1). Let

𝑋 = 𝜕
𝜀
+ 𝜂 (𝑡, 𝑢) 𝜕

𝑢 (5)

be the infinitesimal generator of a Lie symmetry group. Its
second prolongation𝑋∗ is given by

𝑋
∗
= 𝑋 + 𝜂

�̇�
(𝑡, 𝑢, �̇�) 𝜕

�̇�
+ 𝜂
�̈�
(𝑡, 𝑢, �̇�, �̈�) 𝜕

�̈�
,

𝜂
�̇�
:= (𝜕
𝑡
+ �̇�𝜕
𝑢
) 𝜂,

𝜂
�̈�
:= (𝜕
𝑡
+ �̇�𝜕
𝑢
+ �̈�𝜕
�̇�
) 𝜂
�̇�
.

(6)

When we adopt the normal procedure followed by Lie group
analysis [12], we find a Lie symmetry group by solving the
differential equation for 𝜂(𝑡, 𝑢),

𝑋
∗
[2𝑢�̈� + �̇�

2
− 𝜀]
2𝑢�̈�+�̇�2=𝜀

= 0, (7)

which indicates the criterion for the invariance of the entire
manifold formed by the original differential equation in the
jet space. In the extended method presented in this study,
instead, we find a Lie symmetry group by solving

𝑋
∗
[2𝑢�̈� + �̇�

2
− 𝜀]
�̇�=(2/3)(𝑢/𝑡)

= 0. (8)

Note that �̇� = (2/3)(𝑢/𝑡) comes from (4). Then, (8) reads

[2𝑢𝜕
2

𝑡
+
4

3

𝑢
2

𝑡
𝜕
𝑡
𝜕
𝑢
+
8

9

𝑢
3

𝑡
2
𝜕
2

𝑢
+
4

3

𝑢

𝑡
𝜕
𝑡
+
4

9

𝑢
2

𝑡
2
𝜕
𝑢
−
4

9

𝑢

𝑡
2
]

⋅ 𝜂 − 1 = 0.

(9)

Noting the homogeneity of the equation, we find an exact
solution of this differential equation,

𝜂 = −
9

20

𝑡
2

𝑢
. (10)
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For this Lie symmetry group, the group-invariant solu-
tion, 𝑢 = 𝑢(𝜀, 𝑡), satisfies

𝑋 [𝑢 − 𝑢 (𝜀, 𝑡)]|𝑢=𝑢(𝜀,𝑡) = 0, (11)

which reads
𝜕𝑢

𝜕𝜀
= −
9

20

𝑡
2

𝑢
. (12)

This equation, which can be analytically solved, has the
following solution:

𝑢 (𝜀, 𝑡) = ±𝑡
2/3
(𝐴 −

9

10
𝜀𝑡
2/3
)

1/2

. (13)

Here, we have used 𝑢(0, 𝑡) = 𝐴𝑡2/3, which is the nonpertur-
bative solution, as the boundary condition in the integration.
This solution corresponds exactly to the solution derivedwith
the renormalization group method [34].

The original differential equation (1) admits no exact Lie
symmetry group when we adopt the normal procedure (see
the Appendix). However, the addition of constraint equation
(4) has allowed us to find a Lie symmetry group.

4. Application to Partial Differential Equation

In this section the present method is applied to two partial
differential equations. In general, in the case of partial
differential equations, because of the increase of independent
variables, it often happens that a partial differential equa-
tion admits no approximate Lie symmetry group suitable
for the derivation of a system describing the asymptotic
dynamics. However, it is in some cases possible to find an
approximate Lie symmetry group suitable for deriving the
asymptotic dynamic properties by adding some constraint
equations constructed from the nonperturbative solution,
thereby restricting the manifold on which we find a Lie
symmetry group. The reduced systems obtained here are
consistent with those derived with the singular perturbation
methods presented before.

