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A usual classification tool to study a fractal interface is the computation of its fractal dimension. But a recent method developed
by Y. Heurteaux and S. Jaffard proposes to compute either weak and strong accessibility exponents or local 𝐿𝑝 regularity exponents
(the so-called p-exponent). These exponents describe locally the behavior of the interface. We apply this method to the graph of
the Knopp function which is defined for 𝑥 ∈ [0, 1] as 𝐹(𝑥) = ∑

∞

𝑗=0
2

−𝛼𝑗
𝜙(2

𝑗
𝑥), where 0 < 𝛼 < 1 and 𝜙(𝑥) = dist(𝑥, z). The Knopp

function itself has everywhere the same p-exponent 𝛼. Nevertheless, using the characterization of the maxima and minima done
by B. Dubuc and S. Dubuc, we will compute the p-exponent of the characteristic function of the domain under the graph of F at
each point (𝑥, 𝐹(𝑥)) and show that p-exponents, weak and strong accessibility exponents, change from point to point. Furthermore
we will derive a characterization of the local extrema of the function according to the values of these exponents.

1. Introduction

At the beginning of the century several examples of non-
differentiable functions were studied, such as the Weiertrass
function or the examplewewill focus on in the following, that
is, the Takagi-Knopp or so called Knopp function (see [1] and
references therein for a review).The issue was the study of the
regularity.

Indeed, in 1918, Knopp [2] introduced a new family of
nondifferentiable functions defined on the interval [0, 1].
Going beyond the construction of Weierstrass of a continu-
ous nondifferentiable function, his goal was to build examples
of continuous functions for which one-sided limits of the
difference quotient at all points do not exist. He considered
the function 𝐹𝑎,𝑏 given by the series, for 𝑥 ∈ [0, 1],

𝐹𝑎,𝑏 (𝑥) =

∞

∑

𝑗=0

𝑎
𝑗
𝜙 (𝑏

𝑗
𝑥) , (1)

where 𝜙(𝑥) = dist(𝑥,Z), 0 < 𝑎 < 1, and 𝑏 is an integer such
that 𝑎𝑏 > 4.

For 𝑏 = 2 and 𝑎 = 2
−𝛼, this function can be seen as a series

expanded in the Faber-Schauder basisΛ 𝑗,𝑘 : 𝑥 󳨃→ 2
𝑗/2
Λ(2

𝑗
𝑥−

𝑘), 𝑗 ∈ N, 𝑘 = 0, . . . , 2
𝑗
− 1, where Λ is the Schauder function

defined by Λ(𝑥) = inf(𝑥, 1 − 𝑥) if 𝑥 ∈ [0, 1] and 0 elsewhere.
In fact

𝐹2−𝛼,2 (𝑥) =

∞

∑

𝑗=0

2
𝑗

−1

∑

𝑘=0

2
−𝛼𝑗
Λ(2

𝑗
𝑥 − 𝑘) . (2)

We will write 𝐹 for 𝐹2−𝛼 ,2 in the following.
Thus, for example, using the characterization of Lipschitz

spaces with the help of coefficients in the Schauder-basis [3],
one gets immediately the fact that 𝐹 belongs to 𝐶𝛼

([0, 1]).
A further step to study the regularity of this function

can be to follow the ideas developed in multifractal analysis.
The goal in multifractal analysis is to study the sets of points
where the function has a given pointwise regularity, and
doing so to check if the regularity changes frompoint to point
and quantify these changes. Recall the definition of Hölder
pointwise regularity and local 𝐿𝑝 regularity.
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Definition 1. Let 𝑥0 ∈ R𝑑 and 𝛼 ≥ 0. A locally bounded
function 𝑓 : R𝑑

→ R belongs to 𝐶𝛼
(𝑥0) if there exists 𝐶 > 0

and a polynomial 𝑃 = 𝑃𝑥
0

with degree deg(𝑃) ≤ [𝛼] (integer
part of 𝛼), such that on a neighborhood of 𝑥0,

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑥) − 𝑃𝑥

0

(𝑥)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

󵄨󵄨󵄨󵄨𝑥 − 𝑥0

󵄨󵄨󵄨󵄨

𝛼
. (3)

The pointwise Hölder exponent of 𝑓 at 𝑥0 is ℎ𝑓(𝑥0) = sup{𝛼 :
𝑓 ∈ 𝐶

𝛼
(𝑥0)}.

Definition 2 (see [4]). Let 𝑥0 ∈ R𝑑. Let 𝑝 ∈ [1,∞] and 𝑢 such
that 𝑢 ≥ −𝑑/𝑝. Let 𝑓 be a function in 𝐿

𝑝

loc. The function 𝑓
belongs to 𝑇𝑝

𝑢
(𝑥0) if there exists 𝑅 > 0, a polynomial 𝑃 with

deg(𝑃) ≤ 𝑢, and 𝐶 > 0 such that

∀𝜌 ≤ 𝑅 : (
1

𝜌𝑑
∫

|𝑥−𝑥
0

|≤𝜌

|𝑓(𝑥) − 𝑃(𝑥)|
𝑝
𝑑𝑥)

1/𝑝

≤ 𝐶𝜌
𝑢
. (4)

The 𝑝-exponent of 𝑓 at 𝑥0 is 𝑢𝑝

𝑓
(𝑥0) = sup{𝑢 : 𝑓 ∈

𝑇
𝑝

𝑢
(𝑥0)}.

Then again with the help of the Faber-Schauder basis one
can prove that, for all 𝑥0 ∈ [0, 1], 𝐹 is in 𝐶𝛼

(𝑥0) (details for
this technique can be found in [5]). It is then easy to check that
actually 𝑢𝐹

𝑝
(𝑥0) = ℎ𝐹(𝑥0) = 𝛼 at all 𝑥0 ∈ [0, 1]. Thus, from the

point of view of various notions of regularity, even if it is not
differentiable, the function 𝐹 is rather “regular” since one can
compute at each point 𝑥0 the same regularity exponent. This
remark was actually the starting point of this work.

Indeed obviously the graph of the function has a very
irregular behavior, and it has also some self-similarity prop-
erties. What can we say on the domainΩ = {𝑋 = (𝑥, 𝑦) : 𝑦 ≤

𝐹(𝑥)} under the graph of 𝐹?
Denote in the following by IΩ the characteristic function of

Ω, which takes the value 1 on Ω and 0 outside Ω.
A first reflex is to compute fractal dimensions of the

boundary 𝜕Ω. The box dimension of the graph can be
derived by standard methods (see Tricot [6]) and is exactly
dim𝐵(𝜕Ω) = 2−𝛼. Let usmention that Ciesielski [7, 8] proved
results of this type for Schauder andHaar bases expansions in
the case of more general families of functions. Jaffard [9] and
Kamont andWolnik [10] obtained then general formulas that
allow deriving the box dimensions of the graphs of arbitrary
functions from their wavelet expansions.

For what concerns the Hausdorff dimension of the graph
of 𝐹, as far as we know, the question is not solved yet in its all
generality. It was proved by Ledrappier [11] in 1992 to be 2−𝛼
in the special case where 𝑎 = 2

𝛼−1 is an Erdös number. By the
results of Solomyak [12] on Erdös numbers this amounts to
have the computation for almost every 𝛼 in [0, 1].

Beside the computation of the box and Hausdorff dimen-
sion, which provide global quantities to describe the graph
of the function, several methods were recently developed
to classify fractal boundaries with the help of pointwise
exponents. The idea was to be able to give a finer description
of the geometry of the boundary, since the pointwise behavior
was studied. In [13], Jaffard and Mélot focused on the
computation of the dimension of the set of points where IΩ

has a given 𝑝-exponent in the sense of Definition 2. In [14],
Heurteaux and Jaffard studied pointwise exponents more
related to the geometry. These are the exponents we are
actually interested in.

Indeed denote by meas the Lebesgue measure in R𝑑 and
𝐵(𝑋, 𝑟) the𝑑dimensional open ball of center𝑋 and radius 𝑟 >
0. Heurteaux and Jaffard [14] gave the following definitions.

Definition 3. Let Ω be a domain of R𝑑 and let 𝑋0 ∈ 𝜕Ω. The
point 𝑋0 is weak 𝛼-accessible in Ω if there exist 𝐶 > 0 and
𝑟0 > 0 such that

∀𝑟 ≤ 𝑟0 meas (Ω⋂𝐵 (𝑋0, 𝑟)) ≤ 𝐶𝑟
𝛼+𝑑

. (5)

The supremum of all the values of 𝛼 such that (5) holds is
called the weak accessibility exponent in Ω at𝑋0. We denote
it by 𝐸𝑤

Ω
(𝑋0).

Example 4. Let 0 < 𝛽 < 1 and Ω = {𝑋 = (𝑥, 𝑦) ∈ R2
: |𝑦| ≤

|𝑥|
𝛽
}. Denote byΩ𝑐 the complement ofΩ.Then one can easily

check that at each point 𝑋1 ̸= (0, 0) of the boundary 𝜕Ω we
have 𝐸𝑤

Ω
(𝑋1) = 0 = 𝐸

𝑤

Ω𝑐
(𝑋1) and at 𝑋0 = (0, 0) we have

𝐸
𝑤

Ω𝑐
(𝑋0) = (1/𝛽) − 1 and 𝐸𝑤

Ω
(𝑋0) = 0.

Definition 5. Let Ω be a domain of R𝑑 and let 𝑋0 ∈ 𝜕Ω. The
point 𝑋0 is strong 𝛼-accessible in Ω if there exist 𝐶 > 0 and
𝑟0 > 0 such that

∀𝑟 ≤ 𝑟0 meas (Ω⋂𝐵 (𝑋0, 𝑟)) ≥ 𝐶𝑟
𝛼+𝑑

. (6)

The infimum of all the values of 𝛼 such that (6) holds is called
the strong accessibility exponent in Ω at 𝑋0. We denote it by
𝐸

𝑠

Ω
(𝑋0).

The following proposition is given in [14].

Proposition 6. Let 𝑋0 ∈ 𝜕Ω. Then

𝑑 + 𝐸
𝑤

Ω
(𝑋0) = lim inf

𝑟 → 0

log (meas (Ω ∩ 𝐵 (𝑋0, 𝑟)))

log 𝑟
,

𝑑 + 𝐸
𝑠

Ω
(𝑋0) = lim sup

𝑟 → 0

log (meas (Ω ∩ 𝐵 (𝑋0, 𝑟)))

log 𝑟
.

(7)

Obviously 𝐸𝑠

Ω
(𝑋0) ≥ 𝐸

𝑤

Ω
(𝑋0). We will see that thanks

to our result one can prove that these two exponents can be
different.

Tricot [15] proved that these exponents are related to local
dimension computation. Let us mention, without giving too
much details, the relationship of this work [15] with these
exponents. Indeed the author focuses on the formula

𝐻
𝜙
(𝐸) = lim inf

𝜀 → 0
{∑

𝑖≥0

𝜙 (𝐸𝑖) : 𝐸 ⊂ ⋃

𝑖≥0

𝐸𝑖, diam (𝐸𝑖) ≤ 𝜀}

(8)

with 𝜙 : B𝐸 → (0,∞) some “set function” and B𝐸 the set of
closed balls centered on 𝐸.
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Given an open set 𝑉 such that 𝐸 ⊂ 𝜕𝑉 the special choice
of

𝜙𝛼 (𝐵) =
Vol (𝐵 ∩ 𝑉)
Vol (𝐵)

diam (𝐵)
𝛼 (9)

leads to definitions ofHausdorff, exterior and interior dimen-
sions, and Packing, exterior and interior dimensions.

The following characterization, written for the setting we
are interested in, holds.

Theorem 7 (see [15]). LetΩ be a bounded open set in R𝑑 with
boundary 𝜕Ω such thatmeas(𝜕Ω) = 0. Let 𝑋0 ∈ Ω. Let 𝑟 > 0

and

𝛼 (𝐵 (𝑋0, 𝑟)) = 𝑑 −
log (meas (Ω⋂𝐵 (𝑋0, 𝑟)))

log (𝑟)
. (10)

Then
lim inf

𝑟 → 0
𝛼 (𝐵 (𝑋0, 𝑟)) = dim𝑖𝑛𝑡 ({𝑋0}) ,

lim sup
𝑟 → 0

𝛼 (𝐵 (𝑋0, 𝑟)) = Dim𝑖𝑛𝑡 ({𝑋0})

(11)

with dim𝑖𝑛𝑡 the Hausdorff interior dimension and Dim𝑖𝑛𝑡 the
Packing Hausdorff dimension.

We clearly have dimint({𝑋0}) = −𝐸
𝑤

Ω
(𝑋0) and

Dimint({𝑋0}) = −𝐸
𝑠

Ω
(𝑋0). Let us stress that in the setting

of Tricot dimext({𝑋0}) = −𝐸
𝑤

Ω𝑐
(𝑋0) and Dimext({𝑋0}) =

−𝐸
𝑠

Ω𝑐
(𝑋0) with Ω

𝑐 the complementary of Ω in R𝑑. We rather
refer to [15] for more details on local dimensions in their all
generality.

