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This paper discusses the positivity preserving interpolation for positive surfaces data by extending the C1 rational cubic spline
interpolant of Karim and Kong to the bivariate cases. The partially blended rational bicubic spline has 12 parameters in the
descriptions where 8 of them are free parameters. The sufficient conditions for the positivity are derived on every four boundary
curves network on the rectangular patch. Numerical comparison with existing schemes also has been done in detail. Based on Root
Mean Square Error (RMSE), our partially blended rational bicubic spline is on a par with the established methods.

1. Introduction

Shape preserving interpolation is a process that involves some
mathematical derivation to visualize the two-dimensional
(2D) or three-dimensional (3D) data sets in the form of
piecewise curves or surfaces that satisfies some degree of
smoothness. Notably the shape preserving method will be
able to maintain the original shape of the data sets. For
example, if the given data is positive, then the final result-
ing curves or surface will be positive everywhere and it
should be visual pleasing for the computer graphics displays.
Usually the collected data from some laboratory experiment
may contain little unwanted noise. Common cubic spline
interpolation is not able to produce the shape preserving
interpolation for positive, monotone and convexity of the
data sets. Even though the interpolating curves are very
smooth, that is, with 𝐶2 continuity, there may exist some
uncharacteristic behavior such as wiggle that will result in the
negative values along the whole intervals.This unwanted flaw
must be eliminated before the data are processed by the user.
Therefore for the shape preserving interpolation and practical
designing purposes, cubic spline and cubic Hermite spline
are not recommended.Thusmany researchers have proposed

the idea of how to preserve the positive data by using some
rational spline function with 𝐶1 or 𝐶2 continuity.

Some literature studies for positivity preserving are as
follows. Abbas et al. [1, 2] have discussed the positivity
preserving by using partially blended rational bicubic spline
function and rational bicubic spline function, respectively.
Asim and Brodlie [3], Butt and Brodlie [4], and Brodlie
et al. [5] discussed the use of bicubic spline for positivity
preserving by inserting one or two extra knots in the region or
interval where the negativity of the interpolant is found. Asim
et al. [6] have studied the use of modified quadratic Shepard
method for positivity preserving of large data sets. Duan et al.
[7] have proposed new bivariate rational interpolation based
on function values. They utilized the rational cubic spline
of the forms of cubic numerator and linear denominator.
Meanwhile, Duan et al. [8, 9] investigated the bounded
property, point control, and shape control of the bivariate
rational cubic splinewith linear denominator. Goodman et al.
[10] discussed the constrained interpolation by using rational
cubic with cubic denominator. Goodman [11] summarized
all shape preserving criteria for the univariate cases. Hussain
and Sarfraz [12] and M. Z. Hussain and M. Hussain [13]
also studied the positivity preserving by utilizing the rational
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cubic spline of the forms cubic/cubic and cubic/quadratic,
respectively. In the study by M. Z. Hussain and M. Hussain
[13], there are no free parameters for the refining processes.
M.Z.Hussain andM.Hussain [14] have developed the surface
construction scheme for positivity preserving of positive
scattered data arranged over triangular grids. They utilized
the rational cubic spline of Tian et al. [15] without any
free parameters. Hussain et al. [16] have developed shape
preserving surfaces for positive and convex data using ratio-
nal biquadratic splines. The degree of smoothness attained
is 𝐶0 as can clearly be seen from their graphical results.
Ibraheem et al. [17] develop a positivity preserving scheme
by using trigonometric rational functions which will increase
the computation times. Karim and Kong [18] have proposed
new rational cubic spline of the form cubic/quadratic with
three parameters for local control of interpolating function.
Positivity preserving by using this rational cubic spline has
been addressed in the study by Karim andKong [19]. Liu et al.
[20] have studied the positivity and monotonicity preserving
by using new rational biquartic spline by utilizing the exten-
sion cubic Ball basis function with two parameters. Saaban et
al. [21] studied the positivity preserving by using quintic tri-
angular Bezier patches.The surfaces are constructed by using
convex combination of quintic triangular Bezier patches.
They use the real data collected from the rainfall at various
stations inWest Peninsular ofMalaysia. Sarfraz et al. [22] also
have developed rational cubic spline scheme for positivity
preserving of 3Ddata.Their scheme has 8 parameters without
any free parameter. Furthermore Abbas et al. [1] indicated
that Sarfraz et al. [22] works do not produce 𝐶1 positive
surfaces. The surfaces may only have 𝐶0 continuity. Bastian-
Walther and Schmidt [23] discussed the range restricted data
interpolation for scattered data by using rational cubic spline
of Gregory [24]. Wu et al. [25] studied the positivity preserv-
ing data approximation by using compactly supported radial
basis functions (CSRBFs). Their scheme requires the solving
of optimization problems in order to calculate the parameters
that will guarantee that the positivity of the data is preserved.
Peng et al. [26] have used the rational cubic spline of Hussain
and Sarfraz [12] to construct the positive rational cubic Bezier
interpolant for scattered positive data.Their methods require
the modification of the first derivatives if the positivity of
the rational interpolant is not met. The bicubic Hermite
spline [27] interpolation cannot preserve the positivity of the
surface data sets, since theremaybe exist somenegative values
on the constructed surfaces. This paper is a continuation of
our previousworks.Theunivariate rational cubic spline inter-
polation in the studies by Karim andKong [18, 19] is extended
to the bivariate cases. Positivity preserving interpolation is
our main object in this paper. We compare the performance
between our rational bicubic spline and that of the work of
Abbas et al. [1] by using Root Mean Square Error (RMSE).

