
Research Article
Degeneralization Algorithm for Generation of
Büchi Automata Based on Contented Situation

Laixiang Shan,1 Jun Qin,2 Mingshi Chen,3 and Zheng Qin1

1School of Software, Tsinghua University, Beijing 100084, China
2Credit Reference Center, People’s Bank of China, Beijing 100800, China
3Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

Correspondence should be addressed to Zheng Qin; qingzh@mail.tsinghua.edu.cn

Received 7 September 2014; Revised 15 December 2014; Accepted 16 December 2014

Academic Editor: Carlos Conca

Copyright © 2015 Laixiang Shan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We present on-the-fly degeneralization algorithm used to transform generalized Büchi automata (GBA) into Büchi Automata (BA)
different from the standard degeneralization algorithm.Contented situation, which is used to recordwhat acceptance conditions are
satisfiable during expanding LTL formulae, is attached to the states and transitions in the BA. In order to get the deterministic BA,
the Shannon expansion is used recursively whenwe expand LTL formulae by applying the tableau rules. On-the-fly degeneralization
algorithm is carried out in each step of the expansion of LTL formulae. Ordered binary decision diagrams are used to represent
the BA and simplify LTL formulae. The temporary automata are stored as syntax directed acyclic graph in order to save storage
space. These ideas are implemented in a conversion algorithm used to build a property automaton corresponding to the given LTL
formulae. We compare our method to previous work and show that it is more efficient for four sets of random formulae generated
by LBTT.

1. Introduction

Model checking [1] is a formal verification technique used to
check whether a model of the system verifies some desired
properties for software or hardware systems. In order to verify
whether the system satisfies some properties, a common
method is to use linear temporal logic (LTL)model checking.
When the given property is expressed in an LTL formula, the
model checker usually transforms the negation of the LTL
formula into a Büchi automaton (BA), builds the product
of this BA with the system described as an automaton, and
checks the emptiness of the product automaton. The size of
the product automaton is usually exponential in the size of
the system automaton and property automaton, because it is
a Cartesian product of the system automaton and property
automaton. If there are too many states and transitions, the
product automaton will get too big to be verified in the
available time. Generating a smaller and more deterministic
property automaton in less time contributes to improving the
efficiency of model checking.

There are many outstanding conversion tools that imple-
ment the translation from an LTL formula to a BA effectively.
Babiak et al. [2] proposed a series of improvement mea-
sures to improve performance of the conversion algorithm
presented by Gastin and Oddoux [3] and implemented a
new conversion tool, LTL3BA, which translates an LTL
formula into a very weak alternating automaton (VWAA)
with a co-Büchi accepting condition. VWAA is then trans-
lated into a transition based generalized Büchi automata
(TGBA). Finally, TGBA is degeneralized into a BA. The time
complexity of the alternation removal is O(𝑛2𝑛), which is
the same magnitude as alternation removal of tableau-based
algorithm [4]. Duret-Lutz [5] introduced many improve-
ments to improve performance of the algorithm proposed
by Couvreur [6]. These improvements have been applied in
Spot, which is a C++ library for model checking. Spot uses
TGBA to express LTL formulae into automata. Gerth et al. [7]
proposed a classic algorithm that translates an LTL formula
into a generalized Büchi automaton (GBA).This algorithm is
a tableau-based translation method in on-the-fly fashion and
has been applied in Spin [8].

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2015, Article ID 516104, 10 pages
http://dx.doi.org/10.1155/2015/516104

http://dx.doi.org/10.1155/2015/516104

2 Journal of Applied Mathematics

In order to obtain a BA from the given LTL formula,
[2, 3, 5, 7] involve the intermediate automata (GBAorTGBA),
perform simplification on the intermediate automata, and
transform the intermediate automata into BA finally. Clarke
et al. presented a standard degeneralization algorithm used to
transform GBA into BA in Section 9.2.2 of [1]. This standard
degeneralization algorithm is also adapted to transform a
TGBA into a BA [3, 9]. Furthermore, Duret-Lutz proposed
a better degeneralization algorithm based on the standard
degeneralization algorithm in Section 4.2.2 of [5], which
is related to the order in which the corresponding BDD
variables were declared. Babiak et al. [10] presented the SCC-
based degeneralization including many improvements to the
standard degeneralization algorithm used to transform a
TGBA into an equivalent BA. Chatterjee et al. [11] proposed
the definition of the degeneralization index applied to trans-
form the automatonwith generalizedRabin pairs into aRabin
automaton.

However, the standard degeneralization algorithm is used
to transform a GBA or a TGBA into a BA, only when the
expansion of LTL formulae is finished. We say that the
standard degeneralization algorithm is a kind of postde-
generalization algorithm. The intermediate automata are
needed to record the expansion of LTL formulae in the
use of standard degeneralization algorithm. The standard
degeneralization algorithm can transform a TGBA with 𝑛

states and 𝑚 acceptance conditions into an equivalent BA
with one acceptance condition and at most 𝑛𝑚 states [12].We
have to search𝑚!(𝑚 + 1) possible degeneralizations.

In this paper, we present on-the-fly degeneralization
algorithm that is used to transform a GBA or a TGBA
into an equivalent BA during expanding LTL formulae. We
circumvent the intermediate automata and translate an LTL
formula to a BA directly. Our method differs from the
previous translation algorithms [2, 3, 5, 7] in two ways.

(1) The contented situation, which is a set of acceptance
conditions, is attached to the states and transitions in
the BA. According to the contented situation, we can
determine which acceptance conditions are satisfied
in the current state or transition.

(2) The process of degeneralization is carried out in each
step of the expansion of LTL formulae. LTL formulae
can be translated to the BA directly. The intermediate
automata are no longer needed.

Our research focuses on an efficient conversion algorithm
producing a BA corresponding to an LTL formula directly.
The contented situation is attached to the states and tran-
sitions in the BA in order to track whether the acceptance
condition is satisfiable. The BA is described by ordered
binary decision diagrams (OBDDs) and stored as syntax
directed acyclic diagram (DAG). On-the-fly degeneralization
algorithm is used in order to degeneralize GBA into BA
during the expansion.The BA simplification is adopted in the
algorithm in order to gain reduction on the size of the result
automaton. In order to get the deterministic BA, the Shannon
expansion is used recursively when we expand LTL formulae
by applying the tableau rules. These measures cause a lot of

improvement on the efficiency of the algorithm, especially
when expanding the formulae containing a large amount of
{U,R, F,G}-subformulae.