We will compute these quantities at the points of the
boundary 𝜕Ω ofΩ = {(𝑥, 𝑦) ∈ R2

: 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 𝐹(𝑥)},
where𝐹 is the function defined by (2). For that we will use the
characterization of themaxima andminima done in [16].This
will yield the 𝑝-exponent at each point of IΩ. We will actually
derive the fact that the set of local extrema of the function is
fully characterized by the set of points where this 𝑝-exponent
has a given value.

We will also prove that the weak and strong accessibility
exponents in Ω and Ω

𝑐 change from point to point on the
graph 𝜕Ω of 𝐹. They also help to provide exact characteri-
zation of the sets of local maxima and local minima. Finally
we will prove that there is a set of nontrivial Hausdorff
dimensions such that the strong accessibility exponents in Ω
and Ω

𝑐 are the same and the weak and strong accessibility
exponents are different.

Let us emphasize that this is to our knowledge the
first time that the computation of these exponents was
done in a nearly exhaustive study on a given example. The
characterization we get for the set of extrema raise several
questions: is it a general property? Do other functions share
it? Could it lead to a finer classification of functions inHölder
classes? We would like to address them in future works.

Let us come back now to our work. The outline of the
paper is the following. In Section 2 we set our main result. In
Section 3 some notations, preliminary remarks and technical
lemmas, help us to prepare Section 4 where are the main
proofs.

2. Main Results

2.1. Statement of Our Main Result. Our goal is to prove the
followingTheorem.

Theorem 8 (the main theorem). Let 𝑎 = 2
−𝛼 with 0 < 𝛼 < 1

and 𝑏 = 2. Let 𝐹 be the function defined by (2).
Let Ω = {𝑋0 = (𝑥, 𝑦) ∈ R2

: 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 𝐹(𝑥)}

and let 𝑓 = IΩ.
Then, at each point 𝑋0 of 𝜕Ω, the graph of 𝐹, one has

(1) 𝑢𝑝

𝑓
(𝑋0) = (1/𝑝)((1/𝛼) − 1) if and only if 𝐹(𝑋0) is a

local extremum of 𝐹. Furthermore

(a) 𝐸𝑤

Ω
(𝑋0) = 𝐸

𝑠

Ω
(𝑋0) = (1/𝛼) − 1 if and only if

𝐹(𝑋0) is a local maximum of 𝐹. And in this case
𝐸

𝑤

Ω𝑐
(𝑋0) = 𝐸

𝑠

Ω𝑐
(𝑋0) = 0.

(b) 𝐸𝑤

Ω𝑐
(𝑋0) = 𝐸

𝑠

Ω𝑐
(𝑋0) = (1/𝛼) − 1 if and only if

𝐹(𝑋0) is a local minimum of 𝐹. And in this case
𝐸

𝑤

Ω
(𝑋0) = 𝐸

𝑠

Ω
(𝑋0) = 0.

(2) In the other cases where 𝐹(𝑋0) is not a local extremum
of 𝐹, one has 𝐸𝑤

Ω
(𝑋0) = 𝐸

𝑤

Ω𝑐
(𝑋0) = 0.

(3) Furthermore one can find a subset 𝐷𝛼 ⊂ 𝜕Ω such
that 𝐸𝑠

Ω
(𝑋0) = 𝐸

𝑠

Ω𝑐
(𝑋0) = (1/𝛼) − 1 and 𝐸𝑤

Ω
(𝑋0) =

𝐸
𝑤

Ω𝑐
(𝑋0) = 0 for all 𝑋0 ∈ 𝐷𝛼. The orthogonal

projection of𝐷𝛼 on [0, 1] has the Hausdorff dimension
𝛼.

3. Useful Notations and Results

3.1. Lemmas for Practical Computation of the Exponents.
From the computation of the weak accessibility exponent in
Ω and Ω𝑐 it is easy to derive the 𝑝-exponent. In [13], Jaffard
and Mélot proved that IΩ ∈ 𝑇

𝑝

𝛼/𝑝
(𝑋0) if and only if either 𝑋0

is weak 𝛼-accessible inΩ or𝑋0 is weak 𝛼-accessible inΩ
𝑐. As

a consequence we have

𝑝𝑢
𝑝

I
Ω

(𝑋0) = max (𝐸𝑤

Ω
(𝑋0) , 𝐸

𝑤

Ω𝑐
(𝑋0)) . (12)

We will also need the following lemma.

Lemma 9. Let 𝑓 : R → R be in 𝐶
𝛼
(𝑥0) with 0 < 𝛼 < 1

andΩ the domain below (resp., above) the graph of𝑓. Consider
𝑋0 = (𝑥0, 𝑓(𝑥0)).Then𝑋0 is strong (1/𝛼)−1, accessible in both
Ω and Ω𝑐.

Proof. Suppose that Ω is the domain below the graph of 𝑓.
Without any loss of generality, we can assume that𝑋0 = (0, 0).
Let 𝑟 > 0. Since 𝑓 is in 𝐶𝛼

(0) and 0 < 𝛼 < 1 then there exists
a constant 𝐶 ≥ 0 such that in neighborhood of 0

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝐶 |𝑥|

𝛼
. (13)

Thus

−𝐶 |𝑥|
𝛼
≤ 𝑓 (𝑥) ≤ 𝐶 |𝑥|

𝛼
. (14)

Obviously meas(Ω𝑐
⋂𝐵(𝑋0, 𝑟)) (resp., meas(Ω⋂𝐵(𝑋0, 𝑟)))

is greater than the area A = 𝐶
󸀠
∫

𝑟

0
𝑦

1/𝛼
𝑑𝑦 = 𝐶

󸀠󸀠
𝑟

1+1/𝛼 above
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(resp., below) the graph of 𝑥 󳨃→ 𝐶|𝑥|
𝛼 and below (resp.,

above) the square of side 𝑟 and center𝑋0.
The same results hold ifΩ is the domain above the graph

of 𝑓 (we have just to replace Ω by Ω𝑐).

One of our goals for the points which are not extrema of
𝐹 will be to find sequences of local maxima or minima such
that the following key lemma holds.

Lemma 10. Let 𝑓 : R → R be in 𝐶𝛼
(R) and Ω the domain

below the graph of 𝑓. Consider𝑋0 = (𝑥0, 𝑓(𝑥0)). Suppose that
there exists 𝑐𝛼 > 0, a sequence 𝑟𝑛 of positive numbers, such that
𝑟𝑛 → 0 as 𝑛 → +∞, 𝑥𝑛 ∈]𝑥0 − 𝑟𝑛, 𝑥0 + 𝑟𝑛[, and 𝑛0 ∈ N, such
that

∀𝑛 ≥ 𝑛0 𝑓 (𝑥𝑛) = 𝑓 (𝑥0) − 𝑐𝛼𝑟
𝛼

𝑛
. (15)

Then 𝐸𝑤

Ω𝑐
(𝑋0) = 0.

Proof. We can suppose that 𝑥𝑛 ∈]𝑥0 − 𝑟𝑛, 𝑥0[ (the case 𝑥𝑛 ∈

]𝑥0, 𝑥0 + 𝑟𝑛[ is similar). Then by the mean value theorem we
can find 𝑏𝑛 ∈]𝑥𝑛, 𝑥0[ such that 𝑓(𝑏𝑛) = 𝑓(𝑥0) − 𝑟𝑛. Let 𝑏

󸀠

𝑛
=

inf{𝑏𝑛 ∈]𝑥𝑛, 𝑥0[; 𝑓(𝑏𝑛) = 𝑓(𝑥0) − 𝑟𝑛}. Since 𝑓 is continuous
we get 𝑓(𝑏󸀠

𝑛
) = 𝑓(𝑥0)− 𝑟𝑛 and 𝑏

󸀠

𝑛
∈]𝑥𝑛, 𝑥0[. It follows from the

definition of 𝑏󸀠

𝑛
and the mean value theorem that

∀𝑡 ∈ ]𝑥𝑛, 𝑏
󸀠

𝑛
[ 𝑓 (𝑡) < 𝑓 (𝑥0) − 𝑟𝑛. (16)

Thus

]𝑥𝑛, 𝑏
󸀠

𝑛
[ × [𝑓 (𝑥0) − 𝑟𝑛, 𝑓 (𝑥0) + 𝑟𝑛] ⊂ 𝐵 (𝑋0, 𝑟𝑛)⋂Ω

𝑐
.

(17)

Therefore

meas (𝐵 (𝑋0, 𝑟𝑛)⋂Ω
𝑐
) ≥ 2

󵄨󵄨󵄨󵄨󵄨
𝑏

󸀠

𝑛
− 𝑥𝑛

󵄨󵄨󵄨󵄨󵄨
𝑟𝑛. (18)

Since

𝑓 (𝑥𝑛) − 𝑓 (𝑏
󸀠

𝑛
) = 𝑓 (𝑥0) − 𝑐𝛼𝑟

𝛼

𝑛
− (𝑓 (𝑥0) − 𝑟𝑛)

= 𝑟𝑛 − 𝑐𝛼𝑟
𝛼

𝑛

≃ − 𝑟
𝛼

𝑛
,

(19)

in the sense that there exists a constant 𝐶 ≥ 1 such that for
every 𝑛 we have (1/𝐶)𝑟𝛼

𝑛
≤ 𝑐𝛼𝑟

𝛼

𝑛
− 𝑟𝑛 ≤ 𝐶𝑟

𝛼

𝑛
.

Since 𝑓 belongs to 𝐶𝛼
(R) we get

𝐶
󵄨󵄨󵄨󵄨󵄨
𝑏

󸀠

𝑛
− 𝑥𝑛

󵄨󵄨󵄨󵄨󵄨

𝛼

≥
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑏

󸀠

𝑛
) − 𝑓 (𝑥𝑛)

󵄨󵄨󵄨󵄨󵄨
≃ 𝑟

𝛼

𝑛
. (20)

Thus
󵄨󵄨󵄨󵄨󵄨
𝑏

󸀠

𝑛
− 𝑥𝑛

󵄨󵄨󵄨󵄨󵄨
≥ 𝐶

󸀠
𝑟𝑛. (21)

Following (18) and (21) we get

meas (𝐵 (𝑋0, 𝑟𝑛)⋂Ω
𝑐
) ≥ 𝐶𝑟

2

𝑛
. (22)

Since meas(𝐵(𝑋0, 𝑟)⋂Ω
𝑐
) ≤ meas(𝐵(𝑋0, 𝑟)) ≤ 𝑟

2 for all 𝑟 ≥
0 we get

lim
𝑛 → +∞

log (meas (𝐵 (𝑋0, 𝑟𝑛)⋂Ω
𝑐
))

log (𝑟𝑛)
= 2. (23)

Thus thanks to Proposition 6 we have 𝐸𝑤

Ω𝑐
(𝑋0) ≤ 0 which

yields 𝐸𝑤

Ω𝑐
(𝑋0) = 0.

By replacing 𝑓 by −𝑓 we also have the following result.

Lemma 11. Let 𝑓 : R → R be in 𝐶𝛼
(R) and Ω the domain

below the graph of 𝑓. Consider𝑋0 = (𝑥0, 𝑓(𝑥0)). Suppose that
there exist 𝑐𝛼 > 0, 𝑟𝑛 → 0 as 𝑛 → +∞, 𝑥𝑛 ∈]𝑥0 − 𝑟𝑛, 𝑥0 + 𝑟𝑛[,
and 𝑛0 ∈ N, such that

∀𝑛 ≥ 𝑛0 𝑓 (𝑥𝑛) = 𝑓 (𝑥0) + 𝑐𝛼𝑟
𝛼

𝑛
. (24)

Then 𝐸𝑤

Ω
(𝑋0) = 0.

3.2. Dyadic Expansions and Approximation by Dyadics. We
give some properties of the approximation of a point by the
dyadics. Such properties will be used later.

Let 𝑥 ∈ [0, 1]. Set 𝑖1(𝑥), . . . , 𝑖𝑗(𝑥), . . ., the binary digits of
𝑥; that is,

𝑥 =

∞

∑

𝑙=1

𝑖𝑙 (𝑥)

2𝑙
. (25)

(i) Note that dyadic points, that is, points 𝑥 = 2
−𝑁
𝐾with

𝐾 ∈ 2N + 1, are characterized by the fact that one can
find 𝑁 > 0 such that 𝑖𝑁(𝑥) = 1 and 𝑖𝑛(𝑥) = 0 for
𝑛 > 𝑁 or equivalently 𝑖𝑁(𝑥) = 0 and 𝑖𝑛(𝑥) = 1 for
𝑛 > 𝑁.
Furthermore for 𝑛 > 𝑁 the number 𝑥 − 2−𝑛 is dyadic.
Since 2−𝑛

= ∑
∞

𝑗=𝑛+1
2

−𝑗, then 𝑥 − 2−𝑛
= (∑

𝑁−1

𝑗=1
𝑖𝑗2

−𝑗
) +

2
−(𝑁+1)

+ 2
−(𝑁+2)

+ ⋅ ⋅ ⋅ + 2
−𝑛.

On the other hand 𝑥 + 2−𝑛 has the simple expansion
∑

𝑁

𝑗=1
(𝑖𝑗(𝑥)/2

𝑗
) + (1/2

𝑛
).