We identify several advantages of our proposed partially
blended rational bicubic spline interpolation for positive data
as follows.

(i) Our schemes have 12 parameters and 8 of them are
free parameters; meanwhile, in the study by M. Z.

Hussain and M. Hussain [13] the bivariate spline has
8 parameters and none of them are free parameters.

(ii) Our schemes are applicable for both equally or
unequally spaced data; meanwhile, the rational cubic
spline of Duan et al. [7–9] requires that the data be
equally spaced.

(iii) The scheme can also be used whether the first deriva-
tive is given or not. Meanwhile, the works of Duan et
al. [7, 9] require the true function values without the
first derivative values.

(iv) Our rational bicubic spline is on a par with the works
of Abbas et al. [1, 2] and Hussain and Sarfraz [12].
Furthermore the presented scheme is easy to use and
not involving any trigonometric functions compared
with the work of Ibraheem et al. [17].

(v) When 𝛾
𝑖,𝑗
= 𝛾
𝑖,𝑗
= 0, our partially blended rational

bicubic spline is reduced to the work ofM. Z. Hussain
and M. Hussain [13].

(vi) The partially blended rational bicubic spline is unique
and the free parameters in its description provide the
flexibility in controlling the final shape of the positive
surface data sets.

(vii) Furthermore based on Root Mean Square Error
(RMSE) our partially blended rational bicubic spline
gives numerical results as good as the numerical
results from the study by Abbas et al. [1].

The remainder of the paper is organized as follows. Section 2
is devoted to the derivative estimation for 2D and 3D data
by using Arithmetic Mean Method (AMM). Meanwhile,
Section 3 reviews the univariate of rational cubic spline
initiated by Karim and Kong [18, 19]. Positivity preserving for
2D data also is discussed in this section.The partially bicubic
rational cubic spline interpolation is discussed in Section 4.
Section 5 discusses the positivity preserving for 3D positive
data sets by using the constructed partially bicubic rational
cubic spline interpolation with numerical demonstrations
with comparison to the existing schemes. Finally a summary
and conclusions are given in Section 6.

2. Derivative Estimation

The first derivative that depends on the original data can
be chosen by using Arithmetic Mean Method (AMM). The
details are as follows:

For 2D Data
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Figure 1: Comparison of (a) cubic Hermite spline curve and (b) our rational cubic spline with 𝛼
𝑖
= 𝛽
𝑖
= 0.5.

For 3D data
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Table 1: Positive data from the study by Hussain et al. [28].

𝑖 0 1 2 3
𝑥
𝑖

0.0 1.0 1.70 1.80
𝑓
𝑖

0.25 1.0 11.10 25

Table 2: Numerical results.

𝑖 0 1 2 3
𝑑
𝑖

−7.296 8.796 123.429 154.570
Δ
𝑖

0.75 14.429 139
𝛼
𝑖

0.5 0.5 0.5
𝛽
𝑖

0.5 0.5 0.5
𝛾
𝑖

13.84 3.14 0.25

3. Review of Rational Cubic Spline Interpolant

In this section the rational cubic spline of Karim and Kong
[18, 19] is discussed briefly before it extends to the bivariate
cases.
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𝑖
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The rational function in (5) satisfies 𝐶1 continuity as follows:
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It can be shown that the unknowns𝐴
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as follows:
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where 𝑠(1)
𝑖
(𝑥) denotes derivative with respect to 𝑥 and 𝑑

𝑖

denotes the derivative value which is given at the knot 𝑥
𝑖
,

𝑖 = 0, 1, 2, . . . , 𝑛. The parameters are chosen such that 𝛼
𝑖
, 𝛽
𝑖
>

0, 𝛾
𝑖
≥ 0. When 𝛼

𝑖
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𝑖
= 1, 𝛾

𝑖
= 0, the rational cubic

interpolant in (5) is reduced to cubic Hermite spline [19].

Positivity Preserving. For the strictly positive set of data
(𝑥
𝑖
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Karim and Kong [19] have developed the following results for
strictly positive data sets given in (9).

Theorem 1. For strictly positive data defined in (9), the 𝐶1
rational cubic interpolant defined over the interval [𝑥
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3.1. Numerical Demonstrations. In this section the positivity
shape preserving using 𝐶1 rational cubic spline of Karim and
Kong [19] is discussed. The positive data is taken from the
study by Hussain et al. [28].

Example 2. See Tables 1 and 2 and Figure 1.

4. Rational Bicubic Spline Interpolant

The piecewise rational cubic spline in (5) is extended to
bicubic partially blended rational function 𝑆(𝑥, 𝑦) over rect-
angular domain Ω = [𝑎, 𝑏] × [𝑐, 𝑑]. The partition of the
intervals [𝑎, 𝑏] and [𝑐, 𝑑] is defined as 𝜋 : 𝑎 = 𝑥
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with 𝐵
0
= 𝛼
𝑖,𝑗+1

𝐹
𝑖,𝑗+1

, 𝐵
1
= (2𝛼
𝑖,𝑗+1

𝛽
𝑖,𝑗+1

+𝛼
𝑖,𝑗+1

+𝛾
𝑖,𝑗+1

)𝐹
𝑖,𝑗+1

+

𝛼
𝑖,𝑗+1

ℎ
𝑖
𝐹
𝑥

𝑖,𝑗+1
, 𝐵
2
= (2𝛼

𝑖,𝑗+1
𝛽
𝑖,𝑗+1

+ 𝛽
𝑖,𝑗+1

+ 𝛾
𝑖,𝑗+1

)𝐹
𝑖+1,𝑗+1

−

𝛽
𝑖,𝑗+1

ℎ
𝑖
𝐹
𝑥

𝑖+1,𝑗+1
, 𝐵
3
= 𝛽
𝑖,𝑗
𝐹
𝑖+1,𝑗+1

, and 𝑞
2
(𝜃) = (1 − 𝜃)