4.1. First Example: 𝑢
𝑡
+ 𝐴(𝜀𝑢)𝑢

𝑥
= 0. Consider a system of

weakly nonlinear first-order partial differential equations,

𝑢
𝑡
+ 𝐴 (𝜀𝑢) 𝑢

𝑥
= 0. (14)

Here, 𝑢 is a real vector that has 𝑛 components and depends on
two independent variables 𝑡 and𝑥.𝐴 is an 𝑛×𝑛nondegenerate
matrix that depends on 𝑢. 𝜀 is a perturbation parameter.
The subscripts of 𝑢 denote the derivative with respect to the
independent variables.

Similar to the approach followed in the previous section,
we find a Lie symmetry group such that it is not admitted by
the entire manifold formed by the original equation; rather,
it is admitted by a part of the manifold determined from a
solution of the nonperturbative system. In the following, we
focus on such a nonperturbative solution, 𝑢(0)(𝑡, 𝑥), that is an
arbitrary function of 𝑥 − 𝜆𝑡 where 𝜆 is an eigenvalue of𝐴

0
:=

𝐴(0); namely, we set

𝑢
(0)
(𝑡, 𝑥) = 𝑈 (𝑥 − 𝜆𝑡) . (15)

This solution represents a traveling wave of which the velo-
city is 𝜆. As shown by the direct substitution into the non-
perturbative system, 𝑢(0)

𝑥
is an eigenvector of 𝐴

0
:

𝐴
0
𝑢
(0)

𝑥
= 𝜆𝑢
(0)

𝑥
. (16)

In addition,

𝑢
(0)

𝑡
+ 𝜆𝑢
(0)

𝑥
= 0 (17)

is also satisfied. Based on these relations, we find a Lie
symmetry group with constraints of

𝐴
0
𝑢
𝑥
= 𝜆𝑢
𝑥
,

𝑢
𝑡
+ 𝜆𝑢
𝑥
= 0,

(18)

in the following.
Let

𝑋 = 𝜕
𝜀
+ 𝜂 (𝑡, 𝑥, 𝑢; 𝜀) 𝜕

𝑢 (19)

be the infinitesimal generator of a Lie symmetry group. Its
first prolongation𝑋∗ is given by

𝑋
∗
= 𝑋 + 𝜂

𝑢
𝑡
𝜕
𝑢
𝑡

+ 𝜂
𝑢
𝑥
𝜕
𝑢
𝑥

,

𝜂
𝑢
𝑡
= (𝜕
𝑡
+ 𝑢
𝑡
𝜕
𝑢
) 𝜂,

𝜂
𝑢
𝑥
= (𝜕
𝑥
+ 𝑢
𝑥
𝜕
𝑢
) 𝜂.

(20)

The criterion for the invariance of the original differential
equation (14) on the manifold restricted by the constraint
equations (18) is given by

𝑋
∗
[𝑢
𝑡
+ 𝐴 (𝜀𝑢) 𝑢

𝑥
]
𝐴
0
𝑢
𝑥
=𝜆𝑢
𝑥
, 𝑢
𝑡
+𝜆𝑢
𝑥
=0
= 0. (21)

This equation reads

[𝜂
𝑢
𝑡
+ 𝐴 (𝜀𝑢) 𝜂

𝑢
𝑥
+ (𝑢 ⋅ ∇)𝐴 (𝜀𝑢) 𝑢

𝑥

+ 𝜀 (𝜂 ⋅ ∇)𝐴 (𝜀𝑢) 𝑢
𝑥
]
𝐴
0
𝑢
𝑥
=𝜆𝑢
𝑥
, 𝑢
𝑡
+𝜆𝑢
𝑥
=0
= 0.

(22)

Here, (𝑢 ⋅ ∇)𝐴(𝜀𝑢) and (𝜂 ⋅ ∇)𝐴(𝜀𝑢) are defined by matrices of
which the 𝑖𝑗 components are given by, respectively,

[∑

𝑘

𝑢
𝑘
𝜕
𝑟
𝑘

𝑎
𝑖𝑗
(𝑟)]

𝑟=𝜀𝑢

,

[∑

𝑘

𝜂
𝑘
𝜕
𝑟
𝑘

𝑎
𝑖𝑗
(𝑟)]

𝑟=𝜀𝑢

,

(23)

where 𝑎
𝑖𝑗
denotes the 𝑖𝑗 component of the matrix, 𝐴.