We will denote by D the set of all dyadic points in
[0, 1].

(ii) Let us come back to the general case with 𝑥 any point
in [0, 1].
For each 𝑗 ∈ N, define 𝐾𝑗 (= 𝐾𝑗(𝑥)) by

󵄨󵄨󵄨󵄨󵄨
𝐾𝑗2

−𝑗
− 𝑥

󵄨󵄨󵄨󵄨󵄨
= inf

𝑘∈N

󵄨󵄨󵄨󵄨󵄨
𝑘2

−𝑗
− 𝑥

󵄨󵄨󵄨󵄨󵄨
. (26)

Set

𝑟𝑗 (𝑥) =

log 󵄨󵄨󵄨󵄨󵄨𝐾𝑗2
−𝑗
− 𝑥

󵄨󵄨󵄨󵄨󵄨

log 2−𝑗
. (27)

Define the rate of approximation of 𝑥 by dyadics as

𝑟 (𝑥) = lim sup
𝑗󳨃→∞

𝑟𝑗 (𝑥) . (28)

Since |𝐾𝑗2
−𝑗
− 𝑥| ≤ 2

−𝑗, then, for every 𝑥, we have
𝑟(𝑥) ≥ 1. If 𝑥 is dyadic then 𝑟(𝑥) = ∞ (by taking
the convention log 0 = −∞). If 𝑥 is normal (i.e., the
frequency of ones (or zeros) in the binary expansion
of 𝑥 is equal to 1/2) then 𝑟(𝑥) = 1.
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(iii) If 𝑟(𝑥) > 1, following the definition of 𝑟(𝑥), then for
any 𝛿 > 0 such that 𝑟(𝑥) − 𝛿 > 1 one can find a
subsequence 𝐽𝑛 → +∞ for 𝑛 → +∞ such that

𝑟𝐽
𝑛

(𝑥) ≤ 2
−𝐽
𝑛

(𝑟(𝑥)−𝛿)
. (29)

Let 𝐽󸀠

𝑛
= [𝐽𝑛(𝑟(𝑥) − 𝛿)]. We then have

𝐾𝐽
𝑛

2
−𝐽
𝑛 − 2

−𝐽
󸀠

𝑛 ≤ 𝑥 ≤ 𝐾𝐽
𝑛

2
−𝐽
𝑛 + 2

−𝐽
󸀠

𝑛 . (30)

Thus, either𝑥 belongs to the dyadic interval [𝐾𝐽
𝑛

2
−𝐽
𝑛−

2
−𝐽
󸀠

𝑛 , 𝐾𝐽
𝑛

2
−𝐽
𝑛] and in this case it satisfies 𝑖𝐽

𝑛

+1(𝑥) =

⋅ ⋅ ⋅ = 𝑖𝐽󸀠
𝑛

−1(𝑥) = 1, or it belongs to the other interval
[𝐾𝐽
𝑛

2
−𝐽
𝑛 , 𝐾𝐽

𝑛

2
−𝐽
𝑛 + 2

−𝐽
󸀠

𝑛] and in this case it satisfies
𝑖𝐽
𝑛

+1(𝑥) = ⋅ ⋅ ⋅ = 𝑖𝐽󸀠
𝑛

−1(𝑥) = 0.
In both cases let us notice that the binary expansion
of 𝑥 contains chains of 0 or 1whose length 𝐽󸀠

𝑛
−𝐽𝑛 ∼ 𝐽

󸀠

𝑛

increases when 𝑛 → +∞.

3.3. Approximation by Sequences of Maxima of 𝐹. Wewill see
in the following that points in [0, 1] of the set

S = {𝑘 ∈ N, 𝑁0 ∈ N,
𝑘

2𝑁
0

+
1

3

1

2𝑁
0

,
𝑘

2𝑁
0

+
2

3

1

2𝑁
0

} (31)

will play a big role in this work, since they actually are the
locations of the local maxima of the function 𝐹 (see below).
Remark that they are characterized by the fact that, for each
𝑥 ∈ S, one can find 𝑗0 ∈ N such that for 𝑗 ≥ 𝑗0 we have
𝑖𝑗(𝑥) + 𝑖𝑗+1(𝑥) = 1.

As in the case of dyadic approximation we can define a
rate of approximation by this kind of points.

Indeed let for 𝑥 ∈ [0, 1]

󵄨󵄨󵄨󵄨󵄨
𝑚𝑗 − 𝑥

󵄨󵄨󵄨󵄨󵄨
= inf

𝑘∈N
{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

2𝑗
+
1

3

1

2𝑗
− 𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

2𝑗
+
2

3

1

2𝑗
− 𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

} . (32)

Define

𝑠𝑗 (𝑥) =

log 󵄨󵄨󵄨󵄨󵄨𝑚𝑗 − 𝑥
󵄨󵄨󵄨󵄨󵄨

log 2−𝑗
. (33)

Then the rate of approximation of 𝑥 by elements ofS is given
by

𝑠 (𝑥) = lim sup
𝑗󳨃→∞

𝑠𝑗 (𝑥) . (34)

Since |𝑚𝑗 − 𝑥| ≤ 2
−𝑗, then, for every 𝑥, we have 𝑠(𝑥) ≥ 1.

In the case of dyadic numbers, we have 𝑠(𝑥) = 1. But
remark that in other nontrivial cases there is no obvious
relationship between 𝑠(𝑥) and 𝑟(𝑥). Indeed one can check on
the following examples that 𝑠 and 𝑟 can independently take
any value.

(i) Let 𝑥 = ∑
+∞

𝑗=1
(𝑖𝑗(𝑥)/2

𝑗
) with 𝑖3𝑘+1(𝑥) = 0 = 𝑖3𝑘+2(𝑥)

and 𝑖3𝑘+2(𝑥) = 1 for all 𝑘 ∈ N. Then we have 𝑟(𝑥) =
𝑠(𝑥) = 1.

(ii) Let 𝑢 > 1. Then 𝑥 = ∑
+∞

𝑛=0
2

−[𝑢
𝑛

] with [𝑢𝑛
] the integer

part of 𝑢𝑛. We have 𝑟(𝑥) = 𝑢 whereas 𝑠(𝑥) = 1.

(iii) Let 𝑢 > 1. Then 𝑥 = ∑
+∞

𝑛=1
2

−2𝑛
−∑

+∞

𝑛=0
2

−2[𝑢
𝑛

]. We have
𝑠(𝑥) = 𝑢 whereas 𝑟(𝑥) = 1.

(iv) Let 𝑢 > 1 and 𝑠 > 1. Let 𝑥 = ∑
+∞

𝑛=1
2

−2[𝑠
𝑛−1

𝑢
𝑛

]
+

∑
[𝑠
𝑛

𝑢
𝑛+1

]−1

𝑘=[𝑠𝑛−1𝑢𝑛]+1
2

−2𝑘. Then 𝑟(𝑥) = 𝑢 and 𝑠(𝑥) = 𝑠.

3.4. The Shift Operator. Since 0 < 𝛼 < 1 it is easy to check
that we obtain from (2) with 𝑎 = 2

−𝛼 and 𝑏 = 2

𝐹 (𝑥)

=

∞

∑

𝑗=0

∑

𝑖=(𝑖
1

,...,𝑖
𝑗

)∈{0,1}
𝑗

2
−𝛼𝑗
Λ(2

𝑗
𝑥 − 2

𝑗−1
𝑖1 − ⋅ ⋅ ⋅ − 2𝑖𝑗−1 − 𝑖𝑗) .

(35)

The term of (35) corresponding to 𝑗 = 0 is Λ(𝑥). But, the
function Λ is supported in [0, 1], and therefore 𝐹 vanishes
outside [0, 1] and for 𝑥 ∈ [0, 1]

𝐹 (𝑥) =

∞

∑

𝑗=0

2
−𝛼𝑗

Λ(2
𝑗
𝑥 − 2

𝑗−1
𝑖1 (𝑥) − ⋅ ⋅ ⋅ − 2𝑖𝑗−1 (𝑥) − 𝑖𝑗 (𝑥)) .

(36)

For dyadic rationals 𝑥, 𝑥 = 2
−𝑁
𝐾 with 𝐾 ∈ 2N + 1, as we

already said it, there exist two binary expansions, one such
that 𝑖𝑁(𝑥) = 1 and 𝑖𝑛(𝑥) = 0 for 𝑛 > 𝑁 and another one
such that 𝑖𝑁(𝑥) = 0 and 𝑖𝑛(𝑥) = 1 for 𝑛 > 𝑁. The two right-
hand sides of (36) corresponding to the two choices of 𝑖(𝑥)
give identical results.

Denote by 𝜏 the shift operator

𝜏𝑥 =

∞

∑

𝑙=2

𝑖𝑙 (𝑥) 2
−𝑙+1

=

∞

∑

𝑙=1

𝑖𝑙+1 (𝑥) 2
−𝑙
. (37)

Observe that

𝜏𝑥 =

{{

{{

{

2𝑥, if 𝑥 ∈ [0, 1
2
[ ,

2𝑥 − 1, if 𝑥 ∈ [1
2
, 1] .

(38)

Hence

𝐹 (𝑥) =

∞

∑

𝑗=0

2
−𝛼𝑗

Λ(𝜏
𝑗
𝑥) , (39)

𝜏
𝑗
𝑥 =

∞

∑

𝑙=1

𝑖𝑙+𝑗 (𝑥) 2
−𝑙
. (40)

Our self-similar function is of the form 𝐹(𝑥) =

∑
∞

𝑗=0
∑

2
𝑗

−1

𝑘=0
𝐶𝑗,𝑘Λ(2

𝑗
𝑥 − 𝑘) with

𝐶𝑗,𝑘 = 2
−𝛼𝑗 if 𝑗 ̸= 0, 𝑘 ̸= 0,

𝐶0,0 = 1.

(41)
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For 𝑛 ≥ 1, denote

𝐹𝑛 (𝑥) =

𝑛

∑

𝑗=0

2
−𝛼𝑗

Λ(𝜏
𝑗
𝑥) . (42)

Remark that 𝐹𝑛 is affine on intervals of type 𝐼𝑛+1 =

[𝑘/2
𝑛+1

, (𝑘 + 1)/2
𝑛+1

]. Remark also that if 𝑡 ∈ [0, 1], then
Λ(𝑡) = (−1)

𝑖
1

(𝑡)
𝑡 + 𝑖1(𝑡). So, if 𝑡

󸀠
∈ [0, 1] and 𝑖1(𝑡) = 𝑖1(𝑡

󸀠
),

then Λ(𝑡) − Λ(𝑡󸀠) = (−1)
𝑖
1

(𝑡)
(𝑡 − 𝑡

󸀠
).

It follows that if 𝑘/2𝑛+1
= ∑

𝑛+1

𝑗=1
(𝑖𝑗/2

𝑗
) then the slope of 𝐹𝑛

at any point 𝑥 of the interval ]𝑘/2𝑛+1
, (𝑘 + 1)/2

𝑛+1
[ is exactly

𝐶𝑛 = 𝐶𝑛 (𝑥) =

𝑛

∑

𝑗=0

(−1)
𝑖
𝑗+1

(𝑥)
2

(1−𝛼)𝑗
=

𝑛

∑

𝑗=0

(−1)
𝑖
𝑗+1 2

(1−𝛼)𝑗
.

(43)

3.5. Extrema of 𝐹. We will need the following characteriza-
tion of the extrema of 𝐹 proved in [16, 17]. Let us start with
the local and global minima.

Proposition 12. Let 0 < 𝛼 < 1 and let 𝐹 be the function
defined by (39); then

(i) 0 and 1 are the abscissas of the global minima of 𝐹;
(ii) the dyadic points are the abscissas of the minima of 𝐹

and furthermore

min
𝑥∈𝐼
𝑁

𝐹 (𝑥) = min [𝐹𝑁−1 (
𝑘

2𝑁
) , 𝐹𝑁−1 (

𝑘 + 1

2𝑁
)] (44)

with 𝐼𝑁 = [𝑘/2
𝑁
, (𝑘 + 1)/2

𝑁
].

In the case of the maxima, the statement of the result is
slightly more technical. We need the following proposition of
[17] using the same notations used previously.

Proposition 13. Let 0 < 𝛼 < 1 and let 𝐹 be the function
defined by (39). Let 𝑡 = 2

1−𝛼 and 𝑋(𝑝) the list of positions
where 𝐹(𝑥) + 𝑝𝑥 attains its maximum on [0, 1]. Let M(𝑝) be
the maximum on [0, 1] of 𝐹(𝑥) + 𝑝𝑥. Then

(i) 𝑋(−(𝑡𝑁 − 1)/(𝑡 − 1)) = {(1/3)(1/2
𝑁
), (2/3)(1/2

𝑁
)} for

𝑁 = 0, 1, . . ..
(ii) 𝑋(𝑝) = {(1/3)(1/2

𝑁
)} if −(𝑡𝑁+1

− 1)/(𝑡 − 1) < 𝑝 <

−(𝑡
𝑁
− 1)/(𝑡 − 1).