The rest of this paper is organized as follows. In Section 2,
we provide preliminary notions used in this paper. Then,
we describe the main ideas of our approach in Section 3.
Overview of the algorithm is introduced in Section 4. In
Section 5, a comparison between our method and previous
works is presented. Finally, Section 6 closes the paper with
conclusions.

2. Preliminaries

LTL is usually used to describe system constraints in formal
method, which is a modal temporal logic with modalities
referring to time. Let AP represent a finite set of atomic
propositions. Let 2AP represent the set of subsets of AP. Let
22

AP
represent the set of propositional formulae induced by

AP.

Definition 1 (syntax of LTL formulae). An LTL formula is
usually composed of atomic propositions (𝑝 ∈ AP), proposi-
tion constants (⊤ (True) and ⊥ (False)), the logical operators
(¬ (not), ∧ (and), and ∨ (or)), and the temporal modal
operators (X (Next),U (Until),R (Release),G (Always), andF
(Eventually)). Formally, the syntax of LTL formulae is defined
inductively as follows:

(i) 𝑝, ⊤, and ⊥ are LTL formulae, respectively;
(ii) ¬𝜑, 𝜑∧𝜓, 𝜑∨𝜓,X𝜑, F𝜑,G𝜑, 𝜑U𝜓, and 𝜑R𝜓 are LTL

formulae, if 𝜑 and 𝜓 are LTL formulae, respectively.

R-formula is the dual ofU-formula. {R,F,G}-formula can
be translated to U-formula by the following identities:

(i) 𝜑R𝜓 ≡ ¬(¬𝜑U¬𝜓);
(ii) F𝜑 ≡ ⊤U𝜑;
(iii) G𝜑 ≡⊥ R𝜑 ≡ ¬F(¬𝜑) ≡ ¬(⊤U¬𝜑).

Definition 2 (Kripke structure). A Kripke structure is a tuple
𝑀 = (𝑄, 𝛿, 𝐿) where 𝑄 is a finite set of states. 𝛿 is 𝛿 ⊆ 𝑄 × 𝑄,
a transition relation between states. 𝐿 is𝑄 → AP, labeling of
the states.

Definition 3 (semantics of LTL formulae). Let𝑀 be a Kripke
structure, and let 𝜉 = 𝜉[0]𝜉[1]𝜉[2] ⋅ ⋅ ⋅ ∈ (2AP)𝜔 be an
infinite word in 𝑀. 𝜉

𝑖
= 𝜉[𝑖]𝜉[𝑖 + 1]𝜉[𝑖 + 2] ⋅ ⋅ ⋅ denotes the

suffix starting at letter 𝜉[𝑖]. The semantics of LTL formulae is
defined inductively as follows:

(i) 𝑀, 𝜉 ⊨ ⊤;
(ii) 𝑀, 𝜉 ⊨ 𝑝 iff 𝑝 ∈ 𝜉[0], for 𝑝 ∈ AP;
(iii) 𝑀, 𝜉 ⊨ ¬𝜑 iff ¬(𝜉 ⊨ 𝜑);
(iv) 𝑀, 𝜉 ⊨ 𝜑 ∧ 𝜓 iff 𝜉 ⊨ 𝜑 and 𝜉 ⊨ 𝜓;
(v) 𝑀, 𝜉 ⊨ 𝜑 ∨ 𝜓 iff 𝜉 ⊨ 𝜑 or 𝜉 ⊨ 𝜓;
(vi) 𝑀, 𝜉 ⊨ X𝜑 iff 𝜉

1
⊨ 𝜑;

(vii) 𝑀, 𝜉 ⊨ F𝜑 iff ∃𝑖 ≥ 0, 𝜉
𝑖
⊨ 𝜑;

Journal of Applied Mathematics 3

(viii) 𝑀, 𝜉 ⊨ G𝜑 iff ∀𝑖 ≥ 0, 𝜉
𝑖
⊨ 𝜑;

(ix) 𝑀, 𝜉 ⊨ 𝜑U𝜓 iff ∃𝑗 ≥ 0, 𝜉
𝑗
⊨ 𝜓 and ∀0 ≤ 𝑖 < 𝑗, 𝜉

𝑖
⊨ 𝜑;

(x) 𝑀, 𝜉 ⊨ 𝜑R𝜓 iff ∃𝑗 ≥ 0, 𝜉
𝑗
⊨ 𝜑 and ∀0 ≤ 𝑖 < 𝑗, 𝜉

𝑖
⊨ 𝜑

and 𝜉
𝑖
⊨ 𝜓.

Remark 4. Every LTL formula can be rewritten as an equiv-
alent LTL formula in negation normal form (NNF), where
operator ¬ occurs only immediately in front of atomic
propositions and ¬, ∧, and ∨ are the only allowed Boolean
connectives. In this paper, we consider only such formulae.
The NNF formula can be translated to an equivalent LTL
formula by the following identities:

¬ (𝜑 ∧ 𝜓) ≡ ¬𝜑 ∨ ¬𝜓,

¬ (𝜑 ∨ 𝜓) ≡ ¬𝜑 ∧ ¬𝜓,

¬¬𝜑 ≡ 𝜑,

¬X𝜑 ≡ X¬𝜑,

¬F𝜑 ≡ G¬𝜑,

¬ (𝜑U𝜓) ≡ ¬𝜑R¬𝜓,

¬ (𝜑R𝜓) ≡ ¬𝜑U¬𝜓,

¬G𝜑 ≡ F¬𝜑.

(1)

Definition 5 (Büchi automata). Büchi automaton is a kind of
𝜔-automata in which acceptance conditions are carried by
the states. It is also called state-based Büchi automata that is
a tuple A = ⟨𝑄, Σ, 𝛿, 𝐼, 𝐹⟩, where 𝑄 is a finite set of states.
Σ is a finite input alphabet, Σ = 2

AP. 𝛿 : 𝑄 × Σ → 2𝑄

is a transition function. 𝐼 ⊆ 𝑄 is a set of initial states. 𝐹 ⊆

𝑄 is a set of acceptance states. Let 𝜉 = 𝜉[0]𝜉[1]𝜉[2] ⋅ ⋅ ⋅ ∈

Σ
𝜔 be an infinite word of A. An infinite sequence 𝜋 =

(𝑞
0
, 𝜉[0], 𝑞

1
)(𝑞
1
, 𝜉[1], 𝑞

2
) ⋅ ⋅ ⋅ ∈ 𝛿𝜔 is a run ofA, where 𝑞

0
∈ 𝐼

is an initial state and 𝑞
𝑖+1

∈ 𝛿(𝑞
𝑖
, 𝜉[𝑖]) for all 𝑖 ≥ 0. Run(A)

denotes the set of all runs ofA. Let Inf
𝑄
(𝜋) denote the set of

states that appear infinitely often in 𝜋. The run 𝜋 is accepted
by A, if and only if ∃𝜋 ∈ Run(A) with Inf

𝑄
(𝜋) ∩ 𝐹 ̸= 0. An

infinite word 𝜉 is accepted by A, if some run of A over 𝜉 is
accepted.