Suppose 𝜂(𝑡, 𝑥, 𝑢; 𝜀) and 𝐴(𝜀𝑢) can be expanded as a
power series of 𝜀. Their expanded forms,

𝜂 =:

∞

∑

𝑘=0

𝜀
𝑘
𝜂
𝑘
(𝑡, 𝑥, 𝑢) ,

𝐴 (𝜀𝑢) =:

∞

∑

𝑘=0

𝜀
𝑘
𝐴
𝑘
(𝑢) ,

(24)
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are substituted into (22), which is then rewritten as

[𝜂
𝑢
𝑡

0
+ 𝐴
0
𝜂
𝑢
𝑥

0
+ (𝑢 ⋅ ∇)𝐴

0
𝑢
𝑥
]
𝐴
0
𝑢
𝑥
=𝜆𝑢
𝑥
, 𝑢
𝑡
+𝜆𝑢
𝑥
=0
= 0, (25)

[

[

𝜂
𝑢
𝑡

𝑖
+ 𝐴
0
𝜂
𝑢
𝑥

𝑖
+ (𝑢 ⋅ ∇)𝐴

𝑖
𝑢
𝑥

+

𝑖−1

∑

𝑗=0

(𝜂
𝑖−𝑗−1
⋅ ∇)𝐴

𝑗

𝑢=0

𝑢
𝑥
]

]

𝐴
0
𝑢
𝑥
=𝜆𝑢
𝑥
, 𝑢
𝑡
+𝜆𝑢
𝑥
=0

= 0,

(𝑖 = 1, 2, . . .) .

(26)

We consider only the lowest order of 𝜀, namely, (25), which is
rewritten as

(𝜕
𝑡
+ 𝑢
𝑡
𝜕
𝑢
) 𝜂
0
+ 𝐴
0
(𝜕
𝑥
+ 𝑢
𝑥
𝜕
𝑢
) 𝜂
0

− [(𝑢 ⋅ ∇)𝐴
0
] 𝑢
𝑥

𝐴
0
𝑢
𝑥
=𝜆𝑢
𝑥
, 𝑢
𝑡
+𝜆𝑢
𝑥
=0
= 0,

(27)

and reads

(𝜕
𝑡
+ 𝐴
0
𝜕
𝑥
) 𝜂
0
= [− (𝑢 ⋅ ∇) 𝜆] 𝑢𝑥. (28)

The vector on the right-hand side of this equation is separated
into the following two components:

(𝜕
𝑡
+ 𝐴
0
𝜕
𝑥
) 𝜂
0
= − (𝑒

‖
⋅ [(𝑢 ⋅ ∇) 𝜆] 𝑢𝑥) 𝑒‖

− (𝑒
⊥
⋅ [(𝑢 ⋅ ∇) 𝜆] 𝑢𝑥) 𝑒⊥,

(29)

where 𝑒
‖
denotes the unit vector with the same direction

as 𝑢
0
(𝑡, 𝑥) in R𝑛 and 𝑒

⊥
is the unit vector parallel to the

projection of [−(𝑢 ⋅ ∇)𝜆]𝑢
𝑥
on a 𝑛 − 1 dimensional subspace

in R𝑛 spanned by all the eigenvectors of 𝐴
0
except 𝑒

‖
. The

solution corresponding to the second term is given by a linear
combination of the 𝑛 − 1 eigenvectors of 𝐴

0
whose linear

coefficients are a function of 𝑥 − 𝜆𝑡. On the other hand, a
term proportional to 𝑡 appears in the solution corresponding
to the first term, because every vector proportional to 𝑒

‖

whose proportional coefficient is a function of 𝑥−𝜆𝑡 is a zero
eigenvector of the linear operator 𝜕

𝑡
+ 𝐴
0
𝜕
𝑥
. For this reason,

we can write a solution of (29) as follows:

𝜂
0
= −𝑡 (𝑒

‖
⋅ [(𝑢 ⋅ ∇) 𝜆] 𝑢𝑥) 𝑒‖

+ (terms not proportional to 𝑡) .
(30)

The group-invariant solution, 𝑢 = 𝑢(𝑡, 𝑥), for this
approximate Lie symmetry group satisfies