(iii) 𝑋(𝑝) = 1 − 𝑋(−𝑝) for all 𝑝 ̸= 0.
(iv) max𝑥∈𝐼

𝑁

𝐹(𝑥) = 𝐹𝑁−1(𝑘/2
𝑁
) + 2

−𝑁𝛼M(𝐶𝑁−1((2𝑘 +

1)/2
𝑁+1

)/𝑡
𝑁
).

The following proposition is a consequence of the previ-
ous one.

Proposition 14. Let 0 < 𝛼 < 1 and let 𝐹 be the function
defined by (39). Then

(i) 1/3 and 2/3 are the abscissas of the global maxima of
𝐹;

(ii) the abscissas of the local maxima of 𝐹 are the points of
S.

3.6. Approximation of Slopes of 𝐹𝑛. Suppose first we have
some information about the dyadic expansion of 𝑥. Then
we have the following lemma, which helps to control the
behavior of the slopes of the affine function 𝐹𝑛−1.

Lemma 15. (1) Let 𝑥 = 𝐾/2
𝑁 be a dyadic number. Then one

can find𝑁0 > 𝑁, 𝐴 > 0, and 𝐵 > 0 depending only on 𝑥 such
that if 𝑛 ≥ 𝑁0 then

∀𝑦 ∈ ]𝑥, 𝑥 + 2
−𝑛
[ 𝐴2

(1−𝛼)𝑛
≤ 𝐶𝑛−1 (𝑦) ≤ 𝐵2

(1−𝛼)𝑛
, (45)

∀𝑦 ∈ ]𝑥 − 2
−𝑛
, 𝑥[ − 𝐴2

(1−𝛼)𝑛
≥ 𝐶𝑛−1 (𝑦) ≥ −𝐵2

(1−𝛼)𝑛
.

(46)

(2) Let 𝑥 be the abscissa of a local maximum of 𝐹.Then one
can find 𝐽0 > 0, 𝐴 > 0, and 𝐵 > 0 such that for 𝑛 ≥ 𝐽0

𝑖𝑛−1 (𝑥) + 𝑖𝑛 (𝑥) = 1,

𝐶𝑛−1 (𝑥) 𝐶𝑛 (𝑥) < 0,

𝐴2
(1−𝛼)𝑛

≤ (−1)
𝑖
𝑛+1

(𝑥)
𝐶𝑛−1 (𝑥) ≤ 𝐵2

(1−𝛼)𝑛
.

(47)

(3) Let 𝑥 be a nondyadic point such that 𝑟(𝑥) > 1. Then
one can find two subsequences 𝐽𝑛 and 𝐽󸀠

𝑛
with 𝐽󸀠

𝑛
/𝐽𝑛 > 1 for

all 𝑛, such that 𝑖𝐽
𝑛

(𝑥) = 𝑖𝐽󸀠
𝑛

+1(𝑥) and 𝑖𝑗(𝑥) + 𝑖𝐽
𝑛

(𝑥) = 1 for
𝐽𝑛 < 𝑗 < 𝐽

󸀠

𝑛
+ 1. Furthermore one can find 𝐽0 > 0, 𝐴 > 0, and

𝐵 > 0 such that for 𝑛 > 𝐽0

𝐴2
(1−𝛼)𝐽

󸀠

𝑛 ≤ (−1)
𝑖
𝐽

𝑛

+1

(𝑥)
𝐶𝐽󸀠
𝑛

−1 (𝑥) ≤ 𝐵2
(1−𝛼)𝐽

󸀠

𝑛 . (48)

(4) Let 𝑥 be a nondyadic point such that 𝑠(𝑥) > 1. Then
one can find two subsequences 𝐽𝑛 and 𝐽󸀠

𝑛
with 𝐽󸀠

𝑛
/𝐽𝑛 > 1 for all

𝑛, such that 𝑖𝑗(𝑥) + 𝑖𝑗+1(𝑥) = 1 for 𝐽𝑛 < 𝑗 < 𝐽
󸀠

𝑛
and 𝑖𝐽󸀠

𝑛

(𝑥) =

𝑖𝐽󸀠
𝑛

+1(𝑥). Furthermore one can find 𝐽0 > 0, 𝐴 > 0, and 𝐵 > 0

such that for 𝑛 > 𝐽0

𝐴2
(1−𝛼)𝐽

󸀠

𝑛 ≤ (−1)
𝑖
𝐽

󸀠

𝑛

(𝑥)
𝐶𝐽󸀠
𝑛

−1 (𝑥) ≤ 𝐵2
(1−𝛼)𝐽

󸀠

𝑛 . (49)

Proof. Consider the following cases.

Case 1.The idea is very simple since it is a direct computation.
Indeed following (43) we have for 𝑦 ∈]𝑥, 𝑥 + 2−𝑛

[

𝐶𝑛−1 (𝑦) =

𝑛−1

∑

𝑗=0

(−1)
𝑖
𝑗+1

(𝑦)
2

−𝛼𝑗
2

𝑗

=

𝑁−2

∑

𝑗=0

(−1)
𝑖
𝑗+1

(𝑦)
2

𝑗(1−𝛼)
− 2

(𝑁−1)(1−𝛼)
+

𝑛−1

∑

𝑗=𝑁

2
𝑗(1−𝛼)

=

𝑁−2

∑

𝑗=0

(−1)
𝑖
𝑗+1

(𝑦)
2

𝑗(1−𝛼)
+ 2

𝑁(1−𝛼)
(1 − 2

𝛼−1
)

+ 2
(𝑁+1)(1−𝛼) 2

(𝑛−𝑁−1)(1−𝛼)
− 1

2(1−𝛼) − 1
.

(50)

The second equation with 𝑦 ∈]𝑥−2−𝑛
, 𝑥[ can be computed in

the same way, up to a change of signs.
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Thus one can find 𝑁0 > 𝑁, 𝐴 > 0, and 𝐵 > 0 such that
(46) holds for 𝑛 > 𝑁0.

Case 2. It is enough to remark that 𝑥 has the following binary
expansion:

𝑥 =

𝑘𝑁
0

2𝑁
0

+

∞

∑

𝑙=0

1

22𝑙+1+𝑁
0

. (51)

As a consequence of Proposition 14, the same kind of compu-
tation yields Case 2.

Case 3. Since 𝑟(𝑥) > 1, for any 𝛿 > 0 one can find two
subsequences 𝐽𝑛 and 𝐽

󸀠

𝑛
such that 𝑖𝐽

𝑛

+1(𝑥) = ⋅ ⋅ ⋅ = 𝑖𝐽󸀠
𝑛

−1(𝑥)

and |𝑥 − 𝐾𝐽
𝑛

2
−𝐽
𝑛 | ≤ 2

−𝐽
󸀠

𝑛 with 𝐽󸀠

𝑛
= [(𝑟(𝑥) − 𝛿)𝐽𝑛].

Suppose first eventually up to a small change of definition
of 𝐽󸀠

𝑛
that 𝑖𝐽

𝑛

(𝑥) = 1 = 𝑖𝐽󸀠
𝑛

+1(𝑥) and 𝑖𝐽
𝑛

+1(𝑥) = ⋅ ⋅ ⋅ = 𝑖𝐽󸀠
𝑛

−1(𝑥) =

𝑖𝐽󸀠
𝑛

(𝑥) = 0.
Then with the same kind of computation as in Case 1 one

gets

𝐴2
(1−𝛼)𝐽

󸀠

𝑛 ≤ 𝐶𝐽󸀠
𝑛

−1 (𝑥) ≤ 𝐵2
(1−𝛼)𝐽

󸀠

𝑛 . (52)

In the other case 𝑖𝐽
𝑛

+1(𝑥) = ⋅ ⋅ ⋅ = 𝑖𝐽󸀠
𝑛

−1(𝑥) = 𝑖𝐽󸀠
𝑛

(𝑥) = 1, the
sign of the slope will be changed.

Case 4. This follows exactly the same ideas than previously.
Since 𝑠(𝑥) > 1 for any 𝛿 > 0 one can find two subsequences
𝐽𝑛 and 𝐽

󸀠

𝑛
such that for all 𝐽𝑛 < 𝑗 < 𝐽

󸀠

𝑛
𝑖𝑗(𝑥) + 𝑖𝑗+1(𝑥) = 1 and

𝑖𝐽
𝑛

(𝑥) = 𝑖𝐽
𝑛

−1(𝑥), 𝑖𝐽󸀠
𝑛

(𝑥) = 𝑖𝐽󸀠
𝑛

+1(𝑥). Then with the same kind of
computation as in Case 1 one gets

𝐴2
(1−𝛼)𝐽

󸀠

𝑛 ≤ (−1)
𝑖
𝐽

󸀠

𝑛

(𝑥)
𝐶𝐽󸀠
𝑛

−1 (𝑥) ≤ 𝐵2
(1−𝛼)𝐽

󸀠

𝑛 . (53)

Hence Lemma 15 holds.
If we do not have any further information on 𝑥, the

following lemma will be useful.

Lemma 16. Let 𝑥 ∈ [0, 1] be a nondyadic number.

(1) Then there exists 𝛿 > 0 and 𝛿󸀠
= 1/(2

1−𝛼
− 1) such that

for all 𝑛 ∈ N one can find 𝐽𝑛 ≥ 𝑛 such that

𝛿
󸀠
2

𝐽
𝑛

(1−𝛼)
>
󵄨󵄨󵄨󵄨󵄨
𝐶𝐽
𝑛

−1 (𝑥)
󵄨󵄨󵄨󵄨󵄨
> 𝛿2

𝐽
𝑛

(1−𝛼)
. (54)

(2) If 𝑥 ∉ S then there exists 𝛿 > 0 such that for all 𝑛 ≥ 0

there exists 𝐽𝑛 ≥ 𝑛 such that (54) holds and

(i) either [𝐶𝐽
𝑛

−1(𝑥) > 0 and 𝑖𝐽
𝑛

+1(𝑥) = 0],
(ii) or [𝐶𝐽

𝑛

−1(𝑥) < 0 and 𝑖𝐽
𝑛

+1(𝑥) = 1].

Proof. (1)The upper bound is a straightforward computation.
Suppose the contrary; that is, for all 𝛿 > 0 one can find

𝑁 ∈ N such that for all 𝑛 ≥ 𝑁

−𝛿2
(1−𝛼)𝑛

≤ 𝐶𝑛−1 (𝑥) ≤ 𝛿2
(1−𝛼)𝑛

. (55)

If we suppose without loss of generality that 𝑖𝑛+1(𝑥) = 0 then
at step 𝑛

−𝛿2
(1−𝛼)𝑛

≤ 𝐶𝑛−1 (𝑥) ≤ 𝛿2
(1−𝛼)𝑛

−𝛿2
(1−𝛼)𝑛

+ 2
(1−𝛼)𝑛

≤ 𝐶𝑛 (𝑥) ≤ 𝛿2
(1−𝛼)𝑛

+ 2
(1−𝛼)𝑛

−
𝛿

21−𝛼
+

1

21−𝛼
≤

𝐶𝑛 (𝑥)

2(1−𝛼)(𝑛+1)
≤

𝛿

21−𝛼
+

1

21−𝛼
.

(56)

It is enough to choose 𝛿 such that −(𝛿/21−𝛼
) + (1/2

1−𝛼
) > 𝛿 to

have a contradiction.
(2) Suppose the contrary; that is, there exists 𝑥 ∉ S and

that, for all 𝛽 > 0, there exists𝑁 ∈ N, such that for all 𝑛 ≥ 𝑁

(a) either |𝐶𝑛−1(𝑥)| ≤ 𝛽2
𝐽
𝑛

(1−𝛼),
(b) or [𝐶𝑛−1(𝑥) < 0 and 𝑖𝑛+1(𝑥) = 0],
(c) or [𝐶𝑛−1(𝑥) > 0 and 𝑖𝑛+1(𝑥) = 1].

Remark first that the points of S satisfy exactly (2b) and
(2c). Indeed for 𝑥 ∈ S and assuming that 𝑖𝑛

0

+1(𝑥) = 1, 𝑥 has
a binary expansion (51).

Thus following (43) the slope 𝐶𝑛−1(𝑥) satisfies

𝐶𝑛−1 (𝑥) =

𝑁
0

−1

∑

𝑗=0

(−1)
𝑖
𝑗+1

(𝑥)
2

(1−𝛼)𝑗
+

𝑛−1

∑

𝑗=𝑁
0

2
(1−𝛼)𝑗

(−1)
𝑖
𝑗+1

(𝑥)

=

𝑁
0

−1

∑

𝑗=0

(−1)
𝑖
𝑗+1

(𝑥)
2

(1−𝛼)𝑗

+ 2
𝑁
0

(1−𝛼)
(−2

(1−𝛼)
)

𝑛−𝑁
0

− 1

1 + 21−𝛼
.

(57)

Hence, for 𝑛 being large enough (2b) and (2c) are satisfied.
Our goal is thus to prove that if we choose 𝛽 being small

enough then only (2b) and (2c) can be satisfied, which will
lead to the fact that 𝑥 ∈ S and thus to a contradiction.