2
𝛼
𝑖,𝑗+1

+

(2𝛼
𝑖,𝑗+1

𝛽
𝑖,𝑗+1

+ 𝛾
𝑖,𝑗+1

)𝜃(1 − 𝜃) + 𝜃
2
𝛽
𝑖,𝑗+1

;

𝑆 (𝑥
𝑖
, 𝑦) =

∑
3

𝑖=0
(1 − 𝜙)

3−𝑖

𝜙
𝑖
𝐶
𝑖

𝑞
3
(𝜙)

, (16)

with 𝐶
0
= �̂�
𝑖,𝑗
𝐹
𝑖,𝑗
, 𝐶
1
= (2�̂�

𝑖,𝑗
𝛽
𝑖,𝑗
+ �̂�
𝑖,𝑗
+ 𝛾
𝑖,𝑗
)𝐹
𝑖,𝑗
+ �̂�
𝑖,𝑗
ℎ̂
𝑗
𝐹
𝑦

𝑖,𝑗
,

𝐶
2
= (2�̂�

𝑖,𝑗
𝛽
𝑖,𝑗
+ 𝛽
𝑖,𝑗
+ 𝛾
𝑖,𝑗
)𝐹
𝑖,𝑗+1

− 𝛽
𝑖,𝑗
ℎ̂
𝑗
𝐹
𝑦

𝑖,𝑗+1
, 𝐶
3
= 𝛽
𝑖,𝑗
𝐹
𝑖,𝑗+1

,
and 𝑞
3
(𝜙) = (1 − 𝜙)

2
�̂�
𝑖,𝑗
+ (2�̂�
𝑖,𝑗
𝛽
𝑖,𝑗
+ 𝛾
𝑖,𝑗
)𝜙(1 − 𝜙) + 𝜙

2
𝛽
𝑖,𝑗
;

𝑆 (𝑥
𝑖+1
, 𝑦) =

∑
3

𝑖=0
(1 − 𝜙)

3−𝑖

𝜙
𝑖
𝐷
𝑖

𝑞
4
(𝜙)

, (17)
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Figure 2: Bicubic Hermite surface.

with𝐷
0
= �̂�
𝑖+1,𝑗

𝐹
𝑖+1,𝑗

,𝐷
1
= (2�̂�
𝑖+1,𝑗

𝛽
𝑖+1,𝑗

+�̂�
𝑖+1,𝑗

+𝛾
𝑖+1,𝑗

)𝐹
𝑖+1,𝑗

+

�̂�
𝑖+1,𝑗

ℎ̂
𝑗
𝐹
𝑦

𝑖+1,𝑗
, 𝐷
2
= (2�̂�

𝑖+1,𝑗
𝛽
𝑖+1,𝑗

+ 𝛽
𝑖+1,𝑗

+ 𝛾
𝑖+1,𝑗

)𝐹
𝑖+1,𝑗+1

−

𝛽
𝑖+1,𝑗

ℎ̂
𝑗
𝐹
𝑦

𝑖+1,𝑗+1
, 𝐷
3
= 𝛽
𝑖,𝑗
𝐹
𝑖+1,𝑗+1

, and 𝑞
4
(𝜙) = (1 − 𝜙)

2
�̂�
𝑖+1,𝑗

+

(2�̂�
𝑖+1,𝑗

𝛽
𝑖+1,𝑗

+ 𝛾
𝑖+1,𝑗

)𝜙(1 − 𝜙) + 𝜙
2
𝛽
𝑖+1,𝑗

.

Theorem 3. The partially blended rational bicubic spline
𝑆(𝑥, 𝑦) defined by (11) is 𝐶1-continuous degree-seven piecewise
rational surface.

Proof. The results trivially follow from Proposition 3 in the
study by Casciola and Romani [29].

5. Positivity Preserving of 3D Positive Data

Let (𝑥
𝑖
, 𝑦
𝑖,
𝐹
𝑖,𝑗
) be positive data defined over rectangular grid

[𝑥
𝑖
, 𝑥
𝑖+1
] × [𝑦

𝑗
, 𝑦
𝑗+1
], 𝑖 = 0, 1, . . . , 𝑛 − 1, 𝑗 = 0, 1, . . . , 𝑚 − 1,

such that

𝐹
𝑖,𝑗
> 0, ∀𝑖, 𝑗. (18)

Casciola and Romani [29] have developed the following
results:

bicubic partially blended surface patch inherits all the
properties of network of boundary curves.

Thus the partially bicubic surface patch in (21) is positive if
boundary curves defined in (22)–(25) are positive; that is,
𝑆(𝑥, 𝑦

𝑗
) > 0, 𝑆(𝑥, 𝑦

𝑗+1
) > 0, 𝑆(𝑥

𝑖
, 𝑦) > 0, and 𝑆(𝑥

𝑖+1
, 𝑦) > 0,

respectively. By simple algebraic manipulation we have the
following theorem.