Definition 6 (transition based generalized Büchi automata).
Transition based generalized Büchi automaton (TGBA) is a
Büchi automaton in which the set of subsets of acceptance
conditions are carried by the transitions. It can be defined
as a tuple T = ⟨𝑄,AP, 𝛿, 𝐼, 𝐹⟩, where 𝑄 is a finite set of
states. AP is a finite set of atomic propositions. 𝛿 ⊆ 𝑄×

2
2
AP
× 2𝐹 × 𝑄 is a transition relation, where each transition

is labeled by a Boolean formula and a set of acceptance
conditions. 𝐼 ⊆ 𝑄 is a set of initial states. 𝐹 = {𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑚
}

is a finite set of acceptance conditions, 𝑚 is the number
of acceptance conditions, and 2

𝐹 is the set of the sub-
sets of acceptance conditions. An infinite sequence 𝜋 =

(𝑞
0
, 𝑙
0
, 𝐹
0
, 𝑞
1
) ⋅ ⋅ ⋅ (𝑞

𝑖
, 𝑙
𝑖
, 𝐹
𝑖
, 𝑞
𝑖+1
) ⋅ ⋅ ⋅ ∈ 𝛿𝜔 is a run of T, where

𝑞
0
∈ 𝐼, 𝑙
𝑖
∈ 22

AP
, 𝐹
𝑖
∈ 2𝐹, and 𝑞

𝑖+1
∈ 𝛿(𝑞

𝑖
, 𝑙
𝑖
, 𝐹
𝑖
) for all 𝑖 ≥ 0.

Run(T) denotes the set of all runs of T. Let Inf
𝛿
(𝜋) denote

Table 1: Tableau rules for LTL formulae.

Formula 1st subformula 2nd subformula
𝜑 ∧ 𝜓 {𝜑, 𝜓}

𝜑 ∨ 𝜓 {𝜑} {𝜓}

X𝜑 {X𝜑}
𝜑U𝜓 {𝜓} {𝜑,X(𝜑U𝜓)}
𝜑R𝜓 {𝜑, 𝜓} {𝜓,X(𝜑R𝜓)}
F𝜑 {𝜑} {XF𝜑}
G𝜑 {𝜑,XG𝜑}

the set of transitions that appear infinitely often in 𝜋. The run
𝜋 is accepted byT, if and only if ∀𝑍 ∈ 𝐹, ∃𝜋 ∈ Run(T) with
Inf
𝛿
(𝜋)∩𝑍 ̸= 0.The accepting runs ofT visit each acceptance

set infinitely often.

3. Details of Our Approach

In this section, we introduce our ideas and the details of our
approach.Thenext section gives an overview of the algorithm
implementation.

3.1. Tableau Rules. Tableau rules [7] are often used to trans-
late an LTL formula into a BA.The process of translation is as
follows. First, an LTL formula 𝜑, which is rewritten as NNF, is
defined as the labeling of the initial state.Then, 𝜑 is expanded
by applying the tableau rules recursively until no {U,R, F,G}-
subformulae occur at the top level. The expansion of the
formula is rewritten as a cover by computing its disjunctive
normal form (DNF). Each disjunct of the cover represents
a state of the automaton. All propositional literals represent
the label of the states, which are the acceptance conditions
satisfied in this state. The X-formulae represent the label of
the next state and determine the transitions outcoming from
the current state. The transition is given by connecting each
state to its successors. The tableau rules for LTL formulae
are listed in Table 1. The automata constructed by the tableau
rules are state-based Büchi automata.

For instance, the expansions of 𝛼U𝛽 and 𝛼R𝛽 are showed
as (2). In the cover of 𝛼U𝛽, there are two propositional literals
and one X-formula. Consider

𝛼U𝛽 󳨐⇒ 𝛽 ∨ (𝛼 ∧ X (𝛼U𝛽)) ,

𝛼R𝛽 󳨐⇒ (𝛼 ∧ 𝛽) ∨ (𝛽 ∧ X (𝛼R𝛽)) .
(2)

By observing the expansion of 𝛼U𝛽, we find that either (i)
𝛽 holds and 𝛼U𝛽 is satisfied or (ii) 𝛼 holds and 𝛼U𝛽 should
be verified next, until 𝛼U𝛽 has to be satisfied. Obviously, (ii)
is infinite path probably. The expansion of 𝛼R𝛽 is similar to
𝛼U𝛽. Intuitively, F𝛼 ⇒ 𝛼∨XF𝛼 andG𝛼 ⇒ 𝛼∧XG𝛼 product
infinite path also.

Although the method based on tableau rules can work
well, the only challenging problem is how to avoid the
unwanted infinite path. Because tableau rules cannot fully
characterize {U,R, F,G}-formulae, each infinite path cannot
identify models of the formula according to a graph which is
constructed by the sole expansion law. In order to cope with

4 Journal of Applied Mathematics

(1) S(𝑞
0
) = 0; (∗)

(2) if ∃𝜑 ∈ 𝐹 with 𝜑 ∈ 𝐸(𝑞
𝑖
) and 𝑙(𝑡

𝑖
)⊨∗𝜑 then

S(𝑡
𝑖
) = S(𝑞

𝑖
) ∪ 𝜑

else
S(𝑡
𝑖
) = S(𝑞

𝑖
);

endif (∗∗)
(3) if ∃𝜑 ∈ 𝐹 with 𝜑 ∈ 𝐸(𝑞

𝑖+1
) and 𝜑 ∉ S(𝑡

𝑖
) then

S(𝑞
𝑖+1
) = S(𝑡

𝑖
)

else
S(𝑞
𝑖+1
) = 0;

endif ; (∗ ∗ ∗)

Algorithm 1

the infinite path, the promise has been presented in [13]. In
this paper, a new approach, contented situation, is presented.
We attach contented situation to the states and transitions in
the automata during expanding LTL formulae. Although a
sequence of BA is infinite probably, it is accepted as long as
the formula is satisfied infinite often along the sequence. We
record the acceptance conditions that are satisfied along the
sequence. If all the acceptance conditions are satisfied, then
we arrive at the final state. It guarantees the sequence of the
{U,R, F,G}-formulae cannot be postponed infinitely.

