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In flexible microrolling, springback in thickness direction is a critical indicator to determine the forming quality. Accurate
prediction of springback is one of the significant aspects in the finite element analysis of flexible microrolling. Meshing is a step
of great importance in finite element analysis of manufacturing process as it directly determines the accuracy of the FEA results
as well as the requested computational time. This paper presents a numerical study on revealing the mesh effects on the accuracy
of springback estimation utilising ABAQUS/Standard for modelling and analyses. Two types of meshes with six mesh sizes for
each mesh type are considered in this study and the optimal mesh type and mesh size have been found to obtain accurate value of
springback while saving as much computational time as possible.

1. Introduction

The finite element analysis (FEA) is a powerful computational
tool for performing various scientific and engineering anal-
yses. The use of mesh generation techniques for dividing a
complex problem into small elements plays a crucial role in
FEA, which determines the accuracy of the FEA results and
the requested computational time.

Many researchers have investigated the effects of mesh
size on the accuracy of numerical simulation results. Shi et al.
[1] used both coarse mesh and fine mesh to study the mesh
size effect on numerical results of blast wave propagation
and interaction with structures. It was observed that a coarse
mesh induced errors in estimation of the positive reflected
peak pressure in blast scenario. Choi and Kwak [2] investi-
gated the influence of mesh size on nonlinear finite element
analysis of the behaviour of reinforced concrete structure. In
their study, the calculated value with relatively small mesh
size was found to better approximate the experimental data
and the numerical error was hardly noticeable. Cojocaru et
al. [3] discussed the mesh size effect on stresses and strains in
finite element analysis of a gear housing. Six different mesh
sizes were performed in the FEA simulations. The results
revealed that the mesh density had high significance to the
stresses and insignificance to the strains, where the difference

between the maximum von Mises stresses reached 20%.
Kim et al. [4] presented a finite element study of the mesh
density effect on the mechanical behaviour prediction of
a pyramidal unit cell. The case studies of the mechanical
behaviours of the unit cell under compression loading such
as peak stress, effective modulus, and deformed geometry
with various mesh conditions indicated that higher mesh
density offered more accurate results undoubtedly. Smith
and Hobbs [5] assessed the effect of mesh size on the
behaviour of model slopes in a centrifuge via two aspect
ratios of 0.5 and 1. Discrepancy between the simulation
outcomes and the experimental results was noted when the
coarser mesh with aspect ratio of 0.5 was used. Lai et al. [6]
conducted an analysis of the effect of mesh density on the
numerical simulation results of fluid-structure interaction. It
was demonstrated in their research that calculation errors
between simulation results and experimental data reduced
according to the mesh density increasing from 2 to 3. Koslan
etal. [7] studied the effect of mesh sizing toward deformation
result in simulation for blast loading application and they
mentioned that the percentage of error for deformation
result decreased due to the sufficient refinement of finite
element grid, which however cost more computational time.
Candal et al. [8] focused on investigating the impact of mesh
density on injection molding simulation results. It was found
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that when the number of elements increased, the time for
obtaining simulation results also increased, but with a better
convergence in the values obtained.

From the previous related literature, it can be seen
that the finite element models with fine mesh yield highly
accurate results but may take longer computational time.
Small element size will increase the FE model’s complexity,
which is only used when high accuracy is demanded. On the
contrary, large element size will simplify the FE model and
is extensively used in order to provide a quick and rough
estimation of designs.

Moreover, the influence of mesh on springback prediction
has also been highlighted in previous research activities.
Pham et al. [9] established a numerical model to investigate
the springback of U-shaped parts made of ultrathin stainless
steel after deep-drawing with three mesh sizes. Prediction
with the finest mesh was found to be closer to the exper-
imental result, but taking the longest CPU time of 168 h.
Xu et al. [10] studied the relationship between the number
of the blank mesh sizes and the accuracy and efficiency of
springback simulation, taking the U-bending process as an
example. They concluded that five elements contacting die
radius produced better solution than that of three elements,
but with increasing calculation time by 1014.08 s. Eggertsen
et al. [11] analysed the springback during drawing bending
process and confirmed that better simulation result could
be attained using smaller mesh size. Nevertheless, there
are few reports concerning flexible microrolling process,
especially the springback of the blank along thickness direc-
tion. Although Xie et al. [12, 13] conducted numerical and
experimental investigations on microrolling of stainless steel
foil, they concentrated on friction behaviour and evolution
of surface roughness during the microrolling process without
taking into consideration the springback of the foil in thick-
ness direction and the effect of reduction. On this account,
it is consequential to look into the microrolling process
numerically from the aspects of springback and inconstant
reduction as well as the influence of simulation parameters
on the calculated results.