Theorem 4. The piecewise rational partially bicubic function
𝑆(𝑥, 𝑦) in (21) defined over the rectangular mesh [𝑥

𝑖
, 𝑥
𝑖+1
] ×

[𝑦
𝑗
, 𝑦
𝑗+1
], 𝑖 = 0, 1, . . . , 𝑛 − 1, 𝑗 = 0, 1, . . . , 𝑚 − 1, preserves

Table 3: Positive surface data from function 𝐹
1
(𝑥, 𝑦).

𝑦/𝑥 0 2 4 6
0 1.33000 0.011261 0.10505 0.41710
2 1.79240 0.619300 0.39739 0.45990
4 0.41370 0.020814 0.16294 0.33635
6 0.39537 0.281670 0.30087 0.33560

the positive surface data if the parameters satisfy the following
sufficient conditions:

𝛼
𝑖,𝑗
> 0, 𝛼

𝑖,𝑗+1
> 0, 𝛽

𝑖,𝑗
> 0,

𝛽
𝑖,𝑗+1

> 0, �̂�
𝑖,𝑗
> 0, �̂�

𝑖+1,𝑗
> 0,

𝛽
𝑖,𝑗
> 0, 𝛽

𝑖+1,𝑗
> 0,

𝛾
𝑖,𝑗
> Max

{

{

{

0,

−𝛼
𝑖,𝑗
(ℎ
𝑖
𝐹
𝑥

𝑖,𝑗
+ (2𝛽

𝑖,𝑗
+ 1) 𝐹

𝑖,𝑗
)

𝐹
𝑖,𝑗

,

𝛽
𝑖,𝑗
(ℎ
𝑖
𝐹
𝑥

𝑖+1,𝑗
− (2𝛼

𝑖,𝑗
+ 1) 𝐹

𝑖+1,𝑗
)

𝐹
𝑖+1,𝑗

}

}

}

,

𝛾
𝑖,𝑗+1

> Max
{

{

{

0,

−𝛼
𝑖,𝑗+1

(ℎ
𝑖
𝐹
𝑥

𝑖,𝑗+1
+ (2𝛽

𝑖,𝑗+1
+ 1) 𝐹

𝑖,𝑗+1
)

𝐹
𝑖,𝑗+1

,

𝛽
𝑖,𝑗+1

(ℎ
𝑖
𝐹
𝑥

𝑖+1,𝑗+1
− (2𝛼

𝑖,𝑗+1
+ 1) 𝐹

𝑖+1,𝑗+1
)

𝐹
𝑖+1,𝑗+1

}

}

}

,

𝛾
𝑖,𝑗
> Max

{

{

{

0,

−�̂�
𝑖,𝑗
(ℎ̂
𝑗
𝐹
𝑦

𝑖,𝑗
+ (2𝛽

𝑖,𝑗
+ 1) 𝐹

𝑖,𝑗
)

𝐹
𝑖,𝑗

,

𝛽
𝑖,𝑗
(ℎ̂
𝑗
𝐹
𝑦

𝑖,𝑗+1
− (2�̂�

𝑖,𝑗
+ 1) 𝐹

𝑖,𝑗+1
)

𝐹
𝑖,𝑗+1

}

}

}

,

𝛾
𝑖+1,𝑗

> Max
{

{

{

0,

−�̂�
𝑖+1,𝑗

(ℎ̂
𝑗
𝐹
𝑦

𝑖+1,𝑗
+ (2𝛽

𝑖+1,𝑗
+ 1) 𝐹

𝑖+1,𝑗
)

𝐹
𝑖+1,𝑗

,

𝛽
𝑖+1,𝑗

(ℎ̂
𝑗
𝐹
𝑦

𝑖+1,𝑗+1
− (2�̂�

𝑖+1,𝑗
+ 1) 𝐹

𝑖+1,𝑗+1
)

𝐹
𝑖+1,𝑗+1

}

}

}

.

(19)

Proof. From (14)–(17), 𝑆(𝑥, 𝑦
𝑗
) > 0, if 𝐴

𝑖
> 0, 𝑖 = 0, 1, 2, 3.

Now for 𝛼
𝑖,𝑗
> 0, 𝛽

𝑖,𝑗
> 0, and 𝛾

𝑖,𝑗
> 0, 𝑆(𝑥, 𝑦

𝑗
) > 0, if

𝛾
𝑖,𝑗
>

−𝛼
𝑖,𝑗
(ℎ
𝑖
𝐹
𝑥

𝑖,𝑗
+ (2𝛽

𝑖,𝑗
+ 1) 𝐹

𝑖,𝑗
)

𝐹
𝑖,𝑗

,

𝛾
𝑖,𝑗
>

𝛽
𝑖,𝑗
(ℎ
𝑖
𝐹
𝑥

𝑖+1,𝑗
− (2𝛼

𝑖,𝑗
+ 1) 𝐹

𝑖+1,𝑗
)

𝐹
𝑖+1,𝑗

.

(20)
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Figure 3: Bicubic Hermite surface: (a) 𝑥𝑧-view and (b) 𝑦𝑧-view for Figure 2, respectively.

Combining the conditions in (20) results in the following
sufficient conditions for the positivity of (𝑥, 𝑦

𝑗
):

𝛾
𝑖,𝑗
> Max

{

{

{

0,

−𝛼
𝑖,𝑗
(ℎ
𝑖
𝐹
𝑥

𝑖,𝑗
+ (2𝛽

𝑖,𝑗
+ 1) 𝐹

𝑖,𝑗
)

𝐹
𝑖,𝑗

,

𝛽
𝑖,𝑗
(ℎ
𝑖
𝐹
𝑥

𝑖+1,𝑗
− (2𝛼

𝑖,𝑗
+ 1) 𝐹

𝑖+1,𝑗
)

𝐹
𝑖+1,𝑗

}

}

}

.