Let us start by the following special cases.
(i)We claim that if one can find 𝑘 being large enough such

that 𝐶𝑘−1(𝑥) = 0 then 𝑥 ∈ S, which is a contradiction.
Let us prove this claim.
We will need the following sequence: let for 𝑛 ∈ N⋆

𝑑𝑛 = 2
−(1−𝛼)

𝑛

∑

𝑗=0

(−1)
𝑗
2

−𝑗(1−𝛼)

=
2

−(1−𝛼)

1 + 2−(1−𝛼)
(1 − (−1)

𝑛+1
2

−(𝑛+1)(1−𝛼)
) .

(58)

We clearly have 𝑑𝑛 ≥ 𝑑1 > 0 for all 𝑛 ≥ 1.
Choose 𝛽 ≤ 𝑑1/2 and 𝑁 such that the hypotheses are

satisfied.
Suppose that 𝑘 ≥ 𝑁 + 1 is such that 𝐶𝑘−1(𝑥) = 0. Then

|𝐶𝑘(𝑥)| = 2
𝑘(1−𝛼)

= 2
−(1−𝛼)

2
(𝑘+1)(1−𝛼).

Remark that 𝛽 < 𝑑1 ≤ 2
−(1−𝛼) and thus |𝐶𝑘(𝑥)| >

𝛽2
(𝑘+1)(1−𝛼).
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Suppose without loss of generality that 𝐶𝑘(𝑥) > 0 (the
case 𝐶𝑘(𝑥) < 0 is symetrical and can be proved in exactly the
same way). Thus 𝑖𝑘+2(𝑥) = 1 and

𝐶𝑘+1 (𝑥) = − 2
(𝑘+1)(1−𝛼)

+ 2
𝑘(1−𝛼)

= − 2
(𝑘+2)(1−𝛼)

(2
−(1−𝛼)

− 2
−2(1−𝛼)

)

< − 𝛽2
(𝑘+2)(1−𝛼)

.

(59)

Let us prove by induction on 𝑛 that for all 𝑛 ∈ N⋆

󵄨󵄨󵄨󵄨𝐶𝑘+𝑛 (𝑥)
󵄨󵄨󵄨󵄨 = 𝑑𝑛2

(𝑘+𝑛+1)(1−𝛼)
, (−1)

𝑛
𝐶𝑘+𝑛 (𝑥) > 0. (P)

We just proved that (P) is true for 𝑛 = 1.
Suppose that for 𝑛 ∈ N⋆

(P) is true. Suppose without
loss of generality that 𝐶𝑘+𝑛(𝑥) > 0 (the case 𝐶𝑘+𝑛(𝑥) < 0 is
symetrical and can be proved in exactly the same way). Thus
𝑖𝑘+𝑛+2(𝑥) = 1 and

𝐶𝑘+𝑛+1 (𝑥) = 𝐶𝑘+𝑛 (𝑥) − 2
(𝑛+𝑘+1)(1−𝛼)

= 𝑑𝑛2
(𝑘+𝑛+1)(1−𝛼)

− 2
(𝑛+𝑘+1)(1−𝛼)

= − (−2
−(1−𝛼)

𝑑𝑛 + 2
−(1−𝛼)

) 2
(𝑘+𝑛+2)(1−𝛼)

.

(60)

Since 𝑑𝑛 satisfies exactly 𝑑𝑛+1 = −2
−(1−𝛼)

𝑑𝑛 + 2
−(1−𝛼), we have

the result and property (P) is satisfied at level 𝑛 + 1.
Thus for all 𝑛 ∈ N⋆

(P) is true. Recall that since 𝛽 < 𝑑1 ≤

𝑑𝑛 for all 𝑛 ∈ N⋆, this implies that for all 𝑛 ∈ N⋆
𝑖𝑘+𝑛+2(𝑥) +

𝑖𝑘+𝑛+3(𝑥) = 1, which is exactly the characterization of the
points inS and is in contradictionwith the hypothesis 𝑥 ∉ S.

In the following we will always keep the hypothesis 0 <

𝛽 ≤ 𝑑1/2 so that for 𝑛 large enoughwe always have𝐶𝑛(𝑥) ̸= 0.
(ii) We now consider the case where |𝐶𝑛−1(𝑥)| is close to

the value of 𝛽2𝑛(1−𝛼) and prove that this yields that 𝑥 ∈ S,
thus a contradiction.

Let 0 < 𝛽 ≤ 𝑑1/2 and 𝛽
󸀠
> 0 whose value will be precised

later on.
Suppose 𝑛 ≥ 𝑁 is such that𝛽󸀠

2
𝑛(1−𝛼)

> 𝐶𝑛−1(𝑥) > 𝛽2
𝑛(1−𝛼)

(the case𝐶𝑛−1(𝑥) < −𝛽2
𝑛(1−𝛼) can be done exactly in the same

way). Then 𝑖𝑛+1(𝑥) = 1 and 𝐶𝑛(𝑥) = 𝐶𝑛−1(𝑥) − 2
𝑛(1−𝛼); hence

𝛽2
𝑛(1−𝛼)

− 2
𝑛(1−𝛼)

≤ 𝐶𝑛 (𝑥) ≤ 𝛽
󸀠
2

𝑛(1−𝛼)
− 2

𝑛(1−𝛼)

(𝛽 − 1) 2
−(1−𝛼)

2
(𝑛+1)(1−𝛼)

≤ 𝐶𝑛 (𝑥)

≤ (𝛽
󸀠
− 1) 2

−(1−𝛼)
2

(𝑛+1)(1−𝛼)
.

(61)

Choose 𝛽󸀠 such that (𝛽󸀠
− 1)2

−(1−𝛼)
< −𝛽; hence 𝛽 < 𝛽

󸀠
<

(1−𝛽)/2
−(1−𝛼), which is possible since𝛽 ≤ 𝑑1/2 < 2

−(1−𝛼)
/(1+

2
−(1−𝛼)

).
This yields 𝑖𝑛+2(𝑥) = 0. Thus

𝐶𝑛+1 (𝑥) = 𝐶𝑛−1 (𝑥) + (−2
𝑛(1−𝛼)

+ 2
(𝑛+1)(1−𝛼)

)

> (2
−(1−𝛼)

− 2
−2(1−𝛼)

) 2
(𝑛+2)(1−𝛼)

> 𝛽2
(𝑛+2)(1−𝛼)

.

(62)

Let us prove by induction on 𝑘 that, for all 𝑘 ∈ N,

(−1)
𝑘+1

𝐶𝑛+𝑘 (𝑥) > 𝛽2
(𝑛+𝑘+1)(1−𝛼)

. (Q)

We just prove that the case 𝑘 = 0 is true.
Suppose one can find 𝑘 ∈ N such that (Q) is true for all

0 ≤ 𝑘
󸀠
≤ 𝑘.

Let us prove that it is true at 𝑘 + 1. Without loss of
generality suppose 𝐶𝑛+𝑘(𝑥) > 0; thus 𝑖𝑛+𝑘+2(𝑥) = 1.

We have

𝐶𝑛+𝑘+1 (𝑥) = 𝐶𝑛+𝑘−1 (𝑥) + 2
(𝑛+𝑘)(1−𝛼)

− 2
(𝑛+𝑘+1)(1−𝛼)

< − (2
−(1−𝛼)

− 2
−2(1−𝛼)

) 2
(𝑛+𝑘+2)(1−𝛼)

< − 𝛽2
(𝑛+𝑘+2)(1−𝛼)

.

(63)

This proves that (Q) is true at 𝑘 + 1.
Thus by induction (Q) is true for all 𝑘 ∈ N. This means

that for all 𝑘 ∈ N 𝑖𝑛+𝑘+2(𝑥) + 𝑖𝑛+𝑘+3(𝑥) = 1, and thus 𝑥 ∈ S,
hence the contradiction.

(iii) We now study the case where |𝐶𝑛−1(𝑥)| ≤ 𝛽2
𝑛(1−𝛼)

and prove that if we choose 𝛽 being small enough then it will
lead to 𝑥 ∈ S.

Indeed let 𝛽 ≤ inf(𝑑1/2, 𝑑
󸀠

1
/2) with

𝑑
󸀠

1
=
2

−(1−𝛼)
− 2

−2(1−𝛼)

1 + 2−2(1−𝛼)
. (64)

And suppose 𝑛 ≥ 𝑁 such that |𝐶𝑛−1(𝑥)| ≤ 𝛽2
𝑛(1−𝛼). Suppose

𝑖𝑛+1(𝑥) = 0 without lost of generality. Thus we have

𝐶𝑛 (𝑥) = 𝐶𝑛−1 (𝑥) + 2
𝑛(1−𝛼)

,

(−𝛽 + 1) 2
−(1−𝛼)

2
(𝑛+1)(1−𝛼)

≤ 𝐶𝑛 (𝑥)

≤ (𝛽 + 1) 2
−(1−𝛼)

2
(𝑛+1)(1−𝛼)

.

(65)

Remark that with the choice of 𝛽 we made, we have on one
hand 𝛽 < (−𝛽 + 1)2

−(1−𝛼) and on the other hand 𝛽 < (𝛽 +

1)2
−(1−𝛼)

< (1−𝛽)/2
−(1−𝛼). Thus following the previous result

using 𝛽󸀠
= (𝛽 + 1)2

−(1−𝛼), 𝑥 ∈ S and we have a contradiction.
(iv) We consider the case where 𝐶𝑛−1(𝑥) > 0 and 𝐶𝑛(𝑥) <

0 for 𝑛 being large enough under the previous range of values
of 𝛽.

Let 𝛽 ≤ inf(𝑑1/2, 𝑑
󸀠

1
/2) (recall that 𝑑1 is defined by (58)

and 𝑑󸀠

1
by (64)).

And suppose that for 𝑛 ≥ 𝑁 we have 𝐶𝑛−1(𝑥) > 0 and
𝐶𝑛(𝑥) < 0.

Following the previous case we have 𝐶𝑛−1(𝑥) > 𝛽2
𝑛(1−𝛼)

and 𝐶𝑛(𝑥) < −𝛽2
(𝑛+1)(1−𝛼). Thus 𝑖𝑛+1(𝑥) = 1 and 𝑖𝑛+2(𝑥) = 0.

Then

𝐶𝑛+1 (𝑥) = 𝐶𝑛−1 (𝑥) − 2
𝑛(1−𝛼)

+ 2
(𝑛+1)(1−𝛼)

> 𝛽2
(𝑛+2)(1−𝛼)

(66)

since by definition of 𝛽 and 𝑑1 we have 2−(1−𝛼)
− 2

−2(1−𝛼)
≥

𝑑1 > 𝛽. Thus 𝑖𝑛+3(𝑥) = 1.
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We have 𝐶𝑛+2(𝑥) = 𝐶𝑛(𝑥) + 2
(𝑛+1)(1−𝛼)

− 2
(𝑛+2)(1−𝛼)

<

−𝛽2
(𝑛+3)(1−𝛼).
A proof by induction exactly in the same way as previ-

ously proved yields that for 𝑘 ≥ 0we have 𝐶𝑛+2𝑘+1(𝑥) > 0 and
𝐶𝑛+2𝑘(𝑥) < 0; thus 𝑖𝑛+2𝑘+2(𝑥) + 𝑖𝑛+2𝑘+3(𝑥) = 1 for all 𝑘 ∈ N

and we have 𝑥 ∈ S, hence a contradiction.
We will now go for the main proof, taking into account

what we just proved.
In the following we will consider 𝛿 > 0 and 𝐽𝑛 defined as

in Point 1, 𝛽 = inf(𝑑1/2, 𝛿/2, 𝑑
󸀠

1
/2), and 𝑛 such that 𝐽𝑛 ≥ 𝑁.

Thus for all 𝑛 ∈ N |𝐶𝐽
𝑛

−1(𝑥)|/2
𝐽
𝑛

(1−𝛼)
> 𝛿 > 𝛽.

Suppose 𝐶𝐽
𝑛

−1(𝑥) > 0. This means that 𝐶𝐽
𝑛

(𝑥) =

𝐶𝐽
𝑛

−1(𝑥) − 2
𝐽
𝑛

(1−𝛼)
< 𝐶𝐽

𝑛−1

(𝑥). The only case we want to
consider is 𝐶𝐽

𝑛

(𝑥) > 𝛽2
(𝐽
𝑛

+1)(1−𝛼) since for all the other cases
the previous points yield 𝑥 ∈ S.

Thus 𝑖𝐽
𝑛

+2(𝑥) = 1. It is clear that one can find 𝑘 ∈ N

such that for all 0 ≤ 𝑘
󸀠
≤ 𝑘 𝐶𝐽

𝑛

+𝑘󸀠(𝑥) > 𝛽2
(𝐽
𝑛

+𝑘
󸀠

+1)(1−𝛼) and
𝑖𝐽
𝑛

+𝑘󸀠+2(𝑥) = 1 and 𝐶𝐽
𝑛

+𝑘+1(𝑥) < 𝛽2
(𝐽
𝑛

+𝑘+2)(1−𝛼).
Hence either |𝐶𝐽

𝑛

+𝑘+1(𝑥)| ≤ 𝛽2
(𝐽
𝑛

+𝑘+2)(1−𝛼) and 𝑥 ∈

S or 𝐶𝐽
𝑛

+𝑘+1(𝑥) < −𝛽2
(𝐽
𝑛

+𝑘+2)(1−𝛼) and since 𝐶𝐽
𝑛

+𝑘(𝑥) >

𝛽2
(𝐽
𝑛

+𝑘+1)(1−𝛼) we get the desired result.
In all cases we proved that Points (2a), (2b), and (2c) lead

to 𝑥 ∈ S, which is a contradiction. Hence Lemma 16 holds.