3.2. Contented Situation. The contented situation is a set of
acceptance conditions that are satisfiable along the path of
a BA. The contented situation differs from the promise in
two ways: the definition and the purpose. The promise is
the opposite of the acceptance conditions [13], while the
contented situation is the set of the satisfying acceptance
conditions. The promise is attached to the transitions only,
while the contented situation is attached to the states or
transitions. According to the promise, we can determine
which acceptance conditions are not satisfied in the current
transition. According to the contented situation, we can
determine which acceptance conditions are satisfied in the
current state or transition.

Definition 7 (contented situation). A functionS is defined to
express the contented situation that is a mapping relationship
from the states and transitions to the set of acceptance
conditions. The formalized definition of S is as follows:

S : 𝑄 ∪ 𝑇 󳨀→ 2
𝐹

, (3)

where 𝑄 is a finite set of states, 𝐹 represents a set of the
acceptance conditions, and 𝑇 is a finite set of transitions.

S indicates which acceptance conditions are satisfiable
along a run of the automata. S of the initial state 𝑞

0
is

defined as 0 ((∗) of Algorithm 1). 𝑞
𝑖
is the 𝑖th state and

𝑡
𝑖
is the 𝑖th transition in the automata. The recursive cal-

culation of S(𝑡
𝑖
) and S(𝑞

𝑖
) is shown as (∗∗)-(∗ ∗ ∗) in

Algorithm 1, where 𝐸(𝑞
𝑖
) represents the eventualities that

should be satisfied along the sequence starting from 𝑞
𝑖
. Let

𝜋 = (𝑞
1
, 𝑙(𝑡
1
), 𝑞
2
)(𝑞
2
, 𝑙(𝑡
2
), 𝑞
3
) ⋅ ⋅ ⋅ be a run in the automata. If

𝜋 ⊨ 𝜑 and 𝑙(𝑡
𝑖
) ∈ 𝜋[𝑖], then 𝑙(𝑡

𝑖
)⊨∗𝜑. 𝑙(𝑡

𝑖
) represents the label

of the transition 𝑡
𝑖
.

For example, the expansion of (𝛼U𝛽)U𝛾 is showed in
Figure 1. The contented situations (in the curly braces) are
attached to the states and transitions. 𝐹 = {𝛼U𝛽, (𝛼U𝛽)U𝛾}
andS(𝑞

0
) = 0.S of the transition 𝑡

0
= (𝑞
0
, 𝛼, 𝑞
1
) is 0, because

𝛼 cannot satisfy (𝛼U𝛽)U𝛾. S(𝑞
1
) = 0, because ∄𝜑 ∈ 𝐹 ∩

𝐸(𝑞
1
) s.t. 𝜑 ∈ S(𝑡

0
). The formula is expanded recursively

until S(𝑞
3
) = 0; that is, the final state is reached.

3.3. Computing Deterministic Covers. As said in Section 3.1,
the covers of LTL formulae are computed based on the
recursive application of the tableau rules and on the subse-
quent computation of the DNF of the resulting formula. The
determinism of the BA can be improved using a trick on the
Shannon expansion during the expansion.

For example, the cover ofGF𝜑∧GF𝜓 is showed in (4).The
BA corresponding to this cover has four successor states 𝑞

0
,

𝑞
1
, 𝑞
2
, and 𝑞

3
with labels {𝜑, 𝜓}, {𝜑}, {𝜓}, and {⊤}, respectively.

The states, 𝑞
1
, 𝑞
2
, and 𝑞

3
, are nondeterministic decision states.

Consider

cover (GF𝜑 ∧ GF𝜓)

= (𝜑 ∧ 𝜓 ∧ X (GF𝜑 ∧ GF𝜓))

∨ (𝜑 ∧ X (F𝜓 ∧ GF𝜑 ∧ GF𝜓))

∨ (𝜓 ∧ X (F𝜑 ∧ GF𝜑 ∧ GF𝜓))

∨ (⊤ ∧ X (F𝜑 ∧ F𝜓 ∧ GF𝜑 ∧ GF𝜓)) .

(4)

The states, 𝑞
1
, 𝑞
2
, and 𝑞

3
, can be expanded by applying

the Shannon expansion. The expansions of 𝑞
1
, 𝑞
2
, and 𝑞

3
are

showed in (5). According to the identical equation GF𝜑 ≡

(F𝜑 ∧XGF𝜑), we know (F𝜓 ∧GF𝜑 ∧GF𝜓) ≡ (GF𝜑 ∧GF𝜓),
(F𝜑 ∧ GF𝜑 ∧ GF𝜓) ≡ (GF𝜑 ∧ GF𝜓), and (F𝜑 ∧ F𝜓 ∧ GF𝜑 ∧
GF𝜓) ≡ (GF𝜑 ∧ GF𝜓):

(𝜑 ∧ X (F𝜓 ∧ GF𝜑 ∧ GF𝜓))

= (𝜑 ∧ 𝜓 ∧ X (GF𝜑 ∧ GF𝜓))

∨ (𝜑 ∧ ¬𝜓 ∧ X (GF𝜑 ∧ GF𝜓)) ,

(𝜓 ∧ X (F𝜑 ∧ GF𝜑 ∧ GF𝜓))

= (𝜓 ∧ 𝜑 ∧ X (GF𝜑 ∧ GF𝜓))

Journal of Applied Mathematics 5

𝛼|{0}

𝛼|{0}

q1 (𝛼U𝛽) ∧ ((𝛼U𝛽)U𝛾)|{0}

𝛼 ∧ 𝛾|{(𝛼U𝛽)U𝛾}

𝛽|{𝛼U𝛽}

q0 𝛽|{0}(𝛼U𝛽)U𝛾|{0}

𝛽 ∧ 𝛾|{𝛼U𝛽, (𝛼U𝛽)U𝛾}

𝛼U𝛽|{(𝛼U𝛽)U𝛾} q2

q3

𝛼|{(𝛼U𝛽)U𝛾}

𝛽|{𝛼U𝛽, (𝛼U𝛽)U𝛾}

⊤|{0} ⊤|{0}

𝛾|{(𝛼U𝛽)U𝛾}

Figure 1: The expansion of (𝛼U𝛽)U𝛾.