(21)

Likewise the remaining three boundary curves 𝑆(𝑥, 𝑦
𝑗+1
),

𝑆(𝑥
𝑖
, 𝑦), and 𝑆(𝑥

𝑖+1
, 𝑦) are positive if the following sufficient

conditions are satisfied:

𝛾
𝑖,𝑗+1

>

−𝛼
𝑖,𝑗+1

(ℎ
𝑖
𝐹
𝑥

𝑖,𝑗+1
+ (2𝛽

𝑖,𝑗+1
+ 1) 𝐹

𝑖,𝑗+1
)

𝐹
𝑖,𝑗+1

, (22)

𝛾
𝑖,𝑗+1

>

𝛽
𝑖,𝑗+1

(ℎ
𝑖
𝐹
𝑥

𝑖+1,𝑗+1
− (2𝛼

𝑖,𝑗+1
+ 1) 𝐹

𝑖+1,𝑗+1
)

𝐹
𝑖+1,𝑗+1

, (23)

𝛾
𝑖,𝑗
>

−�̂�
𝑖,𝑗
(ℎ̂
𝑗
𝐹
𝑦

𝑖,𝑗
+ (2𝛽

𝑖,𝑗
+ 1) 𝐹

𝑖,𝑗
)

𝐹
𝑖,𝑗

, (24)

𝛾
𝑖,𝑗
>

𝛽
𝑖,𝑗
(ℎ̂
𝑗
𝐹
𝑦

𝑖,𝑗+1
− (2�̂�

𝑖,𝑗
+ 1) 𝐹

𝑖,𝑗+1
)

𝐹
𝑖,𝑗+1

, (25)

𝛾
𝑖+1,𝑗

>

−�̂�
𝑖+1,𝑗

(ℎ̂
𝑗
𝐹
𝑦

𝑖+1,𝑗
+ (2𝛽

𝑖+1,𝑗
+ 1) 𝐹

𝑖+1,𝑗
)

𝐹
𝑖+1,𝑗

, (26)

𝛾
𝑖+1,𝑗

>

𝛽
𝑖+1,𝑗

(ℎ̂
𝑗
𝐹
𝑦

𝑖+1,𝑗+1
− (2�̂�

𝑖+1,𝑗
+ 1) 𝐹

𝑖+1,𝑗+1
)

𝐹
𝑖+1,𝑗+1

. (27)
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Figure 4: Positivity preserving by using our partially rational
bicubic spline.

Combining the conditions in (22) and (23), (24) and (25), and
(26) and (27) leads us to the following:

𝛾
𝑖,𝑗+1

> Max
{

{

{

0,

−𝛼
𝑖,𝑗+1

(ℎ
𝑖
𝐹
𝑥

𝑖,𝑗+1
+ (2𝛽

𝑖,𝑗+1
+ 1) 𝐹

𝑖,𝑗+1
)

𝐹
𝑖,𝑗+1

,

𝛽
𝑖,𝑗+1

(ℎ
𝑖
𝐹
𝑥

𝑖+1,𝑗+1
− (2𝛼

𝑖,𝑗+1
+ 1) 𝐹

𝑖+1,𝑗+1
)

𝐹
𝑖+1,𝑗+1

}

}

}

,

𝛾
𝑖,𝑗
> Max

{

{

{

0,

−�̂�
𝑖,𝑗
(ℎ̂
𝑗
𝐹
𝑦

𝑖,𝑗
+ (2𝛽

𝑖,𝑗
+ 1) 𝐹

𝑖,𝑗
)

𝐹
𝑖,𝑗

,

𝛽
𝑖,𝑗
(ℎ̂
𝑗
𝐹
𝑦

𝑖,𝑗+1
− (2�̂�

𝑖,𝑗
+ 1) 𝐹

𝑖,𝑗+1
)

𝐹
𝑖,𝑗+1

}

}

}

,
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Figure 5: Positivity preserving surface: (a) 𝑥𝑧-view and (b) 𝑦𝑧-view for Figure 4, respectively.

Table 4: Positive surface data from function 𝐹
2
(𝑥, 𝑦).

𝑦/𝑥 −3 −2 −1 1 2 3
−3 1.536600 0.37930 0.055529 1.9445 1.62070 0.46344
−2 1.175100 0.19847 0.106150 1.8939 1.80150 0.82489
−1 0.044919 1.74900 0.589220 1.4108 0.25095 1.95510
1 0.107150 0.32885 0.640360 1.3596 1.67110 1.89290
2 0.605060 0.73262 0.865080 1.1349 1.26740 1.39490
3 0.851190 0.90059 0.950230 1.0498 1.09940 1.14880

Table 5: Positive surface data from function 𝐹
3
(𝑥, 𝑦).

𝑦/𝑥 −3 −2 −1 0 1 2 3
−3 0.0401 0.0404 0.1755 1.0401 0.1755 0.0404 0.0401
−2 0.0583 0.0586 0.1936 1.0583 0.1936 0.0586 0.0583
−1 0.4078 0.4082 0.5432 1.4079 0.5432 0.4082 0.4078
0 1.0400 1.0403 1.1753 2.0400 1.1753 1.0403 1.0400
1 0.4078 0.4082 0.5432 1.4079 0.5432 0.4082 0.4078
2 0.0583 0.0586 0.1936 1.0583 0.1936 0.0586 0.0583
3 0.0401 0.0404 0.1755 1.0401 0.1755 0.0404 0.0401

Table 6: Positive surface data from function 𝐹
4
(𝑥, 𝑦).