In this study, a 3D flexible microrolling finite element
model is established by applying different mesh sizes and
types of meshes. The springback of the blank in thickness
direction is analysed to reveal the mesh effects on the accu-
racy of the FEA results and present guidelines for choosing
appropriate mesh for finite element analyses of microrolling
process.

2. Numerical Analysis during Flexible
Microrolling Process

As flexible microrolling process involves nonlinear analysis,
the solution usually cannot be calculated by solving a single
system of equations. Instead, the solution is obtained itera-
tively by use of the Newton-Raphson method [14].

System of nonlinear algebraic equations can be written as

y(@)=P@)-Q=0, 1)
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F1GURE 1: Convergence of the Newton-Raphson iteration process.

where a is the nodal displacement vector and Q is the nodal
load vector in the finite element analysis with an unknown
amount of displacement.

If a trial value of a® is found sufficiently close to the
correct one but at which y(a) # 0, the improved trial solution
can be obtained by finding

al™h = 2™ 4 AQ™ (2)

with taking a Taylor expansion in the vicinity of a® and
keeping only linear terms [15]

W(a(n+1)) = w(a(")) ¥ (‘%’) Aa" =0, (3)

where dy/da is the tangent stiffness matrix; namely,
—=—=K . 4
a T (a) (4)
Equations (3) and (4) give
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where Kgf') = KT(a(")), P" = p@a™).

Since the Taylor expansion equation (3) takes only linear
terms, a™*" is still an approximate solution. Iteration is
continued until the convergence requirements are met.

Graphically, the convergence of the Newton-Raphson
iteration process is illustrated in Figure 1. It can be seen that
the difference between the total applied load, Q, and P™ can
be calculated as

(5)

R" =Q-P", (6)

where R™ is the force residual for the iteration [16].

In such a nonlinear problem, it is almost impossible
to have R™ equal zero, so a tolerance value is set for
comparison. If R™ is less than the tolerance value, Q and
P™ are in equilibrium, and a®™" is a valid equilibrium
configuration for the model under the applied load.
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FIGURE 2: FE model of flexible microrolling.

However, before the solution is accepted, Aa™ is also
checked, which is small relative to the total incremental dis-
placement. If Aa™ is greater than 1% of the total incremental
displacement, another iteration is performed. Only if both
convergence requirements are satisfied can a solution be said
to have converged for that load increment.

3. Simulation Conditions

3.1. FE Model. The commercial FEA software package,
ABAQUS/Standard, has been used to develop the finite
element model of flexible microrolling, as shown in Figure 2,
and some basic geometric parameters of the model are given
in Table 1.

The upper and lower rolls were treated as rigid bodies
and meshed with 4-node 3D rigid quadrilateral elements
(R3D4). The motion of nodes and elements that form the
rigid rolls is governed by the rigid body reference nodes,
which take the geometric centres of the upper and lower rolls,
respectively. The shape of the rolls does not alter throughout
the simulation process but can undergo rigid body motions
pursuant to the boundary conditions applied at the reference
nodes.

During the flexible microrolling process, the blank is
pressed, leading to the thickness thinned and the longitudinal
and latitudinal elongation. As the stress and strain distri-
butions in the thickness direction have an impact on the
springback after the whole forming process, solid elements
must be deployed to directly indicate the initial thickness of
the blank and also the variation of the blank thickness and
the states of stress and strain along thickness direction after
rolling. Thus, 8-node linear brick elements (C3D8R) were
chosen to mesh the deformable blank. Reduced integration
and enhanced hourglass control were employed for all the
elements to decrease computation time and improve conver-
gence [17].

The contact between the rolls and the blank was set
as surface-to-surface contact, and two contact pairs were
created, which are contact between the upper roll and the top

3
TABLE 1: Basic geometric parameters of the FE model.
Diameters of the rolls (mm) D=25
Widths of the rolls (mm) B=35
Length of the blank (mm) L=40
Width of the blank (mm) b=10
Thickness of the blank (ym) t =500

TABLE 2: Loads and boundary conditions for phase I.

Position Load and boundary condition
V=V, =V, =0, =w,=0
A, w, = —1.6rad/s
F, =
V=V, =V, S0, =0, =
Ay w, = 1.6rad/s
F,=0
o v, =0

v, = —20mm/s

TaBLE 3: Loads and boundary conditions for phase II.

Position Load and boundary condition
Ve=v,=w,=w,=0
Ahw,D
A _ z
v, =%
’ y 2
w, = —1.6rad/s
Fy =-10kN
Ve=V, =0, =, =
Al Vo= + Ahsz
7 21
w, = 1.6rad/s
F, = 10kN
a v, =0

surface of the blank and contact between the lower roll and
the bottom surface of the blank, respectively.