𝑋 [𝑢 − 𝑢 (𝑡, 𝑥)]|𝑢=𝑢(𝑡,𝑥) = 0, (31)

which reads
𝜕𝑢 (𝑡, 𝑥)

𝜕𝜀
= −𝑡 (𝑒

‖
⋅ [(𝑢 ⋅ ∇)𝐴

0
] 𝑢
𝑥
) 𝑒
‖

+ (terms not proportional to 𝑡) .
(32)

The long-time behavior of the solution is obtained by consid-
ering the case in which 𝑡 ≫ 1 and by neglecting the terms
other than the first one. Then, (32) is reduced to

𝑑

𝑑𝜏
𝑢 (𝑡, 𝑥) = − (𝑒

‖
⋅ [(𝑢 ⋅ ∇)𝐴

0
] 𝑢
𝑥
) 𝑒
‖
, (33)

where 𝜏 is a long time-scale defined by 𝜏 := 𝜀𝑡. As a
result, we have obtained a dynamical system which describes
asymptotic behavior of the original system. This reduced
dynamics corresponds to that presented before with the
reductive perturbation method [3] or the renormalization
group method [7].

4.2. Second Example: 𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
+ 𝑢 − 𝜀𝑢

3
= 0. We consider a

perturbed Klein-Gordon equation represented by

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
+ 𝑢 − 𝜀𝑢

3
= 0. (34)

Here, 𝑢 is a scalar function which depends on two indepen-
dent variables, 𝑡 and 𝑥, and 𝜀 is a perturbation parameter.
The subscripts of 𝑢 denote the derivative with respect to the
independent variables. By introducing new dependent vari-
ables as

𝑢
1
:= 𝑢
𝑡
,

𝑢
2
:= 𝑢
𝑥
,

(35)

we rewrite (34) in terms of four first-order partial differential
equations for three dependent variables 𝑢, 𝑢

1
, and 𝑢

2
as

follows:

𝑢
1𝑡
− 𝑢
2𝑥
+ 𝑢 − 𝜀𝑢

3
= 0,

𝑢
𝑡
− 𝑢
1
= 0,

𝑢
𝑥
− 𝑢
2
= 0,

𝑢
1𝑥
− 𝑢
2𝑡
= 0.

(36)

The last equation implies the integrable condition.
As in the previous examples, a specific nonperturbative

solution 𝑢(0)(𝑡, 𝑥) is prespecified, on which we investigate the
effect of the perturbation.Herewe focus on a nonperturbative
solution describing a traveling wave with a constant velocity,
V. The solution is represented by

𝑢
(0)
(𝑡, 𝑥) = 𝑈 (𝑥 − V𝑡) , (37)

where 𝑈(𝜉) := 𝛼𝑒i𝜅𝜉 + 𝛼𝑒−i𝜅𝜉 for 𝜅 := (V2 − 1)−1/2 and an
arbitrary constant, 𝛼. For this solution,

𝑢
(0)

𝑡
= −V𝑢(0)

𝑥
,

𝑢
(0)

𝑡𝑡
= −V𝑢(0)

𝑡𝑥
= −V𝑢(0)

𝑥𝑡
= V2𝑢(0)

𝑥𝑥
;

(38)

therefore,

𝑢
(0)

𝑡𝑡
=
𝑢
(0)

𝑡

𝑢
(0)

𝑥

𝑢
(0)

𝑥𝑡
=
𝑢
(0)

𝑡

𝑢
(0)

𝑥

𝑢
(0)

𝑡𝑥
= (
𝑢
(0)

𝑡

𝑢
(0)

𝑥

)

2

𝑢
(0)

𝑥𝑥
(39)
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are satisfied. By combining these relations with the nonper-
turbative system, 𝑢(0)

𝑡𝑡
− 𝑢
(0)

𝑥𝑥
+ 𝑢
(0)
= 0, we obtain

𝑢
(0)

𝑡𝑡
=

[𝑢
(0)

𝑡
]
2

𝑢
(0)

[𝑢
(0)

𝑥 ]
2

− [𝑢
(0)

𝑡
]
2
,

𝑢
(0)

𝑥𝑡
= 𝑢
(0)

𝑡𝑥
=
𝑢
(0)

𝑡
𝑢
(0)

𝑥
𝑢
(0)

[𝑢
(0)

𝑥 ]
2

− [𝑢
(0)

𝑡
]
2
,

𝑢
(0)

𝑥𝑥
=

[𝑢
(0)

𝑥
]
2

𝑢
(0)

[𝑢
(0)

𝑥 ]
2

− [𝑢
(0)

𝑡
]
2
.