𝑦/𝑥 −3 −2 −1 1 2 3
−3 0.0124 0.0238 0.0404 0.0404 0.0238 0.0124
−2 0.0238 0.0635 0.1667 0.1667 0.0635 0.0238
−1 0.0404 0.1667 1.3333 1.3333 0.1667 0.0404
1 0.0404 0.1667 1.3333 1.3333 0.1667 0.0404
2 0.0238 0.0635 0.1667 0.1667 0.0635 0.0238
3 0.0124 0.0238 0.0404 0.0404 0.0238 0.0124
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Figure 6: Bicubic Hermite surface.

𝛾
𝑖+1,𝑗

> Max
{

{

{

0,

−�̂�
𝑖+1,𝑗

(ℎ̂
𝑗
𝐹
𝑦

𝑖+1,𝑗
+ (2𝛽

𝑖+1,𝑗
+ 1) 𝐹

𝑖+1,𝑗
)

𝐹
𝑖+1,𝑗

,

𝛽
𝑖+1,𝑗

(ℎ̂
𝑗
𝐹
𝑦

𝑖+1,𝑗+1
− (2�̂�

𝑖+1,𝑗
+ 1) 𝐹

𝑖+1,𝑗+1
)

𝐹
𝑖+1,𝑗+1

}

}

}

.

(28)

Then from (21) and (28), sufficient conditions for the positiv-
ity of network of all four curves 𝑆(𝑥, 𝑦

𝑗
), 𝑆(𝑥, 𝑦

𝑗+1
), 𝑆(𝑥
𝑖
, 𝑦),

and 𝑆(𝑥
𝑖+1
, 𝑦) are obtained. Thus the proof is complete.

The sufficient conditions in (19) can be rewritten as

𝛼
𝑖,𝑗
> 0, 𝛼

𝑖,𝑗+1
> 0, 𝛽

𝑖,𝑗
> 0,

𝛽
𝑖,𝑗+1

> 0, �̂�
𝑖,𝑗
> 0, �̂�

𝑖+1,𝑗
> 0,

𝛽
𝑖,𝑗
> 0, 𝛽

𝑖+1,𝑗
> 0,

𝛾
𝑖,𝑗
= 𝑘
𝑖,𝑗
+Max

{

{

{

0,

−𝛼
𝑖,𝑗
(ℎ
𝑖
𝐹
𝑥

𝑖,𝑗
+ (2𝛽

𝑖,𝑗
+ 1) 𝐹

𝑖,𝑗
)

𝐹
𝑖,𝑗

,

𝛽
𝑖,𝑗
(ℎ
𝑖
𝐹
𝑥

𝑖+1,𝑗
− (2𝛼

𝑖,𝑗
+ 1) 𝐹

𝑖+1,𝑗
)

𝐹
𝑖+1,𝑗

}

}

}

,

𝛾
𝑖,𝑗+1

= 𝑙
𝑖,𝑗

+Max
{

{

{

0,

−𝛼
𝑖,𝑗+1

(ℎ
𝑖
𝐹
𝑥

𝑖,𝑗+1
+ (2𝛽

𝑖,𝑗+1
+ 1) 𝐹

𝑖,𝑗+1
)

𝐹
𝑖,𝑗+1

,

𝛽
𝑖,𝑗+1

(ℎ
𝑖
𝐹
𝑥

𝑖+1,𝑗+1
− (2𝛼

𝑖,𝑗+1
+ 1)𝐹

𝑖+1,𝑗+1
)

𝐹
𝑖+1,𝑗+1

}

}

}

,

𝛾
𝑖,𝑗
= 𝑚
𝑖,𝑗
+Max

{

{

{

0,

−�̂�
𝑖,𝑗
(ℎ̂
𝑗
𝐹
𝑦

𝑖,𝑗
+ (2𝛽

𝑖,𝑗
+ 1) 𝐹

𝑖,𝑗
)

𝐹
𝑖,𝑗

,

𝛽
𝑖,𝑗
(ℎ̂
𝑗
𝐹
𝑦

𝑖,𝑗+1
− (2�̂�

𝑖,𝑗
+ 1) 𝐹

𝑖,𝑗+1
)

𝐹
𝑖,𝑗+1

}

}

}

,
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Figure 7: Bicubic Hermite surface: (a) 𝑥𝑧-view and (b) 𝑦𝑧-view for
Figure 6, respectively.

𝛾
𝑖+1,𝑗

= 𝑛
𝑖,𝑗

+Max
{

{

{

0,

−�̂�
𝑖+1,𝑗

(ℎ̂
𝑗
𝐹
𝑦

𝑖+1,𝑗
+ (2𝛽

𝑖+1,𝑗
+ 1) 𝐹

𝑖+1,𝑗
)

𝐹
𝑖+1,𝑗

,

𝛽
𝑖+1,𝑗

(ℎ̂
𝑗
𝐹
𝑦

𝑖+1,𝑗+1
− (2�̂�

𝑖+1,𝑗
+ 1)𝐹

𝑖+1,𝑗+1
)

𝐹
𝑖+1,𝑗+1

}

}

}

,

(29)

where 𝑘
𝑖,𝑗
> 0, 𝑙
𝑖,𝑗
> 0,𝑚

𝑖,𝑗
> 0, and 𝑛

𝑖,𝑗
> 0.