For the definition of the contact property, tangential
behaviour was assigned adopting the penalty friction formu-
lation. According to the engineering experience, the friction
coeflicient between rolls and blank is typically 0.1-0.2, and the
average friction coefficient 0.15 was selected in the cold rolling
of stainless steel workpieces [13, 18], so the friction coefficient
0.15 was selected in this study.

3.2. Loads and Boundary Conditions. The flexible micro-
rolling process can be divided into two phases, that is, initial
contact between the rolls and blank and flexible rolling.
Different loads and boundary conditions were applied for
different phases, as shown in Tables 2 and 3, in which A,
and A, are the geometric centres of the upper and lower rolls,
separately, « is the middle surface of the blank to the thickness
direction, / is the length of the area of contact between the
rolls and the blank, Ah is the reduction amount, v,, Vy and
v, are corresponding velocity components in directions x, y,
and z, w,, w,, and w, are the angular velocity components of
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FIGURE 3: Bilinear isotropic hardening material model.

the rolls rotating about the axes x, y, and z, respectively, and
F, is the concentrated force in direction y.

3.3. Yield Criterion. The von Mises yield criterion has been
in use for the analysis of metal deformation in flexible
microrolling process. It is expressed by

f(o) -k =0, )
where
1
foy) = 2SS
1,
ko = -0
3 (8)
S =0::—0,0

ij ij mYij>
1
o =§(01+02+o3),

where oy is the initial yield stress of the material, s;; is the
deviatoric stress tensor, 0,, is the hydrostatic component of
the stress, and §;; is the Kronecker delta. The relationship
between s;; and effective stress, 0, is given by

1 7
ESUSU = ? = ]2, (9)
where J, is the second stress invariant.

Equations (7)-(9) give
0 =0 (10)
Therefore, the physical interpretation of von Mises criterion
can be that plastic deformation begins when the effective
stress is equal to the initial yield stress of the material.

3.4. Constitutive Relationship for Material. The material of the
blank is stainless steel 304 and its mechanical properties are
listed in Table 4, in which p is the density, E is Young’s mod-
ulus, v is Poisson’s ratio, and Er,y is the tangent modulus.

A bilinear isotropic hardening constitutive model
depicted in Figure 3 is utilised for the blank as it is an
approximation to the true stress-strain curve of the material
and has been widely adopted in the nonlinear FEA [19-21].
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TABLE 4: Mechanical properties of material.

p(kg/m’) E(GPa) v 0, (MPa) Epyy (MPa)
8000 193 029 205 1630

Material
Stainless steel

TaBLE 5: Number of meshes and computational time for six kinds of
mesh sizes using hexahedron elements.

Mesh size (ym) 500 250 150 100 50 25
Number of meshes 1,600 6,560 10,080 28,140 47,885 63,530
Computation time (h) 2 9 145 415 72 96.5

4. Results and Discussion

The simulation result with hexahedral mesh size 500 ym is
shown in Figure 4. The springback in thickness direction, At,
is calculated as h + Ah — t, where h is the distance between
the upper and lower surface nodes after deformation, Ah is
the designed reduction amount, and t is the initial thickness
of the blank.

The impact of mesh size on springback is discussed in
Section 4.1 when the reduction is 20 and 50%, respectively.
As a comparison, tetrahedron elements (C3D10M) were
employed for the blank and the results are analysed in
Section 4.2. Moreover, the numerical integration of the finite
element method is summarised in Section 4.3, which also
gives an explanation for the difference of simulation results
with usage of varying mesh types.

4.1. Effect of Mesh Size on Springback. The springback
amount, At, is plotted versus mesh size in Figure 5 on the basis
of the simulation outcomes. The preliminary mesh size is
500 pm, which means the blank consists of 1,600 hexahedron
elements.

As can be seen in Figure 5, the springback dramatically
decreases from the peak of about 9.0 ym to the value of
around 3.2 ym and then slightly descends to approximately
2.0 um at the mesh size of 500, 250, and 25 ym, respectively,
when the reduction is 20%. For 50% reduction, the spring-
back declines from the maximum of around 75um to the
minimum of about 1.2 ym with the mesh size reducing from
500 to 25 ym, and a big drop of the springback from about 6.7
to 3.2 yum shows up when the mesh size changes from 250 to
150 yum. For the whole range of the mesh size, the gap between
the springback for 20% reduction and that for 50% reduction
keeps within 3.5 ym, which is an accepted level in view of the
material model in the simulation. As the springback variation
is small after mesh size of 50 ym for both reductions, 50 ym
can be regarded as the critical mesh size for the springback to
slip into a stable stage in FEA simulation utilising hexahedron
elements.

Table 5 exhibits the number of meshes and computational
time for each mesh size. As can be observed in Table 5, the
number of meshes and computational time both increase
with the decrease of mesh size, which are 47,885 and 72h,
respectively, at the critical mesh size of 50 ym.