4. Computation of Weak and
Strong Accessible Exponents

4.1. Case of Dyadic Points. We will prove the following
proposition.

Proposition 17. If 𝑥 is a dyadic point, and𝑋 = (𝑥, 𝐹(𝑥)) then

𝐸
𝑤

Ω𝑐
(𝑋) =

1

𝛼
− 1, 𝐸

𝑤

Ω
(𝑋) = 0,

𝐸
𝑠

Ω𝑐
(𝑋) =

1

𝛼
− 1, 𝐸

𝑠

Ω
(𝑋) = 0,

𝑢
𝑝

𝑓
(𝑋) =

1

𝑝
(
1

𝛼
− 1) .

(67)

If𝑥 is a dyadic point, that is,𝑥 = 2
−𝑁
𝐾with𝐾 ∈ 2N+1, we

consider its binary expansion in which 𝑖𝑁(𝑥) = 1 and 𝑖𝑛(𝑥) =
0 for 𝑛 > 𝑁. For 𝑛 > 𝑁 the number 𝑥 − 2−𝑛 is dyadic. Since
2

−𝑛
= ∑

∞

𝑗=𝑛+1
2

−𝑗 then 𝑥 − 2
−𝑛

= (∑
𝑁−1

𝑗=1
𝑖𝑗2

−𝑗
) + 2

−(𝑁+1)
+

2
−(𝑁+2)

+ ⋅ ⋅ ⋅ + 2
−𝑛. On the other hand 𝑥 + 2−𝑛 has the simple

expansion (∑𝑁

𝑗=1
(𝑖𝑗(𝑥)/2

𝑗
)) + (1/2

𝑛
).

Remark that 𝐹𝑁−1(𝑥) = 𝐹𝑛−1(𝑥) = 𝐹(𝑥) for 𝑛 > 𝑁 and
𝐹𝑛−1(𝑥 + 2

−𝑛
) = 𝐹(𝑥 + 2

−𝑛
).

Any point 𝑦 in the interval ]𝑥, 𝑥 + 2
−𝑛
[ satisfies the

expansion 𝑖𝑁(𝑦) = 𝑖𝑁+1(𝑦) = ⋅ ⋅ ⋅ = 𝑖𝑛−1(𝑦) = 𝑖𝑛(𝑦) = 0.
It follows that
𝐹 (𝑥 + 2

−𝑛
) − 𝐹 (𝑥) = 𝐹𝑛−1 (𝑥 + 2

−𝑛
) − 𝐹𝑛−1 (𝑥)

= 2
−𝑛
𝐶𝑛−1 (𝑦)

(68)

with 𝑦 any of the points of the interval ]𝑥, 𝑥 + 2−𝑛
[.

1

1 1.2

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2
0

0−0.2

x =
1

22

Figure 1: Overview of the function.

Following Lemma 15 and Case 1 there exist two constants
𝐴 > 0 and𝐵 > 0 and 𝐽0 ≥ 𝑁 (which depend only on the given
dyadic point 𝑥) such that

∀𝑛 ≥ 𝐽0 𝐴2
−𝛼𝑛

≤ 𝐹 (𝑥 + 2
−𝑛
) − 𝐹 (𝑥) ≤ 𝐵2

−𝛼𝑛
. (69)

Thus we have 𝐹(𝑥 + 2−𝑛
) − 𝐹(𝑥) ≥ 𝐴.2

−𝛼𝑛.
On the other hand, following remarks of Section 3.2, for

any 𝑦 ∈]𝑥 − 2−𝑛
, 𝑥[ we have 𝑖𝑁(𝑦) = 1 = ⋅ ⋅ ⋅ = 𝑖𝑛(𝑦). Thus

𝐹 (𝑥 − 2
−𝑛
) − 𝐹 (𝑥) = 𝐹𝑛−1 (𝑥 − 2

−𝑛
) − 𝐹𝑛−1 (𝑥)

= − 𝐶𝑛−1 (𝑦) 2
−𝑛
.

(70)

Whence, following Lemma 15 and Case 1 we have for 𝑛 ≥
𝐽0

∀𝑛 ≥ 𝐽0 𝐴2
−𝛼𝑛

≤ −𝐹 (𝑥 − 2
−𝑛
) + 𝐹 (𝑥) ≤ 𝐵2

−𝛼𝑛
. (71)

Let 𝜌 > 0 and 𝐽 ≥ 𝐽0 such that 2−𝐽−1
≤ 𝜌 ≤ 2

−𝐽.
Since𝐹 ≥ 𝐹𝐽, thenΩ𝑗 ⊂ Ω, whereΩ𝐽 is the domain below

the graph of 𝐹𝐽. So

meas (𝐵 (𝑋, 𝜌) ∩ Ω𝑐
) ≤ meas (𝐵 (𝑋, 𝜌) ∩ Ω𝑐

𝐽
) . (72)

But meas(𝐵(𝑋, 𝜌) ∩ Ω
𝑐

𝐽
) is smaller than the area ℎ𝑏/2 of

a triangle with altitude ℎ issued from𝑋 and a corresponding
hypotenuse 𝑏 (see Figures 1 and 2).

Clearly, we can take ℎ ∼ 2
−𝐽. On the other hand, if we

write 2−(𝑗+1)
< 𝑏/2 < 2

−𝑗 with 𝑗 ≥ 𝐽, then, using properties
(69) and (71) (inwhichwe replace 𝑛𝛼 by 𝐽), we get 𝑏/2 ∼ 2

−𝐽/𝛼.
Since 𝛼 < 1, (69) and (71) are valid with 𝑛 = 𝐽/𝛼 ≥ 𝐽0.

Whence

meas (𝐵 (𝑋, 𝜌) ∩ Ω𝑐
) ≤ 𝐶𝜌

1+(1/𝛼)
. (73)

We conclude that

𝐸
𝑤

Ω𝑐
(𝑋) ≥

1

𝛼
− 1. (74)



10 Abstract and Applied Analysis

0.75

0.7

0.65

0.6

0.55

0.5

0.45

0.15 0.2 0.25 0.3 0.35 0.4

x =
1

22

b ∼ 2
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Figure 2: Zoom at the point 𝑥 = 1/2
2.

Since 𝐸𝑤

Ω𝑐
(𝑋) ≤ 𝐸

𝑠

Ω𝑐
(𝑋) ≤ (1/𝛼) − 1 this yields

𝐸
𝑠

Ω𝑐
(𝑋) =

1

𝛼
− 1. (75)

Since 𝑓 = 1Ω then

𝑢
𝑝

𝑓
(𝑋) ≥

1

𝑝
(
1

𝛼
− 1) . (76)

Since meas(𝐵(𝑋, 𝑟)) = meas(𝐵(𝑋, 𝑟)⋂Ω) +

meas(𝐵(𝑋, 𝑟)⋂Ω
𝑐
) we get 𝐸𝑠

Ω
(𝑋) = 0; hence 𝐸𝑤

Ω
(𝑋) = 0.

Whence Proposition 17 holds.

4.2. Case of a Local Maximum of 𝐹. We will prove the
following proposition.

Proposition 18. Let𝑋 = (𝑥, 𝐹(𝑥)).
If 𝑥 is a local maximum,

𝐸
𝑤

Ω
(𝑋) =

1

𝛼
− 1, 𝐸

𝑤

Ω𝑐
(𝑋) = 0, (77)

𝐸
𝑠

Ω
(𝑋) =

1

𝛼
− 1, 𝐸

𝑠

Ω𝑐
(𝑋) = 0, (78)

𝑢
𝑝

𝑓
(𝑋) =

1

𝑝
(
1

𝛼
− 1) . (79)

Let 𝑥 be a local maximum of 𝐹. There is an interval 𝐼
containing 𝑥 such that for all 𝑥󸀠

∈ 𝐼, 𝐹(𝑥) ≥ 𝐹(𝑥
󸀠
). Let 𝑁

be such that the dyadic interval [𝑘𝑁/2
𝑁
, (𝑘𝑁 + 1)/2

𝑁
] which

contains 𝑥 is contained in 𝐼.
Following Proposition 14, we know that 𝑥 has the binary

expansion (51); that is, 𝑥 = (𝑘𝑁
0

/2
𝑁
0) + ∑

∞

𝑙=0
(1/2

2𝑙+1+𝑁
0).

As a consequence of Lemma 15, and following Case (2),
one can find 𝐽0 and two constants 𝐴 and 𝐵 such that for
𝑛 ≥ 𝐽0 (47) holds. Remark that it implies clearly that for
𝑛 ≥ 𝐽0 𝑖𝑛(𝑥) = 1 if 𝑛 is odd, and 𝑖𝑛(𝑥) = 0 if 𝑛 is even.

Our goal now is to evaluate 𝐹(𝑥) − 𝐹(𝑥
󸀠
) with 𝑥󸀠 in the

interval [𝑘𝑛/2
𝑛
, (𝑘𝑛 + 1)/2

𝑛
] ⊂ [𝑘𝑁/2

𝑁
, 𝑘𝑁+1/2

𝑁
] and 𝑥󸀠

̸= 𝑥.
If 𝑥󸀠 is a dyadic then we take its expansion of type 𝑖𝑗(𝑥

󸀠
) = 0

for 𝑗 to be large enough.
Let 𝑚 ≥ 𝑛 be the smallest integer such that 𝑖𝑚(𝑥) =

𝑖𝑚(𝑥
󸀠
) and 𝑖𝑚+1(𝑥) ̸= 𝑖𝑚+1(𝑥

󸀠
). To fix the ideas, suppose that

𝑖𝑚+1(𝑥) = 1 and 𝑖𝑚+1(𝑥
󸀠
) = 0. Thus

1

32𝑚−1
≥ 𝑥 − 𝑥

󸀠
≥

1

2𝑚+1
+

1

2𝑚+3
−

∞

∑

𝑗=𝑚+2

1

2𝑗
≥

1

2𝑚+3
. (80)

Since 𝑖𝑚(𝑥) = 0 we have 𝐶𝑚−1(𝑥) > 0.
Thus

𝐹 (𝑥) − 𝐹 (𝑥
󸀠
) = 𝐶𝑚−1 (𝑥) (𝑥 − 𝑥

󸀠
)

+

+∞

∑

𝑘=𝑚

2
−𝑘𝛼

(Λ (𝜏
𝑘
𝑥) − Λ (𝜏

𝑘
𝑥

󸀠
)) .

(81)

We have

𝐴2
𝑚(1−𝛼)

2
−𝑚−3

= 𝐶12
−𝑚𝛼

≤ 𝐶𝑚−1 (𝑥) (𝑥 − 𝑥
󸀠
)

≤
𝐵2

𝑚(1−𝛼)
2

−𝑚−1

3

= 𝐶22
−𝑚𝛼

.

(82)

Since for 𝑘 ≥ 𝑚 − 1 we have Λ(𝜏𝑘
𝑥) = 1/3, this yields

0 ≤

+∞

∑

𝑘=𝑚

2
−𝑘𝛼

(Λ (𝜏
𝑘
𝑥) − Λ (𝜏

𝑘
𝑥

󸀠
)) ≤ 𝐶32

−𝑚𝛼
. (83)

Thus we have

𝐶12
−𝑚𝛼

≤ 𝐹 (𝑥) − 𝐹 (𝑥
󸀠
) ≤ (𝐶3 + 𝐶2) 2

−𝑚𝛼
. (84)

Let us compute the weak and strong exponents at 𝑥.
Let 𝜌 and 𝐽 ≥ 𝐽0 such that 2

−𝐽−1
≤ 𝜌 ≤ 2

−𝐽.Thus obviously

meas (𝐵 (𝑋, 𝜌)⋂Ω) ≤ meas (𝐵 (𝑋, 2−𝑗
)⋂Ω) . (85)

Remark first that if (𝑥󸀠
, 𝑦

󸀠
) ∈ 𝐵(𝑋, 2

−𝐽
)⋂Ω then |𝑥 −

𝑥
󸀠
| < 2

−𝐽, |𝑦󸀠
− 𝐹(𝑥)| < 2

−𝐽, and 𝑦
󸀠
≤ 𝐹(𝑥

󸀠
). Since 𝑥 is

a local maximum on the interval [𝑘𝐽/2
𝐽
, (𝑘𝐽 + 1)/2

𝐽
], then

𝑦
󸀠
≤ 𝐹(𝑥

󸀠
) ≤ 𝐹(𝑥) and so 0 ≤ 𝐹(𝑥) − 𝐹(𝑥

󸀠
) < 2

−𝐽. Hence
(𝑥

󸀠
, 𝐹(𝑥

󸀠
)) ∈ 𝐵(𝑋, 2

−𝐽
)⋂Ω.