(40)

From these relations, we construct the constraint equations,

𝑢
1𝑡
=
𝑢
2

1
𝑢

𝑢
2

2
− 𝑢
2

1

,

𝑢
2𝑡
= 𝑢
1𝑥
=
𝑢
1
𝑢
2
𝑢

𝑢
2

2
− 𝑢
2

1

,

𝑢
2𝑥
=
𝑢
2

2
𝑢

𝑢
2

2
− 𝑢
2

1

,

(41)

which are used in the finding of Lie symmetry group.
Let

𝑋(𝑡, 𝑥, 𝑢, 𝑢
1
, 𝑢
2
: 𝜀) := 𝜕

𝜀
+ 𝜂 (𝑡, 𝑥, 𝑢, 𝑢

1
, 𝑢
2
; 𝜀) 𝜕
𝑢

+ 𝜂
𝑢
1
(𝑡, 𝑥, 𝑢, 𝑢

1
, 𝑢
2
; 𝜀) 𝜕
𝑢
1

+ 𝜂
𝑢
2
(𝑡, 𝑥, 𝑢, 𝑢

1
, 𝑢
2
; 𝜀) 𝜕
𝑢
2

(42)

be the infinitesimal generator of a Lie symmetry group of the
four partial differential equations (36). Its first prolongation
𝑋
∗ is given by

𝑋
∗
(𝑡, 𝑥, 𝑢, 𝑢

1
, 𝑢
2
: 𝜀)

:= 𝑋 + 𝜂
𝑡
(𝑡, 𝑥, 𝑢, 𝑢

1
, 𝑢
2
, 𝑢
11
, 𝑢
12
, 𝑢
22
; 𝜀) 𝜕
𝑢
𝑡

+ 𝜂
𝑥
(𝑡, 𝑥, 𝑢, 𝑢

1
, 𝑢
2
, 𝑢
11
, 𝑢
12
, 𝑢
22
; 𝜀) 𝜕
𝑢
𝑥

+ 𝜂
𝑢
1𝑡
(𝑡, 𝑥, 𝑢, 𝑢

1
, 𝑢
2
, 𝑢
11
, 𝑢
12
, 𝑢
22
; 𝜀) 𝜕
𝑢
1𝑡

+ 𝜂
𝑢
2𝑥
(𝑡, 𝑥, 𝑢, 𝑢

1
, 𝑢
2
, 𝑢
11
, 𝑢
12
, 𝑢
22
; 𝜀) 𝜕
𝑢
2𝑥

,

(43)

where 𝜂𝑡, 𝜂𝑥, 𝜂𝑢1𝑡 , and 𝜂𝑢2𝑥 are defined as follows:

𝜂
𝑡
(𝑡, 𝑥, 𝑢, 𝑢

1
, 𝑢
2
, 𝑢
𝑡
, 𝑢
1𝑡
, 𝑢
2𝑡
; 𝜀)

:= 𝐷
𝑡
𝜂 (𝑡, 𝑥, 𝑢, 𝑢

1
, 𝑢
2
; 𝜀) ,

𝜂
𝑥
(𝑡, 𝑥, 𝑢, 𝑢

1
, 𝑢
2
, 𝑢
𝑥
, 𝑢
1𝑥
, 𝑢
2𝑥
; 𝜀)

:= 𝐷
𝑥
𝜂 (𝑡, 𝑥, 𝑢, 𝑢

1
, 𝑢
2
; 𝜀) ,

𝜂
𝑢
1𝑡
(𝑡, 𝑥, 𝑢, 𝑢

1
, 𝑢
2
, 𝑢
𝑡
, 𝑢
1𝑡
, 𝑢
2𝑡
; 𝜀)