Journal of Applied Mathematics 9

0
0 2

42
4
0

0.5

1

1.5

2

2.5

−2−2
−4−4 x-axis

y-axis

z
-a
xi
s

Figure 8: Positivity preserving by using our partially rational bicubic spline.
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Figure 9: Positivity preserving surface: (a) 𝑥𝑧-view and (b) 𝑦𝑧-view for Figure 8, respectively.
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Figure 10: Bicubic Hermite surface.
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Figure 11: Bicubic Hermite surface: (a) 𝑥𝑧-view and (b) 𝑦𝑧-view for Figure 10, respectively.

Theorem 5. The partially blended rational bicubic spline
𝑆(𝑥, 𝑦) constructed by using shape parameters calculated from
sufficient condition for positivity in (29) is 𝐶1-continuous
degree-seven piecewise rational surface with positivity preserv-
ing properties to the positive data sets.

Proof. Theproof also trivially follows from the work of Casci-
ola and Romani [29].

5.1. Algorithm for Computer Implementations. The algorithm
is for the purpose of computer implementation of positivity
preserving by using our partially rational bicubic spline
presented inTheorem 4.

Input. The input is the positive data points (𝑥
𝑖
, 𝑦
𝑗
, 𝐹
𝑖,𝑗
), 𝑖 =

0, 1, . . . , 𝑛 and 𝑗 = 0, 1, . . . , 𝑚.

Output.The output is the positive surfaces.

Step 1. Calculate the first derivative values 𝐹𝑥
𝑖,𝑗
, 𝐹𝑦
𝑖,𝑗
, 𝐹𝑥𝑦
𝑖,𝑗

by
using AMM.

Step 2. Choose suitable values for free parameters 𝛼
𝑖,𝑗
, 𝛽
𝑖,𝑗
,

𝛼
𝑖,𝑗+1

, 𝛽
𝑖,𝑗+1

, �̂�
𝑖,𝑗
, �̂�
𝑖+1,𝑗

, 𝛽
𝑖,𝑗
, 𝛽
𝑖+1,𝑗

and 𝑘
𝑖,𝑗
, 𝑙
𝑖,𝑗
, 𝑚
𝑖,𝑗
, 𝑛
𝑖,𝑗
, and

compute the values of parameters 𝛾
𝑖,𝑗
, 𝛾
𝑖,𝑗+1

, 𝛾
𝑖,𝑗
, 𝛾
𝑖+1,𝑗

by using
Theorem 4.

Step 3. Construct the positive surfaces by substituting all
the required parameters into the partially blended rational
bicubic spline function (11).

Repeat Steps 2 and 3 to generate different positive surfaces
through different positive data sets.
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Figure 12: Positivity preserving by using our partially rational bicu-
bic spline.

5.2. Numerical Demonstrations. In this section, numerical
examples for positivity preserving by using partially blended
rational bicubic spline interpolation of positive surface data
will be discussed in detail. Four positive data sets are taken
from the studies by Abbas et al. [1, 2] andHussain and Sarfraz
[12], respectively.

Example 6. Positive data from the following function is trun-
cated to five decimal places [1]:

𝐹
1
(𝑥, 𝑦) = 𝑒

−(𝑥
2
+𝑦
2
)/15

(sin (𝑥) + cos (𝑦)) + 0.33,

0 ≤ 𝑥, 𝑦 ≤ 6.

(30)
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Figure 13: Positivity preserving surface: (a) 𝑥𝑧-view and (b) 𝑦𝑧-view for Figure 12, respectively.

Figure 2 shows the default bicubic Hermite spline for the
positive data given in Table 3. Figures 3(a) and 3(b) show
the 𝑥𝑧-view and 𝑦𝑧-view for Figure 2, respectively. Figure 4
shows the positivity preserving by using the proposed ratio-
nal bicubic spline with 𝛼

𝑖,𝑗
= 𝛽
𝑖,𝑗
= 0.5, �̂�

𝑖,𝑗
= 𝛽
𝑖,𝑗
= 0.5.

Meanwhile, Figures 5(a) and 5(b) show the 𝑥𝑧-view and 𝑦𝑧-
view for Figure 4, respectively.

Example 7. Positive data from the following function is
truncated to five decimal places [1]:

𝐹
2
(𝑥, 𝑦) = sin (𝑦𝑒−𝑥) + 1, −3 ≤ 𝑥, 𝑦 ≤ 3, 𝑥, 𝑦 ̸= 0. (31)

Figure 6 shows the default bicubic Hermite spline for the
positive data given in Table 4. Figures 7(a) and 7(b) show
the 𝑥𝑧-view and 𝑦𝑧-view for Figure 6, respectively. Figure 8
shows the positivity preserving by using the proposed ratio-
nal bicubic spline with 𝛼

𝑖,𝑗
= 𝛽
𝑖,𝑗
= 0.5, �̂�

𝑖,𝑗
= 𝛽
𝑖,𝑗
= 0.5.

Meanwhile, Figures 9(a) and 9(b) show the 𝑥𝑧-view and 𝑦𝑧-
view for Figure 8, respectively.

Example 8. Positive data from the following function is
truncated to four decimal places [2]:

𝐹
3
(𝑥, 𝑦) = 𝑒

−𝑥
2

+ 𝑒
−2𝑦
2

+ 0.04, −3 ≤ 𝑥, 𝑦 ≤ 3. (32)

Figure 10 shows the default bicubic Hermite spline for the
positive data given in Table 5. Figures 11(a) and 11(b) show
the 𝑥𝑧-view and 𝑦𝑧-view for Figure 10, respectively. Figure 12
shows the positivity preserving by using the proposed ratio-
nal bicubic spline with 𝛼

𝑖,𝑗
= 𝛽
𝑖,𝑗
= 1.5, �̂�

𝑖,𝑗
= 𝛽
𝑖,𝑗
= 1.5.