Furthermore since 𝐹(𝑥󸀠
) satisfies 0 ≤ 𝐹(𝑥) − 𝐹(𝑥

󸀠
) ≤ 2

−𝐽,
and following (84) 𝑥󸀠 belongs to [𝑥−𝐶2−𝐽/𝛼

, 𝑥+𝐶2
−𝐽/𝛼

]with
𝐶 depending only on 𝐶3 + 𝐶2.

Thus 𝐵(𝑋, 2−𝐽
)⋂Ω is contained in a rectangle of length

2
−𝐽 and width 𝐶2−𝐽/𝛼.

This yields

meas (𝐵 (𝑋, 𝜌)⋂Ω) ≤ 𝐶2
−𝐽(1+(1/𝛼))

≤ 𝐶
󸀠
𝜌

1+(1/𝛼)
. (86)
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We can conclude that

𝐸
𝑤

Ω
(𝑋) ≥

1

𝛼
− 1. (87)

Since 𝐸𝑤

Ω
(𝑋) ≤ 𝐸

𝑠

Ω
(𝑋) ≤ (1/𝛼) − 1 this yields

𝐸
𝑤

Ω
(𝑋) = 𝐸

𝑠

Ω
(𝑋) =

1

𝛼
− 1. (88)

Since meas(𝐵(𝑋, 𝜌)) = meas(𝐵(𝑋, 𝜌)⋂Ω) + meas(𝐵(𝑋,
𝜌)⋂Ω

𝑐
) we get

𝐸
𝑠

Ω𝑐
(𝑋) = 𝐸

𝑤

Ω𝑐
(𝑋) = 0. (89)

And finally

𝑢
𝑝

𝑓
(𝑋) =

1

𝑝
(
1

𝛼
− 1) . (90)

4.3. Case of 𝑥 ∉ D⋃S. If 𝑥 ∉ D⋃S then we will compute
separately the weak and strong exponents. We will first prove
that for any point 𝑥 in [0, 1] which is not a maximum or a
minimum of 𝐹 the two weak exponents vanish.

Proposition 19. Let 𝑥 ∉ D⋃S and 𝑋 = (𝑥, 𝑓(𝑥)). Then
𝐸

𝑤

Ω
(𝑋) = 𝐸

𝑤

Ω𝑐
(𝑋) = 0.

Proof. We will prove first that we always have 𝐸𝑤

Ω𝑐
(𝑋) = 0

but will separate the proofs in cases 𝑟(𝑥) > 1 and 𝑟(𝑥) = 1.
Then we will prove that 𝐸𝑤

Ω
(𝑋) = 0 and prove it separately for

𝑠(𝑥) > 1 and 𝑠(𝑥) = 1.

(i) Case 𝑟(𝑥) > 1. We follow the notations of Case 3 of
Lemma 15; that is, one can find two subsequences 𝐽𝑛 and 𝐽󸀠

𝑛

such that 𝐽󸀠

𝑛
/𝐽𝑛 > 1 and 𝑖𝐽

𝑛

(𝑥) = 𝑖𝐽󸀠
𝑛

+1(𝑥), 𝑖𝑗(𝑥) + 𝑖𝐽
𝑛

(𝑥) = 1

for 𝐽𝑛 < 𝑗 < 𝐽
󸀠

𝑛
+ 1. Suppose without lose of generality that

𝑖𝐽
𝑛

+1(𝑥) = 0. Let 𝑥𝑛 = 𝐾𝐽
𝑛

/2
𝐽
𝑛 = ∑

𝐽
𝑛

𝑗=1
𝑖𝑗(𝑥)/2

𝑗. Thus we have

2
−𝐽
󸀠

𝑛

−1
≤ 𝑥 − 𝑥𝑛 ≤ 2

−𝐽
󸀠

𝑛 . (91)

Since Case 3 of Lemma 15 holds, we get

𝐴2
(1−𝛼)𝐽

󸀠

𝑛2
−𝐽
󸀠

𝑛

−1
≤ 𝐹𝐽󸀠

𝑛

−1 (𝑥) − 𝐹𝐽󸀠
𝑛

−1 (𝑥𝑛) ≤ 𝐵2
(1−𝛼)𝐽

󸀠

𝑛2
−𝐽
󸀠

𝑛 ,

𝐴
󸀠
2

−𝛼𝐽
󸀠

𝑛 ≤ 𝐹𝐽󸀠
𝑛

−1 (𝑥) − 𝐹𝐽󸀠
𝑛

−1 (𝑥𝑛) ≤ 𝐵
󸀠
2

−𝛼𝐽
󸀠

𝑛 .

(92)

We have 𝐹(𝑥) = 𝐹𝐽󸀠
𝑛

−1(𝑥) + ∑
+∞

𝑘=𝐽󸀠
𝑛

2
−𝑘𝛼

Λ(𝜏
𝑘
𝑥) and 𝐹𝐽󸀠

𝑛

−1(𝑥𝑛) =

𝐹(𝑥𝑛). Clearly ∑
+∞

𝑘=𝐽󸀠
𝑛

2
−𝑘𝛼

Λ(𝜏
𝑘
𝑥) ≥ 0. Thus following (92) we

have

𝐴2
(1−𝛼)𝐽

󸀠

𝑛2
−𝐽
󸀠

𝑛

−1
≤ 𝐹 (𝑥) − 𝐹 (𝑥𝑛)

≤ 𝐵2
(1−𝛼)𝐽

󸀠

𝑛2
−𝐽
󸀠

𝑛 + 2
−𝐽
󸀠

𝑛

𝛼
+∞

∑

𝑘=0

2
−𝑘𝛼

Λ(𝜏
𝑘+𝐽
󸀠

𝑛𝑥)

𝐴
󸀠
2

−𝛼𝐽
󸀠

𝑛 ≤ 𝐹 (𝑥) − 𝐹 (𝑥𝑛) ≤ 𝐵
󸀠
2

−𝐽
󸀠

𝑛 + 2
−𝛼𝐽
󸀠

𝑛𝐹 (𝜏
𝐽
󸀠

𝑛𝑥)

𝐴
󸀠
2

−𝛼𝐽
󸀠

𝑛 ≤ 𝐹 (𝑥) − 𝐹 (𝑥𝑛) ≤ 𝐵
󸀠
2

−𝐽
󸀠

𝑛 + 2
−𝛼𝐽
󸀠

𝑛𝐹(𝜏
𝐽
󸀠

𝑛

1

3
)

𝐴
󸀠
2

−𝛼𝐽
󸀠

𝑛 ≤ 𝐹 (𝑥) − 𝐹 (𝑥𝑛) ≤ 𝐶2
−𝛼𝐽
󸀠

𝑛

(93)

because the global maxima of 𝐹 are reached at points 1/3 and
2/3.

We can now apply the mean value theorem and get that
for each 𝑛 ≥ 𝐽0 we can find 𝑦𝑛 ∈]𝑥 − 2

−𝐽
󸀠

𝑛 , 𝑥 + 2
−𝐽
󸀠

𝑛[ such that
𝐹(𝑥) − 𝐹(𝑦𝑛) = 𝐴

󸀠
⋅ 2

−𝛼𝑛
/2.

Thus using Lemma 10 we can conclude that 𝐸𝑤

Ω𝑐
(𝑋) = 0.

(ii) Case 𝑟(𝑥) = 1. Let 𝐽𝑛 be defined just as in Lemma 16, that
is, that one can find 𝛿 > 0, 𝛿󸀠

> 0, and 𝐽𝑛 such that (54) is
satisfied.

Following the definition of 𝑟(𝑥), for all 𝛾 > 0, there exists
𝑛0 such that for all 𝑗 ≥ 𝐽𝑛

0

|𝐾𝑗2
−𝑗
− 𝑥| > 2

−𝑗(1+𝛾). Thus in
particular for all 𝑛 ≥ 𝑛0 we have

2
−𝐽
𝑛 >

󵄨󵄨󵄨󵄨󵄨
𝐾𝐽
𝑛

2
−𝐽
𝑛 − 𝑥

󵄨󵄨󵄨󵄨󵄨
> 2

−𝐽
𝑛

(1+𝛾)
. (94)

Suppose on one hand𝐶𝐽
𝑛

−1(𝑥) ≥ 0.Then choose 𝑥𝑛 = 𝐾𝐽
𝑛

2
−𝐽
𝑛

if 𝑥 ∈]𝐾𝐽
𝑛

2
−𝐽
𝑛 , 2

−𝐽
𝑛 + 𝐾𝐽

𝑛

2
−𝐽
𝑛[ (resp. 𝑥𝑛 = 𝐾𝐽

𝑛

2
−𝐽
𝑛 − 2

−𝐽
𝑛 if

𝑥 ∈]𝐾𝐽
𝑛

2
−𝐽
𝑛 − 2

−𝐽
𝑛 , 𝐾𝐽

𝑛

2
−𝐽
𝑛[).

We have obviously
𝐹𝐽
𝑛

−1 (𝑥) − 𝐹𝐽
𝑛

−1 (𝑥𝑛) = 𝐶𝐽
𝑛

−1 (𝑥) (𝑥 − 𝑥𝑛) ≥ 0. (95)

If we suppose on the other hand 𝐶𝐽
𝑛

−1(𝑥) ≤ 0, then we can
choose in the same way a dyadic number 𝑥𝑛 = 𝑘/2

𝐽
𝑛 such

that
𝐹𝐽
𝑛

−1 (𝑥) − 𝐹𝐽
𝑛

−1 (𝑥𝑛) = 𝐶𝐽
𝑛

−1 (𝑥) (𝑥 − 𝑥𝑛) ≥ 0. (96)

Together with (54) this yields in any of these cases that

𝛿
󸀠
2

−𝛼𝐽
𝑛 ≥

󵄨󵄨󵄨󵄨󵄨
𝐹𝐽
𝑛

−1 (𝑥) − 𝐹𝐽
𝑛

−1 (𝑥𝑛)
󵄨󵄨󵄨󵄨󵄨
≥ 𝛿2

−𝐽
𝑛

(1+𝛾)
2

(1−𝛼)𝐽
𝑛 ,

𝛿
󸀠
2

−𝛼𝐽
𝑛 ≥ 𝐹𝐽

𝑛

−1 (𝑥) − 𝐹𝐽
𝑛

−1 (𝑥𝑛) ≥ 𝛿2
−𝐽
𝑛

(1+𝛾)
2

(1−𝛼)𝐽
𝑛 .

(97)

Since ∑+∞

𝑘=𝐽󸀠
𝑛

2
−𝑘𝛼

Λ(𝜏
𝑘
𝑥) ≥ 0 and 𝐹𝐽

𝑛

−1(𝑥𝑛) = 𝐹(𝑥𝑛) we get

𝛿
󸀠
2

−𝛼𝐽
𝑛 + 2

−𝛼𝐽
𝑛𝐹(

1

3
) ≥ 𝐹 (𝑥) − 𝐹 (𝑥𝑛)

≥ 𝐹𝐽
𝑛

−1 (𝑥) − 𝐹𝐽
𝑛

−1 (𝑥𝑛)

≥ 𝛿2
−𝐽
𝑛

(1+𝛾)
2

(1−𝛼)𝐽
𝑛 ,

𝐶2
−𝛼𝐽
𝑛 ≥ 𝐹 (𝑥) − 𝐹 (𝑥𝑛) ≥ 𝛿2

−𝐽
𝑛

(𝛾+𝛼)
.

(98)
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To get 𝐸𝑤

Ω𝑐
(𝑋) we only have to adapt the proof of Lemma 10

to the case 𝑟𝑛 = 2
−𝐽
𝑛 . Suppose without loss of generality that

𝑥 < 𝑥𝑛 (the other case can be treated in a similar way) and let
𝑟𝑛 = 2

−𝐽
𝑛 for 𝑛 ≥ 𝑛0.

Indeed, since for 𝛾 being small enough and for 𝑛 being
large enough 2−𝐽

𝑛 is negligible in front of 2−(𝛼+𝛾)𝐽
𝑛 (what we

denote 2−(𝛼+𝛾)𝐽
𝑛 ≫ 2

−𝐽
𝑛), following the mean value theorem

we can find 𝑏𝑛 ∈]min(𝑥, 𝑥𝑛),max(𝑥, 𝑥𝑛)[ such that 𝑏𝑛 =

sup{𝑢𝑛 ∈]𝑥, 𝑥𝑛[, 𝑓(𝑢𝑛) = 𝑓(𝑥) − 𝑟𝑛}. For all 𝑡 ∈]𝑏𝑛, 𝑥𝑛[, we
have 𝑓(𝑡) < 𝑓(𝑥) − 𝑟𝑛. Thus following the same method as in
Lemma 10 we can find 𝐶 > 0 such that

𝐶
󸀠
𝑟

2

𝑛
≥ meas (𝐵 (𝑋, 𝑟𝑛)⋂Ω

𝑐
) ≥ 𝐶𝑟

(1+(𝛾/𝛼))+1

𝑛
. (99)

This yields

2 ≤ lim inf
𝑛 → +∞

log (meas (𝐵 (𝑋, 𝑟𝑛)⋂Ω
𝑐
))

log (𝑟𝑛)

≤ lim sup
𝑛 → +∞

log (meas (𝐵 (𝑋, 𝑟𝑛)⋂Ω
𝑐
))

log (𝑟𝑛)

≤ 2 +
𝛾

𝛼
.