:= 𝐷
𝑡
𝜂
𝑢
1
(𝑡, 𝑥, 𝑢, 𝑢

1
, 𝑢
2
; 𝜀) ,

𝜂
𝑢
2𝑥
(𝑡, 𝑥, 𝑢, 𝑢

1
, 𝑢
2
, 𝑢
𝑥
, 𝑢
1𝑥
, 𝑢
2𝑥
; 𝜀)

:= 𝐷
𝑥
𝜂
𝑢
2
(𝑡, 𝑥, 𝑢, 𝑢

1
, 𝑢
2
; 𝜀) ,

𝐷
𝑡
:= 𝜕
𝑡
+ 𝑢
1
𝜕
𝑢
+ 𝑢
1𝑡
𝜕
𝑢
1

+ 𝑢
2𝑡
𝜕
𝑢
2

,

𝐷
𝑥
:= 𝜕
𝑥
+ 𝑢
𝑥
𝜕
𝑢
+ 𝑢
1𝑥
𝜕
𝑢
1

+ 𝑢
2𝑥
𝜕
𝑢
2

.

(44)

The criteria for the invariance of the original system on
the manifold formed by the constraint equations (41) are
given by

𝑋
∗
[𝑢
1𝑡
− 𝑢
2𝑥
+ 𝑢 − 𝜀𝑢

3
]
(41)
= 0,

𝑋
∗
[𝑢
𝑡
− 𝑢
1
]
(41)
= 0,

𝑋
∗
[𝑢
𝑥
− 𝑢
2
]
(41)
= 0,

𝑋
∗
[𝑢
1𝑥
− 𝑢
2𝑡
]
(41)
= 0.

(45)

With the identities,

𝜕
𝑢
{
𝑢
2

1
𝑢

𝑢
2

2
− 𝑢
2

1

} =
𝑢
2

1

𝑢
2

2
− 𝑢
2

1

,

𝜕
𝑢
1

{
𝑢
2

1
𝑢

𝑢
2

2
− 𝑢
2

1

} =
2𝑢
1
𝑢
2

2
𝑢

(𝑢
2

2
− 𝑢
2

1
)
2
,

𝜕
𝑢
2

{
𝑢
2

1
𝑢

𝑢
2

2
− 𝑢
2

1

} =
−2𝑢
2

1
𝑢
2
𝑢

(𝑢
2

2
− 𝑢
2

1
)
2
,

𝜕
𝑢
{
𝑢
1
𝑢
2
𝑢

𝑢
2

2
− 𝑢
2

1

} =
𝑢
1
𝑢
2

𝑢
2

2
− 𝑢
2

1

,

𝜕
𝑢
1

{
𝑢
1
𝑢
2
𝑢

𝑢
2

2
− 𝑢
2

1

} =

(𝑢
2

1
+ 𝑢
2

2
) 𝑢
2
𝑢

(𝑢
2

2
− 𝑢
2

1
)
2
,

𝜕
𝑢
2

{
𝑢
1
𝑢
2
𝑢

𝑢
2

2
− 𝑢
2

1

} =

− (𝑢
2

1
+ 𝑢
2

2
) 𝑢
1
𝑢

(𝑢
2

2
− 𝑢
2

1
)
2
,

𝜕
𝑢
{
𝑢
2

2
𝑢

𝑢
2

2
− 𝑢
2

1

} =
𝑢
2

2

𝑢
2

2
− 𝑢
2

1

,

𝜕
𝑢
1

{
𝑢
2

2
𝑢

𝑢
2

2
− 𝑢
2

1

} =
2𝑢
1
𝑢
2

2
𝑢

(𝑢
2

2
− 𝑢
2

1
)
2
,

𝜕
𝑢
2

{
𝑢
2

2
𝑢

𝑢
2

2
− 𝑢
2

1

} =
−2𝑢
2

1
𝑢
2
𝑢

(𝑢
2

2
− 𝑢
2

1
)
2
,

(46)
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(45) read, in the lowest order of 𝜀,