∨ (𝜓 ∧ ¬𝜑 ∧ X (GF𝜑 ∧ GF𝜓)) ,

(⊤ ∧ X (F𝜑 ∧ F𝜓 ∧ GF𝜑 ∧ GF𝜓))

= (𝜑 ∧ 𝜓 ∧ X (GF𝜑 ∧ GF𝜓))

∨ (𝜑 ∧ ¬𝜓 ∧ X (GF𝜑 ∧ GF𝜓))

∨ (¬𝜑 ∧ 𝜓 ∧ X (GF𝜑 ∧ GF𝜓))

∨ (¬𝜑 ∧ ¬𝜓 ∧ X (GF𝜑 ∧ GF𝜓)) .
(5)

By combining the same items according to (5), (4) can be
rewritten as (6). The BA corresponding to the cover in (6)
has four successor states 𝑞󸀠

0
, 𝑞󸀠
1
, 𝑞󸀠
2
, and 𝑞󸀠

3
with labels {𝜑, 𝜓},

{𝜑, ¬𝜓}, {¬𝜑, 𝜓}, and {¬𝜑, ¬𝜓}, respectively.The states, 𝑞󸀠
0
, 𝑞󸀠
1
,

𝑞󸀠
2
, and 𝑞󸀠

3
, are deterministic decision states. Consequently,

deterministic covers give rise to deterministic automata. The
TGBA corresponding toGF𝜑∧GF𝜓 is showed in Figure 2(a):

cover (GF𝜑 ∧ GF𝜓)

= (𝜑 ∧ 𝜓 ∧ X (GF𝜑 ∧ GF𝜓))

∨ (𝜑 ∧ ¬𝜓 ∧ X (GF𝜑 ∧ GF𝜓))

∨ (¬𝜑 ∧ 𝜓 ∧ X (GF𝜑 ∧ GF𝜓))

∨ (¬𝜑 ∧ ¬𝜓 ∧ X (GF𝜑 ∧ GF𝜓)) .

(6)

There are 2𝑛 labels to be considered during the expansion
by applying the Shannon expansion over 𝑛 atomic propo-
sitions in a BA. However, we remove the invalid nodes
and combine equivalent states during the expansion of LTL
formulae. It helps to ignore the useless labels. In the practical
application, 𝑛 is usually small enough so that the slowdown
incurred by this method has little effect.

3.4. On-the-Fly Degeneralization. The degeneralization is a
simple translation from a GBA to a BA. The standard degen-
eralization algorithm is presented by Clarke et al. [1]. This
standard degeneralization algorithm can be used to translate
a TGBA into a BA [2, 3, 5]. However, the standard algorithm
is a kind of postdegeneralization algorithm; that is to say, it
is used to translate a GBA or a TGBA to a BA, only when

the expansion of LTL formulae is finished. The intermediate
automata (GBAorTGBA) are needed to record the expansion
of LTL formulae. For a TGBA, there are 𝑚!(𝑚 + 1) possible
degeneralizations by applying this algorithm. It takes a lot of
time and storage space to complete the degeneralization.

The degeneralization of GF𝜑 ∧ GF𝜓 by applying the
standard degeneralization algorithm is showed in Figure 2.
The details are introduced in Section 4.2.2 of [5]. The TGBA
corresponding toGF𝜑∧GF𝜓, which is showed in Figure 2(a),
has two acceptance conditions {Acc[F𝜑],Acc[F𝜓]} that are
indicated using coloredmarker (the blue dot and the red dot)
per set. In Figure 2(b), in addition to the first level, the states
in each level satisfy at least one acceptance condition. The
states in the last level satisfy all the acceptance conditions.
In Figure 2(b), all states in level 1 satisfy {Acc[F𝜑]}; all
states in level 2 satisfy {Acc[F𝜑],Acc[F𝜓]}. For example,
𝑞
1
in level 1 satisfies {Acc[F𝜑]}, and 𝑞

2
in level 2 satisfies

{Acc[F𝜑],Acc[F𝜓]} in Figure 2(b).
All transitions are added to the degeneralized automata

according to which acceptance conditions are satisfied in the
current state. In order not to lose the transition, the TGBA
is cloned in 𝑚 + 1 levels. The number of transitions in the
degeneralized automata is three times the ones of TGBA.This
setup guarantees that any accepting run in the degeneralized
automata will correspond to an infinite run that visits all
acceptance conditions infinitely often in the TGBA. The BA
corresponding to GF𝜑 ∧ GF𝜓 is generated by removing the
invalid states and transitions from degeneralized automata in
Figure 2(c). The standard degeneralization algorithm gener-
ates many invalid states and transitions (see Figure 2(b)). It
takes a lot of time to generate the degeneralized automata
and remove the invalid states and transitions. A lot of storage
space has to be used to save the temporal data.

In this paper, we present on-the-fly degeneralization
algorithm used to translate a GBA or a TGBA to a BA
during the expansion of LTL formulae. The degeneralized
automata are no longer needed in on-the-fly degeneralization
algorithm. Our idea is that the degeneralization is carried out
in each step of the expansion. As described in Section 3.2,
the contented situation is attached to all states in the BA.
According to the contented situation, we know which accep-
tance conditions are satisfiable in each state. We can add
the transitions to the BA according to which acceptance
conditions are satisfied in the current state; that is to say,

6 Journal of Applied Mathematics

𝜓 ∧ ¬𝜑 GF𝜑 ∧ GF𝜓 q0 𝜑 ∧ ¬𝜓

𝜑 ∧ 𝜓

¬𝜑 ∧ ¬𝜑

(a) TGBA corresponding to GF𝜑 ∧ GF𝜓

𝜓 ∧ ¬𝜑

𝜓 ∧ ¬𝜑

𝜓 ∧ ¬𝜑

q0

𝜑 ∧ ¬𝜓

𝜑 ∧ ¬𝜓

𝜑 ∧ ¬𝜓

𝜑 ∧ 𝜓

𝜑 ∧ 𝜓

𝜑 ∧ 𝜓

Level 0

¬𝜑 ∧ ¬𝜓

¬𝜑 ∧ ¬𝜓

¬𝜑 ∧ ¬𝜓

Level 1

Level 2

q1

q2

(b) Degeneralization of the TGBA

q0

𝜑 ∧ ¬𝜓

𝜑 ∧ ¬𝜓

𝜑 ∧ 𝜓

𝜑 ∧ 𝜓

q1

q2

¬𝜑

¬𝜑¬𝜓

𝜓

(c) BA corresponding to GF𝜑 ∧ GF𝜓

Figure 2: Degeneralization of a TGBA corresponding to GF𝜑 ∧ GF𝜓 using the standard degeneralization algorithm.