Meanwhile, Figures 13(a) and 13(b) show the 𝑥𝑧-view and 𝑦𝑧-
view for Figure 12, respectively.

0
0 2

42
4

0

0.5

1

1.5

2

−2−2
−4−4 x-axis

y-axis

z
-a
xi
s

−0.5

Figure 14: Bicubic Hermite surface.

Example 9. Positive data from the following function is trun-
cated to four decimal places [12]:

𝐹
4
(𝑥, 𝑦) =

4

((𝑥2 + 𝑦2)
2

− 1)

, −3 ≤ 𝑥, 𝑦 ≤ 3, 𝑥, 𝑦 ̸= 0.

(33)

Figure 14 shows the default bicubic Hermite spline for the
positive data given in Table 6. Figures 15(a) and 15(b) show
the 𝑥𝑧-view and 𝑦𝑧-view for Figure 14, respectively. Figure 16
shows the positivity preserving by using the proposed ratio-
nal bicubic spline with 𝛼

𝑖,𝑗
= 𝛽
𝑖,𝑗
= 1.5, �̂�

𝑖,𝑗
= 𝛽
𝑖,𝑗
= 1.5.

Meanwhile, Figures 17(a) and 17(b) show the 𝑥𝑧-view and𝑦𝑧-
view for Figure 16, respectively.
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Figure 15: Bicubic Hermite surface: (a) 𝑥𝑧-view and (b) 𝑦𝑧-view for Figure 14, respectively.
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Figure 16: Positivity preserving by using our partially rational bicu-
bic spline.

Meanwhile, Figures 18(a) and 18(b) show the positivity
preserving by using the study by Abbas et al. [1] for positive
data in Tables 3 and 4, respectively. Figure 19 shows the posi-
tivity preserving by using the study byAbbas et al. [2] for posi-
tive data inTable 5. Finally Figures 20 and 21 show the positive
surfaces by using Hussain and Sarfraz [12] rational bicubic
spline and Liu et al. [20] rational biquartic spline surfaces.

We compare the performance between our proposed
partially blended rational bicubic spline interpolation and
that of the work of Abbas et al. [1] by calculating Root Mean
Square Error (RMSE). Table 7 summarized the results of
RMSE estimation. It can be seen clearly that our rational
bicubic spline interpolation is on a parwith thework ofAbbas

Table 7: RMSE estimation.

Method Data sets
Example 6 Example 7 Example 8 Example 9

Abbas et al. [1] 0.3900 0.0252 0.0011 0.0103
Ours 0.3947 0.0233 0.0012 0.0106

et al. [1]. The value for RMSE for all four data sets is almost
the same. Thus we conclude that the proposed partially
blended rational bicubic spline interpolation produces the
positive surfaces through positive data sets with smaller
RMSE. Furthermore we believe that the computation is less
by using our rational bicubic spline interpolation compared
with the other rational bicubic spline interpolation ofHussain
and Sarfraz [12] and Sarfraz et al. [22].

6. Discussions

The proposed partially blended rational bicubic spline with
12 parameters has been used for positivity preserving of 3D
positive data. The scheme has been tested on 4 different data
sets. The bicubic Hermite spline does not have the capability
to preserve the positivity of the data without changing the
original data points. Figures 2, 6, 10, and 14 show that there
exist some negative values when the data sets are interpolated
by using bicubic Hermite spline. From Figures 4, 8, 12, and 16
it can be seen clearly that the proposed scheme gives com-
parable results with existing schemes such as those of Abbas
et al. [1, 2], Hussain and Sarfraz [12], and Liu et al. [20].
Similar to the work of Abbas et al. [1], our scheme also is
partially blended bicubic rational spline.Meanwhile, Abbas et
al. [2] andHussain and Sarfraz [12] have used rational bicubic
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Figure 17: Positivity preserving surface: (a) 𝑥𝑧-view and (b) 𝑦𝑧-view for Figure 16, respectively.
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Figure 18: Positivity preserving by using the study of Abbas et al. [1] for (a) positive data in Table 3 and (b) positive data in Table 4.

spline interpolation. Table 7 summarized the RMSE values
comparison between the proposed partially blended rational
bicubic spline interpolation and that of the work of Abbas
et al. [1].

7. Summary and Conclusions

In this paper the rational cubic spline of Karim and Kong
[18, 19] has been extended to the bivariate cases. The partially
blended bicubic rational spline has 12 parameters in the
descriptions and 8 of them are free parameters. These free
parameters can be used to change the shape of the final sur-
faces of the positive data. Graphical comparison between the
proposed schemes and existing schemes also has been done.
From all numerical results, we concluded that the proposed

partially blended bicubic rational spline works well for all
tested data sets. Future works will be developing the rational
bicubic spline for scattered data interpolation without the
need to modify the first derivative. This will improve the
work of Peng et al. [26] that requires the modification of
the first derivative in which positivity preserving is not
met. Work on monotonicity and convexity preservation by
using the proposed partially blended rational bicubic spline
interpolation is underway.
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Figure 19: Positivity preserving by using the study of Abbas et al. [2]
for positive data in Table 5.

−1

1

−2

2

−3

3

0
0

2
4

−2
−4

0

0.5

1

1.5

2

−0.5

Figure 20: Positivity preserving by using the study of Hussain and
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