(𝑢
2

2
− 𝑢
2

1
) (𝜂
𝑡𝑡
− 𝜂
𝑥𝑥
) − (𝑢

2

2
− 𝑢
2

1
)
2

𝜂
𝑢𝑢
− 𝑢
2

1
𝑢
2
𝜂
𝑢
1
𝑢
1

− 𝑢
2

1
𝑢
2
𝜂
𝑢
2
𝑢
2

+ 2𝑢
1
𝑢 (𝑢
2

2
− 𝑢
2

1
) 𝜂
𝑢𝑢
1

− 2𝑢
2
𝑢 (𝑢
2

2
− 𝑢
2

1
) 𝜂
𝑢𝑢
2

− 2𝑢
1
𝑢
2
𝑢
2
𝜂
𝑢
1
𝑢
2

+ 2𝑢
1
(𝑢
2

2
− 𝑢
2

1
) 𝜂
𝑡𝑢
+ 2𝑢
2

1
𝑢𝜂
𝑡𝑢
1

+ 2𝑢
1
𝑢
2
𝑢𝜂
𝑡𝑢
2

− 2𝑢
2
(𝑢
2

2
− 𝑢
2

1
) 𝜂
𝑥𝑢
− 2𝑢
1
𝑢
2
𝑢𝜂
𝑥𝑢
1

− 2𝑢
2

2
𝑢𝜂
𝑥𝑢
2

− 𝑢
1
(𝑢
2

2
− 𝑢
2

1
) 𝜂
𝑢
1

− 𝑢
2
(𝑢
2

2
− 𝑢
2

1
) 𝜂
𝑢
2

− 𝑢 (𝑢
2

2
− 𝑢
2

1
) 𝜂
𝑢
+ (𝑢
2

2
− 𝑢
2

1
) 𝜂 − 𝑢

3
(𝑢
2

2
− 𝑢
2

1
)

= 0.

(47)

Noting the homogeneity of the equation, we find a solution,
𝜂 (𝑡, 𝑥, 𝑢, 𝑢

1
, 𝑢
2
)

= −
3

8
(𝑢
2
+ 𝑢
2

1
− 𝑢
2

2
) (𝑢
2

1
− 𝑢
2

2
) (𝑎

𝑡

𝑢
1

− (1 − 𝑎)
𝑥

𝑢
2

)

−
1

32
𝑢 (𝑢
2
− 𝑢
2

1
− 𝑢
2

2
) ,

(48)

where 𝑎 is an arbitrary constant. For this infinitesimal
generator of the approximate Lie symmetry group, the group-
invariant solution satisfies

𝑋 [𝑢 − 𝑢 (𝑡, 𝑥)]|𝑢=𝑢(𝑡,𝑥) = 0, (49)
which reads

𝜕𝑢 (𝑡, 𝑥)

𝜕𝜀
= 𝜂 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥) , 𝑢

1
(𝑡, 𝑥) , 𝑢

2
(𝑡, 𝑥)) . (50)

Asymptotic dynamic behavior can be obtained by consider-
ing the cases 𝑡 ≫ 1 and 𝑥 ≫ 1 and by neglecting the terms
which are not proportional to 𝑥 or 𝑡. By introducing 𝜏 := 𝜀𝑡
and 𝜉 := 𝜀𝑥, we obtain

𝜕𝑢

𝜕𝜏
= −

3 (𝑢
2
+ 𝑢
2

1
− 𝑢
2

2
) (𝑢
2

1
− 𝑢
2

2
)

8𝑢
1

𝑎,

𝜕𝑢

𝜕𝜉
=

3 (𝑢
2
+ 𝑢
2

1
− 𝑢
2

2
) (𝑢
2

1
− 𝑢
2

2
)

8𝑢
2

(1 − 𝑎) .