¬𝜓|{F𝜑}

𝜓|{F𝜑, F𝜓}

𝜑 ∧ 𝜓|{F𝜑, F𝜓}

{GF𝜑,GF𝜓}|{F𝜑, F𝜓} q0

{F𝜓,GF𝜑,GF𝜓}|{F𝜑} q1

𝜑 ∧ ¬𝜓|{F𝜑}
¬𝜑 ∧ 𝜓|{F𝜓}

¬𝜑 ∧ ¬𝜓|{0}

𝜑|{F𝜑, F𝜓}

q2 ¬𝜑|{F𝜓}{F𝜑,GF𝜑,GF𝜓}|{F𝜓}

Figure 3: Building a BA corresponding to GF𝜑 ∧ GF𝜓 using on-the-fly degeneralization.

the outgoing transitions that carry the acceptance condition
𝑓
𝑗
are redirected to the next state inwhich𝑓

𝑗
is satisfiable.The

outgoing transitions that carry 0 are redirected to the initial
state. This setup guarantees that any accepting run can see all
acceptance conditions infinitely often in the automata.

On-the-fly degeneralization is a process in which the
degeneralization process is carried out during the expansion
of LTL formulae. Therefore, we can translate an LTL formula
to a BA directly. The time used to generate the degeneralized
automata and remove redundant states and transitions is
saved. In Figure 3, we translateGF𝜑∧GF𝜓 to a BA directly by
applying on-the-fly degeneralization.The contented situation

is attached to the states and transitions. The contented
situation of the transition 𝑡

𝑖
is equal to the contented situation

of the destination state of this transition. For example, the
outgoing transitions that carry the acceptance condition
{Acc[F𝜑]} are redirected to the next state in which {Acc[F𝜑]}
is satisfiable. The outgoing transitions that carry the accep-
tance condition {Acc[F𝜓]} are redirected to the next state
in which {Acc[F𝜓]} is satisfiable. The outgoing transitions
that carry the acceptance condition {Acc[F𝜑],Acc[F𝜓]} are
redirected to the next state in which {Acc[F𝜑],Acc[F𝜓]} is
satisfiable. On-the-fly degeneralization is a process in which
the standard degeneralization algorithm is carried out in each

Journal of Applied Mathematics 7

00

𝛽

𝛽

𝛽

q0

𝛾

𝛼

𝛼

𝛼

⊤q1

q2

q3
𝛽 ∧ 𝛾

𝛼 ∧ 𝛾

01

10

11

(a) The BA corresponding to (𝛼U𝛽)U𝛾

0

0

0
0

0

0

0

0

1

1

1
1

1

1

1

1

q0

q1q1

q2q2q2

q3

(b) Representing the BA by applying OBDD

Figure 4: Rewriting Büchi automata into an OBDD.

step of expansion. The BA in Figure 3 is equivalent to the BA
in Figure 2(c).

Although the BA in Figure 3 is different from the BA in
Figure 2(c), they both guarantee that any accepting run visits
all acceptance conditions infinitely often in the automatawith
the same number of states and transitions.

3.5. Representing a BA by OBDD. The BA can be represented
by applying ordered binary decision diagrams (OBDDs) [14].
OBDD is a binary decision diagram that has an ordering
for some list of variables. For example, we represent the BA
corresponding to (𝛼U𝛽)U𝛾 in Figure 1 by applying OBDDs.
OBDDs representation is showed in Figure 4.

OBDDs can be regarded as a compressed representation
of sets or relations. The checking equivalence is reduced to
checking isomorphism between BDDs, when OBDDs are
used to represent the BA. If the two Boolean functions have
isomorphic representations in OBDDs, they are logically
equivalent and can be merged. OBDD is a more concise
representation for the cover by merging isomorphic subtrees.

OBDD, which is a rooted, directed acyclic graph, can be
stored as a syntax directed acyclic diagram (DAG).The use of
a DAG has two advantages. First, less space is needed to store
the automata. Second, if the result of computing each subtree
is cached, there will be concomitant time savings. Sharing of
subformulae also can work acrossmultiple formulae. Because
each subformula is unique, a cache is used to record the
formula when we are travelling multiple formulae in order
to speed up the algorithm. The running time is reduced by
applying this kind of data structure.

4. Overview of Algorithm

In the current, many kinds of state-of-the-art algorithm used
to translate an LTL formula to a BA can be divided into four

main phases: simplifying the formulae, translating an LTL
formula to a BA, the BA simplification, and degeneralization
of the BA.

In this paper, we focus on phase 2 and phase 3. According
to the new approach proposed in the previous section, we
have conceived and implemented a new translation tool,
called ltltoba, which builds a BA from an LTL formula.
The contented situation and on-the-fly degeneralization algo-
rithm are used in these tools. Our method differs from the
previous translation algorithms [2, 3, 5, 7] in two steps.

(1) Our algorithm circumvents the intermediate autom-
ata and translates an LTL formula to a BA directly.

(2) On-the-fly degeneralization is used in our algorithm.
Phase 4 is not needed.

4.1. The Data Structure. The basic data structure that the
automata graph construction algorithm manipulates is the
Node, which contains the following fields:NodeSet, the set of
the unprocessed states; DisjunctSet, the set of the disjuncts
of the cover; f , the input LTL formulae; q, q󸀠, the state of the
automata; t, the transition of the automata; src, source node of
a transition;dst, destination node of a transition; l, the label of
the state or transition; F, the set of the acceptance conditions.

In order to describe the BA, the class is defined as shown
in Algorithm 2.