4.2. Impact of Mesh Type on Springback. For the investigation
of the impact of mesh type, tetrahedron elements were
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FIGURE 4: Simulation result with hexahedral mesh size 500 ym.
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FIGURE 5: Springback in thickness direction versus mesh size using
hexahedron elements.
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FIGURE 6: Springback in thickness direction versus mesh size using
tetrahedron elements.

introduced for the blank and the size was chosen in line with
that of hexahedron elements. Figure 6 shows the relationship
between the springback and the mesh size in light of the
simulation results.

It can be found out from Figure 6 that the trend and the
amplitude of both curves are similar. The springback makes a
sharp decrease from probably 8.1 to 1.6 ym for 20% reduction
and from roughly 7.4 to 1.9 um for 50% reduction when the
mesh size is diminished to 250 ym. Although the springback
amount fluctuates when the mesh size is less than 250 ym, the
deviation is much smaller than that between mesh sizes of 500
and 250 ym for both levels of reduction. Consequently, the
mesh size of 250 ym can be taken as the critical value for the

TABLE 6: Number of meshes and computational time for six sorts of
mesh sizes using tetrahedron elements.

Mesh size (um) 500 250 150 100 50 25
Number of meshes 18,121 43,390 62,860 82,170 100,822 126,376
Computation 28 695 1005 1325 164 2035

time (h)

springback amount to enter a steady phase in FEA simulation
utilising tetrahedron elements.

After stabilisation, the springback remains at 1.5 + 0.5 ym
for the reduction of 20% and 50%, which shows a good cor-
relation with that based on hexahedron elements. The num-
ber of meshes and computational time utilising tetrahedral
meshing are far more than those utilising hexahedral meshing
for each mesh size, as displayed in Table 6. Nonetheless, the
springback calculation achieved the same accuracy at the
critical mesh size of 250 ym with 4,495 fewer meshesand 2.5h
less computational time.

4.3. Analysis of Numerical Integration in Flexible Microrolling
Simulation. Numerical integration requires, in general, that
the integrand be evaluated at a finite number of points, called
integration points, within the integration limits. Since the
Gaussian quadrature is known to require the minimum num-
ber of integration points, the Gaussian quadrature formula is
used to carry out the numerical integrations in the flexible
microrolling simulation.

Consider the integrand f(&,#,{) defined by the natural
coordinates (-1 < £ <1, -1 <y <1, -1<{<1)in
the three-dimensional space. In the Gaussian quadrature, the
integration of f(&,#,() can be evaluated by

J_ll J_ll J_ll f(&n.¢)ded, d;
1)

=Y Y Y HHHf (81;:0).

n
i=1 j=1k=1

—_

where &;, 7, and {; are the coordinates of the integration
points, H;, H;, and H are the weight factors, and the
summation is carried out over n x m X [ integration points.



Usually, it is true that a higher-order integration is
suggested in order to obtain accurate evaluations of inte-
grands because some terms in the Gaussian quadrature are
eliminated when fewer integration points are selected, which
results in less accuracy [22]. For this reason, the difference
resulting from different meshing technologies in flexible
microrolling simulation fundamentally lies in the integra-
tion points that an element has. For reduced integration
element C3D8R, there is only one integration point locating
at the centre of the element. Though a small portion of
the computer execution time is spent in performing this
numerical integration, much error is introduced until 5
elements are adopted through the thickness. For full inte-
gration element C3D10M, more than one integration point
is distributed within the element, and hence accurate results
can be achieved with merely two elements in the thickness
direction.

5. Conclusions

This study shows the effects of mesh types on the accu-
racy of springback analysis in flexible microrolling pro-
cess. Hexahedron and tetrahedron elements were involved
in the finite element model in succession and six mesh
sizes of 500, 250, 150, 100, 50, and 25 um were separately
selected for each mesh type. After stable convergence, the
springback was found to keep at 1.5 + 0.5um for both
reductions 20 and 50% regardless of mesh type. Never-
theless, the critical mesh size of tetrahedron elements for
a good convergence is 250 ym, 5 times coarser than that
of hexahedron elements; namely, two divisions along the
thickness direction are adequate to get satisfying results
consuming less computing time. The optimum mesh type
and mesh size for this study can be used as reference in
creating other FE models for accurate and efficient numerical
analyses.

Further work for this research can be (1) to evaluate
the mesh effects on the accuracy of numerical simulation
of flexible microrolling process through other respects, for
instance, the surface asperity of the micro flexibly rolled
blank, and (2) to develop mathematical models that reflect
the relationship amongst mesh type, mesh size, and accuracy
of results for acquiring accurate numerical results even when
a coarser mesh with fewer integration points in it is used in
presented FEA simulation.
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