(100)

Since 𝛾 > 0 is arbitrary and 𝑟𝑛 is independent of 𝛾, we have
the result and 𝐸𝑤

Ω𝑐
(𝑋) = 0.

(iii) Case 𝑠(𝑥) > 1. Following Case 4, then one can find two
subsequences 𝐽𝑛 and 𝐽

󸀠

𝑛
with 𝐽

󸀠

𝑛
/𝐽𝑛 > 1 for all 𝑛, such that

𝑖𝑗(𝑥) + 𝑖𝑗+1(𝑥) = 1 for 𝐽𝑛 < 𝑗 < 𝐽
󸀠

𝑛
and 𝑖𝐽󸀠

𝑛

(𝑥) = 𝑖𝐽󸀠
𝑛

+1(𝑥).
Suppose without losing generality that 𝑖𝐽󸀠

𝑛

(𝑥) = 0.
Let 𝑋𝑛 such that 𝑋𝑛 = (𝑘𝐽

𝑛

/2
𝐽
𝑛) + (2/3(2

𝐽
𝑛)) =

∑
𝐽
𝑛

𝑗=1
(𝑖𝑗(𝑥)/2

𝑗
) + (2/3(2

𝐽
𝑛)). We have clearly

2
−𝐽
󸀠

𝑛

−1
≤ −𝑥 + 𝑋𝑛 ≤ 2

−𝐽
󸀠

𝑛 . (101)

Following the same sketch as in the proof with 𝑟(𝑥) > 1 we
can say that using Case 4 of Lemma 15

𝐴
󸀠
2

−𝛼𝐽
󸀠

𝑛 ≤ 𝐹𝐽󸀠
𝑛

−1 (𝑋𝑛) − 𝐹𝐽󸀠
𝑛

−1 (𝑥) ≤ 𝐵
󸀠
2

−𝛼𝐽
󸀠

𝑛 (102)

and since 2
−𝛼𝐽
󸀠

𝑛𝐹(𝜏
𝐽
󸀠

𝑛1/3) ≥ ∑
+∞

𝑘=𝐽󸀠
𝑛

2
−𝑘𝛼

Λ(𝜏
𝑘
𝑋𝑛) −

∑
+∞

𝑘=𝐽󸀠
𝑛

2
−𝑘𝛼

Λ(𝜏
𝑘
𝑥) ≥ 0 we have indeed

𝐴
󸀠
2

−𝛼𝐽
󸀠

𝑛 ≤ 𝐹 (𝑋𝑛) − 𝐹 (𝑥) ≤ 𝐶2
−𝛼𝐽
󸀠

𝑛 . (103)

Thus using the mean value theorem and Lemma 11 as in the
previous case we conclude that 𝐸𝑤

Ω
(𝑋) = 0.

(iv) Case 𝑠(𝑥) = 1. Let 𝐽𝑛 be defined just as in Lemma 16, that
is, that one can find 𝛿 > 0, 𝛿󸀠

> 0, and 𝐽𝑛 such that (54) is
satisfied as well as Point 2 of Lemma 16.

Following the definition of 𝑠(𝑥), for all 𝛾 > 0 there exists
𝑛0 such that for all 𝑗 ≥ 𝐽𝑛

0

|𝑚𝑗 − 𝑥| > 2
−𝑗(1+𝛾). Thus in

particular for all 𝑛 ≥ 𝑛0 we have

2
−𝐽
𝑛 >

󵄨󵄨󵄨󵄨󵄨
𝑚𝐽
𝑛

− 𝑥
󵄨󵄨󵄨󵄨󵄨
> 2

−𝐽
𝑛

(1+𝛾)
. (104)

Suppose on one hand that 𝐶𝐽
𝑛

−1(𝑥) > 0. Then take 𝑋𝑛 =

(𝐾𝐽
𝑛

/2
𝐽
𝑛) + (2/3(2

𝐽
𝑛)). Since 𝑖𝐽

𝑛

+1(𝑥) = 0 we have 𝐹𝐽
𝑛

−1(𝑋𝑛) −

𝐹𝐽
𝑛

−1(𝑥) > 0.
Together with (54) this yields that

𝛿
󸀠
2

−𝛼𝐽
𝑛 ≥

󵄨󵄨󵄨󵄨󵄨
𝐹𝐽
𝑛

−1 (𝑥) − 𝐹𝐽
𝑛

−1 (𝑋𝑛)
󵄨󵄨󵄨󵄨󵄨
≥ 𝛿2

−𝐽
𝑛

(1+𝛾)
2

(1−𝛼)𝐽
𝑛

𝛿
󸀠
2

−𝛼𝐽
𝑛 ≥ −𝐹𝐽

𝑛

−1 (𝑥) + 𝐹𝐽
𝑛

−1 (𝑋𝑛) ≥ 𝛿2
−𝐽
𝑛

(1+𝛾)
2

(1−𝛼)𝐽
𝑛 .

(105)

The same computation used previously yields

𝛿
󸀠
2

−𝛼𝐽
𝑛 + 2

−𝛼𝐽
𝑛𝐹(

1

3
) ≥ − 𝐹 (𝑥) + 𝐹 (𝑋𝑛)

≥ − 𝐹𝐽
𝑛

−1 (𝑥) + 𝐹𝐽
𝑛

−1 (𝑋𝑛)

≥ 𝛿2
−𝐽
𝑛

(1+𝛾)
2

(1−𝛼)𝐽
𝑛 ,

𝐶2
−𝛼𝐽
𝑛 ≥ −𝐹 (𝑥) + 𝐹 (𝑋𝑛) ≥ 𝛿2

−𝐽
𝑛

(𝛾+𝛼)
.

(106)

To get 𝐸𝑤

Ω
(𝑋) we only have to adapt the proof of Lemma 11

in the same way we adapt the one of Lemma 10 in the case
𝑟(𝑥) = 1.

Thus taking 𝑟𝑛 = 2
−𝐽
𝑛 and following the same method

used previously we can find 𝐶 > 0 such that

𝐶
󸀠
𝑟

2

𝑛
≥ meas (𝐵 (𝑋, 𝑟𝑛)⋂Ω) ≥ 𝐶2

−𝐽
𝑛

(1+(𝛾/𝛼))
2

−𝐽
𝑛 . (107)

This yields

2 ≤ lim inf
𝑛 → +∞

log (meas (𝐵 (𝑋, 𝑟𝑛)⋂Ω))

log (𝑟𝑛)

≤ lim sup
𝑛 → +∞

log (meas (𝐵 (𝑋, 𝑟𝑛)⋂Ω))

log (𝑟𝑛)

≤ 2 +
𝛾

𝛼
.

(108)

Since 𝛾 > 0 is arbitrary, we have the result and 𝐸𝑤

Ω
(𝑋) = 0.

Hence Proposition 19 holds.

For what concerns the strong accessibility exponent we
have the following result.

Proposition 20. Suppose 𝑥 ∉ D⋃S and let 𝑋0 = (𝑥, 𝐹(𝑥)).
Then we have the following.

(1) If 𝑟(𝑥) > 1/𝛼 then 𝐸𝑠

Ω𝑐
(𝑋0) = (1/𝛼) − 1.

(2) If 𝑠(𝑥) > 1/𝛼 then 𝐸𝑠

Ω
(𝑋0) = (1/𝛼) − 1.

(3) Let 𝐷𝛼 the set of 𝑥 ∉ D⋃S such that 𝑟(𝑥) > 1/𝛼 and
𝑠(𝑥) > 1/𝛼. Then the Hausdorff dimension of𝐷𝛼 is 𝛼.

Proof. (1) Let us prove Point 1. Since 𝑟(𝑥) > 1/𝛼 and following
Point 3 of Lemma 15, for 𝛿 > 0 such that 𝑟(𝑥) − 𝛿 > 1/𝛼, we
can find 𝐽󸀠

𝑛
and 𝐽𝑛 such that

(i) 𝑥𝑛 = 𝐾𝐽
𝑛

2
−𝐽
𝑛 and |𝑥 − 𝑥𝑛| ≤ 2

−𝐽
󸀠

𝑛 ;

(ii) |𝐹(𝑥) − 𝐹(𝑥𝑛)| ≤ 2
−𝛼𝐽
󸀠

𝑛 .
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Since we can choose 𝐽󸀠

𝑛
such that 2−𝐽

󸀠

𝑛 ≤ 𝐶2
(𝑟(𝑥)−𝛿)𝐽

𝑛 (see
the proof of Point 3 of Lemma 15), then |𝑥 − 𝑥𝑛| is negligible
in front of 2−𝐽

𝑛 (what we denote |𝑥 − 𝑥𝑛| ≪ 2
−𝐽
𝑛) and |𝐹(𝑥) −

𝐹(𝑥𝑛)| ≤ 2
−𝛼𝐽
󸀠

𝑛 ≪ 2
−𝐽
𝑛 .

Thus we can choose a constant 𝐶 such that with 𝜌𝑛 =

𝐶2
−𝐽
𝑛 and 𝐵(𝑋0, 𝜌𝑛/2) ⊂ 𝐵((𝑥𝑛, 𝐹(𝑥𝑛)), 𝜌𝑛). Following the

proof of Proposition 17 and more precisely (73) we have

meas(𝐵(𝑋,
𝜌𝑛

2
)⋂Ω

𝑐
)

≤ meas (𝐵 ((𝐾𝐽
𝑛

2
−𝐽
𝑛 , 𝐹 (𝐾𝐽

𝑛

2
−𝐽
𝑛) , 𝜌𝑛)⋂Ω

𝑐
))

≤ 𝐶𝜌
1+1/𝛼

𝑛
.

(109)

This yields 𝐸𝑠

Ω𝑐
(𝑋) ≥ (1/𝛼) − 1.

Since 𝐸𝑠

Ω𝑐
(𝑋) ≤ (1/𝛼) − 1, we get 𝐸𝑠

Ω𝑐
(𝑋) = (1/𝛼) − 1.

(2) We follow exactly the same proof as previously
replacing 𝑥𝑛 by 𝑋𝑛 the sequence of local maxima defined in
the proof of Point 4 of Lemma 15.

(3) We follow here the results proved by [18] and summa-
rized in [19] for our special case. Indeed recall the definition
given in [18] of an ubiquitous system in a real interval of
R.

Definition 21. Let 𝑈 be a real open interval. Let (𝑥𝑖)𝑖≥1 be
points in𝑈 and let (𝑟𝑖)𝑖≥1 be a sequence of positive real num-
bers such that lim𝑖 → ∞𝑟𝑖 = 0. The family (𝑥𝑖, 𝑟𝑖)𝑖≥1 is a homo-
geneous ubiquitous system in 𝑈 if the set lim sup

𝑖
𝐵(𝑥𝑖, 𝑟𝑖) is

of full Lebesgue measure in 𝑈.

Theorem D of [19] proved in [18] yields the following
result.

Theorem 22. Let 𝜏 be a real number with 𝜏 ≥ 1. With the
above notations if the families (𝑥𝑖, 𝑟𝑖)𝑖≥1 and (𝑥

󸀠

𝑖
, 𝑟

󸀠

𝑖
)𝑖≥1 are

two homogeneous ubiquitous systems in U, then the Hausdorff
dimension of the set lim sup𝐵(𝑥𝑖, 𝑟

𝜏

𝑖
)⋂ lim sup𝐵(𝑥𝑗, 𝑟

𝜏

𝑗
) is at

least equal to 1/𝜏.

Let 𝑈 = ]0, 1[ and considerK1 = {(𝑘/2
𝑗
, 2

−𝑗
), 𝑘 ∈ N, 0 <

𝑘 < 2
𝑗
, 𝑗 ≥ 1}. It is a countable set and can be written as

K1 = {(𝑥𝑖, 𝑟𝑖), 𝑖 ≥ 1} with 𝑥𝑖 a dyadic number for all 𝑖 ≥ 1.
Let K2 = {(𝑥, 𝑟), 𝑥 ∈ S, 𝑟 = 2

−𝑗
/3 for 𝑗 ≥ 1}. It is again a

countable set and we can rewrite it as K2 = {(𝑥𝑖, 𝑟𝑖), 𝑖 ≥ 1}

with 𝑥𝑖 ∈ S for all 𝑖 ≥ 1.
It is clear that lim sup𝐵(𝑥𝑖, 𝑟𝑖) and lim sup𝐵(𝑥𝑖, 𝑟𝑖) are of

full Lebesgue measure.
Remark then that 𝐷𝛼 = lim sup𝐵(𝑥𝑖, 𝑟

𝜏

𝑖
)⋂ lim sup𝐵(𝑥𝑖,

𝑟
𝜏

𝑖
) with 𝜏 = 1/𝛼. Since 𝐷𝛼 ⊂ ⋃𝑗≥𝐽,0≤𝑘≤2𝑗 𝐵(𝑥𝑖, 𝑟

𝜏

𝑖
) the

Hausdorff dimension of𝐷𝛼 is less than or equal to𝛼.We apply
Theorem 22 and we find it is exactly 𝛼.

4.4. Proof of Theorem 8. Propositions 17, 18, 19, and 20
achieve the proof of Theorem 8.
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