(51)

By eliminating 𝑎, the equations are reduced to

𝑢
1

𝜕𝑢

𝜕𝜏
− 𝑢
2

𝜕𝑢

𝜕𝜉
= −
3

8
(𝑢
2
+ 𝑢
2

1
− 𝑢
2

2
) (𝑢
2

1
− 𝑢
2

2
) . (52)

This reduced equation describes the asymptotic behavior of
the original system.This fact can be confirmed by comparing
with the result derived before. By introducing a transforma-
tion of the variables,

|𝐴|
2
:=
1

4
(𝑢
2
+ 𝑢
2

1
− 𝑢
2

2
) ,

𝜔 := 𝑢
1
(𝑢
2

1
− 𝑢
2

2
)
−1/2

,

𝑘 := 𝑢
2
(𝑢
2

1
− 𝑢
2

2
)
−1/2

,

(53)

the reduced equation (52) is transformed into

[
𝜕

𝜕𝜏
+
𝑘

𝜔

𝜕

𝜕𝜉
]𝐴 = −

3

2𝜔
i |𝐴|2 𝐴. (54)

This is the nonlinear Schrödinger equation, which corre-
sponds to the reduced equation derived with the renormal-
ization group method [9].

5. Concluding Remarks

In summary, this paper presents an investigation of perturba-
tion problems, which involves the application of a particular
type of Lie group method to partial as well as ordinary
differential equations. As a consequence, we have obtained
the dynamics which describes the asymptotic behavior of
the original system. The main characteristic of the present
method is the addition of some constraint equations when
searching for a Lie symmetry group, an approach which
allows us to find a partial Lie symmetry group.The constraint
equations are determined from the nonperturbative solution
on which we try to investigate the effect of the perturbation.
The reason why it is necessary to specify a nonperturbative
solution beforehand for the partial differential equations is
that, unlike for ordinary differential equations, the non-
perturbative system has an infinite number of independent
solutions. In terms of technique, those constraint equations
are constructed in such a way that the arbitrary constants
or functions included in the nonperturbative solution are
eliminated as we have done in deriving (4), (18), and (41). In
this study, we have investigated the effect of the perturbation
of its lowest order; however, extending our work to higher-
order approximations would require us to use higher-order
constraint equations instead.

Examples towhich themethod is applied here are singular
perturbation problems in which secular terms appear in the
näıve expansion of the solution [3, 6, 8, 10, 11, 34]. Terms
proportional to the independent variables emerge in the
infinitesimal generator of the Lie symmetry group as seen in
(10), (30), and (48) corresponding to the emergence of the
secular terms in the näıve expansion. As inferred from this
mathematical similarity, the presentmethod is also applicable
to other systems which exhibit the same type of singular
perturbation problems. In the singular perturbationmethods
proposed thus far, it is only after the construction of the näıve
expansion that it becomes clear whether the method should
be used or not. However, the present method can be applied
without making the expansion, enabling the appropriate
reduced equations to be derived.

Future work should involve a clarification of the relations
between the present method and other types of singular
perturbation methods presented thus far, such as the WKB
or boundary layer problem methods. In addition, there are
existing methods that have enabled the successful deriva-
tion of the asymptotic behavior for various other partial
differential equations [13–18, 20–30, 35–38]. Therefore, it
should be clarified whether or not the present method can
be appropriately extended and applied to the problems those
methods have resolved.
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Appendix

Searching for Lie Symmetry with
the Normal Procedure

Let us search for the Lie symmetry group of (1) without
constraint equations. The criterion for the invariance of the
equation is given by (7); namely,

𝑋
∗
[2𝑢�̈� + �̇� − 𝜀]

2𝑢�̈�+�̇�−𝜀=0
= 0, (A.1)

which reads

2𝑢
2
𝜂
𝑡𝑡
− 𝑢 + �̇� (4𝑢

2
𝜂
𝑢𝑡
+ 2𝑢𝜂

𝑡
)

+ �̇�
2
(2𝑢
2
𝜂
𝑢𝑢
+ 𝑢𝜂 − 𝜂) + 𝜀 (𝜂 + 𝑢𝜂

𝑢
) = 0.

(A.2)

In the lowest order of 𝜀, 𝜂 has to satisfy the following
differential equations:

2𝑢
2
𝜂
𝑡𝑡
− 𝑢 = 0,

4𝑢
2
𝜂
𝑢𝑡
+ 2𝑢𝜂

𝑡
= 0,

2𝑢
2
𝜂
𝑢𝑢
+ 𝑢𝜂 − 𝜂 = 0.

(A.3)

However, we can easily find out that there is no solution that
satisfies all the above equations, which implies that there is no
Lie symmetry group.
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