4.2. The Main Algorithm. The main algorithm of ltltoba,
which is described in Algorithm 3, is used to transform
a given LTL formula 𝑓 to a BA. The idea is very clear;
we expand an LTL formula recursively by applying the
tableau rules. A simple depth-first-search strategy is used in
the expansion operation. The resulting formula is rewritten
into a cover by computing its DNF. For each disjunct of
the cover, the contented situation of state or transition is

8 Journal of Applied Mathematics

class T BA
{

public:
void initialize state(f0); // the initial node is defined as 𝑓, the contented situation is 0.
void add state(qS(q)); // adding a state to the BA. If a BA has not the state 𝑞, 𝑞 is added to
the BA directly. If a BA has a state 𝑞󸀠 with 𝑙(𝑞) = 𝑙(𝑞󸀠), then S(𝑞󸀠) = S(𝑞) ∪S(𝑞󸀠) and 𝑞 is discarded.
void add trans(tS(t)); // adding a transition to the BA. If a BA has not the
transition 𝑡, 𝑡 is added to the BA directly. If a BA has a transition 𝑡󸀠 with src(𝑡) = src(𝑡󸀠),
dst(𝑡) = dst(𝑡󸀠) and S(𝑡) = S(𝑡󸀠), then 𝑙𝑎𝑏𝑒𝑙(𝑡󸀠) = 𝑙𝑎𝑏𝑒𝑙(𝑡) ∪ 𝑙𝑎𝑏𝑒𝑙(𝑡󸀠) and 𝑡 is discarded.
string search state(q) // Searching the state 𝑞 in the BA.
If ∃𝑞󸀠 ∈ BA s.t. 𝑙(𝑞) = 𝑙(𝑞󸀠), then 𝑞 already exists in the BA and return 𝑞󸀠.
Otherwise, return 0.
string search trans(t) // Searching the transition 𝑡 in the BA. If ∃𝑡󸀠 ∈ BA s.t. src(𝑡) = src(𝑡󸀠)
and dst(𝑡) = dst(𝑡󸀠), then 𝑡 already exists in the BA and return 𝑡󸀠. Otherwise, return 0.

}

Algorithm 2

Table 2: LBTT parameters used for formulae generation.

Translators Benchmark 1 Benchmark 2
States Trans. Time (s) States Trans. Time (s)

LTL3BA 3938 8816 21.25 8765 25251 42.62
LTL3BA-M 3527 7611 18.57 7629 20795 35.53
LTL3BA-S 3650 7697 18.91 7586 19703 34.11
LTL3BA-M-S 3389 7002 17.32 6973 17602 30.72
Spot-BA-any-high 3442 7342 17.98 7621 20461 35.11
Spot-BA-deterministic-high 3091 6447 15.89 6306 15689 27.49
Spot-BA-small-high 2933 5863 14.66 5972 14193 25.20
ltltoba 2886 5437 14.38 5721 13817 23.32

Benchmark 3 Benchmark 4
States Trans. Time (s) States Trans. Time (s)

LTL3BA 6474 23526 50.00 18625 103332 152.44
LTL3BA-M 5772 21134 44.84 15722 79481 119.00
LTL3BA-S 6143 21382 45.88 16855 83760 125.77
LTL3BA-M-S 5561 19442 41.67 14582 67669 102.82
Spot-BA-any-high 5730 20850 44.30 17008 90438 134.31
Spot-BA-deterministic-high 5289 18531 39.70 15460 76400 124.82
Spot-BA-small-high 4927 16468 35.66 13452 59704 91.45
ltltoba 4893 15635 34.38 11708 49382 83.34

calculated according to the calculation using (∗∗)-(∗ ∗ ∗)
of Algorithm 1. If the new states do not exist in the BA, they
will be added to BA. The function 𝑎𝑑𝑑 𝑠𝑡𝑎𝑡𝑒() tells us how
to add a state to the BA. Then, the transitions are added to
the BA by applying the on-the-fly degeneralization algorithm
(Algorithm 3, lines (24)–(30)). If theS(𝑞

𝑖
) has been reset to 0,

the state 𝑞
𝑖
is the final state.The details of the main algorithm

are shown in Algorithm 3.

4.3. Preliminary Analysis on Complexity. Themost time-con-
suming component in ltltoba is the process of calculating the
cover of the formulae. In our work, we remove the redundant
states and transitions in each step of expansion. The size of
the resulting automata is smaller. Representing the cover by

OBDDs contributes to merging equivalent formulae.The on-
the-fly degeneralization algorithm contributes to reducing
the running time.Therefore, the operation of the algorithm is
more efficient and the running time becomes faster.Theworst
time complexity of the expansion algorithm is O(2𝑛) (where
𝑛 is the number of elements in 𝑓), because we have to travel
all nodes in worst case. The average time complexity of our
algorithm is much lower than O(2𝑛).

5. Experimental Results

The main algorithm, which is described in Section 4, is an
implementation in C++ by applying CUDD library. This
algorithm implements translating an LTL formula to a BA

Journal of Applied Mathematics 9

(1) Input: an LTL formula 𝑓;
(2) Output: a BA corresponding to 𝑓;
(3)
(4) procedure LTL to BA translation
(5) NodeSet ← {𝑓 | 0};
(6) BA.initialize state(𝑓 | 0);
(7) while 𝑁𝑜𝑑𝑒𝑆𝑒𝑡 ̸= 0 do
(8) let 𝑞 ∈ NodeSet;
(9) 𝑁𝑜𝑑𝑒𝑆𝑒𝑡 ← 𝑁𝑜𝑑𝑒𝑆𝑒𝑡 \ {𝑞};
(10) 𝜑 ← 𝑎𝑝𝑝𝑙𝑦 𝑡𝑎𝑏𝑙𝑒𝑎𝑢 𝑟𝑢𝑙𝑒𝑠(𝑞);
(11) for each 𝑝 at the top level in 𝜑 do
(12) 𝜑 ← (𝑝 ∧ 𝜑[{𝑝}]) ∨ (¬𝑝 ∧ 𝜑[{¬𝑝}]);
(13) simplify(𝜑);
(14) end for
(15) DisjunctSet← the DNF of 𝜑;
(16) for each 𝑑 ∈ DisjunctSet do
(17) let 𝑑 ← 𝑙(𝑡) ∧ X(𝑞󸀠);
(18) S(𝑡) ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑢𝑠𝑖𝑛𝑔 (∗∗);
(19) S(𝑞󸀠) ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑢𝑠𝑖𝑛𝑔 (∗ ∗ ∗);
(20) if 𝐵𝐴.𝑠𝑒𝑎𝑟𝑐ℎ 𝑠𝑡𝑎𝑡𝑒(𝑞󸀠) = 0 then
(21) 𝐵𝐴.𝑎𝑑𝑑 𝑠𝑡𝑎𝑡𝑒(𝑞󸀠 | S(𝑞󸀠));
(22) NodeSet← NodeSet ∪ {𝑞

󸀠

| S(𝑞󸀠)};
(23) end if
(24) if (𝑡󸀠 ← 𝐵𝐴.𝑠𝑒𝑎𝑟𝑐ℎ 𝑡𝑟𝑎𝑛𝑠(𝑡)) = 0 then
(25) 𝐵𝐴.𝑎𝑑𝑑 𝑡𝑟𝑎𝑛𝑠(𝑞, 𝑙(𝑡), 𝑞󸀠,S(𝑡))

(26) else
(27) let 𝑡󸀠 ← (𝑞, 𝑙(𝑡

󸀠

), 𝑞
󸀠

,S(𝑡󸀠));
(28) 𝑙(𝑡󸀠) ← 𝑙(𝑡󸀠) ∨ 𝑙(𝑡);
(29) S(𝑡󸀠) ← S(𝑡󸀠) ∪ S(𝑡);
(30) end if
(31) end for
(32) end while
(33) return BA;
(34) End procedure

Algorithm 3: The main algorithm of ltltoba.

and removing redundant state or transition of the resulting
automata. On-the-fly degeneralization is used in this algo-
rithm. It can be used as kernel of other phases.

In this section, we extensively tested ltltoba, in compar-
ison with the two state-of-the-art tools, LTL3BA v1.0.2 and
Spot v1.1.4. We consider the running time and the number
of states and transitions of the resulting automata. For the
comparison of the results, we use LBTT 1.2.1 which takes a
set of translation tools for testing their running time as input.
LBTT [15] is a randomized testbench tool which gives a series
of randomly generated formulae to the testing algorithms.

We run all tests on a computer with processor Pentium
Dual-Core CPU E5300 @2.6GHz, 4GB of memory. The
operating system was Ubuntu 12.04 LTS. Ltltoba, Spot, and
LTL3BA were compiled on this machine to achieve satis-
factory results. For the purpose of tests, all programs were
configured with the formula simplification enabled.

We compare those translators on four sets of random
formulae generated by LBTT. Benchmark 1 and Benchmark 3
contain 300 formulae of the length 15–30 and their negation.
The number of atomic propositions in Benchmark 1 is 3, and
the other is 8. Benchmark 2 and Benchmark 4 contain 400

formulae of the length 25–40 and their negation.The number
of atomic propositions in Benchmark 2 is 3, and the other
is 8. Table 2 presents the cumulative results of translations
of all formulae in the four sets. The table illustrates the
gradual effect of modification of each of the translators. The
automata produced by ltltoba are in sum slightly better than
the automata produced by other tools.

6. Conclusion

In this paper, we presented a new approach to convert an
LTL formula to a BA more efficiently. Because the size of
the product automata will jump exponentially when we do
the product operation, the smaller and more deterministic
property automata can improve efficiency of model checking.
In order to deal with the infinite path during the expansion of
LTL formulae, we attach the contented situation to the state
and transition in the automata. In each step of expansion,
we remove the redundancy states and transitions. The on-
the-fly degeneralization algorithm is presented in this paper.
Compared with the standard degeneralization algorithm,
the on-the-fly degeneralization algorithm is a more efficient

10 Journal of Applied Mathematics

method. A conversion tool, ltltoba, implements these ideas.
Because the resulting automata are smaller during expansion,
the algorithm of ltltoba is more efficient. After an extensive
empirical test, ltltoba can reduce the running time and the
number of states and transitions to some degree.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking,
MIT Press, 1999.

[2] T. Babiak, M. Ketnsk, V. ehk et al., “LTL to Büchi automata
translation: fast and more deterministic,” in Tools and Algo-
rithms for the Construction and Analysis of Systems, vol. 7214,
pp. 95–109, Springer, Berlin, Germany, 2012.

[3] P. Gastin and D. Oddoux, “Fast LTL to Büchi automata transla-
tion,” in Computer Aided Verification, G. Berry, H. Comon, and
A. Finkel, Eds., vol. 2102 of Lecture Notes in Computer Science,
pp. 53–65, Springer, 2001.

[4] U. Boker, O. Kupferman, and A. Rosenberg, “Alternation
removal in buchi automata,” in Automata, Languages and
Programming, pp. 76–87, Springer, 2010.

[5] A. Duret-Lutz, “Ltl translation improvements in spot,” in Pro-
ceedings of the 5th International Conference on Verification and
Evaluation of Computer and Communication Systems (VECoS
’11), pp. 72–83, British Computer Society, 2011.

[6] J. M. Couvreur, “On-the-fly verification of linear temporal
logic,” in FM99, Formal Methods, vol. 1708 of Lecture Notes in
Computer Science, pp. 253–271, Springer, Berlin, Germany, 1999.

[7] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, “Simple on-
the-fly automatic verification of linear temporal logic,” in
Proceedings of the 15th IFIP WG6 International Symposium on
Protocol Specification, Testing and Verification (IFIP ’95), 1995.

[8] G. J. Holzmann, “The model checker SPIN,” IEEE Transactions
on Software Engineering, vol. 23, no. 5, pp. 279–295, 1997.

[9] D. Giannakopoulou and F. Lerda, “From states to transitions:
improving translation of LTL formulae to Büchi automata,”
in Formal Techniques for Networked and Distributed Sytems—
FORTE 2002, vol. 2529 of Lecture Notes in Computer Science,
pp. 308–326, Springer, Berlin, Germany, 2002.

[10] T. Babiak, T. Badie, A. Duret-Lutz et al., “Compositional
approach to suspension and other improvements to LTL trans-
lation,” inModel Checking Software, pp. 81–98, Springer, Berlin,
Germany, 2013.

[11] K. Chatterjee, A. Gaiser, and J. Ketnsk, “Automata with gen-
eralized Rabin pairs for probabilistic model checking and
LTL synthesis,” in Computer Aided Verification, pp. 559–575,
Springer, Berlin, Germany, 2013.

[12] E. Renault, A. Duret-Lutz, F. Kordon, andD. Poitrenaud, “Three
SCC-based emptiness checks for generalized Büchi automata,”
in Logic for Programming, Artificial Intelligence, and Reasoning,
vol. 8312 of Lecture Notes in Computer Science, pp. 668–682,
Springer, Berlin, Germany, 2013.

[13] A. Duret-Lutz and D. Poitrenaud, “SPOT: an extensible model
checking library using transition-based generalized Büchi
automata,” in Proceedingsof the IEEE Computer Society’s 12th

Annual International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems, 2004.
(MASCOTS ’04), pp. 76–83, IEEE, 2004.

[14] R. E. Bryant, “Graph-based algorithms for boolean funct ion
manipulation,” IEEE Transactions on Computers, vol. C-35, no.
8, pp. 677–691, 1986.

[15] H. Tauriainen and K. Heljanko, “Testing LTL formula trans-
lation into Büchi automata,” International Journal on Software
Tools for Technology Transfer, vol. 4, no. 1, pp. 57–70, 2002.

